JP2003261371A - 耐爆裂性水硬性硬化体 - Google Patents

耐爆裂性水硬性硬化体

Info

Publication number
JP2003261371A
JP2003261371A JP2002063274A JP2002063274A JP2003261371A JP 2003261371 A JP2003261371 A JP 2003261371A JP 2002063274 A JP2002063274 A JP 2002063274A JP 2002063274 A JP2002063274 A JP 2002063274A JP 2003261371 A JP2003261371 A JP 2003261371A
Authority
JP
Japan
Prior art keywords
fiber
explosion
fibers
test
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002063274A
Other languages
English (en)
Other versions
JP2003261371A5 (ja
JP4090762B2 (ja
Inventor
Kiyoshi Takizawa
清 滝沢
Shunji Kurahashi
俊次 倉橋
Hisashi Suemori
寿志 末森
Tadashi Saito
忠 斉藤
Eiji Akiba
英治 秋庭
Takashi Katayama
隆 片山
Kazuhiko Tanaka
和彦 田中
Masao Kawamoto
正夫 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2002063274A priority Critical patent/JP4090762B2/ja
Publication of JP2003261371A publication Critical patent/JP2003261371A/ja
Publication of JP2003261371A5 publication Critical patent/JP2003261371A5/ja
Application granted granted Critical
Publication of JP4090762B2 publication Critical patent/JP4090762B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】 【課題】 火災などの加熱に対し、爆裂防止性に優れた
水硬性硬化体を提供する。 【解決手段】 繊度1〜100dtex、繊維長1〜3
0mmの、エチレン含有量が25〜70モル%であるエチ
レンービニルアルコール系繊維を水硬性硬化体100容
積%に対し、0.05〜0.5容積%含有されてなる水
硬性硬化体。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、建造物の床、壁、柱、
梁などを構成するコンクリート部材に関し、さらに詳し
くは火災により加熱されたときの耐爆裂性に優れた水硬
性硬化体に関する。
【0002】
【従来の技術】コンクリート、モルタル、セメントボー
ドなどの水硬性硬化体からなる建造物の床、壁、柱など
の構造部材が火災によって強く熱せられた場合に、爆裂
が生じて硬化体が削れ、構造部材が強度を喪失したり、
内部の鉄筋が露出し、熱によって軟化し、耐力を失うこ
とがある。この爆裂現象は水硬性硬化体に含まれる水分
が加熱されて発生する蒸気圧と、加熱により硬化体中に
発生する熱ストレスによるものと考えられている。
【0003】建造部材の爆裂防止に関して、種々の対策
が提案されている。例えば特開昭58−104072号
では繊維径15μ、繊維長6mmのポリプロピレン繊維を
混入する方法が提案されている。また特開2000−1
43322号では繊維径5〜100μ、繊維長5〜40
mmのポリプロピレン繊維やポリビニルアルコール繊維を
含有した水結合材比35%以下の高強度コンクリートの
爆裂防止方法が提案されている。これらは火災時の加熱
により繊維がいち早く溶融または分解し、水蒸気の逃げ
道となる微細トンネルをつくるものである。
【0004】
【発明が解決しようとする課題】しかしながら、ポリプ
ロピレン繊維やポリビニルアルコール繊維を用いた場合
であっても、爆裂防止効果は必ずしも十分であるとはい
えず、また上記特開2000−143322号のような
方法は、部材の厚さが薄い場合や鉄筋の被りが薄い場合
には必ずしも有効ではなく、多量の繊維の添加が必要と
なっていた。
【0005】
【課題を解決するための手段】上記問題点を解決するた
めに鋭意検討した結果、水硬性硬化体に対し、特定のエ
チレン含有量を有するエチレンービニルアルコール系繊
維を用いたところ、従来のポリプロピレン繊維やポリビ
ニルアルコール繊維を添加した場合に比べて爆裂防止効
果に優れることを見出し、さらには薄肉の建造部材にお
いて、繊維の添加量が少量であっても爆裂防止に効果が
あることを見出した。すなわち本発明は、エチレン含有
量が25〜70モル%であるエチレンービニルアルコー
ル系共重合体を成分とする繊維が含有されてなる耐爆裂
性水硬性硬化体であり、さらに本発明は、好ましくは該
繊維が下記(1)〜(3)を満足する上記の耐爆裂性水
硬性硬化体である。 (1)繊維繊度が1〜100dtexであること、
(2)繊維長さが1〜30mmであること、(3)水硬性
硬化体100容積%に対し、0.05〜0.5容積%含
有されてなること、
【0006】本発明のエチレンービニルアルコール系共
重合体を成分とする繊維(以下、EVA系繊維と称す)
は、エチレンと酢酸ビニルとの共重合体のケン化物を成
分とする繊維であり、エチレン含有量の制御により、2
00℃以下の融点をもつEVA系繊維を製造することが
可能である。本発明のEVA系繊維において、該共重合
体に含有されるエチレンの量は25〜70モル%のもの
が用いられる。エチレンの含有量が25モル%よりも低
い場合、繊維は水に溶解しやすい性質を有するため、繊
維が水硬性材料中の水により硬化前に溶解しやすくなる
といった問題点がある。一方、エチレンの含有量が70
モル%よりも高い場合は、融点が120℃以下の低融点
の繊維となるため、繊維が水硬性材料中で硬化前の水和
熱により溶融しやすくなるといった問題点がある。好ま
しくは30〜50モル%である。
【0007】本発明の耐爆裂性能を達成するためのEV
A系繊維の好ましい繊度、繊維長さは、繊度が1〜10
0dtex、繊維長さが1〜30mmであり、またEVA
系繊維の水硬性硬化体中における含有率は水硬性硬化体
100容積%に対し、0.05〜0.5容積%の範囲が
好ましい。
【0008】繊度が1dtex未満であると分散が困難
となり、100dtexを超えると爆裂防止効果が少な
くなる。したがって繊度は1〜100dtexが好まし
く、より好ましくは10〜80dtexである。また繊
維長さについては1〜30mmが好ましい。1mm未満であ
ると爆裂防止効果が少なくなり、30mmを超えると水硬
性硬化体中での繊維の分散性が悪くなる。より好ましく
は2〜15mmである。さらに含有率についてはフレッシ
ュミックス(硬化する前の配合直後のコンクリート、モ
ルタルなどの水硬性組成物)の流動性を損なうことか
ら、できるだけ少ないことが望ましいとされている。水
硬性硬化体において本発明のEVA系繊維を添加した場
合、水硬性硬化体100容積%に対し、0.05〜0.
5容積%が好ましい。含有率が0.05容積%未満の場
合爆裂防止効果が少なくなり、逆に0.5容積%を超え
ると混練性が悪くなる。より好ましくは0.08〜0.
25容積%である。
【0009】従来の、コンクリート、モルタルなどの水
硬性組成物を調製する際に爆裂防止用として添加される
ポリビニルアルコール繊維(以下、ビニロン繊維と称
す)が200℃以上の高温で溶融しながら分解が開始す
るのに対し、本発明のEVA系繊維は、上記したように
エチレン含有量の制御により200℃より低い融点を有
する。したがってEVA系繊維が添加された水硬性硬化
体が火災などによって加熱された場合、ビニロン繊維が
添加された水硬性硬化体に比べてEVA系繊維が速やか
に溶融・分解し、水蒸気の逃げ道となる微細トンネルを
つくるので、EVA系繊維を添加した水硬性硬化体はビ
ニロン繊維を添加した水硬性硬化体に比べて、爆裂防止
性に優れる。
【0010】また、本発明のEVA系繊維は水硬性硬化
体のフレッシュミックスに繊維を添加するに際して、ビ
ニロン繊維が親水性に富んだ繊維であることから水硬性
硬化体のフレッシュミックスに添加すると流動性を損な
うのに対し、EVA系繊維はビニロン繊維に比べて疎水
性であるので、ビニロン繊維よりも流動性に優れるとい
った特長を有する。
【0011】一方、ポリプロピレン繊維との比較におい
ては、ポリプロピレン繊維は比重が0.9であることか
ら、水硬性硬化体のフレッシュミックスにポリプロピレ
ン繊維を添加した場合に表面に繊維が浮いて、フレッシ
ュミックス中に繊維を均一に混合するのが難しいのに対
し、EVA系繊維は比重が1.2程度であることから、
EVA系繊維がフレッシュミックス中において均一な混
合が容易であるという優位点を有する。繊維のフレッシ
ュミックス中への均一な混合は、優れた爆裂防止性能を
得るためには重要な要素である。
【0012】さらに本発明においては、繊維と水硬性硬
化体との接着性についても考慮すべき重要な因子であ
る。水硬性硬化体が火災などの急激な温度上昇を伴って
加熱されることにより、空隙に存在する水分が気化して
蒸気圧が増すときに、周辺のマトリックスにはこれを破
壊しようとする応力が負荷される。繊維が水硬性硬化体
中に存在しないとマトリックスは容易に破壊され、爆裂
に至る。繊維が存在すると分断されようとするマトリッ
クスに繊維よる架橋が形成され、マトリックスの破壊を
防ごうとする。その後、さらなる温度上昇によって繊維
が溶融・分解することにより水蒸気の逃げ道となる微細
トンネルを形成し、爆裂防止が達成される。
【0013】従来よりビニロン繊維は水硬性硬化体との
接着性に優れていることが知られており、これに対して
ポリプロピレン繊維は水硬性硬化体との接着性が低いこ
とが知られている。ビニロン繊維が添加された水硬性硬
化体が火災などの急激な温度上昇を伴って加熱された場
合、ビニロン繊維はマトリックスとの接着性が高いた
め、ビニロン繊維の存在により加熱時の水分の気化によ
る蒸気圧の上昇に抗してマトリックスの破壊を防ごうと
するが、さらなる温度および蒸気圧の上昇により繊維が
溶融または分解する前に一旦マトリックスの破壊が生じ
ると、繊維がマトリックスに固く固定されているため
に、かえって大きな爆裂に至る場合がある。一方、ポリ
プロピレン繊維はマトリックスとの接着性が低く、繊維
が溶融する前に繊維により形成される架橋が弱いので、
加熱時の水分の気化による蒸気圧の上昇に抗しきれず、
容易に爆裂に至る場合がある。
【0014】EVA系繊維はビニロン繊維よりも水酸基
が少ないことから水硬性硬化体との接着性はビニロン繊
維よりも低いが、一方ではポリプロピレン繊維に比べて
接着性は高く、すなわちマトリックスの破壊を防ぐため
の適度な接着性を有する。EVA系繊維を添加した水硬
性硬化体は火災などの急激な温度上昇を伴った加熱時に
おいて、加熱時の水分の気化による蒸気圧の上昇により
分断しようとするマトリックスをEVA系繊維が溶融す
る前に架橋を形成し、さらに加熱されることにより20
0℃以下の温度により速やかに溶融・分解し、水蒸気の
逃げ道となる微細トンネルをつくる。したがって、EV
A系繊維は、加熱による蒸気圧の上昇時に、繊維が溶融
する前の爆裂を防ぐためのマトリックス中での架橋形成
と、さらなる温度上昇により繊維が溶融・分解すること
による微細トンネルの生成が、ビニロン繊維やポリプロ
ピレン繊維に比べてスムーズに進行するので、ビニロン
繊維やポリプロピレン繊維に比べて優れた耐爆裂防止性
能を有する。
【0015】さらに、繊維とマトリックスの接着性はセ
メント量の多い(砂が少ない)マトリックス、例えば高
強度コンクリートや高強度モルタル等では小さく、セメ
ント量の少ない(砂が多い)マトリックス、例えば普通
コンクリートや普通モルタル等では大きいと一般的にい
われている。したがってセメントの多いマトリックスで
適度な接着性を得ようとすれば、マトリックスとの接着
性に優れたビニロン繊維が好適であり、一方セメント量
の少ないマトリックスで適度な接着性を得ようとすれ
ば、マトリックスとの接着性が低いポリプロピレン繊維
が好適である。EVA系繊維は上記したように、マトリ
ックスとの接着性がビニロン繊維よりも低いが、ポリプ
ロピレン繊維よりも高く、しかも共重合体中のエチレン
含有量を制御することによって接着性を調整できるの
で、普通コンクリートや普通モルタル等から高強度コン
クリートや高強度モルタル等まで幅広い物性のコンクリ
ートやモルタル等の使用に適している。なおここでい
う、高強度コンクリート、高強度モルタルとは圧縮強度
が60MPa以上のコンクリート、モルタルのことであ
り、普通コンクリート、普通モルタルとは20MPa以
上60MPa未満のコンクリート、モルタルのことであ
る。
【0016】本発明のEVA系繊維を含有した水硬性硬
化体は、従来のビニロン繊維やポリプロピレン繊維を含
有した水硬性硬化体に比べ、普通コンクリート、普通モ
ルタル等から高強度コンクリート、高強度モルタル等ま
で幅広い圧縮強度の水硬性硬化体において爆裂防止性能
に優れており、建造物の床、壁、柱、梁などを構成する
コンクリート部材として使用することができる。また手
摺などの薄肉部材は表面積が大きいことから急激に温度
上昇して爆裂しやすいので、従来のビニロン繊維やポリ
プロピレン繊維を用いた場合においては、耐爆裂性を付
与することは容易ではないが、本発明のEVA系繊維を
用いれば、薄肉部材においても耐爆裂性を付与すること
が可能となる。
【0017】
【実施例】以下に実施例を加えて詳細に説明するが、本
発明は実施例により何等限定されるものではない。なお
本発明における各繊維の物性および得られる水硬性硬化
体の物性、耐爆裂性の評価は以下の方法により測定され
たものを意味する。
【0018】[繊度 dtex]得られた繊維状物の一
定試長の重量を測定して見掛け繊度をn=5以上で測定
し、平均値を求めた。なお、一定糸長の重量測定により
繊度が測定できないものはバイブロスコープにより測定
した。
【0019】[繊維強力 cN、強度 cN/dte
x、伸度 %]繊維を予め温度20℃、相対湿度65%
の雰囲気下で24時間放置して調湿した後、単繊維を試
長10cm、引張速度5cm/分としてインストロン試験機
「島津製作所製オートグラフ」にて繊維強力を測定し、
該強力を繊度で除して強度を求めた。伸度は、(単繊維
破断(cm)/把持長(cm))×100(%)により算出
した。なお繊維長が10cmより短い場合は、そのサンプ
ルの可能な範囲での最大長さを把持長として測定するこ
ととする。
【0020】[EVA繊維の融点 ℃]示差走査熱量計
「メトラー社製TA3000」により、以下の条件で測
定して吸熱ピーク温度で示す。 測定条件:30℃で3分間放置し、次いで220℃まで
速度10℃/分で昇温した。
【0021】[耐火試験供試体用コンクリートの調製]
普通ポルトランドセメント(太平洋セメント社製)、細
骨材(川砂)、粗骨材(最大粒径20mm)、高性能AE
減水剤(SP)としてポゾリスSP−8Nを使用した。
100リットルの2軸ミキサーを使用して、最初にセメ
ントと砂を1分間混ぜ、次いで水を加えて2分間混練す
る。次いで繊維を加え1分間混練し、一度掻き落として
再度1分間混練した。次いで排出し切り返しを行い、再
度2分間混練し、調製した。
【0022】[コンクリートのスランプ値 mm]JIS
A1101によるコンクリートのスランプ試験方法に
準じて、コーン(上辺直径10cm、下辺直径20cm、高
さ30cm)にフレッシュコンクリートを所定の手順で満
たし、且つコーンを引き上げ、崩れたフレッシュコンク
リートを上辺部の下がりを測定した。
【0023】[耐火試験供試体用モルタルの調製]普通
ポルトランドセメント(太平洋セメント社製)、砕砂、
高性能AE減水剤(SP)としてポゾリスSP−8Nを
使用した。30リットルのオムニミキサーを使用して、
最初に粉体を2分間混ぜ、次いで水を加え2分間混練す
る。次いで繊維を加え1分間混練し、一度掻き落として
再度1分間混練し、調製した。
【0024】[モルタルのフロー値 mm]練り混ぜたフ
レッシュモルタルを底面が直径10cm、上面が直径7c
m、高さ6cmの真鍮製のコーンに、鉄製円盤上で満た
し、静かにコーンを抜き去り、次いでテーブルに15回
上下打撃を与えた時のモルタルの広がりをその直径(m
m)で表示する。
【0025】[水硬性硬化体の圧縮強度 MPa]コン
クリートの場合は直径10cm、高さ20cm、モルタルの
場合は直径5cm、高さ10cmの円柱体を成形して試料と
し、毎秒0.25MPaの増加速度で荷重をかけてJI
S A1108−1993に準じて測定した。
【0026】[耐爆裂性の評価]下記式により爆裂した
場合の試験体の残存率を求め、爆裂防止性を評価した。
耐火試験後に爆裂によって破片が飛び散った後の破片以
外の本体の重量(g) 耐火試験後、爆裂のなかった試験体の重量(g)×10
0(%)
【0027】[実施例1〜2、比較例1〜2]繊維を添
加しない場合の、圧縮強度が30MPaである普通コン
クリートの基本配合をL−配合とし、一方、繊維を添加
しない場合の圧縮強度が80MPaである高強度コンク
リートの基本配合をH−配合とし、各々表1、表2に示
す。さらにL−配合、H−配合に添加する繊維(使用繊
維1と称す)を表3に示す。使用したEVA繊維のエチ
レン含有量は44モル%(ケン化率99%、融点165
℃)のものを用いた。なお、ビニロン繊維は(株)クラ
レ製「REC15」(繊維繊度15dtex×繊維長1
2mm)を用いた。またポリプロピレン繊維はFibermesh
社製「Fiberforce」(繊維繊度15dtex×繊維長1
2mm)を用いた。
【0028】
【表1】
【0029】
【表2】
【0030】
【表3】
【0031】表1、表2の配合に表3の使用繊維1を
0.1〜0.3容積%添加したコンクリートを調製し、
直径10cm、高さ20cmの円柱供試体用型枠にキャステ
ィングし、各水準あたり4個作成した。そして作成した
円柱供試体を20℃、65%RHの部屋で24時間気中
養生し、直ちに脱型し、20℃の水中に入れ28日間水
中養生した。その後各水準あたり4個のうち2個を水中
より取り出し、5時間後に圧縮強度を測定したところ、
L−配合の試験体はいずれも30〜40MPaの範囲で
あり、一方H−配合の試験体はいずれも80〜90MP
aの範囲であった。また残りの各水準あたり2個につい
ては、爆裂試験を行うために、105℃の熱風乾燥機内
で7日間乾燥した。乾燥後の水分率は約2%であった。
【0032】上記乾燥後のサンプルを横3m、高さ1
m、奥行き50cmであり、一方の壁面にLPGバーナー
火炎噴射口を上下に合計9個有する耐火煉瓦製加熱機に
セットして加熱し、爆裂試験を実施した。耐火煉瓦製加
熱機の加熱プログラムはISO834に準拠し、加熱開
始後15分で700℃に達し、加熱後30分で830℃
に到達するようにした。そして加熱温度が830℃に到
達した後ガス供給を遮断し、室温になるまで冷却した。
その後さらに自然冷却を約4時間行った後、各円柱試験
体の爆裂試験後の耐爆裂性を評価した。その結果を表4
に示す。なお、各試験体の中で、L−配合試験体の中の
1水準の実施例1−2とH−配合試験体の中の1水準の
実施例2−2は全く爆裂を示さなかったので、これらを
それぞれL−配合試験体およびH−配合試験体の爆裂試
験後の基準重量とし、各試験体の爆裂試験後の重量を上
記基準重量で除して爆裂後の残存率として算出した。な
お繊維を添加していないL−配合試験体、H−配合試験
体はそれぞれ参考例1、参考例2として表示した。表4
からEVA繊維を添加した試験体は残存率が98〜10
0%であり、ビニロン繊維やポリプロピレン繊維を添加
した試験体に比べて爆裂防止性能に優れていた。
【0033】また各試験体について、フレッシュコンク
リートの流動性の度合いを示すスランプ値を測定し、測
定結果を上記耐爆裂性能(残存率)と併せて表4に示し
た。繊維を添加しないコンクリートのスランプ値(参考
例1、参考例2)と繊維を添加したコンクリートのスラ
ンプ値(実施例1〜2、比較例1〜2)を比較したとこ
ろ、EVA繊維を添加した試験体スランプ値はビニロン
繊維やポリプロピレン繊維を添加した試験体のスランプ
値に比べて、繊維を添加しないコンクリートのスランプ
値に対する数値の低下が少なく、すなわちEVA繊維を
添加した試験体はビニロン繊維やポリプロピレン繊維を
添加した試験体に比べてスランプ値への影響が小さいこ
とがわかった。
【0034】
【表4】
【0035】[実施例3〜4、比較例3〜4]上記L−
配合、H−配合の場合と同様、繊維を添加しない場合の
圧縮強度が30MPaである普通モルタルの基本配合を
LM−配合、一方繊維を添加しない場合の圧縮強度が7
0MPaである高強度モルタルの基本配合をHM−配合
とし、それぞれ表5、表6に示す。そして上記LM−配
合、HM−配合に添加する繊維(使用繊維2と称す)を
表7に示す。なお、使用繊維2は表3の使用繊維1の繊
維長12mmを6mmに変えたものである。
【0036】
【表5】
【0037】
【表6】
【0038】
【表7】
【0039】表5、表6の配合に表7の使用繊維2を
0.1〜0.3容積%添加したモルタルを調製し、直径
5cm、高さ10cmの円柱供試体用型枠にキャスティング
し、各水準あたり4個作成した。そして作成した円柱供
試体を20℃、65%RHの部屋で24時間気中養生
し、直ちに脱型し、20℃の水中に入れ28日間水中養
生した。その後各水準あたり4個のうち2個を水中より
取り出し、5時間後に圧縮強度を測定したところ、LM
−配合の試験体はいずれも30〜40MPaの範囲であ
り、一方HM−配合の試験体はいずれも60〜70MP
aの範囲であった。また残りの各水準あたり2個につい
ては、爆裂試験を行うために、105℃の熱風乾燥機内
で7日間乾燥した。乾燥後の水分率は約2%であった。
【0040】上記乾燥後のサンプルを横3m、高さ1
m、奥行き50cmであり、一方の壁面にLPGバーナー
火炎噴射口を上下に合計9個有する耐火煉瓦製加熱機に
セットして加熱し、爆裂試験を実施した。耐火煉瓦製加
熱機の加熱プログラムはISO834に準拠し、加熱開
始後15分で700℃に達し、加熱後30分で830℃
に到達するようにした。そして加熱温度が830℃に到
達した後ガス供給を遮断し、室温になるまで冷却した。
その後さらに自然冷却を約4時間行った後、円柱試験体
の爆裂試験後の耐爆裂性を評価した。その結果を表8に
示す。なお、各試験体の中で、LM−配合試験体の中の
2水準の実施例3−1、3−2とHM−配合試験体の中
の1水準の実施例4−2は全く爆裂を示さなかったの
で、これらをそれぞれLM−配合試験体およびHM−配
合試験体の爆裂試験後の基準重量とした。ただし、LM
−配合の場合においては、上記したように2水準が全く
爆裂を示さなかったので、2水準の重量の平均値を使用
した。そして各試験体の爆裂試験後の重量を上記基準重
量で除して爆裂後の残存率として算出した。なお繊維を
添加していないLM−配合試験体、HM−配合試験体は
それぞれ参考例3、参考例4として表示した。表8から
EVA繊維を添加した試験体は残存率が97〜100%
であり、ビニロン繊維やポリプロピレン繊維を添加した
試験体に比べて爆裂防止性能に優れていた。
【0041】また各試験体について、フレッシュモルタ
ルの流動性の度合いを示すフロー値を測定し、測定結果
を上記耐爆裂性能(残存率)と併せて表8に示した。繊
維を添加しないモルタルのフロー値(参考例3、参考例
4)と繊維を添加したモルタル(実施例3〜4、比較例
3〜4)のフロー値を比較したところ、EVA繊維を添
加した試験体のフロー値はビニロン繊維やポリプロピレ
ン繊維を添加した試験体のフロー値に比べて、繊維を添
加しないモルタルのフロー値に対する数値の低下が少な
く、すなわちEVA繊維を添加した試験体はビニロン繊
維やポリプロピレン繊維を添加した試験体に比べてフロ
ー値への影響が小さいことがわかった。
【0042】
【表8】
【0043】[実施例5:薄板での爆裂試験]表5のモ
ルタル配合(LM−配合)に表9に示す使用繊維3を
0.1〜0.2容積%添加し、縦50cm、横50cm、厚
さ5cmの平板を作成し、水中養生28日、気中養生28
日後105℃で乾燥し、水分率2%に調製した後、爆裂
試験を行った。試験結果を表10に示す。表10の結果
から、従来提案されているビニロン繊維、ポリプロピレ
ン繊維を添加した薄肉のモルタル板では爆裂を防止する
ことが困難であったが、EVA繊維を添加した薄肉のモ
ルタル板では爆裂を防止することが可能であった。
【0044】
【表9】
【0045】
【表10】
【0046】
【発明の効果】本発明の、EVA系繊維を添加した水硬
性硬化体は、従来のビニロン繊維やポリプロピレン繊維
を添加した水硬性硬化体に比べて優れた爆裂防止効果を
得ることができる。さらには、普通コンクリート、普通
モルタルから高強度コンクリート、高強度モルタルに至
る広範囲のコンクリート部材の爆裂防止が可能となる。
また薄肉部材においても優れた耐爆裂性を付与すること
が可能となる。
フロントページの続き (72)発明者 斉藤 忠 岡山県岡山市海岸通1丁目2番1号 株式 会社クラレ内 (72)発明者 秋庭 英治 大阪市北区梅田1丁目12番39号 株式会社 クラレ内 (72)発明者 片山 隆 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 田中 和彦 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 河本 正夫 岡山県倉敷市酒津1621番地 株式会社クラ レ内 Fターム(参考) 4G012 PA24

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 エチレン含有量が25〜70モル%であ
    るエチレンービニルアルコール系共重合体を成分とする
    繊維が含有されてなる耐爆裂性水硬性硬化体。
  2. 【請求項2】 エチレン含有量が25〜70モル%であ
    るエチレンービニルアルコール系共重合体を成分とする
    繊維が下記(1)〜(3)を満足してなる請求項1に記
    載の耐爆裂性水硬性硬化体。繊維繊度が1〜100dt
    exであること、繊維長さが1〜30mmであること、水
    硬性硬化体100容積%に対し、0.05〜0.5容積
    %含有されてなること、
JP2002063274A 2002-03-08 2002-03-08 耐爆裂性水硬性硬化体 Expired - Fee Related JP4090762B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063274A JP4090762B2 (ja) 2002-03-08 2002-03-08 耐爆裂性水硬性硬化体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063274A JP4090762B2 (ja) 2002-03-08 2002-03-08 耐爆裂性水硬性硬化体

Publications (3)

Publication Number Publication Date
JP2003261371A true JP2003261371A (ja) 2003-09-16
JP2003261371A5 JP2003261371A5 (ja) 2005-01-06
JP4090762B2 JP4090762B2 (ja) 2008-05-28

Family

ID=28670795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063274A Expired - Fee Related JP4090762B2 (ja) 2002-03-08 2002-03-08 耐爆裂性水硬性硬化体

Country Status (1)

Country Link
JP (1) JP4090762B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153584A (ja) * 2011-01-27 2012-08-16 Kuraray Co Ltd 耐爆裂性水硬性硬化体
JP2012232861A (ja) * 2011-04-28 2012-11-29 Tokyu Construction Co Ltd 耐爆裂性高強度コンクリートと製造方法
JP2013060314A (ja) * 2011-09-12 2013-04-04 Kuraray Co Ltd 低収縮型耐爆裂性水硬性硬化体
JP2017171567A (ja) * 2016-03-18 2017-09-28 貴恒 菊田 高強度セメント硬化体爆裂防止用繊維及びそれを含む高強度セメント硬化体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903487B (zh) 2007-12-17 2013-06-26 积水化学工业株式会社 变应原抑制剂、变应原抑制制品、变应原的抑制方法及作为变应原抑制剂的使用
CN101962814B (zh) * 2009-07-23 2014-05-07 上海启鹏工程材料科技有限公司 一种增强混凝土用粗旦evoh纤维的制备方法
JP2012166968A (ja) * 2011-02-10 2012-09-06 Kuraray Co Ltd 耐爆裂性水硬性硬化体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153584A (ja) * 2011-01-27 2012-08-16 Kuraray Co Ltd 耐爆裂性水硬性硬化体
JP2012232861A (ja) * 2011-04-28 2012-11-29 Tokyu Construction Co Ltd 耐爆裂性高強度コンクリートと製造方法
JP2013060314A (ja) * 2011-09-12 2013-04-04 Kuraray Co Ltd 低収縮型耐爆裂性水硬性硬化体
JP2017171567A (ja) * 2016-03-18 2017-09-28 貴恒 菊田 高強度セメント硬化体爆裂防止用繊維及びそれを含む高強度セメント硬化体

Also Published As

Publication number Publication date
JP4090762B2 (ja) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4071983B2 (ja) 耐爆裂性コンクリート
JPH10512842A (ja) 複合コンクリート
KR20080102975A (ko) 폭렬방지용 고강도 콘크리트용 조성물
JP3584171B2 (ja) 耐爆裂性コンクリート
WO2009011480A1 (en) Fire- resistant concrete containing nylon and polypropylene fibers
JP2009096657A (ja) 左官用セメントモルタル
JPH0669906B2 (ja) タンディッシュ用軽量耐火性組成物
JP2003261371A (ja) 耐爆裂性水硬性硬化体
KR101769145B1 (ko) 난연 코팅제 조성물 및 이를 이용한 가연성 소재의 난연 처리방법
JP3285470B2 (ja) ポンプ圧送性に優れる軽量不燃断熱材組成物及びその施工方法
JP2009120438A (ja) 建築用セメントモルタル
JP6830817B2 (ja) 耐火性モルタル組成物
WO2020236515A1 (en) Fire retardant cementitious composition
US10730794B1 (en) Method of delivery of dry polymeric microsphere powders for protecting concrete from freeze-thaw damage
JP5885973B2 (ja) 低収縮型耐爆裂性水硬性硬化体
JP2010120839A (ja) 耐火性コンクリート
KR20180138079A (ko) 고강도 콘크리트 폭열방지용 모르타르 조성물 및 이를 포함하는 고강도 콘크리트 폭열방지용 모르타르의 제조방법
JP2012193076A (ja) 耐爆裂性水硬性硬化体
JP2012153584A (ja) 耐爆裂性水硬性硬化体
JP2012255269A (ja) 耐震スリット材及びその製造方法
JP2005187275A (ja) 耐火耐熱コンクリート及びその製造方法
KR101922806B1 (ko) 고강도 콘크리트 폭렬방지용 내화패널 구조물 및 이의 제조방법
JP3738987B2 (ja) 軽量不燃断熱材層
JP6888909B2 (ja) 発泡樹脂系断熱材用吹付不燃材、不燃性断熱構造及びその構築方法
WO2001085641A1 (fr) Beton resistant a la rupture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4090762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees