JP4583255B2 - How to use heat treatment furnace - Google Patents

How to use heat treatment furnace Download PDF

Info

Publication number
JP4583255B2
JP4583255B2 JP2005184109A JP2005184109A JP4583255B2 JP 4583255 B2 JP4583255 B2 JP 4583255B2 JP 2005184109 A JP2005184109 A JP 2005184109A JP 2005184109 A JP2005184109 A JP 2005184109A JP 4583255 B2 JP4583255 B2 JP 4583255B2
Authority
JP
Japan
Prior art keywords
treated
hot air
furnace
heat treatment
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005184109A
Other languages
Japanese (ja)
Other versions
JP2007003098A (en
Inventor
克彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005184109A priority Critical patent/JP4583255B2/en
Publication of JP2007003098A publication Critical patent/JP2007003098A/en
Application granted granted Critical
Publication of JP4583255B2 publication Critical patent/JP4583255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Furnace Details (AREA)

Description

本発明は、厚鋼板などの熱処理炉の使用方法に関する。 The present invention relates to a method of using a heat treatment furnace such as a thick steel plate.

従来、ファンを使用したバッチ式の熱風循環型熱処理炉において、特に、処理材料が熱伝導の良い場合には、ファンによって送られた熱風が材料間を通過する間にその熱風温度が低下し、ファンの風上と風下ではかなりの加熱速度の差が見られた。この温度差を短縮するために、特許文献1では、その従来技術として、「従来よりファンの回転方向をタイマにより定期的に逆転させる方法が採られていた。」と記載されている(特許文献1の第2図参照)。   Conventionally, in a batch-type hot air circulation heat treatment furnace using a fan, particularly when the processing material has good heat conduction, the hot air temperature sent by the fan passes between the materials, and the hot air temperature decreases. There was a considerable difference in heating speed between the windward and leeward of the fan. In order to shorten this temperature difference, Patent Document 1 describes, as the prior art, “a method in which the rotation direction of the fan is periodically reversed by a timer is conventionally employed” (Patent Document 1). 1 (see FIG. 2).

前記従来技術は、ファンの正逆運転を数十回繰り返すため、それだけ所定時間に昇温する時間が長時間かかるという欠点を有していた。
そこで、前記特許文献1記載の発明では、その正逆切換を1回だけとして昇温時間の短縮を図っている(特許文献1の第3図参照)。
特公昭53−29281号公報
The prior art has a drawback in that it takes a long time to raise the temperature to a predetermined time because the forward / reverse operation of the fan is repeated several tens of times.
Therefore, in the invention described in Patent Document 1, the temperature raising time is shortened by switching the forward / reverse switching only once (see FIG. 3 of Patent Document 1).
Japanese Patent Publication No.53-29281

特許文献1の第2図に示す数十回の正逆転切り換え運転と、その第3図に示す1回だけの切換による運転との何れにおいても、被加熱材の風上側と風下側では、所定温度に昇温するまでの時間に差が見られる(以下、この差を「昇温時間差」という)。すなわち、被加熱材の全体が均一に目標温度に達するまでは、温度分布が生じている。
厚鋼板の熱処理炉において被加熱材に昇温時間差が生じると、当該厚鋼板内の強度分布にバラツキが生じる。
In any of the dozens of forward / reverse switching operations shown in FIG. 2 of Patent Document 1 and the operation by only one switching shown in FIG. There is a difference in the time until the temperature is raised (hereinafter, this difference is referred to as “temperature rise time difference”). That is, a temperature distribution is generated until the entire material to be heated reaches the target temperature uniformly.
When a temperature rise time difference occurs in the material to be heated in the heat treatment furnace for the thick steel plate, the strength distribution in the thick steel plate varies.

ところで、特許文献1記載の被加熱材の温度「LC1」と「LC2」とは、被加熱材の熱風が供給される両端部の温度であるが、特許文献1の技術を実際の現場に適用した場合、かかる両端部の温度(LC1,LC2)よりも、当該被加熱材の中間部(中央部)の温度は低いことが判明した。すなわち、送風手段により被加熱材(被処理材)の一端部から他端部へ該被処理材の表面に沿って熱風を流すことにより、該被処理材を加熱する熱処理炉において、被処理材の端部の昇温が他の部分よりも早いという問題が現実として存在し、特許文献1の如く、被処理材の両端部のみに着目して昇温時間差を短縮するだけでは、被加熱材内の強度等の品質のバラツキを解消することはできないという問題があった。   By the way, although the temperature “LC1” and “LC2” of the heated material described in Patent Document 1 are the temperatures at both ends to which the hot air of the heated material is supplied, the technique of Patent Document 1 is applied to an actual site. In this case, it was found that the temperature of the intermediate portion (center portion) of the material to be heated is lower than the temperatures (LC1, LC2) of both ends. That is, in a heat treatment furnace that heats the material to be treated by flowing hot air along the surface of the material to be treated from one end portion to the other end portion of the material to be heated (material to be treated) by a blowing means. As a matter of fact, there is a problem that the temperature rise at the end of the substrate is faster than the other portions. As in Patent Document 1, it is only necessary to reduce the temperature rise time difference by focusing only on both ends of the material to be treated. There was a problem that the variation in quality such as the strength could not be eliminated.

そこで、本発明は、被処理材の全体にわたって、昇温時間が均一となるようにした熱処理炉の使用方法を提供することを目的とする。 Then, an object of this invention is to provide the usage method of the heat processing furnace which made temperature rising time uniform over the whole to-be-processed material.

前記目的を達成するため、本発明は、次の手段を講じた。
すなわち、本発明の特徴とするところは、被処理材載置台に載置された被処理材を収納する炉室と、該炉室内の雰囲気ガスを加熱する加熱手段と、該加熱手段により加熱された雰囲気ガスを熱風として送風する送風手段とを有する熱処理炉の使用方法において、前記熱風が被処理材の表面において形成する速度境界層が、被処理材の一端部から他端部にわたって同じ厚さになるように、前記被処理材の一端部であって熱風の流れ方向で上流側に速度境界層生成手段を設けておき、前記速度境界層生成手段として、異なる高さを有する複数の邪魔板を用意しておき、前記被処理材の表面と面一となる高さの邪魔板を選択した上で、前記被処理材の一端部に接するように被処理材載置台に固定し、その上で、前記送風手段により前記被処理材の一端部から他端部へ該被処理材の表面に沿って熱風を流すことにより、該被処理材を加熱することを特徴とする。
In order to achieve the above object, the present invention has taken the following measures.
That is, the feature of the present invention is that a furnace chamber for storing the material to be processed placed on the material mounting table, a heating means for heating the atmospheric gas in the furnace chamber, and a heating means for heating. In the method of using a heat treatment furnace having a blowing means for blowing the atmospheric gas as hot air, the velocity boundary layer formed on the surface of the material to be treated by the hot air has the same thickness from one end to the other end of the material to be treated. such that, said a one end portion of the material to be treated can you provided velocity boundary layer generating means on the upstream side in the hot air flow direction, as the velocity boundary layer generating means, a plurality of baffle having different heights Prepare a plate, select a baffle plate that is flush with the surface of the material to be treated, and then fix the material to be treated so as to contact one end of the material to be treated. on one of said workpiece by said blowing means By passing hot air from section along the surface of the 該被 treatment material to the other end, characterized by heating the 該被 treatment material.

本願発明者らは、被処理材を収納する炉室と、該炉室内の雰囲気ガスを加熱する加熱手段と、該加熱手段により加熱された雰囲気ガスを送風する送風手段とを有し、前記送風手段により前記被処理材の一端部から他端部へ該被処理材の表面に沿って熱風を流すことにより、該被処理材を加熱する厚鋼板用熱処理炉で、被処理材の温度(板温)の昇温確認を行った。   The inventors of the present application have a furnace chamber for storing the material to be processed, a heating unit for heating the atmospheric gas in the furnace chamber, and a blowing unit for blowing the atmospheric gas heated by the heating unit, The temperature (plate) of the material to be treated is measured in a heat treatment furnace for the thick steel plate that heats the material to be treated by flowing hot air along the surface of the material to be treated from one end to the other end of the material by means Temperature) was confirmed.

その結果、板幅方向端部(被処理材の幅方向での端部)が、中央部より早く昇温し、昇温時間の計算値と実績値との差である昇温時間差を生じる結果となった。その現象を把握するため、「速度境界層により板幅方向に熱伝達率分布を生じている」との仮説を立てた。
図3は、前記仮説の説明図であり、当該仮説は「ガス流れに対して鋼板先端は速度境界層が薄いため熱伝達率が高く、速度境界層の成長と共に熱伝達率は低くなる。この影響により板幅方向の昇温時間差を生じる。」と言うものである。
As a result, the plate width direction end (end in the width direction of the material to be processed) is heated faster than the central portion, resulting in a temperature rise time difference that is the difference between the calculated value of the temperature rise time and the actual value. It became. In order to grasp the phenomenon, we hypothesized that “the heat transfer coefficient distribution is generated in the plate width direction by the velocity boundary layer”.
FIG. 3 is an explanatory diagram of the above hypothesis. The hypothesis is that the heat transfer rate is high because the velocity boundary layer is thin at the front end of the steel sheet with respect to the gas flow, and the heat transfer rate decreases as the velocity boundary layer grows. The temperature rise time difference in the plate width direction is caused by the influence.

前記仮説のもとで、被処理材の幅(板幅)4.5mの条件で板温の実測と計算とを行った。なお、熱伝達率分布は、速度境界層の影響にしたがって、被処理材の端部からの距離の「−0.2乗」で変化するものとした。図4は、前記端部からの距離と熱伝達率比(被処理材中央部での熱伝達率と所定に位置における熱伝達率との比)との関係を示すグラフである。   Under the above hypothesis, the plate temperature was actually measured and calculated under the condition that the width (plate width) of the material to be processed was 4.5 m. It should be noted that the heat transfer coefficient distribution changes according to the influence of the velocity boundary layer by “−0.2” of the distance from the end of the material to be processed. FIG. 4 is a graph showing the relationship between the distance from the end portion and the heat transfer coefficient ratio (the ratio between the heat transfer coefficient at the center of the material to be processed and the heat transfer coefficient at a predetermined position).

図5は、前記仮説に基づく昇温時間の計算結果とその実測結果とを示した図である。この図の縦軸に示された昇温時間は、板幅方向で最も昇温時間の遅い部位との時間差を示している。前記仮説に基づく昇温時間の計算結果と実測結果とは、同じ傾向にあり、板幅方向の昇温時間差は、本仮説によって説明できることが明らかである。
そこで、本発明は、前記送風手段による熱風が前記被処理材の表面において形成する速度境界層が、前記被処理材の一端部から他端部にわたって同じ厚さになるように、被処理材の上流側端部に速度境界層生成手段を設けたのである。こうすることで、仮想的に被処理材の端部が上流側に延長されることになり、本来の被処理材の部分では、速度境界層の厚さが幅方向で略一定となる。換言すれば、速度境界層の厚さが変化しながら分布している部分を、速度境界層生成手段に対応するように位置づけするものである。
FIG. 5 is a diagram showing a calculation result of the heating time based on the hypothesis and an actual measurement result thereof. The temperature increase time indicated on the vertical axis in this figure indicates the time difference from the part having the slowest temperature increase time in the plate width direction. It is clear that the calculation result of the heating time based on the hypothesis and the actual measurement result have the same tendency, and the heating time difference in the plate width direction can be explained by this hypothesis.
Therefore, the present invention provides a velocity boundary layer formed on the surface of the material to be treated by hot air by the blowing means so that the thickness of the material to be treated is the same from one end to the other end of the material to be treated. The velocity boundary layer generating means is provided at the upstream end. By doing so, the end portion of the material to be processed is virtually extended upstream, and the thickness of the velocity boundary layer is substantially constant in the width direction in the original portion of the material to be processed. In other words, the portion where the thickness of the velocity boundary layer is distributed while changing is positioned so as to correspond to the velocity boundary layer generation means.

速度境界層の厚さが被処理材の端部や中央部においても同じであるので、全体にわたり昇温の均一性が保たれ、昇温時間差を少なくすることができる。
た、前記送風手段は正逆運転可能なものとされており、該送風手段の正逆運転により前記被処理材の両側より交互に熱風を送風することが好ましい。
さらに、前述した被処理材は厚さ、幅及び長手方向を有する鋼板であり、前述した熱処理炉に関し、炉室は前記長手方向に複数の制御ゾーンに区画され、各制御ゾーンには前記加熱手段と送風手段が設けられているのが好ましい。
Since the thickness of the velocity boundary layer is the same at the end portion and the center portion of the material to be processed, the uniformity of the temperature rise can be maintained throughout and the temperature rise time difference can be reduced.
Also, the air blowing means is a capable forward and reverse operation, it is preferable to blow the hot air alternately from both sides of the workpiece by the forward and reverse operation of the air blowing means.
Furthermore, the above-mentioned material to be treated is a steel plate having a thickness, a width, and a longitudinal direction. Regarding the above-described heat treatment furnace, the furnace chamber is partitioned into a plurality of control zones in the longitudinal direction, and each heating zone includes the heating means. and yet it is preferably the blowing means is provided.

本発明によれば、被処理材の全体にわたって、昇温時間が均一となる。   According to the present invention, the temperature raising time is uniform over the entire workpiece.

以下、本発明の実施の形態を図面に基づき説明する。
図1に示すものは、本発明方法に使用する熱処理炉の断面図である。この実施の形態では、熱処理炉として、厚鋼板を熱処理する台車炉が例示されている。
前記熱処理炉は、燃焼排ガス(雰囲気ガス)が充満する炉室1を有する。この炉室1は、被処理材2を収納するものである。前記熱処理炉は、該炉室1内の雰囲気ガスを加熱する加熱手段3を有する。また、前記熱処理炉は、送風手段4を有する。この送風手段4は、前記加熱手段3により加熱された雰囲気ガスを炉室1内で循環させるものである。この送風手段4は、正逆運転可能とされている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a heat treatment furnace used in the method of the present invention. In this embodiment, a cart furnace for heat treating a thick steel plate is exemplified as the heat treatment furnace.
The heat treatment furnace has a furnace chamber 1 filled with combustion exhaust gas (atmosphere gas). The furnace chamber 1 stores the material 2 to be processed. The heat treatment furnace has a heating means 3 for heating the atmospheric gas in the furnace chamber 1. Further, the heat treatment furnace has a blowing means 4. The air blowing means 4 circulates the atmospheric gas heated by the heating means 3 in the furnace chamber 1. The air blowing means 4 can be operated forward and backward.

炉室1の周囲は炉壁5によって覆われている。炉室1の底部は台車6によって塞がれている。台車6には、被処理材載置台10が設けられ、この載置台10上に被処理材2が載置されている。
被処理材2は、この実施の形態では、厚板鋼板が例示される。被処理材2は、厚さ、幅及び長手方向を有する。図1においては、厚さ方向は上下方向であり、幅方向は左右方向であり、長手方向は紙面に直交する前後方向である。
The periphery of the furnace chamber 1 is covered with a furnace wall 5. The bottom of the furnace chamber 1 is closed by a carriage 6. The cart 6 is provided with a processing material mounting table 10, and the processing material 2 is mounted on the mounting table 10.
In this embodiment, the workpiece 2 is exemplified by a thick steel plate. The workpiece 2 has a thickness, a width, and a longitudinal direction. In FIG. 1, the thickness direction is the vertical direction, the width direction is the left-right direction, and the longitudinal direction is the front-rear direction orthogonal to the paper surface.

炉室1は仕切壁11を介して上下に区画されている。この仕切壁11は、被処理材2の上面から所定間隔を有して上方を塞ぐように水平に配置されている。
仕切壁11によって区画された上側炉室1は加熱室12とされ、下側炉室1は被処理材2を処理する熱処理室13とされている。加熱室12に加熱手段3が設けられている。この加熱手段3の一例として、コークス炉や高炉で発生した燃焼ガスを燃焼させるバーナが例示されている。この加熱手段3は、炉体天井部(炉室1の天井部)に取り付けられ、略垂直下方側に向かって火炎を放出するよう構成されている。
The furnace chamber 1 is divided vertically by a partition wall 11. The partition wall 11 is horizontally arranged so as to close the upper part with a predetermined interval from the upper surface of the workpiece 2.
The upper furnace chamber 1 partitioned by the partition wall 11 is a heating chamber 12, and the lower furnace chamber 1 is a heat treatment chamber 13 for processing the workpiece 2. A heating means 3 is provided in the heating chamber 12. As an example of the heating means 3, a burner that burns combustion gas generated in a coke oven or a blast furnace is illustrated. The heating means 3 is attached to the furnace body ceiling (the ceiling of the furnace chamber 1), and is configured to emit a flame toward a substantially vertical downward side.

炉室1の内側であってその断面右端部(図1の右側)には、上下に貫通する第1熱風通路14が形成されており、その反対側の端部(図1の左側)にも第2熱風通路15が上下に貫通して設けられ、この第2熱風通路15に送風手段4が配置されている。この送風手段4として軸流ファンが例示されている。この送風手段4の正逆運転は、正逆運転可能なモータ16により行われる。この送風手段4の正転で、加熱室12の雰囲気ガスは第1熱風通路14から熱処理室13へ供給され、逆転で加熱室12の雰囲気ガスは第2熱風通路15から熱処理室13へ供給され、炉室1内を正逆循環する。   A first hot air passage 14 penetrating vertically is formed inside the furnace chamber 1 at the right end of the cross section (right side in FIG. 1), and also on the opposite end (left side in FIG. 1). The second hot air passage 15 is provided so as to penetrate vertically, and the blowing means 4 is disposed in the second hot air passage 15. An axial flow fan is illustrated as the blowing means 4. The forward / reverse operation of the blowing means 4 is performed by a motor 16 capable of forward / reverse operation. The atmospheric gas in the heating chamber 12 is supplied from the first hot air passage 14 to the heat treatment chamber 13 by the forward rotation of the blowing means 4, and the atmospheric gas in the heating chamber 12 is supplied from the second hot air passage 15 to the heat treatment chamber 13 by the reverse rotation. The inside of the furnace chamber 1 is circulated forward and backward.

送風手段4の送風量は、回転数が一定であれば、正転時を(Q正)とし、逆転時を(Q逆)としたとき、両者は等しくなく、(Q正≠Q逆)とされている。
また、第1熱風通路14に第1温度測定手段17と、第2熱風通路15に第2温度測定手段18が設けられている。これら両温度測定手段17,18は、送風手段4から送風される熱風の温度を測定するものである。
As long as the rotation speed is constant, the blowing amount of the blowing means 4 is not equal when the forward rotation is (Q forward) and the reverse rotation is (Q reverse), and (Q forward ≠ Q reverse) Has been.
The first hot air passage 14 is provided with first temperature measuring means 17, and the second hot air passage 15 is provided with second temperature measuring means 18. These temperature measuring means 17 and 18 measure the temperature of the hot air blown from the blowing means 4.

第1及び第2温度測定手段17,18と送風手段4のモータ16とは、制御装置19を介して接続されている。従って、第1及び第2温度測定手段17,18は、その測定結果を電気信号として制御装置19に伝達できるものであれば好ましい。
図2は、熱処理炉の平面図である。炉室1は前記長手方向に複数の制御ゾーンに区画されている。各制御ゾーンは、仮想線で示す位置に設けられた垂直仕切壁により区画されている。この実施の形態では5個の制御ゾーンが設けられ、各制御ゾーンに前記加熱手段3と送風手段4が一つずつ設けられている。各送風手段4により熱風は前記被処理材の上下表面に沿って幅方向に流れる。
The first and second temperature measuring means 17 and 18 and the motor 16 of the air blowing means 4 are connected via a control device 19. Therefore, it is preferable that the first and second temperature measuring means 17 and 18 can transmit the measurement result to the control device 19 as an electric signal.
FIG. 2 is a plan view of the heat treatment furnace. The furnace chamber 1 is divided into a plurality of control zones in the longitudinal direction. Each control zone is more divided into vertical partition wall provided in the position shown in phantom. In this embodiment, five control zones are provided, and one heating means 3 and one air blowing means 4 are provided in each control zone. Hot air flows in the width direction along the upper and lower surfaces of the material to be treated by each blowing means 4.

熱処理炉は、送風手段4により被処理材2の一端部から他端部へ該被処理材2の表面に沿って熱風を流すことにより、該被処理材2を加熱するものである。 前記熱風が被処理材2の表面に沿って流れるとき、該流れの被処理材2の表面側には速度境界層(図3参照)が形成される。
本発明においては、この速度境界層が、前記被処理材2の一端部から他端部にわたって同じ厚さになるように、前記被処理材2の一端部の熱風上流側に速度境界層生成手段23が設けられている。
The heat treatment furnace heats the material to be treated 2 by causing hot air to flow along the surface of the material to be treated 2 from one end to the other end of the material to be treated 2 by the blowing means 4. When the hot air flows along the surface of the material 2 to be processed, a velocity boundary layer (see FIG. 3) is formed on the surface side of the material 2 to be processed.
In the present invention, the velocity boundary layer generating means is provided on the upstream side of the hot air at one end of the material to be processed 2 so that the velocity boundary layer has the same thickness from one end to the other end of the material to be processed 2. 23 is provided.

この実施の形態では送風手段4が正逆運転可能なものであるから、速度境界層生成手段23は、被処理材2の両側に設けられている。
前記速度境界層生成手段3として、前記被処理材2の表面と面一になるように配置された邪魔板が例示されている。この邪魔板は、被処理材載置台10に固定されている。被処理材2のサイズが変わるので、この邪魔板は位置変更可能、形状変更可能に設けられる。
In this embodiment, since the air blowing means 4 can be operated forward and backward, the speed boundary layer generating means 23 is provided on both sides of the workpiece 2.
As the velocity boundary layer generating means 3, a baffle plate arranged so as to be flush with the surface of the workpiece 2 is illustrated. This baffle plate is fixed to the workpiece mounting table 10. Since the size of the workpiece 2 changes, this baffle plate is provided so that the position can be changed and the shape can be changed.

具体的には、邪魔板は耐熱鋼板で形成された中空の箱形形状であって、図1に示す如く、被処理材載置台10の上で被処理材2に接するように配設される。邪魔板は、複数のサイズ(高さ)のものを用意しておき、被処理材2のサイズ(高さ)に合うものを選択して使用するようにする。
図6には、かかる邪魔板を設置した場合としない場合の昇温時間差のシミュレーション結果が示されている。計算条件としては、「被処理材2の板幅が4.5mであって、かかる被処理材2の板幅方向両側に0.75mの邪魔板を設置している」としている。
Specifically, the baffle plate has a hollow box shape formed of a heat-resistant steel plate, and is disposed so as to be in contact with the workpiece 2 on the workpiece mounting table 10 as shown in FIG. . A baffle plate having a plurality of sizes (heights) is prepared, and a baffle plate that matches the size (height) of the workpiece 2 is selected and used.
FIG. 6 shows a simulation result of the temperature rise time difference when the baffle plate is installed and not installed. The calculation condition is that “the plate width of the material to be processed 2 is 4.5 m, and baffle plates of 0.75 m are installed on both sides of the material to be processed 2 in the plate width direction”.

なお、当該熱処理炉を用いて被処理材2を加熱する際には、以下の方法を用いることが好ましい。
即ち、送風手段4の正逆運転により被処理材2の両側から交互に熱風を供給して、該被処理材2を目標温度に加熱する方法であって、被処理材2の両側の温度が目標温度に到達する時間差を最短とするよう、送風手段4の正逆運転を制御する。尚、この実施の形態では被処理材2の両側とは、鋼板の幅方向両側である。
In addition, when heating the to-be-processed material 2 using the said heat processing furnace, it is preferable to use the following method.
That is, a method in which hot air is alternately supplied from both sides of the material to be treated 2 by forward / reverse operation of the blower means 4 to heat the material to be treated 2 to a target temperature, and the temperature on both sides of the material to be treated 2 is The forward / reverse operation of the air blowing means 4 is controlled so as to minimize the time difference for reaching the target temperature. In this embodiment, both sides of the workpiece 2 are both sides in the width direction of the steel plate.

前記制御において、送風手段4の正転時回転数と、逆転時回転数が同一の場合は、送風手段4の正逆各々の送風量(Q正,Q逆)に応じて、正逆の送風時間(T正,T逆)の比率を決定して送風手段4を運転するとよい。すなわち、正逆の送風時間比率と、正逆の送風量の比率との関係の一例として、式(1)の関係を採用するとよい。

T正/T逆=(Q正/Q逆)a ・・・(1)
但し、a=0.8〜0.9

送風手段4の正転時回転数と、逆転時回転数が同一でない場合は、送風手段4の正逆運転の制御は次のように行うことができる。
In the above control, when the rotational speed at the time of forward rotation of the air blowing means 4 and the rotational speed at the time of reverse rotation are the same, the forward and reverse air blown according to the respective forward and reverse air flow amounts (Q forward, Q reverse). It is preferable to operate the air blowing means 4 by determining the ratio of time (T normal, T reverse). That is, as an example of a relationship between a forward / reverse air blowing time ratio and a forward / reverse air flow rate ratio, the relationship of Expression (1) may be employed.

T forward / T reverse = (Q forward / Q reverse) a (1)
However, a = 0.8-0.9

When the rotational speed at the time of forward rotation of the blower 4 is not the same as the rotational speed at the time of reverse rotation, the forward / reverse operation of the blower 4 can be controlled as follows.

すなわち、送風手段4の正逆各々の送風量(Q正,Q逆)が同一となるように、送風手段4の正逆運転を制御する。この制御は、前記モータ16の回転数をインバータ制御などで制御し、正逆運転でのファンの回転数を変化させ、(Q正=Q逆)とする。この場合、正逆の送風時間は同一(T正=T逆)とされる。
本実施の形態においては、被処理材2を炉室1に収納する前に、炉室1内を予熱する。
In other words, the forward / reverse operation of the blower 4 is controlled so that the forward and reverse airflows (Q forward, Q reverse) of the blower 4 are the same. In this control, the rotational speed of the motor 16 is controlled by inverter control or the like, and the rotational speed of the fan in the forward / reverse operation is changed to (Q forward = Q backward). In this case, the forward and reverse air blowing times are the same (T positive = T reverse).
In the present embodiment, the interior of the furnace chamber 1 is preheated before the workpiece 2 is stored in the furnace chamber 1.

予熱することにより炉体への伝熱量が減少し、雰囲気ガスの上流、下流での温度差が小さくなり、鋼板の昇温時間差が小さくなる。
更に本実施の形態では、前記雰囲気ガスの被処理材2に対する上流側炉温(t上流)と下流側炉温(t下流)を前記第1及び第2温度測定手段17,18で測定し、その温度差が各制御ゾーンで同一となるように、各々の送風手段4を制御装置を介して制御する。
By preheating, the amount of heat transfer to the furnace body is reduced, the temperature difference between the upstream and downstream of the atmospheric gas is reduced, and the temperature increase time difference of the steel sheet is reduced.
Further, in the present embodiment, the upstream furnace temperature (t upstream) and the downstream furnace temperature (t downstream) of the atmospheric gas with respect to the material to be processed 2 are measured by the first and second temperature measuring means 17 and 18, Each blowing means 4 is controlled via the control device so that the temperature difference is the same in each control zone.

このような各ゾーンの制御により、ゾーン毎の鋼板の昇温時間差を小さくできる。すなわち、被処理材2の幅方向及び長手方向にわたって、昇温時間差を最短とすることができる。
なお、本発明は、前記実施の形態に示したものに限定されるものではなく、加熱手段3として、特開2000−144239号公報に記載のような電気ヒータを採用したものであってもよい。また、熱処理炉として、加熱室が下方に設けられ熱処理室が上方に設けられたものであってもよく、その形式は限定されるものではない。
By controlling each zone as described above, the temperature increase time difference of the steel plate for each zone can be reduced. That is, the temperature increase time difference can be minimized over the width direction and the longitudinal direction of the workpiece 2.
In addition, this invention is not limited to what was shown to the said embodiment, As the heating means 3, you may employ | adopt the electric heater as described in Unexamined-Japanese-Patent No. 2000-144239. . Moreover, as a heat treatment furnace, a heating chamber may be provided below and a heat treatment chamber may be provided above, and the form is not limited.

本発明は、厚板鋼板の熱処理に用いることができる。   The present invention can be used for heat treatment of thick steel plates.

台車炉の正面断面図(幅方向断面図)である。It is front sectional drawing (width direction sectional drawing) of a cart furnace. 台車炉の平面図である。It is a top view of a cart furnace. 被処理材表面に発生する速度境界層の説明図である。It is explanatory drawing of the speed boundary layer generate | occur | produced on the to-be-processed material surface. 被処理材の幅方向端部からの距離と熱伝達率比との関係を示す図である。It is a figure which shows the relationship between the distance from the width direction edge part of a to-be-processed material, and heat-transfer coefficient ratio. 被処理材の幅方向端部からの距離と昇温時間差とを示した図である(計算値ならびに実績値)。It is the figure which showed the distance from the width direction edge part of a to-be-processed material, and temperature rising time difference (a calculated value and a track record value). 速度境界層生成手段を用いた際の昇温時間差を示した図である(計算値)。It is the figure which showed the temperature increase time difference at the time of using a speed boundary layer production | generation means (calculated value).

1 炉室
2 被処理材
3 加熱手段
4 送風手段
23 速度境界層生成手段
DESCRIPTION OF SYMBOLS 1 Furnace room 2 To-be-processed material 3 Heating means 4 Blowing means 23 Speed boundary layer production | generation means

Claims (3)

被処理材載置台に載置された被処理材を収納する炉室と、該炉室内の雰囲気ガスを加熱する加熱手段と、該加熱手段により加熱された雰囲気ガスを熱風として送風する送風手段とを有する熱処理炉の使用方法において、
前記熱風が被処理材の表面において形成する速度境界層が、被処理材の一端部から他端部にわたって同じ厚さになるように、前記被処理材の一端部であって熱風の流れ方向で上流側に速度境界層生成手段を設けておき、
前記速度境界層生成手段として、異なる高さを有する複数の邪魔板を用意しておき、
前記被処理材の表面と面一となる高さの邪魔板を選択した上で、前記被処理材の一端部に接するように被処理材載置台に固定し、
その上で、前記送風手段により前記被処理材の一端部から他端部へ該被処理材の表面に沿って熱風を流すことにより、該被処理材を加熱することを特徴とする熱処理炉の使用方法。
A furnace chamber for storing the material to be processed placed on the material mounting table, a heating unit for heating the atmospheric gas in the furnace chamber, and a blowing unit for blowing the atmospheric gas heated by the heating unit as hot air In a method of using a heat treatment furnace having
The velocity boundary layer formed by the hot air on the surface of the material to be treated has the same thickness from one end to the other end of the material to be treated, and is at one end of the material to be treated in the flow direction of the hot air. can you provided velocity boundary layer generating means on the upstream side,
As the velocity boundary layer generation means, a plurality of baffle plates having different heights are prepared,
After selecting a baffle with a height that is flush with the surface of the material to be processed, it is fixed to the material mounting table so as to be in contact with one end of the material to be processed.
Then, the material to be treated is heated by flowing hot air along the surface of the material to be treated from one end to the other end of the material to be treated by the blowing means . how to use.
前記送風手段は正逆運転可能なものとされており、
該送風手段の正逆運転により前記被処理材の両側より交互に熱風を送風することを特徴とする請求項1に記載の熱処理炉の使用方法。
The air blowing means is capable of forward / reverse operation ,
Using heat treatment furnace according to claim 1, characterized in that for blowing hot air alternately from both sides of the workpiece by the forward and reverse operation of the air blowing means.
請求項1又は2に記載された被処理材は厚さ、幅及び長手方向を有する鋼板であり、
請求項1又は2に記載された熱処理炉に関し、炉室は前記長手方向に複数の制御ゾーンに区画され、各制御ゾーンには前記加熱手段と送風手段が設けられていることを特徴とする熱処理炉の使用方法。
The material to be treated according to claim 1 or 2 is a steel plate having a thickness, a width and a longitudinal direction,
The heat treatment furnace according to claim 1 or 2, wherein the furnace chamber is divided into a plurality of control zones in the longitudinal direction, and the heating means and the air blowing means are provided in each control zone. How to use the furnace .
JP2005184109A 2005-06-23 2005-06-23 How to use heat treatment furnace Active JP4583255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184109A JP4583255B2 (en) 2005-06-23 2005-06-23 How to use heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184109A JP4583255B2 (en) 2005-06-23 2005-06-23 How to use heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2007003098A JP2007003098A (en) 2007-01-11
JP4583255B2 true JP4583255B2 (en) 2010-11-17

Family

ID=37688898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184109A Active JP4583255B2 (en) 2005-06-23 2005-06-23 How to use heat treatment furnace

Country Status (1)

Country Link
JP (1) JP4583255B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329281B2 (en) * 1974-09-28 1978-08-19
JPS6254431A (en) * 1985-09-03 1987-03-10 Toshiba Corp Hot blast heater
JPH0518682A (en) * 1991-07-11 1993-01-26 Daido Steel Co Ltd Hot air circulating furnace
JP2002280722A (en) * 2001-03-16 2002-09-27 Sony Corp Soldering method and device
JP2003188524A (en) * 2001-12-14 2003-07-04 Sony Corp Reflow apparatus
JP2003332727A (en) * 2002-05-15 2003-11-21 Sony Corp Heat shielding member and reflow apparatus
JP2004085157A (en) * 2002-08-29 2004-03-18 Denkoo:Kk Method and apparatus for forced cooling/heating of plate-like treated object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329281B2 (en) * 1974-09-28 1978-08-19
JPS6254431A (en) * 1985-09-03 1987-03-10 Toshiba Corp Hot blast heater
JPH0518682A (en) * 1991-07-11 1993-01-26 Daido Steel Co Ltd Hot air circulating furnace
JP2002280722A (en) * 2001-03-16 2002-09-27 Sony Corp Soldering method and device
JP2003188524A (en) * 2001-12-14 2003-07-04 Sony Corp Reflow apparatus
JP2003332727A (en) * 2002-05-15 2003-11-21 Sony Corp Heat shielding member and reflow apparatus
JP2004085157A (en) * 2002-08-29 2004-03-18 Denkoo:Kk Method and apparatus for forced cooling/heating of plate-like treated object

Also Published As

Publication number Publication date
JP2007003098A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP7141828B2 (en) Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
JP4922180B2 (en) Method and apparatus for heat treating a substrate
US6693263B2 (en) Convection type brazing apparatus for metal workpieces
TWI507651B (en) Heat treatment apparatus
JP6572464B2 (en) Heating apparatus and heating method using superheated steam
JP4809633B2 (en) Method and apparatus for heating glass panels
JP2005090952A (en) Convection type oven and related air flow device
CN105936586A (en) Glass heating furnace and heating method
CN102822358B (en) Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods
EP1029625B1 (en) Muffle convection brazing and annealing system and method
JP4583255B2 (en) How to use heat treatment furnace
JP2007002301A (en) Heating method in heat-treating furnace
CN206755763U (en) A kind of electric drying oven with forced convection for preparing titanium dioxide
JP4620327B2 (en) Apparatus and combined spray unit for spraying fluid onto at least the surface of a thin element
JP6632555B2 (en) Heating device and heating method inside refractory container
JP4583256B2 (en) Heat treatment furnace
JP2000144239A (en) Heat treatment furnace
JP2007002300A (en) Heating method in heat-treating furnace
JP7409242B2 (en) space temperature scanner
CN105783512A (en) Heating furnace
JP2018145450A (en) Manufacturing method of heat-treated metal sheet
JP2004301402A (en) Heat treatment furnace
RU2006126522A (en) GRAVITY BEND FURNACE AND GRAVITY FLEXIBLE GLASS
JP2014020762A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3