JP2010236822A - Heating rotary furnace - Google Patents

Heating rotary furnace Download PDF

Info

Publication number
JP2010236822A
JP2010236822A JP2009087020A JP2009087020A JP2010236822A JP 2010236822 A JP2010236822 A JP 2010236822A JP 2009087020 A JP2009087020 A JP 2009087020A JP 2009087020 A JP2009087020 A JP 2009087020A JP 2010236822 A JP2010236822 A JP 2010236822A
Authority
JP
Japan
Prior art keywords
rotary furnace
heating
furnace
magnetic material
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009087020A
Other languages
Japanese (ja)
Other versions
JP5583356B2 (en
Inventor
Masayoshi Matsushima
正義 松嶋
Katsunori Hagiwara
克典 萩原
Yuji Oyabu
勇二 大藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnan Corp
Original Assignee
Johnan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnan Corp filed Critical Johnan Corp
Priority to JP2009087020A priority Critical patent/JP5583356B2/en
Publication of JP2010236822A publication Critical patent/JP2010236822A/en
Application granted granted Critical
Publication of JP5583356B2 publication Critical patent/JP5583356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating rotary furnace expecting improvement of heat efficiency. <P>SOLUTION: This heating rotary furnace 10 includes a rotary furnace 12 composed of a magnetic material, and a coil 42 disposed at its outer side. High-frequency power supplied from a high-frequency power source 44 is generated from the coil 42. Induction current is generated at a peripheral side face of the rotary furnace 12 by the high-frequency power, and the peripheral side face of the rotary furnace 12 produces heat by the induction current. The heat is diffused in the rotary furnace 12, thus the inside of the rotary furnace is heated. As a result, the peripheral side face of the rotary furnace produces heat, and heat efficiency is improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は加熱回転炉に関し、たとえば粉体などを加熱処理する、加熱回転炉に関する。   The present invention relates to a heating rotary furnace and, for example, relates to a heating rotary furnace that heats powder and the like.

この種の加熱回転炉の一例が特許文献1に開示される。特許文献1に示す加熱回転炉では、ステンレス鋼やモリブデン合金からなる真空炉を軸周りに回転させ、その真空炉と同軸にかつ真空炉を取り囲むように配置した円筒状体の加熱手段によって炉内を加熱する。   An example of this type of heating rotary furnace is disclosed in Patent Document 1. In the heating rotary furnace shown in Patent Document 1, a vacuum furnace made of stainless steel or molybdenum alloy is rotated around its axis, and the inside of the furnace is heated by a cylindrical body heating means arranged coaxially with the vacuum furnace and surrounding the vacuum furnace. Heat.

特開2006−284052号公報[F27B 7/06 B22F 1/00 F27B 7/12 F27B 7/24]JP 2006-284052 A [F27B 7/06 B22F 1/00 F27B 7/12 F27B 7/24]

特許文献1に開示されている加熱回転炉では、加熱手段は回転炉から離れて炉内を加熱するものであるため、熱効率が必ずしもよくない、という問題がある。   The heating rotary furnace disclosed in Patent Document 1 has a problem that the heat efficiency is not necessarily good because the heating means is for heating the inside of the furnace away from the rotary furnace.

それゆえに、この発明の主たる目的は、新規な、加熱回転炉を提供することである。   Therefore, the main object of the present invention is to provide a novel heating rotary furnace.

この発明の他の目的は、熱効率の向上が期待できる、加熱回転炉を提供することである。   Another object of the present invention is to provide a heating rotary furnace that can be expected to improve thermal efficiency.

この発明は、上記の課題を解決するために、以下の構成を採用した。なお、括弧内の参照符号および補足説明等は、この発明の理解を助けるために後述する実施の形態との対応関係を示したものであって、この発明を何ら限定するものではない。   The present invention employs the following configuration in order to solve the above problems. The reference numerals in parentheses, supplementary explanations, and the like indicate correspondence with the embodiments described later in order to help understanding of the present invention, and do not limit the present invention.

第1の発明は、少なくとも一部に磁性材料を含みかつ回転可能に支持された回転炉、および回転炉の外側に設けられて高周波磁力線を発生する高周波磁力線発生手段を備える、加熱回転炉である。   A first invention is a heating rotary furnace including a rotary furnace including at least a part of a magnetic material and rotatably supported, and high-frequency magnetic field lines generating means provided outside the rotary furnace and generating high-frequency magnetic field lines .

第1の発明では、加熱回転炉(10:実施例において相当する部分を例示する参照符号。以下、同じ。)は、回転炉(12)を含み、この回転炉は少なくとも一部に磁性材料を含んで形成される。たとえばコイル(42)のような高周波磁力線発生手段は、高周波電源からの高周波電力を受けて、それの周囲に高周波磁力線を発生する。回転炉の少なくとも一部に存在する磁性材料がその高周波磁力線に電磁的に結合し、それによって、高周波磁力線によって誘導電流(渦電流)がその磁性材料部分に生じる。その誘導電流によってジュール熱が生じ、その熱が回転炉内部に放散される。したがって、回転炉内が誘導電流によって発生した熱で加熱される。   In the first invention, the heating rotary furnace (10: reference numerals exemplifying corresponding parts in the embodiment, hereinafter the same) includes a rotary furnace (12), and this rotary furnace is at least partially made of a magnetic material. It is formed including. For example, the high-frequency magnetic field line generating means such as the coil (42) receives high-frequency power from a high-frequency power source and generates high-frequency magnetic field lines around it. The magnetic material present in at least a part of the rotary furnace is electromagnetically coupled to the high-frequency magnetic field lines, whereby an induced current (eddy current) is generated in the magnetic material portion by the high-frequency magnetic field lines. Joule heat is generated by the induced current, and the heat is dissipated inside the rotary furnace. Therefore, the inside of the rotary furnace is heated by the heat generated by the induced current.

第1の発明によれば、誘導電流によって回転炉自身が発熱するので、背景技術のように間接的な加熱手段に比べて、熱効率がよい。したがって、加熱回転炉を全体としてコンパクトに構成することができる。   According to the first invention, since the rotary furnace itself generates heat by the induced current, the thermal efficiency is better than indirect heating means as in the background art. Therefore, a heating rotary furnace can be comprised compactly as a whole.

第2の発明は、第1の発明に従属し、回転炉は全体として磁性材料で形成される、加熱回転炉である。   A second invention is a heating rotary furnace according to the first invention, wherein the rotary furnace is formed of a magnetic material as a whole.

第2の発明では、回転炉(12)が全体として磁性材料で形成されるので、広い範囲において発熱させることができる。   In the second invention, since the rotary furnace (12) is formed of a magnetic material as a whole, heat can be generated in a wide range.

第3の発明は、第1の発明に従属し、回転炉は全体として非磁性材料で形成され、一部に磁性材料を含む、加熱回転炉である。   A third invention is a heating rotary furnace according to the first invention, wherein the rotary furnace is formed of a nonmagnetic material as a whole and includes a magnetic material in part.

第3の発明では、一部に磁性材料を含むので、発熱する範囲をその磁性材料の部分に限定することができる。   In the third invention, since the magnetic material is partially included, the range of heat generation can be limited to the magnetic material portion.

第4の発明は、第1ないし第3の発明のいずれかに従属し、高周波磁力線発生手段は回転炉の周囲に設けられるコイルを含み、さらに非磁性材料からなり、コイルを固定的に保持する保持手段を備える、加熱回転炉である。   A fourth invention is dependent on any one of the first to third inventions, wherein the high-frequency magnetic field line generating means includes a coil provided around the rotary furnace, and is made of a nonmagnetic material, and holds the coil fixedly. It is a heating rotary furnace provided with a holding means.

第4の発明では、高周波磁力線発生手段は、回転炉(12)の全周にわたって巻回されたり、或いは周方向の一部においてのみ折り返して、または渦巻状に形成されたコイル(42)を含む。そのコイル(42)は、非磁性材料からなる保持手段、たとえば回転炉(12)の高さ方向の一部において回転炉を囲繞する環状体で形成される。そのような保持手段がコイル(42)を固定的に保持する。   In the fourth invention, the high-frequency magnetic field line generating means includes a coil (42) wound around the entire circumference of the rotary furnace (12) or folded only in a part of the circumferential direction or formed in a spiral shape. . The coil (42) is formed of a holding means made of a non-magnetic material, for example, an annular body surrounding the rotary furnace in a part in the height direction of the rotary furnace (12). Such holding means holds the coil (42) fixedly.

第5の発明は、第4の発明に従属し、保持手段は、非磁性材料で形成され、回転炉を全体に囲繞する外被を含む、加熱回転炉である。   A fifth invention is a heating rotary furnace according to the fourth invention, wherein the holding means includes a jacket formed of a nonmagnetic material and surrounding the rotary furnace as a whole.

第5の発明では、保持手段を構成する外被(46)が回転炉(12)を全体に囲繞するので、回転炉(12)の外面は大気から熱的にほぼ完全に遮断される。したがって、回転炉(12)の外面からの熱の放散が抑制され、熱効率が一層高められる。   In the fifth invention, since the outer cover (46) constituting the holding means surrounds the rotary furnace (12) as a whole, the outer surface of the rotary furnace (12) is almost completely thermally isolated from the atmosphere. Therefore, heat dissipation from the outer surface of the rotary furnace (12) is suppressed, and the thermal efficiency is further enhanced.

この発明によれば、回転炉内に直接熱を与えることができるので、熱効率が向上する。   According to the present invention, since heat can be directly applied to the rotary furnace, the thermal efficiency is improved.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

図1はこの発明の加熱回転炉の一実施例を示す図解図である。FIG. 1 is an illustrative view showing one embodiment of a heating rotary furnace of the present invention. 図2はこの実施例の加熱回転炉の断面構造を示す図解図である。FIG. 2 is an illustrative view showing a cross-sectional structure of a heating rotary furnace of this embodiment. 図3はこの発明の他の実施例を示す断面図解図である。FIG. 3 is a sectional view showing another embodiment of the present invention. 図4はこの発明のその他の実施例を示す断面図解図である。FIG. 4 is an illustrative sectional view showing another embodiment of the present invention.

図1および図2を参照して、この発明の一実施例の加熱回転炉10は、回転炉12を含み、回転炉12は有底円筒形状であり、それの底部14には孔16が形成され、その孔16に、たとえば鉄やステンレスのような金属からなる空気管18の一端が臨まされる。したがって、この回転炉12の内部には空気管18から所定温度の空気が供給される。たとえば、炉内温度を低くしたいときには空気管18から低温の空気が供給され、炉内温度を少なくとも下げたくないときには加熱空気が供給される。   1 and 2, a heating rotary furnace 10 according to an embodiment of the present invention includes a rotary furnace 12, and the rotary furnace 12 has a bottomed cylindrical shape, and a hole 16 is formed in a bottom portion 14 thereof. Then, one end of an air pipe 18 made of a metal such as iron or stainless steel faces the hole 16. Therefore, air of a predetermined temperature is supplied from the air pipe 18 into the rotary furnace 12. For example, low temperature air is supplied from the air pipe 18 when it is desired to lower the furnace temperature, and heated air is supplied when it is not desired to lower the furnace temperature at least.

ただし、回転炉12内に冷媒管を設け、この冷媒管(図示せず)にたとえば水のような冷媒を流して炉内温度を低下させることも可能である。   However, it is also possible to provide a refrigerant pipe in the rotary furnace 12 and flow a refrigerant such as water through the refrigerant pipe (not shown) to lower the furnace temperature.

回転炉12には適宜の蓋体20が、開閉可能に装着される。この蓋体20の一部に、回転炉12の内部に連通するように、排気管22が設けられる。この排気管22は通常封止されていて、必要なとき開放されて、回転炉12からガスを排出する。   An appropriate lid 20 is attached to the rotary furnace 12 so as to be openable and closable. An exhaust pipe 22 is provided in a part of the lid 20 so as to communicate with the inside of the rotary furnace 12. The exhaust pipe 22 is normally sealed and opened when necessary to discharge gas from the rotary furnace 12.

回転炉12は、この実施例では、底部14を含んで全体としてたとえば鉄などの磁性材料で形成され、空気管18が回転炉12の底部14に固着される。ただし、蓋体20は磁性材料でも非磁性材料でも、どちらで形成されてもよい。   In this embodiment, the rotary furnace 12 is formed of a magnetic material such as iron as a whole including the bottom portion 14, and the air pipe 18 is fixed to the bottom portion 14 of the rotary furnace 12. However, the lid 20 may be formed of either a magnetic material or a non-magnetic material.

空気管18の一端側外周に、たとえば鉄のような金属ブロック24が、たとえば溶接やろう付けのような適宜の手段によって、固着される。金属ブロック24の上面には適宜数のねじ孔(雌ねじ)が形成され、そのねじ孔に、回転炉12の底部14を貫通したボルト26を螺入することによって、金属ブロック24が底部14の底面に固着される。金属ブロック24が外周に一体に付着されている空気管18は、したがって、金属ブロック24を介して、回転炉12の底部14底面に固着される。   A metal block 24 such as iron is fixed to the outer periphery of one end side of the air pipe 18 by an appropriate means such as welding or brazing. An appropriate number of screw holes (female screws) are formed on the upper surface of the metal block 24, and a bolt 26 penetrating the bottom portion 14 of the rotary furnace 12 is screwed into the screw hole, so that the metal block 24 becomes the bottom surface of the bottom portion 14. It is fixed to. Therefore, the air pipe 18 having the metal block 24 integrally attached to the outer periphery thereof is fixed to the bottom surface of the bottom portion 14 of the rotary furnace 12 via the metal block 24.

空気管18は、それの軸方向に間隔を隔てた2箇所において、たとえばボールベアリングのような軸受け28によって回転可能に支持される。これらの軸受け28は、詳しくは図示していないが、図2に示すたとえば鉄などの金属で形成された取付け台29によって固定的に支持される。上述のように空気管18が回転炉12に固着されるのであるから、この回転炉12が結局、取付け台29に固着された軸受け28によって回転可能に支持されることになり、空気管18が回転炉12の回転軸として機能する。ただし、取付け台29と空気管18との間には間隙があり、したがって、空気管18が回転するとき取付け台29に接触することない。   The air pipe 18 is rotatably supported by a bearing 28 such as a ball bearing, for example, at two positions spaced apart in the axial direction thereof. Although not shown in detail, these bearings 28 are fixedly supported by a mounting base 29 made of metal such as iron shown in FIG. Since the air tube 18 is fixed to the rotary furnace 12 as described above, the rotary furnace 12 is eventually rotatably supported by the bearing 28 fixed to the mounting base 29. It functions as a rotating shaft of the rotary furnace 12. However, there is a gap between the mounting base 29 and the air pipe 18, so that the mounting base 29 is not contacted when the air pipe 18 rotates.

また、図2から分かるように、取付け台29の上面が右下がりに傾斜しているので、その上面に固着された軸受け28の軸がその傾斜に応じて右に傾斜している。したがって、その軸受け28に挿通される回転軸としての空気管18も右に傾斜することになり、その傾斜している回転軸で支持される回転炉12も右に傾斜する。したがって、空気管18を回転軸として回転炉12が回転するとき、回転炉12内に収容されている粉体のような被処理物が規則的に上下に変位することになり、それによって自然に攪拌される。ただし、積極的に攪拌機能を付与するために、回転炉12内に攪拌羽根のような攪拌手段を設けることもできる。   Further, as can be seen from FIG. 2, since the upper surface of the mounting base 29 is inclined downward to the right, the shaft of the bearing 28 fixed to the upper surface is inclined to the right according to the inclination. Therefore, the air pipe 18 as a rotating shaft inserted through the bearing 28 is also inclined to the right, and the rotary furnace 12 supported by the inclined rotating shaft is also inclined to the right. Therefore, when the rotary furnace 12 rotates about the air tube 18 as a rotation axis, the object to be processed such as powder accommodated in the rotary furnace 12 is regularly displaced up and down, thereby naturally. Stir. However, a stirring means such as a stirring blade can be provided in the rotary furnace 12 in order to positively impart a stirring function.

2つの軸受け28の間で、空気管18の外周にプーリ30が固着され、このプーリ30には、モータ32の出力軸34に固着されたプーリ36との間に、ベルト38が掛け渡される。したがって、モータ32によって回転炉12が空気管18を回転軸として回転される。   A pulley 30 is fixed to the outer periphery of the air pipe 18 between the two bearings 28, and a belt 38 is stretched between the pulley 30 and a pulley 36 fixed to the output shaft 34 of the motor 32. Therefore, the rotary furnace 12 is rotated by the motor 32 around the air tube 18 as a rotation axis.

回転炉12の外周を囲繞するように、外周とは間隔を隔てて、たとえばステンレスやアルミニウムのような非磁性材料からなる環状体40が固定的に設けられる。この環状体40の外周にはコイル42が巻き付けられる。コイル42には高周波電源44から高周波電流が流され、したがって、コイル42から高周波磁力線が発生される。つまり、コイル42が高周波磁力線発生手段として機能し、環状体40が高周波磁力線発生手段の保持手段として機能する。   An annular body 40 made of a non-magnetic material such as stainless steel or aluminum is fixedly provided so as to surround the outer periphery of the rotary furnace 12 at a distance from the outer periphery. A coil 42 is wound around the outer periphery of the annular body 40. The coil 42 is supplied with a high-frequency current from a high-frequency power supply 44, and thus a high-frequency magnetic field line is generated from the coil 42. That is, the coil 42 functions as a high-frequency magnetic field line generating unit, and the annular body 40 functions as a holding unit for the high-frequency magnetic field line generating unit.

コイル42から発生した高周波磁力線が、このコイル42と磁気結合している、磁性材料からなる回転炉12の周側面に渦電流(誘導電流)を生じる。その渦電流によって、回転炉12それ自体の周面に発熱を生じる。発生された熱はそのまま回転炉12の内部に放散され、したがって、回転炉12内が直接加熱される。したがって、回転炉12に入れられた被処理物たとえば粉体が、効率よく加熱され得る。   High-frequency magnetic field lines generated from the coil 42 generate eddy current (inductive current) on the peripheral side surface of the rotary furnace 12 made of a magnetic material and magnetically coupled to the coil 42. The eddy current generates heat on the peripheral surface of the rotary furnace 12 itself. The generated heat is dissipated as it is inside the rotary furnace 12, and therefore the inside of the rotary furnace 12 is directly heated. Therefore, an object to be processed, such as powder, placed in the rotary furnace 12 can be efficiently heated.

なお、たとえば回転炉12の内部にたとえば熱電対のような温度センサ(図示せず)を配置し、この温度センサで炉内温度を測定し、その温度に基づいて高周波電源44による高周波電力を制御(オン/オフのデューティ比や出力電力量の)すれば、コイル42から発生する高周波磁力線が変化し、回転炉12の炉内温度を直接制御できる。   For example, a temperature sensor (not shown) such as a thermocouple is arranged inside the rotary furnace 12, for example, the temperature in the furnace is measured by this temperature sensor, and the high frequency power from the high frequency power supply 44 is controlled based on the temperature. If the duty ratio (on / off duty ratio or output power amount) is changed, the high-frequency magnetic field lines generated from the coil 42 change, and the in-furnace temperature of the rotary furnace 12 can be directly controlled.

上述の実施例では、回転炉12が全体として磁性材料で形成されので、コイル42の高周波磁力線の及ぶ範囲を広くすれば、広い範囲において発熱させることができる。   In the above-described embodiment, the rotary furnace 12 is formed of a magnetic material as a whole. Therefore, if the range covered by the high-frequency magnetic field lines of the coil 42 is widened, heat can be generated in a wide range.

この発明の他の実施例が図3に示される。図3を参照して、この実施例の加熱回転炉10は、以下に説明する点を除いて図1および図2で説明した先の実施例と同様であり、ここでは重複する説明は省略する。   Another embodiment of the invention is shown in FIG. Referring to FIG. 3, the heating rotary furnace 10 of this embodiment is the same as the previous embodiment described in FIGS. 1 and 2 except for the points described below, and redundant description is omitted here. .

図3の実施例の加熱回転炉10では、図1および図2に示した先の実施例図においては大部分が露出していた回転炉12が、回転炉12と同様の有底円筒形に形成される外被46によって、覆われる。外被46の周側面内面は、回転炉12の周側面外面と離間していて、底部48と底部14も離間していて、それらの間に前述の金属ブロック24が配置される。外被46は全体としてたとえばステンレスのような非磁性体で形成され、その開放側に、蓋体50が開閉可能に設けられる。この実施例の加熱回転炉10においては、このように外被46に蓋体50を設けているので、回転炉12は外被46および蓋体50によって完全に覆われる。そのため、回転炉12の外面は大気から熱的にほぼ完全に遮断される。したがって、回転炉12の外面からの熱の放散が抑制され、熱効率が一層高められる。   In the heating rotary furnace 10 of the embodiment of FIG. 3, the rotary furnace 12, which is mostly exposed in the previous embodiment shown in FIGS. 1 and 2, has a bottomed cylindrical shape similar to the rotary furnace 12. Covered by the outer cover 46 to be formed. The inner surface of the outer side surface of the outer cover 46 is separated from the outer surface of the peripheral side surface of the rotary furnace 12, and the bottom portion 48 and the bottom portion 14 are also separated, and the metal block 24 is disposed therebetween. The outer cover 46 is formed of a non-magnetic material such as stainless as a whole, and a lid 50 is provided on the open side thereof so that it can be opened and closed. In the heating rotary furnace 10 of this embodiment, since the cover body 50 is provided on the jacket 46 as described above, the rotary furnace 12 is completely covered with the jacket 46 and the cover body 50. Therefore, the outer surface of the rotary furnace 12 is almost completely thermally shut off from the atmosphere. Therefore, heat dissipation from the outer surface of the rotary furnace 12 is suppressed, and the thermal efficiency is further enhanced.

そして、外被46の該当する場所の外周に、コイル42を巻回する。したがって、先の実施例と同じように、コイル42から発生された高周波磁力線によって回転炉12に渦電流が発生し、それによって回転炉12自体が発熱する。   Then, the coil 42 is wound around the outer periphery of the corresponding place of the jacket 46. Therefore, as in the previous embodiment, eddy currents are generated in the rotary furnace 12 by the high-frequency magnetic field lines generated from the coil 42, and the rotary furnace 12 itself generates heat.

なお、回転炉12が外被46および蓋体50によって完全に覆われるので、この実施例では、先の実施例で使用していた蓋体20は省略する。   Since the rotary furnace 12 is completely covered with the jacket 46 and the lid 50, the lid 20 used in the previous embodiment is omitted in this embodiment.

また、図3の実施例では、外被46の開放側の周側面の一部に排気管52を設ける。この排気管52は、回転炉12と外被46との間の隙間に連通し、回転炉12の開放側から出たガスをその隙間から導出して排気する。   Further, in the embodiment of FIG. 3, the exhaust pipe 52 is provided on a part of the peripheral side surface on the open side of the jacket 46. The exhaust pipe 52 communicates with a gap between the rotary furnace 12 and the jacket 46, and exhausts gas discharged from the open side of the rotary furnace 12 through the gap.

この実施例では、好ましくは、この排気管52の内部に温度センサ54を配置する。この温度センサ54で排気の温度を測定し、測定した温度によって、高周波電源44による高周波電力を制御(オン/オフのデューティ比や出力電力量の)することによって、コイル42から発生する高周波磁力線が変化し、回転炉12内の温度を間接的に制御することができる。   In this embodiment, a temperature sensor 54 is preferably disposed inside the exhaust pipe 52. The temperature of the exhaust gas is measured by the temperature sensor 54, and the high frequency power generated by the coil 42 is controlled by controlling the high frequency power from the high frequency power supply 44 (on / off duty ratio and output power amount) according to the measured temperature. It is possible to control the temperature in the rotary furnace 12 indirectly.

図4を参照して、この図4にはこの発明のその他の実施例が図解される。この実施例の加熱回転炉10は、以下に説明する点を除いて図1および図2に示した実施例または図3に示した実施例と同様であり、ここでは重複する説明は省略する。   Referring to FIG. 4, this figure illustrates another embodiment of the present invention. The heating rotary furnace 10 of this embodiment is the same as the embodiment shown in FIG. 1 and FIG. 2 or the embodiment shown in FIG. 3 except for the points described below, and redundant description is omitted here.

先の実施例においてはいずれも、回転炉12全体が鉄などの磁性材料で形成されたが、この実施例では、回転炉12は全体としてステンレスなどの非磁性材料で形成する。そして、回転炉12の周側面の内面(外面でもよい)に磁性材料からなる磁性体56を固着する。したがって、コイル42からの高周波磁力線に対して、回転炉12を形成する非磁性材料部分では誘導電流は発生しないが、磁性体56に誘導電流が生じることによって、この磁性体56が発熱し、その熱が炉内に放射され、炉内が加熱される。   In any of the previous embodiments, the entire rotary furnace 12 is made of a magnetic material such as iron. However, in this embodiment, the rotary furnace 12 is made entirely of a nonmagnetic material such as stainless steel. Then, a magnetic body 56 made of a magnetic material is fixed to the inner surface (or the outer surface) of the peripheral side surface of the rotary furnace 12. Therefore, no induced current is generated in the non-magnetic material portion forming the rotary furnace 12 with respect to the high-frequency magnetic field lines from the coil 42. However, when the induced current is generated in the magnetic body 56, the magnetic body 56 generates heat. Heat is radiated into the furnace and the furnace is heated.

このように、回転炉12を全体を磁性材料で形成する必要はなく、少なくとも一部に磁性材料を含んで形成されればよい。磁性材料で形成される部分の付近が効率よく加熱されるので、回転炉12の一部のみを磁性材料で形成する実施例においては、加熱すべき部分に磁性材料を配置するようにすればよい。そうすれば、必要部分だけで発熱させることができるので、つまり、発熱する範囲をその磁性材料の部分に限定することができるので、さらなる熱効率の向上が期待できる。   Thus, it is not necessary to form the whole rotary furnace 12 with a magnetic material, and it should just be formed including a magnetic material at least partially. Since the vicinity of the portion formed of the magnetic material is efficiently heated, in the embodiment in which only a part of the rotary furnace 12 is formed of the magnetic material, the magnetic material may be disposed in the portion to be heated. . By doing so, heat can be generated only at the necessary portion, that is, the range of heat generation can be limited to the portion of the magnetic material, and further improvement in thermal efficiency can be expected.

なお、上で説明した各実施例では、高周波磁力線発生手段を構成するコイルは回転炉12を全周に巻回されているが、コイルは回転炉を全周に巻回される必要はなく、周方向の一部にのみ、折り返して、または渦巻状に形成されてもよい。   In each of the embodiments described above, the coil constituting the high-frequency magnetic field line generating means is wound around the rotary furnace 12, but the coil need not be wound around the rotary furnace, Only a part in the circumferential direction may be folded or spirally formed.

さらに、上述の各実施例では、空気管18を回転炉12の回転軸として利用したので、別に空気管を設ける場合に比べて、構造が簡単で、小型化可能であるが、空気管が不要な場合、あるいは別の場所に空気管を設けたほうがよい場合には、空気管18を中実の軸に置き換えて回転軸としてのみ機能させればよい。   Further, in each of the above-described embodiments, since the air tube 18 is used as the rotating shaft of the rotary furnace 12, the structure is simple and can be reduced in size as compared with a case where another air tube is provided, but the air tube is unnecessary. In this case, or when it is better to provide an air tube at another location, the air tube 18 may be replaced with a solid shaft and function only as a rotating shaft.

また、上で説明した各実施例はそれぞれ独立したものであるが、それぞれの構成部分または要素(コンポーネント)を適宜組み合わせて、さらに別の実施例を構成することもできるものである。たとえば、図4の実施例の回転炉12を図1および図2の実施例の回転炉と置き換えるなどのように。   In addition, each of the embodiments described above is independent, but another embodiment can be configured by appropriately combining each component or element (component). For example, the rotary furnace 12 of the embodiment of FIG. 4 is replaced with the rotary furnace of the embodiment of FIGS.

10 …加熱回転炉
12 …回転炉
18 …空気管
28 …軸受け
32 …モータ
42 …コイル
44 …高周波電源
46 …外被
56 …磁性体
DESCRIPTION OF SYMBOLS 10 ... Heating rotary furnace 12 ... Rotary furnace 18 ... Air pipe 28 ... Bearing 32 ... Motor 42 ... Coil 44 ... High frequency power supply 46 ... Jacket 56 ... Magnetic body

Claims (5)

少なくとも一部に磁性材料を含みかつ回転可能に支持された回転炉、および
前記回転炉の外側に設けられて高周波磁力線を発生する高周波磁力線発生手段を備える、加熱回転炉。
A heating rotary furnace comprising: a rotary furnace including at least a part of a magnetic material and rotatably supported; and high-frequency magnetic field lines generating means provided outside the rotary furnace to generate high-frequency magnetic field lines.
前記回転炉は全体として磁性材料で形成される、請求項1記載の加熱回転炉。   The heating rotary furnace according to claim 1, wherein the rotary furnace is formed of a magnetic material as a whole. 前記回転炉は全体として非磁性材料で形成され、一部に磁性材料を含む、請求項1記載の加熱回転炉。   The heating rotary furnace according to claim 1, wherein the rotary furnace is formed of a nonmagnetic material as a whole and includes a magnetic material in part. 前記高周波電力発生手段は前記回転炉の周囲に設けられるコイルを含み、さらに
非磁性材料からなり、前記コイルを固定的に保持する保持手段を備える、請求項1ないし3のいずれかに記載の加熱回転炉。
The heating according to any one of claims 1 to 3, wherein the high-frequency power generation means includes a coil provided around the rotary furnace, and further includes a holding means that is made of a nonmagnetic material and holds the coil fixedly. Rotary furnace.
前記保持手段は、非磁性材料で形成され、前記回転炉を全材料に囲繞する外被を含む、請求項4記載の加熱回転炉。   The heating rotary furnace according to claim 4, wherein the holding means is formed of a nonmagnetic material, and includes a jacket that surrounds the rotary furnace with all materials.
JP2009087020A 2009-03-31 2009-03-31 Heating rotary furnace Expired - Fee Related JP5583356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087020A JP5583356B2 (en) 2009-03-31 2009-03-31 Heating rotary furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087020A JP5583356B2 (en) 2009-03-31 2009-03-31 Heating rotary furnace

Publications (2)

Publication Number Publication Date
JP2010236822A true JP2010236822A (en) 2010-10-21
JP5583356B2 JP5583356B2 (en) 2014-09-03

Family

ID=43091297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087020A Expired - Fee Related JP5583356B2 (en) 2009-03-31 2009-03-31 Heating rotary furnace

Country Status (1)

Country Link
JP (1) JP5583356B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105583A (en) * 1995-10-05 1997-04-22 Murata Mfg Co Ltd Inductive heating type heat treatment device
JP2000055562A (en) * 1998-08-03 2000-02-25 Sugiyama Juko Kk Induction heating type rotary kiln
JP2003123950A (en) * 2001-10-12 2003-04-25 Hitachi Zosen Corp Heat treatment device
JP2003221111A (en) * 2002-01-31 2003-08-05 Oriental Kiden Kk Dioxin volatilization and separation device
JP2003269866A (en) * 2002-03-19 2003-09-25 Fuji Electric Co Ltd Induction heating dry distillation furnace
JP2006236856A (en) * 2005-02-25 2006-09-07 Tok Engineering Kk Heating device of metallic can

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105583A (en) * 1995-10-05 1997-04-22 Murata Mfg Co Ltd Inductive heating type heat treatment device
JP2000055562A (en) * 1998-08-03 2000-02-25 Sugiyama Juko Kk Induction heating type rotary kiln
JP2003123950A (en) * 2001-10-12 2003-04-25 Hitachi Zosen Corp Heat treatment device
JP2003221111A (en) * 2002-01-31 2003-08-05 Oriental Kiden Kk Dioxin volatilization and separation device
JP2003269866A (en) * 2002-03-19 2003-09-25 Fuji Electric Co Ltd Induction heating dry distillation furnace
JP2006236856A (en) * 2005-02-25 2006-09-07 Tok Engineering Kk Heating device of metallic can

Also Published As

Publication number Publication date
JP5583356B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
US20080308551A1 (en) Induction furnace susceptor for heating a workpiece in an inert atmosphere or in a vacuum
JP3556287B2 (en) Induction heating roller device
BRPI0916875B1 (en) MIXING DEVICE WITH INDUCTION HEATING
TW200809085A (en) Heat pipe type power generator
JPH05174963A (en) Float melting device
JP3924572B2 (en) Electromagnetic induction heating device
JP5583356B2 (en) Heating rotary furnace
JP4533884B2 (en) Continuous extrusion equipment
JP3633967B2 (en) Induction heating roller device
JPH10184662A (en) Induction heat generating roller
JP2009153375A (en) Electromotor with induction type internal cooling
CN114411256A (en) Heating device for silicon carbide crystal growth
NO116702B (en)
CN107888014A (en) A kind of motor
JP2009104975A (en) Induction heat generating roller device
JP2008301665A (en) Rotor of superconducting rotary electric machine
JP4910647B2 (en) Induction heating cooker
TW202005469A (en) Electromagnetic induction heating device
CN220230011U (en) High-frequency electromagnetic induction heating rotary furnace
JP7463324B2 (en) Vacuum pump and heat transfer suppressing member for vacuum pump
JP4566354B2 (en) Molecular pump
JP4663432B2 (en) Induction heating roller device
JP6298267B2 (en) Induction heating roller device
JP2009163968A (en) Cantilever-type induction heating roller apparatus
JPH0618948U (en) Friction test device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees