JP3978657B2 - Induction heating type distillation furnace - Google Patents

Induction heating type distillation furnace Download PDF

Info

Publication number
JP3978657B2
JP3978657B2 JP2002199376A JP2002199376A JP3978657B2 JP 3978657 B2 JP3978657 B2 JP 3978657B2 JP 2002199376 A JP2002199376 A JP 2002199376A JP 2002199376 A JP2002199376 A JP 2002199376A JP 3978657 B2 JP3978657 B2 JP 3978657B2
Authority
JP
Japan
Prior art keywords
furnace
induction heating
furnace body
fan
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002199376A
Other languages
Japanese (ja)
Other versions
JP2004044824A (en
Inventor
達男 武
政喜 佐久間
浩章 北川
邦夫 若原
和義 小柴
栄 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002199376A priority Critical patent/JP3978657B2/en
Publication of JP2004044824A publication Critical patent/JP2004044824A/en
Application granted granted Critical
Publication of JP3978657B2 publication Critical patent/JP3978657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Furnace Details (AREA)
  • General Induction Heating (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Coke Industry (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高分子系廃棄物や空缶などの乾留処理に用いる誘導加熱式乾留炉に関する。
【0002】
【従来の技術】
誘導加熱式乾留炉は、炉体の外側に誘導加熱コイルが設けられ、誘導加熱コイルが作る磁束が炉体と鎖交することにより、この鎖交磁束を打ち消すように炉体に誘導電流が生じ、この誘導電流による抵抗損で炉体が発熱する。炉内の被乾留物は炉体からの輻射熱や熱伝導により加熱され乾留される。図4は、このような誘導加熱式乾留炉の従来構成を示すもので、図4(A)は縦断斜視図、図4(B)はそのB−B線に沿う断面図である。図4において、乾留炉は底付きの中空円筒体からなる炉体1の外側に、誘導加熱により炉体1を発熱させる誘導加熱コイル2を備えている。炉体1に被乾留物3が投入され、窒素などの不活性ガスが封入された後、加熱コイル2により炉体1が誘導加熱されると、被乾留物3は乾留炉からの輻射や熱伝導よって加熱され、所定の温度、例えば550℃まで到達した後、その温度で一定時間保持されることで乾留処理される。
【0003】
【発明が解決しようとする課題】
図5は、図4の乾留炉で被乾留物3を乾留した場合の炉内中央部P点と外周部Q点における被乾留物温度の時間的変化を示したものである。図5に示すように、被乾留物3の温度は最初は外側が高温で内側の温度が低い。これは、外周部の被乾留物3は炉体1からの輻射熱及び熱伝導で速やかに昇温するが、中央部は専ら周囲の被乾留物3からの熱伝導によって加熱されるため昇温に遅れが生じるためである。時間が経つにつれて外側の熱が内側に伝わり、被乾留物3は炉体1とほぼ同じ温度で一様な温度分布になる。ちなみに、高分子系廃棄物(プラスチック類やゴム類)、空缶などの被乾留物3は、固体金属などに比べて熱伝導性が悪い。この炉内中央部の昇温遅れは炉壁からの距離に関係し、炉壁から遠ざかるほど顕著に表れる。そのため、温度制御が困難で加熱温度や保持時間が場所によって変わってしまい、乾留にムラが生じてしまうという問題があった。
【0004】
そこで、この発明の課題は、炉内中央部の被乾留物の昇温を促すとともに被乾留物へ伝わる熱量を増加させ、乾留処理の品質の向上と処理時間の短縮を図ることにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、この発明は、炉体の外側に誘導加熱コイルを備え、この誘導加熱コイルに励磁電流を流すことにより前記炉体を誘導加熱し、不活性ガス雰囲気の炉内で被乾留物を乾留処理し、前記不活性ガスを前記被乾留物を通して強制循環させるようにした誘導加熱式乾留炉であって、前記誘導加熱コイルの内側に前記炉体の外壁面との間に隙間を形成する断熱壁を設け、前記被乾留物を通して前記炉体の軸方向に貫流させた前記不活性ガスを前記隙間を介して前記被乾留物に還流させるようにするものである(請求項1)。この発明によれば、炉内の不活性ガスを強制循環させることで、このガスにより被乾留物の高温部の熱を奪って低温部へ移動させ、低温の炉内中央部の被乾留物の昇温を促すことができる。また、炉体と接触している高温の被乾留物温度が下がることで、炉体から被乾留物への輻射及び熱伝導による伝熱量が増加する。
【0006】
さらに、炉体の外壁面との間に隙間を形成する断熱壁は、炉壁からの輻射熱により高温に加熱される。そこで、被乾留物を通した後の不活性ガスを炉体外壁面と断熱壁との間の隙間を介して還流させることにより、この還流ガスは高温の炉壁と断熱壁とで高温に加熱され、ガスからの熱伝達による被乾留物の加熱時間を短縮する。また、炉外の上記隙間を介して被乾留物通過後の不活性ガスを還流させることにより、炉内で循環ガスが近道をして還流することが防止され、加熱後のガスが確実に被乾留物を貫流する。
【0007】
前記不活性ガスを強制循環させるファンは、炉内に設置するのがよい(請求項)。ファンを炉外に設置すると熱損失が増え、断熱構造が複雑になる。また、ファンは前記被乾留物に対して押し込み送風するように配置するのがよく、これにより吸い込み送風に比べて還流ガスによるファンの汚損が少なくなる(請求項)。
【0008】
また、請求項の誘導加熱式乾留炉は、直立円筒状の炉体と、この炉体の底部に吐出側を上にして垂直に設置したファンと、このファンの上方に水平に設置した通気性の被乾留物支えと、前記炉体の外壁面との間に隙間を形成させて前記誘導加熱コイルの内側に前記炉体と同軸に設置した円筒状の断熱壁と、前記ファンの吸込側を前記隙間に連通させる通風ガイドとを設けた構成とすることができる(請求項)。
【0009】
【発明の実施の形態】
本発明に係る誘導加熱式乾留炉の縦断面図を図2に示す。図2について説明する前に、説明の便宜上、図2の構成から「前記隙間を形成する断熱壁」の要件を除いた図2に至る前の構成に関して図1に基づいて述べる。なお、従来例と対応する部分には同一の符号を用いるものとする。図1において、磁性材(鋼鈑)からなる炉体1は上端部にフランジを有する直立円筒体で、断熱壁を兼ねる構造体4内に支持されている。構造体4は炉体1と同軸の底付きの直立円筒体で、例えばキャスタブル耐火物で構成されている。炉体1の上面は鋼板製の蓋体5で閉塞され、蓋体5には吊りボルト6が取り付けられている。蓋体5の外側は、断熱材7により覆われている。
【0010】
炉体1の底部中心には、吐出側を上にしてファン8が垂直に設置され、ファン8の上方には被乾留物3を支持する被乾留物支え9が水平に設置されている。被乾留物支え9は不活性ガスが自由に通過する通気性を持つように、例えばパンチングメタル、金網、格子などで構成される。ファン8は円錐状の通風ガイド10で囲まれ、この通風ガイド10はファン8の下側(吸込側)が開口するとともに、その周縁と炉体1との間にファン8の吸込側を被乾留物支え9の周縁部に連通させる環状の通気路11を形成している。ファン8、被乾留物支え9、通風ガイド10等はステンレス材からなっている。ファン8は構造体4の外部からモータ12により駆動される。誘導加熱コイル2は構造体4の外側に配置され、励磁電源13により励磁される。炉体1の温度は、例えば熱電対からなる温度センサ14により検出され、励磁電源13はその検出信号に基づき炉体1の温度が一定の乾留温度、例えば550℃に維持されるように誘導加熱コイル2への投入電力を制御する。
【0011】
図1の乾留炉の運転は、被乾留物支え9上に被乾留物3、例えば空缶を図示の通り装填し、炉内を窒素あるいはアルゴンなどの不活性ガスで置換した後、誘導加熱コイル2に通電し、同時にファン8を起動して行なう。誘導加熱コイル2の励磁により生じた磁束は構造体4を貫通して炉体1と鎖交し、炉体1に誘導電流を生じさせる。これにより、炉体1は発熱し、炉内の被乾留物3を加熱する。その場合、炉体1に近接する被乾留物3は、炉体1からの輻射熱と熱伝導の双方により加熱され急速に昇温する。これに対して、炉内中央部の被乾留物3は、専らその外側の被乾留物3からの熱伝導により加熱されるため遅れて昇温する。この昇温遅れは、炉内中心に近いほど大きい。
【0012】
一方、ファン8の起動により、炉内の不活性ガスは、図1に矢印で示したように、炉壁近傍の被乾留物3を通して炉体1の軸方向(下向き)に貫流した後、反転してファン8に吸い込まれ、ファン8から吐出された不活性ガスは炉内中央部の被乾留物3を通して逆方向(上向き)に貫流し、再び反転して炉壁近傍の被乾留物3を通して炉体1の軸方向(下向き)に貫流するように循環する。この循環において、炉壁近傍の高温の被乾留物3から熱を奪った不活性ガスは、この熱を熱伝達により炉内中央部の低温の被乾留物3に与え昇温させる。その結果、不活性ガスを媒体として炉壁近傍の高温の被乾留物3から炉内中央部の低温の被乾留物3への熱移動が行われ、炉内中央部の被乾留物3の昇温が促される。
【0013】
また、炉壁近傍の被乾留物3は、炉内中央部を貫流した後の低温の循環ガスにより冷却され温度が低下する。その結果、炉壁近傍の被乾留物3と炉体1との温度差が大きくなり、炉体1からこの被乾留物3への輻射及び熱伝導による伝熱量が増える。炉体1を加熱する励磁電流は炉体1の温度を一定(550℃)に維持するように制御されているので、炉体1から被乾留物3への伝熱量が増えると投入電力も増える。以上のことから、炉内での不活性ガスの循環により、炉内中央部の被乾留物3の昇温速度が向上するとともに、運転初期の投入電力も拡大され、結果として昇温時間、従って乾留処理時間が短縮される。また、循環ガスを介して炉壁近傍と炉内中央部の被乾留物温度の平均化が行われるため、乾留ムラの少ない高品質の乾留処理が達成される。
【0014】
図2は、図1の構成を改良したこの発明に係る実施の形態を示す誘導加熱式乾留炉の縦断面図である。図2において、図1と相違しているのは、炉体1の外壁面と構造体(断熱壁)4との間に環状の隙間15が形成され、炉体1の上部及び下部に、炉内と隙間15との間を連通する方形の通流窓16及び17がそれぞれ設けられている点である。通流窓16,17は周方向に複数箇所設けられている。また、通風ガイド10の周縁部と炉体1との間は閉じられている。図2において、ファン8を駆動すると、不活性ガスは図示矢印で示すように循環する。すなわち、この場合、炉内中央部の被乾留物3を通して炉体1の軸方向上向きに貫流した不活性ガスは、通流窓16、隙間15、通流窓17を介して炉内に還流しファン8に吸い込まれる。
【0015】
しかして、炉壁と対向している断熱壁4は、誘導加熱された炉壁からの輻射熱により、炉体温度とほぼ等しい高温に加熱されている。そこで、隙間15を通った不活性ガスは、高温の炉体1と構造体4の2面から熱を受け取り高温に加熱されて炉内に入る。従って、この高温ガスが貫流する炉内中央部の被乾留物3も、図1の実施の形態に比べてより迅速に加熱される。
【0016】
また、図2の本発明に係る実施の形態においては、循環ガスの吸込口(通流窓)16が被乾留物3の上方に開口しているため、ファン8から吐出されたガスは必ず被乾留物3を貫流し、途中でファン8の吸込側に近道して回り込むことがない。図1においては、被乾留物3の通風抵抗が大きいと、破線矢印で示すように吐出ガスが被乾留物3を貫流する前に途中でUターンして近道し、ファン8の吸込側に回り込む可能性がある。その点、図2の実施の形態においては、ファン8の吐出側と吸込側とが隙間15を介して完全に隔離されているため近道の危険がない。
【0017】
図3は、図2の乾留炉における炉内中心部P点と外周部Q点(図4(B)参照)における被乾留物温度の時間的変化を示したものである。図4の従来例におけるもの(図5参照)も破線で一緒に示してある。図3に実線で示す通り、図2の実施の形態によれば、初期投入電力の増大により外周部Q点の昇温の立ち上がりが従来に比べて速くなるとともに、炉壁近傍から炉内中央部への循環ガスを媒体とする熱移動により、炉内中心部P点の昇温も外周部Q点とほぼ同じ速さで立ち上がる。
【0018】
更に、図2の実施の形態において、ファン8は炉内に設置されている。従って、ファン8を炉外の例えばバイパスダクトに設置する場合に比べて熱損失が少なく、バイパスダクトの断熱も不要である。また、ファン8は被乾留物3に対して押し込み送風、つまりファン8の吐出側が被乾留物3に対面するように設置されている。そのため、吸い込み送風、つまりにファン8の吸込側が被乾留物3に対面する場合に比べて還流ガスによるファン8の汚損が少ない。
【0019】
【発明の効果】
以上の通り、この発明によれば、炉内に不活性ガスを循環させることにより、運転初期における炉内周辺部と中央部の被乾留物の昇温速度差を縮小し、かつ投入電力を増大して乾留処理時間を短縮することができる。また、炉内周辺部と中央部での被乾留物の温度差が縮小するので乾留ムラが減少し、高品質の乾留処理が実現される。さらに、炉体の外壁面との間に隙間を形成する断熱壁は、炉壁からの輻射熱により高温に加熱される。そこで、被乾留物を通した後の不活性ガスを炉体外壁面と断熱壁との間の隙間を介して還流させることにより、この還流ガスは高温の炉壁と断熱壁とで高温に加熱され、ガスからの熱伝達による被乾留物の加熱時間を短縮する。また、炉外の上記隙間を介して被乾留物通過後の不活性ガスを還流させることにより、炉内で循環ガスが近道をして還流することが防止され、加熱後のガスが確実に被乾留物を貫流する。
【図面の簡単な説明】
【図1】 この発明の図2に至る前の構成に関する誘導加熱式乾留炉の縦断面図である。
【図2】 この発明の実施形態に係る誘導加熱式乾留炉の縦断面図である。
【図3】 図2の乾留炉における被乾留物温度の時間的変化を示す線図である。
【図4】 (A)は従来の誘導加熱式乾留炉の縦断面図、(B)はそのB−B線に沿う断面図である。
【図5】 図4の乾留炉における被乾留物温度の時間的変化を示す線図である。
【符号の説明】
1 炉体
2 誘導加熱コイル
3 被乾留物
4 断熱壁
8 ファン
9 被乾留物支え
10 通風ガイド
11 通気路
13 励磁電源
14 温度センサ
15 隙間
16 通流窓
17 通流窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating type carbonization furnace used for carbonization treatment of polymer wastes, empty cans and the like.
[0002]
[Prior art]
Induction heating type carbonization furnaces are provided with an induction heating coil outside the furnace body. When the magnetic flux generated by the induction heating coil is linked to the furnace body, an induction current is generated in the furnace body so as to cancel the interlinkage magnetic flux. The furnace body generates heat due to the resistance loss due to the induced current. The to-be-distilled material in the furnace is heated and dried by radiant heat and heat conduction from the furnace body. FIG. 4 shows a conventional configuration of such an induction heating type carbonization furnace. FIG. 4 (A) is a longitudinal perspective view, and FIG. 4 (B) is a sectional view taken along the line BB. In FIG. 4, the dry distillation furnace includes an induction heating coil 2 that heats the furnace body 1 by induction heating outside the furnace body 1 that is a hollow cylindrical body with a bottom. After the to-be-distilled material 3 is put into the furnace body 1 and an inert gas such as nitrogen is sealed, when the furnace body 1 is induction-heated by the heating coil 2, the to-be-distilled object 3 is irradiated with heat or heat from the incubator. After being heated by conduction and reaching a predetermined temperature, for example, 550 ° C., it is subjected to dry distillation treatment by being held at that temperature for a certain period of time.
[0003]
[Problems to be solved by the invention]
FIG. 5 shows temporal changes in the temperature of the dry matter at the center P point and the outer periphery Q point in the furnace when the dry distillation object 3 is carbonized in the carbonization furnace of FIG. As shown in FIG. 5, the temperature of the to-be-dried product 3 is initially high on the outside and low on the inside. This is because the to-be-distilled material 3 at the outer peripheral portion is quickly heated by radiant heat and heat conduction from the furnace body 1, but the center is heated only by heat conduction from the surrounding to-be-dried material 3, so that the temperature rises. This is because a delay occurs. As time passes, the outside heat is transferred to the inside, and the to-be-dried product 3 has a uniform temperature distribution at substantially the same temperature as the furnace body 1. Incidentally, to-be-dried materials 3 such as polymer wastes (plastics and rubbers) and empty cans have poor thermal conductivity compared to solid metals. This temperature rise delay in the center of the furnace is related to the distance from the furnace wall, and becomes more noticeable as the distance from the furnace wall increases. For this reason, there is a problem that temperature control is difficult, the heating temperature and the holding time vary depending on the location, and the dry distillation becomes uneven.
[0004]
Accordingly, an object of the present invention is to promote the temperature rise of the material to be dried in the center of the furnace and increase the amount of heat transmitted to the material to be dried, thereby improving the quality of the dry distillation process and shortening the processing time.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes an induction heating coil outside the furnace body, and induction heating the furnace body by flowing an excitation current through the induction heating coil. An induction heating type dry distillation furnace in which a carbonized product is subjected to carbonization treatment, and the inert gas is forcibly circulated through the product to be distilled , between the induction heating coil and an outer wall surface of the furnace body A heat insulating wall that forms a gap is provided, and the inert gas that has flowed through in the axial direction of the furnace body through the to-be-dried product is recirculated to the to- be-dried product through the gap. 1). According to the present invention, the inert gas in the furnace is forcibly circulated, so that the heat of the hot part of the dry matter is taken away by this gas and moved to the low temperature part. Can raise the temperature. Moreover, the amount of heat transfer by radiation and heat conduction from a furnace body to a to-be-dried material increases because the temperature of the high-temperature to-be-dried material in contact with a furnace body falls.
[0006]
Furthermore, the heat insulating wall that forms a gap with the outer wall surface of the furnace body is heated to a high temperature by radiant heat from the furnace wall. Therefore, the reflux gas is heated to a high temperature by the high-temperature furnace wall and the heat insulation wall by refluxing the inert gas after passing through the to-be-distilled material through the gap between the outer wall surface of the furnace body and the heat insulation wall. The heating time of the to-be-distilled material by heat transfer from gas is shortened. Also, by circulating the inert gas after passing through the object to be dried through the gap outside the furnace, it is possible to prevent the circulating gas from recirculating through the shortcut and ensure that the heated gas is covered. Flow through the dry distillate.
[0007]
Fan for forced circulation of the inert gas, it is preferable for installation in the furnace (claim 2). Installing a fan outside the furnace increases heat loss and complicates the heat insulation structure. Further, the fan is preferably arranged so as to push and blow air against the material to be dried, so that the fan is less polluted by the reflux gas than the sucking air (Claim 3 ).
[0008]
Further, the induction heating type carbonization furnace of claim 1 is an upright cylindrical furnace body, a fan installed vertically with the discharge side facing up at the bottom of the furnace body, and a ventilation installed horizontally above the fan. A cylindrical heat insulating wall installed coaxially with the furnace body inside the induction heating coil by forming a gap between the support to be dried and the outer wall surface of the furnace body, and the suction side of the fan it is possible to adopt a configuration provided with a ventilation guide that communicates with the gap (claim 4).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a longitudinal sectional view of the induction heating type carbonization furnace according to the present invention. Before describing FIG. 2, for the sake of convenience of explanation, a configuration before reaching FIG. 2 excluding the requirement of “the heat insulating wall forming the gap” from the configuration of FIG. 2 will be described based on FIG. 1. In addition, the same code | symbol shall be used for the part corresponding to a prior art example. In FIG. 1, a furnace body 1 made of a magnetic material (steel) is an upright cylindrical body having a flange at an upper end portion, and is supported in a structure 4 that also serves as a heat insulating wall. The structure 4 is an upright cylindrical body with a bottom that is coaxial with the furnace body 1 and is made of, for example, a castable refractory. The upper surface of the furnace body 1 is closed with a lid 5 made of steel plate, and a suspension bolt 6 is attached to the lid 5. The outside of the lid 5 is covered with a heat insulating material 7.
[0010]
At the center of the bottom of the furnace body 1, a fan 8 is vertically installed with the discharge side facing up, and a to-be-dried object support 9 for supporting the to-be-dried object 3 is horizontally installed above the fan 8. The to-be-dried material support 9 is comprised, for example with a punching metal, a metal-mesh, a grating | lattice, etc. so that an inert gas may pass freely. The fan 8 is surrounded by a conical ventilation guide 10, and the ventilation guide 10 is opened at the lower side (suction side) of the fan 8, and the suction side of the fan 8 is dry-distilled between the peripheral edge and the furnace body 1. An annular air passage 11 communicating with the peripheral edge of the support 9 is formed. The fan 8, the to-be-dried material support 9, the ventilation guide 10, etc. are made of stainless steel. The fan 8 is driven from the outside of the structure 4 by a motor 12. The induction heating coil 2 is disposed outside the structure 4 and is excited by an excitation power source 13. The temperature of the furnace body 1 is detected by a temperature sensor 14 made of, for example, a thermocouple, and the excitation power source 13 is induction-heated so that the temperature of the furnace body 1 is maintained at a certain dry distillation temperature, for example, 550 ° C. based on the detection signal. The electric power supplied to the coil 2 is controlled.
[0011]
The operation of the carbonization furnace of FIG. 1 is carried out by loading an object 3 to be dried, such as an empty can, on the support 9 to be distilled, replacing the inside with an inert gas such as nitrogen or argon, and then induction heating coil. 2 is energized and at the same time the fan 8 is activated. The magnetic flux generated by the excitation of the induction heating coil 2 passes through the structure body 4 and is linked to the furnace body 1 to generate an induction current in the furnace body 1. Thereby, the furnace body 1 generates heat, and heats the dry matter 3 in the furnace. In that case, the to-be-dried product 3 adjacent to the furnace body 1 is heated by both radiant heat and heat conduction from the furnace body 1 and rapidly rises in temperature. On the other hand, since the to-be-distilled material 3 of the center part in a furnace is heated only by the heat conduction from the to-be-distilled material 3 of the outer side, it heats up late. The temperature increase delay is larger as the temperature is closer to the center of the furnace.
[0012]
On the other hand, when the fan 8 is started, the inert gas in the furnace flows in the axial direction (downward) of the furnace body 1 through the to-be-dried material 3 in the vicinity of the furnace wall as shown by the arrow in FIG. Then, the inert gas sucked into the fan 8 and discharged from the fan 8 flows in the reverse direction (upward) through the to-be-dried material 3 in the center of the furnace, and reverses again to pass through the to-be-dried material 3 near the furnace wall. It circulates so as to flow through in the axial direction (downward) of the furnace body 1. In this circulation, the inert gas that has taken heat from the high temperature dry matter 3 in the vicinity of the furnace wall gives this heat to the low temperature dry matter 3 in the center of the furnace by heat transfer to raise the temperature. As a result, heat transfer is performed from the high temperature dry matter 3 near the furnace wall to the low temperature dry matter 3 in the center of the furnace using an inert gas as a medium, and the rise of the dry matter 3 in the center of the furnace is increased. The temperature is urged.
[0013]
In addition, the to-be-dried product 3 in the vicinity of the furnace wall is cooled by the low-temperature circulating gas after flowing through the center of the furnace, and the temperature is lowered. As a result, the temperature difference between the dry distillation object 3 near the furnace wall and the furnace body 1 increases, and the amount of heat transfer from the furnace body 1 to the dry distillation object 3 by radiation and heat conduction increases. Since the exciting current for heating the furnace body 1 is controlled so as to maintain the temperature of the furnace body 1 at a constant (550 ° C.), the input power also increases as the amount of heat transfer from the furnace body 1 to the dry matter 3 increases. . From the above, the circulation of the inert gas in the furnace improves the heating rate of the to-be-dried product 3 in the center of the furnace, and the input power at the initial stage of operation is expanded. The carbonization time is shortened. Moreover, since the temperature of the dry distillation product in the vicinity of the furnace wall and the central part in the furnace is averaged through the circulating gas, a high quality dry distillation process with little dry distillation unevenness is achieved.
[0014]
Figure 2 is a longitudinal sectional view of an induction heating type dry distillation furnace showing an embodiment according to the present invention having an improved structure of FIG. 2 is different from FIG. 1 in that an annular gap 15 is formed between the outer wall surface of the furnace body 1 and the structure (heat insulating wall) 4. Square flow windows 16 and 17 communicating between the inside and the gap 15 are provided. A plurality of flow windows 16 and 17 are provided in the circumferential direction. The space between the peripheral edge of the ventilation guide 10 and the furnace body 1 is closed. In FIG. 2, when the fan 8 is driven, the inert gas circulates as shown by the arrows in the figure. That is, in this case, the inert gas that has flowed upward in the axial direction of the furnace body 1 through the to-be-dried product 3 in the center of the furnace returns to the furnace through the flow window 16, the gap 15, and the flow window 17. Sucked into fan 8.
[0015]
Thus, the heat insulating wall 4 facing the furnace wall is heated to a high temperature substantially equal to the furnace body temperature by radiant heat from the furnace wall that has been induction-heated. Therefore, the inert gas passing through the gap 15 receives heat from the two surfaces of the high-temperature furnace body 1 and the structure body 4 and is heated to a high temperature to enter the furnace. Accordingly, the to-be-dried product 3 in the center of the furnace through which the high-temperature gas flows is also heated more rapidly than the embodiment of FIG.
[0016]
Further, in the embodiment according to the present invention shown in FIG. 2, the circulation gas suction port (flow window) 16 is opened above the dry matter 3 so that the gas discharged from the fan 8 is always covered. It does not flow around the dry distillate 3 and short-circuit to the suction side of the fan 8 on the way. In FIG. 1, when the draft resistance of the to-be-distilled material 3 is large, as shown by the broken line arrow, before the discharge gas flows through the to-be-distilled material 3, it makes a U-turn on the way and goes to the suction side of the fan 8. there is a possibility. In that regard, in the embodiment shown in FIG. 2, the discharge side and the suction side of the fan 8 are completely separated via the gap 15, so there is no shortcut.
[0017]
FIG. 3 shows temporal changes in the temperature of the dry distillation product at the center P point and the outer periphery Q point (see FIG. 4B) in the dry distillation furnace of FIG. The conventional example of FIG. 4 (see FIG. 5) is also shown by a broken line. As shown by the solid line in FIG. 3, according to the embodiment of FIG. 2, the rise in temperature rise at the outer peripheral portion Q point becomes faster than before due to the increase in the initial input power, and from the vicinity of the furnace wall to the center of the furnace Due to the heat transfer using the circulating gas as a medium, the temperature rise at the center P point in the furnace rises at almost the same speed as that at the outer periphery Q point.
[0018]
Furthermore , in the embodiment of FIG. 2, the fan 8 is installed in a furnace. Therefore, heat loss is less than when the fan 8 is installed in, for example, a bypass duct outside the furnace, and heat insulation of the bypass duct is unnecessary. Further, the fan 8 is installed so that the air to be dried 3 is pushed into the dry matter 3, that is, the discharge side of the fan 8 faces the dry matter 3. Therefore, the fan 8 is less polluted by the reflux gas than the case where the suction air is blown, that is, the suction side of the fan 8 faces the dry distillation object 3.
[0019]
【The invention's effect】
As described above, according to the present invention, the inert gas is circulated in the furnace, thereby reducing the difference in the rate of temperature rise between the inner periphery of the furnace and the center part in the initial operation and increasing the input power. Thus, the carbonization time can be shortened. In addition, since the temperature difference between the inner and outer peripheral parts of the furnace is reduced, dry distillation unevenness is reduced, and high-quality dry distillation treatment is realized. Furthermore, the heat insulating wall that forms a gap with the outer wall surface of the furnace body is heated to a high temperature by radiant heat from the furnace wall. Therefore, the reflux gas is heated to a high temperature by the high-temperature furnace wall and the heat insulation wall by refluxing the inert gas after passing through the to-be-distilled material through the gap between the outer wall surface of the furnace body and the heat insulation wall. The heating time of the to-be-distilled material by heat transfer from gas is shortened. Also, by circulating the inert gas after passing through the object to be dried through the gap outside the furnace, it is possible to prevent the circulating gas from recirculating through the shortcut and ensure that the heated gas is covered. Flow through the dry distillate.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an induction heating type carbonization furnace relating to a configuration before reaching FIG. 2 of the present invention.
FIG. 2 is a longitudinal sectional view of an induction heating type carbonization furnace according to an embodiment of the present invention.
FIG. 3 is a diagram showing a temporal change in the temperature of a dry matter in the dry distillation furnace of FIG. 2;
4A is a longitudinal sectional view of a conventional induction heating type carbonization furnace, and FIG. 4B is a sectional view taken along the line BB of FIG.
FIG. 5 is a diagram showing a temporal change in the temperature of a material to be distilled in the carbonization furnace of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace 2 Induction heating coil 3 To-be-dried thing 4 Heat insulation wall 8 Fan 9 To-be-dried object support 10 Ventilation guide 11 Ventilation path 13 Excitation power supply 14 Temperature sensor 15 Crevice 16 Flow-through window 17 Flow-through window

Claims (4)

炉体の外側に誘導加熱コイルを備え、この誘導加熱コイルに励磁電流を流すことにより前記炉体を誘導加熱し、不活性ガス雰囲気の炉内で被乾留物を乾留処理し、前記不活性ガスを前記被乾留物を通して強制循環させるようにした誘導加熱式乾留炉であって
前記誘導加熱コイルの内側に前記炉体の外壁面との間に隙間を形成する断熱壁を設け、前記被乾留物を通して前記炉体の軸方向に貫流させた前記不活性ガスを前記隙間を介して前記被乾留物に還流させるようにしたことを特徴とする誘導加熱式乾留炉。
An induction heating coil is provided outside the furnace body, and the furnace body is induction-heated by passing an exciting current through the induction heating coil, and a dry distillation treatment is performed on a dry matter in a furnace in an inert gas atmosphere, and the inert gas Is an induction heating type carbonization furnace in which forced circulation is performed through the to-be-distilled material ,
A heat insulating wall that forms a gap between the induction heating coil and the outer wall surface of the furnace body is provided, and the inert gas that has flowed in the axial direction of the furnace body through the dry matter is passed through the gap. An induction heating type carbonization furnace characterized by being refluxed to the dry distillation product .
前記不活性ガスを強制循環させるファンを炉内に設置したことを特徴とする請求項1記載の誘導加熱式乾留炉。Induction heating type dry distillation furnace according to claim 1 Symbol mounting, characterized in that it has established a fan for forced circulation of the inert gas into the furnace. 前記ファンを前記被乾留物に対して押し込み送風するように配置したことを特徴とする請求項記載の誘導加熱式乾留炉。The induction heating type carbonization furnace according to claim 2, wherein the fan is arranged so as to be pushed into the dry matter and blown. 直立円筒状の炉体と、この炉体の底部に吐出側を上にして垂直に設置したファンと、このファンの上方に水平に設置した通気性の被乾留物支えと、前記炉体の外壁面との間に隙間を形成させて前記誘導加熱コイルの内側に前記炉体と同軸に設置した円筒状の断熱壁と、前記ファンの吸込側を前記隙間に連通させる通風ガイドとを設けたことを特徴とする請求項記載の誘導加熱式乾留炉。An upright cylindrical furnace body, a fan installed vertically at the bottom of the furnace body with the discharge side up, a breathable dry matter support installed horizontally above the fan, and an outside of the furnace body A cylindrical heat insulating wall that is coaxially installed with the furnace body inside the induction heating coil with a gap formed between the wall surface and a ventilation guide that communicates the suction side of the fan with the gap. The induction heating type carbonization furnace according to claim 1 .
JP2002199376A 2002-07-09 2002-07-09 Induction heating type distillation furnace Expired - Fee Related JP3978657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199376A JP3978657B2 (en) 2002-07-09 2002-07-09 Induction heating type distillation furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199376A JP3978657B2 (en) 2002-07-09 2002-07-09 Induction heating type distillation furnace

Publications (2)

Publication Number Publication Date
JP2004044824A JP2004044824A (en) 2004-02-12
JP3978657B2 true JP3978657B2 (en) 2007-09-19

Family

ID=31706529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199376A Expired - Fee Related JP3978657B2 (en) 2002-07-09 2002-07-09 Induction heating type distillation furnace

Country Status (1)

Country Link
JP (1) JP3978657B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009908B2 (en) * 2003-09-08 2007-11-21 富士電機システムズ株式会社 Induction heating type distillation furnace
JP4658629B2 (en) * 2005-01-31 2011-03-23 メタウォーター株式会社 Operation method of induction heating type distillation furnace
JP4658638B2 (en) * 2005-02-25 2011-03-23 メタウォーター株式会社 Induction heating type distillation furnace
CN105482154A (en) * 2015-12-16 2016-04-13 华东理工大学 Method for recycling carbon fibers from carbon-fiber-enhanced high polymer material based on induction heating effect

Also Published As

Publication number Publication date
JP2004044824A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US6724803B2 (en) Induction furnace for high temperature operation
US7424045B2 (en) Method and apparatus for heating a workpiece in an inert atmosphere or in vacuum
CN102297583B (en) Steam oxidation well furnace
JP3978657B2 (en) Induction heating type distillation furnace
JP4255789B2 (en) Induction heating type distillation furnace
JP4658638B2 (en) Induction heating type distillation furnace
JP2016207586A (en) Rapid temperature rise/fall heat treatment furnace
JP4009908B2 (en) Induction heating type distillation furnace
JP4280406B2 (en) Fast heating furnace
JP4096258B2 (en) Induction heating type distillation furnace
JP2005000766A (en) Induction heating type carbonization furnace
CN214004732U (en) Continuous heat treatment device for metal body
CN107619913A (en) A kind of deep cooling is tempered all-in-one oven
JPH09168484A (en) Electromagnetic induction heating type fryer
JP2014044023A (en) Heating cooker
JP2003269866A (en) Induction heating dry distillation furnace
US6609906B1 (en) Adjustable ratio control system and method
CN217686643U (en) Vacuum furnace capable of realizing quick cooling without breaking vacuum
CN219099243U (en) Trolley tempering furnace capable of being heated uniformly
CN220380235U (en) Electric stove capable of rapidly radiating heat
JP2003013142A (en) Heat treatment method for cast-iron pipe and device therefor
JPH07198254A (en) Drying method and drying device
JP4583255B2 (en) How to use heat treatment furnace
JP2005078957A (en) Induction heating type dry distillation furnace and its operation method
JP2005076901A (en) Induction heating type dry distillation furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees