JP2007002301A - Heating method in heat-treating furnace - Google Patents
Heating method in heat-treating furnace Download PDFInfo
- Publication number
- JP2007002301A JP2007002301A JP2005184108A JP2005184108A JP2007002301A JP 2007002301 A JP2007002301 A JP 2007002301A JP 2005184108 A JP2005184108 A JP 2005184108A JP 2005184108 A JP2005184108 A JP 2005184108A JP 2007002301 A JP2007002301 A JP 2007002301A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heating
- heat treatment
- hot air
- downstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Heat Treatment Processes (AREA)
- Furnace Details (AREA)
Abstract
Description
本発明は、厚鋼板、形鋼等の被処理材を加熱処理する熱処理炉における加熱方法に関する。 The present invention relates to a heating method in a heat treatment furnace for heat-treating a material to be treated such as a thick steel plate and a shape steel.
長尺である被処理材の加熱炉として、特許文献1に記載のものが公知である。
この公知文献に記載のものは、被処理材をその長手方向に沿って、均一な温度分布で加熱しようとするものであって、当該加熱炉は、炉体の長手方向に沿って複数の加熱ゾーンA,B、Cを有し、中央の加熱ゾーンBにおいて先ず高温にもたらし、その後の時間遅れを伴って両端部の加熱ゾーンA,Cの温度を所定の温度にするか、または、加熱ゾーン毎のガスバーナの燃料流量を制御するものであった。
しかし、この従来技術は、各加熱ゾーンの加熱室内を高温でしかも均一な温度分布に維持させようとするものであるため、炉体の構造が複雑であった。
The thing of
The one described in this publicly known document is to heat a material to be treated along its longitudinal direction with a uniform temperature distribution, and the heating furnace has a plurality of heating along the longitudinal direction of the furnace body. It has zones A, B, and C, and first brings it to a high temperature in the central heating zone B, and then sets the temperature of the heating zones A and C at both ends to a predetermined temperature with a time delay thereafter, or heating zone The fuel flow rate of each gas burner was controlled.
However, this prior art is intended to maintain the heating chamber in each heating zone at a high temperature and a uniform temperature distribution, so that the structure of the furnace body is complicated.
一方、特許文献1のような構造複雑な炉装置を用いることなく、高温の熱風と被処理材との接触方法を改善することにより均一加熱する技術が、例えば、特許文献2に記載の如く公知である。
特許文献2に記載の従来技術は、熱風循環ファンによって加熱源からの熱風を攪拌して材料を加熱するバッチ式の加熱方法であって、循環ファンによって送られた熱風が材料を通過する間にその熱風温度が低下し、ファンの風上と風下ではかなりの加熱速度の差が見られ、その温度差に基づき不均一加熱が発生するので、その温度差を短縮して被処理材を均一加熱するために、前記ファンの回転方向を逆転させるものであった。
On the other hand, a technique for uniform heating by improving a contact method between hot air and a material to be processed without using a furnace having a complicated structure as in
The prior art described in Patent Document 2 is a batch-type heating method in which hot air from a heating source is stirred by a hot air circulation fan to heat the material, and the hot air sent by the circulation fan passes through the material. The hot air temperature decreases, and there is a considerable difference in the heating speed between the windward and leeward of the fan, and uneven heating occurs based on the temperature difference, so the temperature difference is shortened and the workpiece is heated uniformly. In order to do this, the rotation direction of the fan is reversed.
この特許文献2記載の炉体構造は加熱室自体を均一加熱するものでないから、前記特許文献1記載のものに比べて、炉体の構造を簡単にすることができるものであった。
しかしながら、厚鋼板などの厚さ、幅及び長手方向を有する長尺の被処理材を、その長手方向にわたって、均一に加熱する方法として、特許文献2記載のような構造簡単な炉体を用いた場合、その制御方法が重要となる。ところが、かかる制御方法として、その長手方向に沿って均一な温度分布で加熱するための概略的な制御のみが開示されている特許文献1記載の制御をそのまま適用することは困難を伴うし、それに変わる有益な制御方法(熱処理炉における加熱方法)は現状開発されるには至っていない。
そこで、本発明は、厚鋼板などの厚さ、幅及び長手方向を有する長尺の被処理材を収納する熱処理室が長手方向に複数の制御ゾーンに区画され、前記熱処理室内の空気を加熱する加熱手段と、該加熱手段により加熱された空気を熱風として前記各制御ゾーンに前記幅方向に循環させる循環手段とを有した構造簡単な熱処理炉を用い、前記熱風を前記被処理材の幅方向一側から他側に向かって供給して、前記被処理材を加熱する方法において、その長手方向に沿って、均一な温度分布で加熱することができる加熱方法を提供することを目的とする。
However, a furnace having a simple structure as described in Patent Document 2 was used as a method of uniformly heating a long workpiece having a thickness, width and longitudinal direction such as a thick steel plate over the longitudinal direction. In this case, the control method is important. However, as such a control method, it is difficult to directly apply the control described in
In view of this, the present invention provides a heat treatment chamber for storing a long workpiece having a thickness, width and longitudinal direction, such as a thick steel plate, which is partitioned into a plurality of control zones in the longitudinal direction, and heats the air in the heat treatment chamber. Using a heat treatment furnace having a simple structure having heating means and circulation means for circulating air heated by the heating means as hot air in the control zone in the width direction, the hot air is sent in the width direction of the material to be treated An object of the present invention is to provide a heating method in which the material to be processed is supplied from one side to the other side to heat the material to be processed, and can be heated along the longitudinal direction with a uniform temperature distribution.
前記目的を達成するため、本発明は、次の手段を講じた。
すなわち、本発明の特徴とするところは、厚さ、幅及び長手方向を有する長尺の被処理材を収納可能であって且つ長手方向に複数の制御ゾーンに区画された熱処理室と、該熱処理室内の雰囲気ガスを加熱する加熱手段と、該加熱手段により加熱された雰囲気ガスを熱風として前記各制御ゾーンの幅方向に循環させる循環手段とを有した熱処理炉を用い、前記熱風を被処理材の幅方向一側から他側に向かって供給して当該被処理材を目標温度まで加熱する熱処理炉における加熱方法であって、前記各制御ゾーン(i=1〜n)で、前記熱風の上流側の温度(t上流i)と下流側の温度(t下流i)を測定し、その温度差(Δti=t上流i−t下流i)が等しくなるよう、前記各制御ゾーンの循環手段の風量(Qi)を制御する点にある。
In order to achieve the above object, the present invention has taken the following measures.
That is, a feature of the present invention is that a heat treatment chamber capable of storing a long material to be processed having a thickness, a width, and a longitudinal direction and partitioned into a plurality of control zones in the longitudinal direction, and the heat treatment Using a heat treatment furnace having heating means for heating the atmospheric gas in the room and circulation means for circulating the atmospheric gas heated by the heating means as hot air in the width direction of each control zone, the hot air is treated A heating method in a heat treatment furnace for supplying the material to be processed from one side in the width direction to the other side to heat the material to a target temperature, in each control zone (i = 1 to n), upstream of the hot air Side temperature (t upstream i) and downstream temperature (t downstream i) are measured, and the air volume of the circulating means in each control zone is equalized so that the temperature difference (Δti = t upstream i−t downstream i) becomes equal. (Qi) is to be controlled.
本発明においては、前記各制御ゾーンの風量(Qi)が次式を満たすように設定されていることは好ましい。
Qi=f(Qmax,Δtmax,Δti)
ただし、
Δti : 制御ゾーンにおける温度差
Δtmax: 温度差が最も大きい制御ゾーンにおける温度差
Qmax : 温度差が最も大きい制御ゾーンにおける風量
Qi : 残りの制御ゾーンの風量
また、前記循環手段が正逆運転により前記被処理材の幅方向両側から交互に前記熱風を供給することが好ましい。
In the present invention, it is preferable that the air volume (Qi) of each control zone is set to satisfy the following equation.
Qi = f (Qmax, Δtmax, Δti)
However,
Δti: Temperature difference in the control zone
Δtmax: Temperature difference in the control zone with the largest temperature difference
Qmax: Air volume in the control zone with the largest temperature difference
Qi: Air volume of remaining control zone It is preferable that the circulating means supply the hot air alternately from both sides in the width direction of the material to be processed by forward / reverse operation.
本発明によれば、長尺の被処理材の長手方向に沿って、均一な温度分布で加熱することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can heat with uniform temperature distribution along the longitudinal direction of a long to-be-processed material.
以下、本発明の実施の形態を図面に基づき説明する。
図1〜図3に示すものは、本発明方法に使用する熱処理炉である。
この熱処理炉は、厚さ、幅及び長手方向を有する被処理材1(被加熱物)を、その長手方向にわたって均一に加熱するものであり、この実施の形態では、厚鋼板を熱処理する台車炉が例示されている。
前記台車炉は、被処理材1を収納する炉室Rを有する。この炉室Rの周囲は炉壁10によって覆われている。炉室Rの底部は台車9によって塞がれている。この台車9には、被処理材載置台13が設けられ、この載置台13上に前記被処理材1が載置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a heat treatment furnace used in the method of the present invention.
This heat treatment furnace heats a material to be treated 1 (object to be heated) having a thickness, a width, and a longitudinal direction uniformly over the longitudinal direction. In this embodiment, a cart furnace for heat treating a thick steel plate. Is illustrated.
The cart furnace has a furnace chamber R for storing the
かかる被処理材1は、厚さ、幅及び長手方向を有するものであって、図1において、厚さ方向は上下方向であり、幅方向は左右方向であり、長手方向は紙面に直交する前後方向である。
炉室Rは水平仕切り壁16を介して上下に区画されている。この水平仕切り壁16は、被処理材1の上面から所定間隔を有して上方を塞ぐように水平に配置されている。水平仕切り壁16によって区画された上側は加熱室3とされ、下側は被処理材1を処理する熱処理室2とされている。
The material to be treated 1 has a thickness, a width, and a longitudinal direction. In FIG. 1, the thickness direction is the vertical direction, the width direction is the left-right direction, and the longitudinal direction is perpendicular to the paper surface. Direction.
The furnace chamber R is divided vertically by a
熱処理室2及び加熱室3は、長手方向に複数の制御ゾーン(i=1〜n、iは制御ゾーンの番号、nは制御ゾーンの数)に区画されている。そして、各制御ゾーン(i=1〜n)毎に室内の雰囲気ガスを加熱する加熱手段5と、該加熱手段5により加熱された雰囲気ガスを熱風として前記幅方向に循環させる循環手段4とを有する。
なお、前記加熱手段5は、各制御ゾーン毎に設けられることは必須ではなく、複数の制御ゾーンにわたって共通のものとすることもできる。
前記循環手段4(循環ファン)は、加熱手段5により加熱された雰囲気ガスを炉室R(熱処理室2及び加熱室3)内で循環させるものであり、循環ファン電動機11により正逆運転可能とされている。この循環手段4により、熱風は被処理材1の上下表面に沿って幅方向に流れる。
The heat treatment chamber 2 and the heating chamber 3 are partitioned into a plurality of control zones (i = 1 to n, i is a control zone number, and n is the number of control zones) in the longitudinal direction. Then, heating means 5 for heating the atmospheric gas in the room for each control zone (i = 1 to n), and circulation means 4 for circulating the atmospheric gas heated by the heating means 5 in the width direction as hot air. Have.
The heating means 5 is not necessarily provided for each control zone, and may be common over a plurality of control zones.
The circulation means 4 (circulation fan) circulates the atmospheric gas heated by the heating means 5 in the furnace chamber R (heat treatment chamber 2 and heating chamber 3), and can be operated forward and backward by the
前記各制御ゾーン(i=1〜n)は、図2の仮想線で示す位置に設けられた加熱室ゾーン仕切り壁6ならびに熱処理室ゾーン仕切り壁7により区画されている。この実施の形態では、かかる仕切り壁6,7により、熱処理室2及び加熱室3は5個(n=5)の制御ゾーンが設けられ、各制御ゾーン(i=1〜5)に前記加熱手段5と循環手段4が一つずつ設けられている。
図3は、制御ゾーンの1つの側面方向断面(被処理材の長さ方向を向く断面)を示したものである。詳しくは、熱処理室2の天井部から加熱室ゾーン仕切り壁6が垂下するように設けられ、この加熱室ゾーン仕切り壁6の下部に略垂直になるように水平仕切り壁16が取り付けられ、該水平仕切り壁16から、耐熱用鋼板を被処理材1の直上まで吊り下げるように配設することで熱処理室ゾーン仕切り壁7が構成されている。なお、熱処理室ゾーン仕切り壁7は耐熱用鋼板で構成されるものに限定されず、その他の金属材料や耐熱断熱材で構成するようにしてもよい。
Each of the control zones (i = 1 to n) is partitioned by a heating chamber zone partition wall 6 and a heat treatment chamber
FIG. 3 shows one side surface cross section (cross section facing the length direction of the material to be processed) of the control zone. Specifically, the heating chamber zone partition wall 6 is provided so as to hang down from the ceiling of the heat treatment chamber 2, and a
前記加熱室3に加熱手段5が設けられている。この加熱手段5の一例として燃焼させるバーナが例示されている。この加熱手段5は、加熱室3の天井の略中央に取り付けられ、下方に向かって火炎を放出するよう構成されている。
前記水平仕切り壁16の循環手段4近傍には、上下に貫通する第1熱風通路14が形成されている。また、前記水平仕切り壁16の循環手段4とは反対側の端部には第2熱風通路15が上下に貫通して設けられている。前述の循環手段4としては、軸流ファンが例示されている。この軸流ファンの正逆運転は、正逆運転可能な循環ファン電動機11により行われる。この軸流ファンの正転で、加熱室3の熱風は、第1熱風通路14から熱処理室2へ供給され、逆転で加熱室3の熱風は第2熱風通路15から熱処理室2へ供給され、熱処理室2と加熱室3とを正逆循環する。
A heating means 5 is provided in the heating chamber 3. As an example of the heating means 5, a burner for burning is illustrated. The heating means 5 is attached to substantially the center of the ceiling of the heating chamber 3 and is configured to emit a flame downward.
In the vicinity of the circulation means 4 of the
前記軸流ファンの送風量は、回転数が一定であれば、正転時を(Q正)とし、逆転時を(Q逆)としたとき、両者は等しくなく、(Q正≠Q逆)とされている。
第1熱風通路14に第1温度測定手段8と、第2熱風通路15に第2温度測定手段9が設けられている。これら両温度測定手段8,9は、被処理材1の両側の熱風の温度を測定するものである。
すなわち、前記第1及び第2温度測定手段8,9は、前記各制御ゾーン(i=1〜n)に、前記熱風の上流側の温度(t上流i)と下流側の温度(t下流i)を測定するものである。
When the rotational speed is constant, the axial flow fan is not equal when the forward rotation is (Q positive) and the reverse rotation is (Q reverse), (Q forward ≠ Q reverse). It is said that.
First temperature measuring means 8 is provided in the first
That is, the first and second temperature measuring means 8 and 9 are arranged in the control zones (i = 1 to n) in the upstream temperature (t upstream i) and the downstream temperature (t downstream i). ).
前記第1及び第2温度測定手段8,9と循環ファン電動機11とは、制御装置17を介して接続されている。従って、第1及び第2温度測定手段8,9は、その測定結果を電気信号として制御装置17に伝達できるものであれば好ましい。
前記制御装置17は、前記第1及び第2温度測定手段8,9からの測定温度に基づき、その温度差(Δti=t上流i−t下流i)を算出し、該算出結果に基づき、前記被処理材が長手方向に均一に加熱されるよう、前記各制御ゾーンの循環手段4の風量(Qi)を制御するように構成されている。
The first and second temperature measuring means 8 and 9 and the
The
すなわち、前記各制御ゾーンの風量制御は、前記温度差(Δti)が最も大きいゾーンの温度差をΔtmaxとし、当該Δtmaxの制御ゾーンの風量を最大値(Qmax)とし、残りの制御ゾーンの風量(Qi)を、Qi=f(Qmax,Δtmax,Δti)と設定する。
図4〜図9に基づき、前記熱処理炉を用いた本発明の加熱方法を説明する。なお、図4は図1に対応し、図5は図2に対応するブロック図である。これらの図において、「t上流i」は、各制御ゾーン(i=1〜n)における被処理材1に吹き付ける前の熱風温度であり、「t下流i」は、被処理材通過後の熱風温度であり、「T上流i」は、熱風吹き付け側の被処理材1の温度であり、「T下流i」は、熱風吹き付け側とは反対側の被処理材1の温度である。
That is, in the air volume control of each control zone, the temperature difference of the zone having the largest temperature difference (Δti) is Δtmax, the air volume of the control zone of Δtmax is the maximum value (Qmax), and the air volume ( Qi) is set as Qi = f (Qmax, Δtmax, Δti).
The heating method of the present invention using the heat treatment furnace will be described with reference to FIGS. 4 corresponds to FIG. 1, and FIG. 5 is a block diagram corresponding to FIG. In these figures, “t upstream i” is the hot air temperature before spraying the
被処理材1は、i=1とi=nにおいて長手方向の端部が位置し、i=2〜(n−1)において連続した中間部が位置する。
図6に示すように、「t上流1」と「t上流2」の温度が同一の場合、熱風は、被処理材1(被加熱物)や炉体に熱を奪われて温度降下するため、ゾーン毎の被処理材重量の違いなどによって、熱風の下流側温度「t下流1」と「t下流2」は、図に示す如く、時間の経過と共に差異が生じる。
その結果、図6に示すように被処理材1の「T下流1」と「T下流2」にも温度差が生じることになり、長手方向に均一な加熱が達成できない。
The processed
As shown in FIG. 6, when the temperatures of “t upstream 1” and “t upstream 2” are the same, the hot air is deprived of heat by the material to be treated 1 (object to be heated) and the furnace body, and the temperature drops. Due to the difference in the weight of the material to be treated for each zone, the downstream temperature “t downstream 1” and “t downstream 2” of the hot air differ as time passes, as shown in the figure.
As a result, as shown in FIG. 6, a temperature difference also occurs between “T downstream 1” and “T downstream 2” of the
そこで、本発明の実施の形態では、下流側熱風温度は、熱風風量と熱風から奪われる熱量によって決まることに着目し、各ゾーンの熱風風量を制御することで、被処理材温度のバラツキを制御することとしている。
図7に示す如く、例えば、経過時間aの時点で風量設定するには、熱風の上流、下流温度(t上流i、t上流i)を測定する。
この測定値から、各ゾーンで上流と下流の温度差(Δti=t上流i−t下流i)を計算する。
Therefore, in the embodiment of the present invention, paying attention to the fact that the downstream hot air temperature is determined by the amount of hot air and the amount of heat taken away from the hot air, the variation in the temperature of the material to be processed is controlled by controlling the amount of hot air in each zone. To do.
As shown in FIG. 7, for example, in order to set the air volume at the elapsed time a, the upstream and downstream temperatures (t upstream i, t upstream i) of the hot air are measured.
From this measured value, the temperature difference between upstream and downstream in each zone (Δti = t upstream i−t downstream i) is calculated.
最も温度差が大きいゾーンの熱風風量を設備仕様最大値として、残りのゾーンはΔtiとΔtmaxにしたがって、熱風風量を減らすことで、各ゾーンの下流側熱風温度を制御し、被処理材温度の長手方向のバラツキを制御する。
図8は、前記制御のフローチャートである。すなわち、本発明の実施の形態によれば、前記各制御ゾーン(i=1〜n)に、前記熱風の被処理材に対する上流側炉温(t上流i)と下流側炉温(t下流i)を測定する。
次に、その温度差(Δti=t上流i−t下流i)を求める。
The hot air volume in the zone with the largest temperature difference is set as the equipment specification maximum value, and the remaining zones are controlled according to Δti and Δtmax, and the hot air volume is reduced to control the downstream hot air temperature in each zone. Controls variation in direction.
FIG. 8 is a flowchart of the control. That is, according to the embodiment of the present invention, in each control zone (i = 1 to n), the upstream furnace temperature (t upstream i) and the downstream furnace temperature (t downstream i) with respect to the material to be treated of the hot air. ).
Next, the temperature difference (Δti = t upstream i−t downstream i) is obtained.
その後、前記温度差Δtiに基づき、前記被処理材が長手方向に均一に加熱されるよう、前記各制御ゾーンの循環手段の風量(Qi)を制御する。
この風量制御は、前記温度差(Δti)が最も大きいゾーンの温度差をΔtmaxとし、当該Δtmaxの制御ゾーンの風量を最大値(Qmax)とし、残りの制御ゾーンの風量(Qi)を、
Qi=f(Qmax,Δtmax,Δti) ・・・(1)
と設定する。
Thereafter, based on the temperature difference Δti, the air volume (Qi) of the circulating means in each control zone is controlled so that the material to be processed is uniformly heated in the longitudinal direction.
In this air volume control, the temperature difference of the zone having the largest temperature difference (Δti) is set to Δtmax, the air volume of the control zone of Δtmax is set to the maximum value (Qmax), and the air volume (Qi) of the remaining control zones is set to
Qi = f (Qmax, Δtmax, Δti) (1)
And set.
図9は、式(1)を、例えば、
Qi=K・Δti/Δtmax・Qmax ・・・(2)
ただし、K=1
で設定した場合の結果であって、熱処理炉において、制御ゾーン内の被処理材1の量が異なる場合の熱風温度の変化例を示したものである。ここで、2ゾーンの被処理材1の量は、1ゾーンの被処理材1の量の略1/4である。なお、熱処理炉の形態は図1〜図3に示したものである。
FIG. 9 shows equation (1), for example,
Qi = K · Δti / Δtmax · Qmax (2)
However, K = 1
FIG. 9 shows an example of a change in hot air temperature when the amount of the material to be processed 1 in the control zone is different in the heat treatment furnace. Here, the amount of the
図から判るように、加熱制御が無く1,2ゾーンの風量が同一の場合は、t下流2はt下流1より高い温度となる。しかし、本発明の加熱方法、換言すれば風量制御を採用することで、t下流2とt下流1とは同じ温度推移となり、熱風温度(循環ガス温度)が同一となることで被処理材1の温度も均一とすることができる。
この例では、K=1としたが、Kの値は各制御ゾーンもしくは使用する設備によって調整すればよく、常に1とする必要はない。また、本実施例では式(1)や式(2)で規定される風量Qiを用いたが、Δti/Δtmax=1を目標値として、Qi/Qmaxの値をPID制御などの従来から知られている制御方法で制御するようにしてもよい。
As can be seen from the figure, when there is no heating control and the air volumes in the 1st and 2nd zones are the same, t downstream 2 is at a higher temperature than t downstream 1. However, by adopting the heating method of the present invention, in other words, the air volume control, the downstream 2 and the downstream 1 have the same temperature transition, and the hot air temperature (circulating gas temperature) is the same, so that the
In this example, K = 1, but the value of K may be adjusted according to each control zone or the equipment to be used, and need not always be 1. Further, in the present embodiment, the air volume Qi defined by the formula (1) or the formula (2) is used. However, the value of Qi / Qmax is conventionally known such as PID control with Δti / Δtmax = 1 as a target value. You may make it control by the control method which has.
なお、本発明の実施の形態では、前記循環手段4が正逆運転により前記被処理材1の幅方向両側から交互に熱風を供給している。この交互運転の制御は次のように行われる。
軸流ファンの正転時回転数と、逆転時回転数が同一の場合は、軸流ファンの正逆各々の送風量(Q正、Q逆)に応じて、正逆の送風時間(T正、T逆)の比率を決定して前記循環手段4を運転する。
軸流ファンの送風量は、正逆転時で、回転数が同じであれば、(Q正≠Q逆)であるので、正逆運転を同じ時間で交互に行ったのでは被処理材1に与える熱量は同じにならず、昇温時間差が生じる。
In the embodiment of the present invention, the circulating means 4 alternately supplies hot air from both sides in the width direction of the
When the rotational speed during forward rotation of the axial fan is the same as the rotational speed during reverse rotation, the forward / reverse air blowing time (T forward / backward) depends on the forward / reverse air flow (Q forward, Q reverse) of the axial fan. , T reverse) is determined and the circulating means 4 is operated.
If the rotational speed is the same at the time of forward / reverse rotation and the rotational speed is the same, (Q forward ≠ Q reverse). Therefore, if the forward / reverse operation is performed alternately for the same time, the material to be processed 1 The amount of heat applied is not the same, and a temperature rise time difference occurs.
そこで、昇温時間差が所定範囲以下になるように正逆の送風時間(T正、T逆)の比率を決定する。
具体的には、前記比率を決定するため、図1,図2に示す設備を用いて実験を行った。そして、昇温時間差を最短とできる正転比率を板温計算(被処理材の温度計算)から算出し、計算された正転比率から、正逆の送風時間(T正,T逆)の比率を決定した。
なお、正転比率(運転時間比率)は、式(1)で定義される。
正転比率=T正/(T正+T逆) ・・・(3)
実験結果、及び計算結果を図10〜12に示す。
[計算条件]
1)板サイズ:28mm(厚さ)×4500mm(幅)×18000mm(長さ)
2)目標板温:600℃
3)1サイクル送風時間:20分
4)送風量:Q正=780m3/min、Q逆=520m3/min
表1は、正逆の送風時間(T正、T逆)、その合計、正転比率、昇温時間差及び加熱時間を示すものである。正転比率は、「T正/(T正+T逆)」と定義される。
Therefore, the ratio of the forward and reverse blowing time (T forward, T reverse) is determined so that the temperature rise time difference is not more than the predetermined range.
Specifically, an experiment was performed using the equipment shown in FIGS. 1 and 2 in order to determine the ratio. Then, the forward rotation ratio that can minimize the temperature rise time difference is calculated from the plate temperature calculation (temperature calculation of the material to be processed), and the forward / reverse blowing time (T forward, T reverse) ratio is calculated from the calculated forward rotation ratio. It was determined.
The forward rotation ratio (operating time ratio) is defined by equation (1).
Forward rotation ratio = T forward / (T forward + T reverse) (3)
Experimental results and calculation results are shown in FIGS.
[Calculation condition]
1) Plate size: 28 mm (thickness) x 4500 mm (width) x 18000 mm (length)
2) Target plate temperature: 600 ° C
3) 1 cycle blowing time: 20 minutes 4) Blowing volume: Q forward = 780 m 3 / min, Q reverse = 520 m 3 / min
Table 1 shows forward and reverse blowing times (T forward, T reverse), the sum, the forward rotation ratio, the temperature rise time difference, and the heating time. The forward rotation ratio is defined as “T forward / (T forward + T reverse)”.
図10は、運転時間比率と昇温時間差のグラフである。
図11は、正転15分、逆転5分を交互に繰り返したときの板温計算例をグラフ化したものである。正転時送風温度とは、第1温度測定手段8により測定された熱風の温度であり、逆転時送風温度とは、第2温度測定手段9により測定された熱風の温度である。正転時上流側板温、中央板温及び逆転時上流側板温は計算されたものである。
図12は、図9のグラフの部分拡大図である。
図10のグラフにおいて、昇温時間差が5分以下を本発明の範囲とする。すなわち、本発明の「最短」とは5分以下を意味する。
FIG. 10 is a graph of the operating time ratio and the temperature rise time difference.
FIG. 11 is a graph of a plate temperature calculation example when the
FIG. 12 is a partially enlarged view of the graph of FIG.
In the graph of FIG. 10, the difference in temperature rise time is 5 minutes or less within the scope of the present invention. That is, the “shortest” in the present invention means 5 minutes or less.
その結果、前記比率は、次式(4)となることを見出した。
T正/T逆=(Q正/Q逆)a ……(4)
ただし、a=0.8〜0.9
循環手段4の正転時回転数と、逆転時回転数が同一でない場合は、軸流ファンの正逆運転の制御は次のように行うことができる。
As a result, it has been found that the ratio is represented by the following formula (4).
T forward / T reverse = (Q forward / Q reverse) a (4)
However, a = 0.8-0.9
When the rotational speed at the time of forward rotation of the circulation means 4 and the rotational speed at the time of reverse rotation are not the same, the forward / reverse operation control of the axial fan can be performed as follows.
すなわち、前記軸流ファンの正逆各々の送風量(Q正、Q逆)が同一となるように、前記軸流ファンの正逆運転を制御する。この制御は、循環ファン電動機11の回転数をインバータ制御などで制御し、正逆運転での軸流ファンの回転数を変化させ、(Q正=Q逆)とする。この場合、正逆の送風時間は同一(T正=T逆)とされる。
本実施の形態においては、前記被処理材1を前記熱処理室2に収納する前に、前記熱処理室2内を予熱する。
予熱することにより炉体への伝熱量が減少し、熱風の上流、下流での温度差が小さくなり、鋼板の昇温時間差が小さくなる。
That is, the forward / reverse operation of the axial fan is controlled so that the forward / reverse air flow (Q forward, Q reverse) of the axial fan is the same. In this control, the rotational speed of the
In the present embodiment, the inside of the heat treatment chamber 2 is preheated before the material to be treated 1 is stored in the heat treatment chamber 2.
Preheating reduces the amount of heat transfer to the furnace body, reduces the temperature difference between the upstream and downstream of the hot air, and reduces the temperature rise time difference of the steel sheet.
なお、本発明は、前記実施の形態に示したものに限定されるものではなく、加熱手段3として、特開2000−144239号公報に記載のような電気ヒータを採用したものであってもよい。また、熱処理炉として、加熱室が下方に設けられ熱処理室が上方に設けられたものであってもよく、その形式は限定されるものではない。 In addition, this invention is not limited to what was shown to the said embodiment, As the heating means 3, you may employ | adopt the electric heater as described in Unexamined-Japanese-Patent No. 2000-144239. . Moreover, as a heat treatment furnace, a heating chamber may be provided below and a heat treatment chamber may be provided above, and the form is not limited.
本発明は、厚鋼板、形鋼などの被処理材の熱処理に利用できる。 The present invention can be used for heat treatment of a material to be treated such as a thick steel plate or a shape steel.
1 被処理材
2 熱処理室
3 加熱室
4 循環手段
5 加熱手段
1 Material to be treated 2 Heat treatment chamber 3 Heating chamber 4 Circulating means 5 Heating means
Claims (3)
前記各制御ゾーン(i=1〜n)で、前記熱風の上流側の温度(t上流i)と下流側の温度(t下流i)を測定し、その温度差(Δti=t上流i−t下流i)が等しくなるよう、前記各制御ゾーンの循環手段の風量(Qi)を制御することを特徴とする熱処理炉における加熱方法。 A heat treatment chamber capable of storing a long material to be processed having a thickness, a width, and a longitudinal direction and partitioned into a plurality of control zones in the longitudinal direction; and a heating means for heating an atmospheric gas in the heat treatment chamber; Using a heat treatment furnace having circulation means for circulating the atmospheric gas heated by the heating means as hot air in the width direction of each control zone, the hot air is directed from one side in the width direction of the material to be treated to the other side. A heating method in a heat treatment furnace for supplying and heating the material to be processed to a target temperature,
In each of the control zones (i = 1 to n), the upstream temperature (t upstream i) and the downstream temperature (t downstream i) of the hot air are measured, and the temperature difference (Δti = t upstream i−t). A heating method in a heat treatment furnace, characterized in that the air volume (Qi) of the circulation means in each control zone is controlled so that the downstream i) becomes equal.
Qi=f(Qmax,Δtmax,Δti)
ただし、
Δti : 制御ゾーンにおける温度差
Δtmax: 温度差が最も大きい制御ゾーンにおける温度差
Qmax : 温度差が最も大きい制御ゾーンにおける風量
Qi : 残りの制御ゾーンの風量 The heating method in the heat treatment furnace according to claim 1, wherein the air volume (Qi) of each control zone is set to satisfy the following formula.
Qi = f (Qmax, Δtmax, Δti)
However,
Δti: Temperature difference in the control zone
Δtmax: Temperature difference in the control zone with the largest temperature difference
Qmax: Air volume in the control zone with the largest temperature difference
Qi: Air volume in the remaining control zone
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005184108A JP2007002301A (en) | 2005-06-23 | 2005-06-23 | Heating method in heat-treating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005184108A JP2007002301A (en) | 2005-06-23 | 2005-06-23 | Heating method in heat-treating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007002301A true JP2007002301A (en) | 2007-01-11 |
Family
ID=37688170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005184108A Pending JP2007002301A (en) | 2005-06-23 | 2005-06-23 | Heating method in heat-treating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007002301A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003099A (en) * | 2005-06-23 | 2007-01-11 | Kobe Steel Ltd | Heat treat furnace |
KR20200064516A (en) * | 2018-11-29 | 2020-06-08 | 재단법인 포항산업과학연구원 | Preheating zone structure and Annealing Furnace comprising it |
CN111721129A (en) * | 2020-05-25 | 2020-09-29 | 合肥高歌热处理应用技术有限公司 | Degreasing hot air circulating furnace for zirconia ceramic material |
CN113899201A (en) * | 2021-10-19 | 2022-01-07 | 江西金辉锂业有限公司 | Roasting device and method for manufacturing lithium-based material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141820A (en) * | 1983-12-28 | 1985-07-26 | Kurosaki Rokougiyou Kk | Heating device by alternate ejection of hot air |
JPS6245014A (en) * | 1985-08-22 | 1987-02-27 | Toshiba Corp | Hot air heating device |
JPH02133432A (en) * | 1988-11-14 | 1990-05-22 | Sumitomo Electric Ind Ltd | Production of friction material |
JPH04126992A (en) * | 1990-09-18 | 1992-04-27 | Toho Gas Co Ltd | Heating furnace |
JPH08143949A (en) * | 1994-11-21 | 1996-06-04 | Nippon Steel Corp | Continuous heating apparatus |
-
2005
- 2005-06-23 JP JP2005184108A patent/JP2007002301A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141820A (en) * | 1983-12-28 | 1985-07-26 | Kurosaki Rokougiyou Kk | Heating device by alternate ejection of hot air |
JPS6245014A (en) * | 1985-08-22 | 1987-02-27 | Toshiba Corp | Hot air heating device |
JPH02133432A (en) * | 1988-11-14 | 1990-05-22 | Sumitomo Electric Ind Ltd | Production of friction material |
JPH04126992A (en) * | 1990-09-18 | 1992-04-27 | Toho Gas Co Ltd | Heating furnace |
JPH08143949A (en) * | 1994-11-21 | 1996-06-04 | Nippon Steel Corp | Continuous heating apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003099A (en) * | 2005-06-23 | 2007-01-11 | Kobe Steel Ltd | Heat treat furnace |
JP4583256B2 (en) * | 2005-06-23 | 2010-11-17 | 株式会社神戸製鋼所 | Heat treatment furnace |
KR20200064516A (en) * | 2018-11-29 | 2020-06-08 | 재단법인 포항산업과학연구원 | Preheating zone structure and Annealing Furnace comprising it |
KR102163689B1 (en) | 2018-11-29 | 2020-10-08 | 재단법인 포항산업과학연구원 | Preheating zone structure and Annealing Furnace comprising it |
CN111721129A (en) * | 2020-05-25 | 2020-09-29 | 合肥高歌热处理应用技术有限公司 | Degreasing hot air circulating furnace for zirconia ceramic material |
CN113899201A (en) * | 2021-10-19 | 2022-01-07 | 江西金辉锂业有限公司 | Roasting device and method for manufacturing lithium-based material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2716381T3 (en) | Transport device for thin-walled, hot-walled steel parts | |
US20010051323A1 (en) | Convection-type brazing method and its apparatus for metal workpieces | |
JP2003225761A (en) | Convection type brazing apparatus for metal work piece | |
RU73665U1 (en) | DEVICE FOR HEATING GLASS PANELS | |
JP6572464B2 (en) | Heating apparatus and heating method using superheated steam | |
JP2007002301A (en) | Heating method in heat-treating furnace | |
JP4583256B2 (en) | Heat treatment furnace | |
CN104775012A (en) | Broad-width induction heating method and device used for uniform heating of strip steel | |
ES2252515T3 (en) | PROCEDURE TO IMPROVE THE TEMPERATURE PROFILE OF AN OVEN. | |
WO2011151735A1 (en) | Burner and kiln comprising said burner | |
CN210657063U (en) | High-efficient qxcomm technology adds hot type annealing stove | |
CN204325475U (en) | A kind of horizontal multi-purpose ion nitriding furnace | |
JP2005015873A (en) | Material-temperature control system in continuous strip-material processing line | |
JP4583255B2 (en) | How to use heat treatment furnace | |
JP2008241076A (en) | Heating method, intermittent feed-type tunnel furnace and batch furnace | |
ES2254049T1 (en) | PROCEDURE FOR CONTROL OF THE TEMPERATURE HOMOGENEITY OF PRODUCTS IN A STEEL OVERHEATING OVEN, AND HEATING OVEN. | |
JP2000144239A (en) | Heat treatment furnace | |
JP2007002300A (en) | Heating method in heat-treating furnace | |
JP2008274349A (en) | Method for heat-treating steel material and cooling apparatus | |
JP2004027322A (en) | Method for controlling heating temperature of steel strip | |
JP2005221135A (en) | Burning furnace | |
JP2011117652A (en) | Heating furnace | |
JP7384973B1 (en) | heat treatment furnace | |
JP2018017425A (en) | Heat treatment furnace | |
JP2009074737A (en) | Heating cooker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080121 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Written amendment |
Effective date: 20110510 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20120221 Free format text: JAPANESE INTERMEDIATE CODE: A02 |