JP2003254555A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003254555A
JP2003254555A JP2002054992A JP2002054992A JP2003254555A JP 2003254555 A JP2003254555 A JP 2003254555A JP 2002054992 A JP2002054992 A JP 2002054992A JP 2002054992 A JP2002054992 A JP 2002054992A JP 2003254555 A JP2003254555 A JP 2003254555A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipe
dehumidifying
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002054992A
Other languages
Japanese (ja)
Inventor
Yoshiro Nakamura
芳郎 中村
Yoshinori Watanabe
佳則 渡邊
Koji Wada
宏二 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2002054992A priority Critical patent/JP2003254555A/en
Priority to CN 03106785 priority patent/CN1209591C/en
Publication of JP2003254555A publication Critical patent/JP2003254555A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner efficiently which performs refrigerant flow action and heat exchange air flow action in each of cooling operation, dehumidifying operation and heating operation, and fully exhibits a reheating- dehumidifying function even in a large capacity model. <P>SOLUTION: A dehumidifying throttle valve 5 is provided at an intermediate part of a refrigerant passage communicating a front side heat exchanger part 17A and a rear side heat exchanger part 17B constituting an indoor heat exchanger 17. A refrigerant led out of the throttle valve is separated and guided in two directions and led to the front side heat exchanger part. The front side heat exchanger part is provided with parallel refrigerant passages vertically bisected from the almost center part in the vertical direction. Refrigerant piping for leading in the refrigerant separated and guided from the throttle valve is connected to the windward side of each passage, and the parallel passages are branched in two upper and lower directions at each upper or lower passage and led out after joining on the leeward. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に、室内熱交換
器における冷媒流路の構成を改良した空気調和機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to an air conditioner having an improved structure of a refrigerant flow path in an indoor heat exchanger.

【0002】[0002]

【従来の技術】一般用としての空気調和機は、室内に配
置される室内機と、屋外に配置される室外機とからな
り、これら室内・室外機内に冷媒配管を介してヒートポ
ンプ式冷凍サイクルを構成するよう連通する部品が分散
して配置され、冷房運転と暖房運転の切換えができる。
2. Description of the Related Art An air conditioner for general use consists of an indoor unit arranged indoors and an outdoor unit arranged outdoors, and a heat pump type refrigeration cycle is installed in these indoor and outdoor units through a refrigerant pipe. The components that communicate with each other are arranged in a distributed manner to enable switching between cooling operation and heating operation.

【0003】図9は、室内機本体内に配置される室内熱
交換器Aの構成と、この室内熱交換器Aに備えられる冷
媒流路構成を説明する図である。上記室内熱交換器A
は、前側熱交換器部A1と、後側熱交換器部A2との組
合わせからなり、側面視で逆V字状に形成される。前側
熱交換器部A1は、側面視で略円弧状に形成され、室内
機本体の前面側に配置される。後側熱交換器部A2は、
側面視で直状に形成され、傾斜して室内機本体の背面側
に配置される。
FIG. 9 is a diagram for explaining the structure of the indoor heat exchanger A arranged in the indoor unit body and the structure of the refrigerant flow path provided in the indoor heat exchanger A. The indoor heat exchanger A
Is composed of a combination of the front heat exchanger portion A1 and the rear heat exchanger portion A2, and is formed in an inverted V shape in a side view. The front heat exchanger part A1 is formed in a substantially arc shape in a side view, and is arranged on the front side of the indoor unit body. The rear heat exchanger A2 is
It is formed in a straight shape in a side view, and is arranged on the back side of the indoor unit main body with an inclination.

【0004】熱交換空気は、室内機本体の前面側から前
側熱交換器部A1を流通する流れと、室内機本体の上面
側から後側熱交換器部A2を流通する流れがある。各熱
交換器部A1,A2とも、フィンFに熱交換パイプPが
蛇行状に貫通するフィンチューブタイプであり、熱交換
パイプが前後(上下)に2列並設される。
The heat exchange air has a flow of flowing from the front side of the indoor unit body to the front heat exchanger section A1 and a flow of flowing from the upper side of the indoor unit body to the rear heat exchanger section A2. Each of the heat exchanger parts A1 and A2 is a fin tube type in which the heat exchange pipes P penetrate the fins F in a meandering manner, and the heat exchange pipes are arranged side by side in two rows in front and back (up and down).

【0005】熱交換パイプP内に冷媒が連通するところ
から、熱交換パイプPが冷媒流路を構成する。図に太線
で示すのは、冷房運転サイクル時(除湿運転も同じ)に
おける冷媒の流れの状態を示している。前側熱交換器部
A1の前側列である熱交換空気流風上側(以下、単に、
風上側と言う)列で、この上端が入口部aとなってお
り、膨張手段から冷媒が導かれる。ここから風上側列と
U字状分流管bを介して、後側列である熱交換空気流風
下側(以下、単に、風下側と言う)列の2方向に冷媒が
導かれる。
From the place where the refrigerant communicates with the heat exchange pipe P, the heat exchange pipe P constitutes a refrigerant flow path. The thick line in the figure shows the state of the flow of the refrigerant during the cooling operation cycle (same for the dehumidifying operation). The heat exchange airflow windward side (hereinafter simply referred to as the front side row of the front side heat exchanger unit A1)
This row is called the windward side, and the upper end serves as the inlet a, and the refrigerant is guided from the expansion means. From here, the refrigerant is guided in two directions of the leeward side (hereinafter simply referred to as the leeward side) of the heat exchange air flow, which is the rear side row, through the upwind side row and the U-shaped distribution pipe b.

【0006】その一方は、下端からジャンピングパイプ
cを介して風下側列の上端に導かれ、他方の風下側列を
上端に向かった冷媒と合流してから、前側熱交換器部A
1を出て除湿用絞り弁Bに導入される。この除湿用絞り
弁Bから導出された冷媒は、後側熱交換器部A2の風上
側列に設けられるU字管dに導かれて2方向に分流案内
され、風下側列に導かれてU字管eで合流し、さらに圧
縮機に吸い込まれることになる。
One of them is guided from the lower end to the upper end of the leeward side row through the jumping pipe c, and the other leeward side row merges with the refrigerant directed to the upper end, and then the front heat exchanger section A
1 is introduced into the dehumidification throttle valve B. The refrigerant derived from the dehumidifying throttle valve B is guided to the U-shaped pipe d provided in the windward row of the rear heat exchanger section A2, is branched and guided in two directions, and is guided to the leeward row. It joins at the character tube e and is further sucked into the compressor.

【0007】冷房運転サイクル時に、除湿用絞り弁Bは
全開状態となし、冷媒の流通量を絞ることなくそのまま
流通させる。除湿運転サイクル時に、除湿用絞り弁Bは
除湿に応じた絞り作用をなす。その結果、前側熱交換器
部A1において冷媒凝縮作用が行われ、後側熱交換器部
A2において冷媒蒸発作用が行われる、再熱除湿機能が
発揮され、除湿作用がなされる。
During the cooling operation cycle, the dehumidifying throttle valve B is in a fully opened state and the refrigerant is allowed to flow without being throttled. During the dehumidifying operation cycle, the dehumidifying throttle valve B functions as a throttle according to dehumidification. As a result, the refrigerant condensing action is performed in the front heat exchanger portion A1 and the refrigerant evaporation action is performed in the rear heat exchanger portion A2. Thus, the reheat dehumidifying function is exerted and the dehumidifying action is performed.

【0008】[0008]

【発明が解決しようとする課題】従来の再熱除湿機能を
備えた室内熱交換器Aの冷媒流路構成では、前半側とし
て入口部aを備えた前側熱交換器部A1の風上側列に沿
って導かれる1流路のみであり、後半側がU字状分流管
bで分流される2流路となっていて、この後半側流路の
中途部に上記除湿用絞り弁Bが設けられることになる。
In the conventional refrigerant flow path structure of the indoor heat exchanger A having the reheat dehumidifying function, the front heat exchanger part A1 having the inlet part a as the first half side is provided in the windward row. There is only one flow path guided along, and the latter half side is a two-way channel divided by the U-shaped distribution pipe b, and the dehumidification throttle valve B is provided in the middle part of the latter half side flow path. become.

【0009】このような室内熱交換器Aにおける前半側
1流路、後半側2流路の構成では、二相状態で変化する
冷媒の流量が制限されて抵抗が大きく、冷媒側の圧力損
失が大きくなってしまう。したがって、小さい冷房能力
仕様のものでは実用が可能であっても、たとえば5.6
KW以上の大冷房能力を実現しようとしても、到底、無
理があり、完全な再熱除湿機能を得ることができない。
In the structure of the first half side one-passage and the second half side two-passage in the indoor heat exchanger A as described above, the flow rate of the refrigerant that changes in the two-phase state is limited, the resistance is large, and the pressure loss on the refrigerant side occurs. It gets bigger. Therefore, even if a small cooling capacity specification can be used practically, for example, 5.6
Even if an attempt is made to realize a large cooling capacity of KW or more, it is extremely difficult to obtain a complete reheat dehumidifying function.

【0010】本発明は、上記事情に鑑みなされたもので
あり、その目的とするところは、冷房運転、除湿運転、
暖房運転のそれぞれに、冷媒の流通作用および熱交換空
気の流通作用をともに効率よく行え、たとえ大能力機種
においても充分な再熱除湿機能を発揮できる空気調和機
を提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a cooling operation, a dehumidifying operation,
It is an object of the present invention to provide an air conditioner that can efficiently perform both the refrigerant circulation action and the heat exchange air circulation action in each heating operation, and can exhibit a sufficient reheat dehumidification function even in a large capacity model.

【0011】[0011]

【課題を解決するための手段】上記目的を満足するた
め、本発明の空気調和機は、室外機本体および室内機本
体とからなり、これら室外機本体と室内機本体に分散し
て配置され冷房運転と暖房運転との切換えが可能なヒー
トポンプ式冷凍サイクルを構成するよう冷媒配管を介し
て連通される、圧縮機、四方切換弁、室外熱交換器、膨
張手段および室内熱交換器とを具備し、上記室内熱交換
器は、所定間隔を存して並設される複数枚のフィンと、
これらフィンを貫通し内部に冷媒が導通する流路を形成
する熱交換パイプとからなるフィンチューブタイプであ
って、フィンの相互間に熱交換空気が流通し、さらに室
内熱交換器は、室内機本体の前面部に対向して配置され
る前側熱交換器部と上面部に対向して配置される後側熱
交換器部とから側面視で逆V字状に形成され、前側熱交
換器部と後側熱交換器部とを連通する冷媒流路の中途部
に、前側熱交換器部で冷媒の凝縮作用を行わせ、後側熱
交換器部で冷媒の蒸発作用を行わせて、除湿運転サイク
ルを成立させる絞り装置が設けられ、冷房・除湿運転サ
イクルにおいて、絞り装置の冷媒流路上流側に後側熱交
換器部、絞り装置の冷媒流路下流側に前側熱交換器部を
位置させ、後側熱交換器部は、熱交換空気流の風上側に
冷媒入口部が設けられ、この冷媒入口部から前後2方向
に分流案内されて、それぞれが熱交換空気流の風下側に
導かれたあと合流して上記絞り装置に導入される流路構
成をなし、絞り装置から導出される冷媒は2方向に分流
案内されて上記前側熱交換器部に導かれる流路構成をな
し、前側熱交換器部では上下方向のほぼ中央部から上下
に2分される並列冷媒流路を備え、上下それぞれの流路
における熱交換空気流の風上側に絞り装置から分流案内
された冷媒を導入する冷媒配管が接続され、上下各流路
において上下2方向に分岐して熱交換空気流の風下側に
おいて合流したのち導出される並列流路を備えた。
In order to satisfy the above object, an air conditioner of the present invention comprises an outdoor unit main body and an indoor unit main body, and the outdoor unit main body and the indoor unit main body are arranged in a distributed manner to cool the air conditioner. It comprises a compressor, a four-way switching valve, an outdoor heat exchanger, an expansion means and an indoor heat exchanger, which are communicated via a refrigerant pipe so as to constitute a heat pump type refrigeration cycle capable of switching between operation and heating operation. The indoor heat exchanger includes a plurality of fins arranged in parallel at a predetermined interval,
It is a fin tube type consisting of a heat exchange pipe that penetrates these fins and forms a flow path for conducting the refrigerant inside, and heat exchange air flows between the fins, and the indoor heat exchanger is an indoor unit. A front heat exchanger portion is formed in an inverted V shape in a side view from a front heat exchanger portion arranged to face the front surface portion of the main body and a rear heat exchanger portion arranged to face the upper surface portion. In the middle part of the refrigerant flow path communicating between the rear heat exchanger section and the rear heat exchanger section, the front heat exchanger section causes the refrigerant to condense, and the rear heat exchanger section causes the refrigerant to evaporate to dehumidify. A throttling device that establishes an operation cycle is provided, and in the cooling / dehumidifying operation cycle, the rear heat exchanger unit is located upstream of the refrigerant passage of the throttling device and the front heat exchanger unit is located downstream of the refrigerant passage of the throttling device. In the rear heat exchanger section, the refrigerant inlet section is provided on the windward side of the heat exchange air flow. The refrigerant is guided from the refrigerant inlet portion in two directions in the front-rear direction, led to the leeward side of the heat exchange air flow, and then merged to be introduced into the throttle device. The formed refrigerant has a flow passage structure in which it is divided and guided in two directions and guided to the front heat exchanger section. In the front heat exchanger section, a parallel refrigerant flow passage is divided into two parts vertically from a substantially central portion. A refrigerant pipe for introducing the refrigerant, which is diverted and guided from the expansion device, is connected to the windward side of the heat exchange air flow in each of the upper and lower flow passages, and the upper and lower flow passages are branched in the upper and lower two directions to form the heat exchange air flow. It was equipped with a parallel flow path that was led out after merging on the leeward side.

【0012】さらに、上記絞り装置は、冷房運転サイク
ル時に開放され除湿運転サイクル時に閉成される主流路
と、除湿運転サイクル時に冷媒を導通させ所定絞り量を
確保する絞り流路を備えた除湿用絞り弁であり、冷房・
除湿運転サイクル時に除湿用絞り弁に冷媒を導入案内す
る冷媒配管は、直状で、かつ除湿用絞り弁側壁にほぼ水
平姿勢で接続され、上記除湿用絞り弁から冷媒を導出案
内する冷媒配管は、除湿用絞り弁下端部に接続され下方
向に延出したあと水平方向に屈曲され、さらにこの水平
端部は両端に冷媒配管が接続されたU字状分流管のほぼ
中央部に接続され、このU字状分流管両端に接続される
冷媒配管相互間に除湿用絞り弁に冷媒を導入案内する冷
媒配管が介挿される。
Further, the above-mentioned expansion device is provided with a main flow path which is opened during the cooling operation cycle and closed during the dehumidification operation cycle, and a restriction flow path which conducts the refrigerant during the dehumidification operation cycle and secures a predetermined throttle amount for dehumidification. It is a throttle valve,
The refrigerant pipe for guiding the refrigerant into the dehumidifying throttle valve during the dehumidifying operation cycle is straight and connected to the dehumidifying throttle valve side wall in a substantially horizontal posture, and the refrigerant pipe for guiding and guiding the refrigerant from the dehumidifying throttle valve is , Is connected to the lower end of the dehumidification throttle valve, extends downward, and is then bent in the horizontal direction, and this horizontal end is connected to approximately the center of a U-shaped distribution pipe whose refrigerant pipes are connected to both ends, A refrigerant pipe for introducing and guiding the refrigerant into the dehumidifying throttle valve is inserted between the refrigerant pipes connected to both ends of the U-shaped distribution pipe.

【0013】さらに、後側熱交換器部の冷媒入口部に接
続される冷媒配管、後側熱交換器部出口と絞り装置入口
とを連通する冷媒配管、絞り装置出口と前側熱交換器部
入口を連通するU字状分流管を備えた冷媒配管および前
側熱交換器部の冷媒出口部に接続される冷媒配管の直径
は、室内熱交換器を構成する熱交換パイプの直径よりも
太い直径である。
Further, a refrigerant pipe connected to a refrigerant inlet portion of the rear heat exchanger portion, a refrigerant pipe connecting the rear heat exchanger portion outlet and the expansion device inlet, a throttle device outlet and a front heat exchanger portion inlet. The diameter of the refrigerant pipe provided with the U-shaped diversion pipe communicating with the refrigerant pipe connected to the refrigerant outlet part of the front heat exchanger part is larger than the diameter of the heat exchange pipe forming the indoor heat exchanger. is there.

【0014】以上のような課題を解決するための手段を
備えることにより、冷房運転、除湿運転、暖房運転のそ
れぞれに、冷媒の流通作用と、熱交換空気の流通作用と
もに効果的に行えて、たとえ大能力機種においても充分
な再熱除湿機能を発揮することができる。
By providing the means for solving the above problems, it is possible to effectively perform both the refrigerant circulation action and the heat exchange air circulation action in each of the cooling operation, the dehumidifying operation, and the heating operation. Even a large-capacity model can exhibit a sufficient reheat dehumidification function.

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施の形態を、
図面を参照して説明する。図1は、空気調和機の室内機
構成を示す概略の断面図であり、図2は、空気調和機の
冷凍サイクル構成および室内熱交換器における流路構成
を示す説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below.
A description will be given with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the indoor unit configuration of the air conditioner, and FIG. 2 is an explanatory diagram showing the refrigeration cycle configuration of the air conditioner and the flow path configuration of the indoor heat exchanger.

【0016】はじめに、図1の室内機から説明する。室
内機本体11は、前面パネル12と後板13とから構成
される。上記前面パネル12の前面側には前部吸込み口
12aが開口され、上面には上部吸込口12bが開口さ
れる。室内機本体11内には、各吸込口12a,12b
に亘って対向するよう緩やかな円弧状に曲成されるエア
ーフイルタ(さらに概略的に示す)16と、室内熱交換
器17が配置される。
First, the indoor unit shown in FIG. 1 will be described. The indoor unit body 11 includes a front panel 12 and a rear plate 13. A front suction port 12a is opened on the front surface side of the front panel 12, and an upper suction port 12b is opened on the upper surface. In the indoor unit body 11, the suction ports 12a and 12b are provided.
An air filter (further schematically shown) 16 that is bent in a gentle arc shape so as to face each other and an indoor heat exchanger 17 are arranged.

【0017】室内熱交換器17は、前部吸込み口12a
に対向する前側熱交換器部17Aと、上部吸込み口12
bに対向する後側熱交換器部17Bとから構成され、こ
れらで側面視で逆V字状に形成される。上記前側熱交換
器部17Aは、側面視でほぼ円弧状に形成され、室内機
本体の前面側に配置されている。上記後側熱交換器部1
7Bは、室内機本体の後面側に傾斜姿勢で配置され、そ
れぞれ直状に形成される主熱交換器部17b1と、この
主熱交換器部の上面側に平行な補助熱交換器17b2と
からなる。上記前側熱交換器部17Aの前面上部には、
後述する絞り装置である除湿用絞り弁5が配置される。
また、前側熱交換器部17A下部には前ドレンパン18
aが配置され、後側熱交換器部17Bの下部には後ドレ
ンパン18bが配置される。前,後ドレンパン18a,
18bは、上記後板13に一体に設けられる。
The indoor heat exchanger 17 has a front suction port 12a.
Front heat exchanger part 17A facing the upper part and the upper suction port 12
It is composed of a rear heat exchanger portion 17B facing b and is formed in an inverted V shape in a side view. The front heat exchanger portion 17A is formed in a substantially arcuate shape in a side view and is arranged on the front side of the indoor unit body. The rear heat exchanger part 1
7B includes a main heat exchanger portion 17b1 that is arranged in a tilted posture on the rear surface side of the indoor unit body and is formed in a straight shape, and an auxiliary heat exchanger 17b2 that is parallel to the upper surface side of the main heat exchanger portion. Become. On the front upper part of the front side heat exchanger part 17A,
A dehumidifying throttle valve 5, which is a throttle device described later, is arranged.
Further, the front drain pan 18 is provided below the front heat exchanger portion 17A.
a is arranged, and a rear drain pan 18b is arranged below the rear heat exchanger portion 17B. Front and rear drain pan 18a,
18b is provided integrally with the rear plate 13.

【0018】側面視で逆V字状に形成される室内熱交換
器17の内部位置、すなわち前側熱交換器部17Aと後
側熱交換器部17Bとの間には、これら熱交換器部に覆
われるようにして室内送風機19が配置される。後板1
3において、後ドレンパン18bの下部側には送風路2
0が形成されており、この通風路20と連通する前面パ
ネル12下部に吹出し口21が開口される。前ドレンパ
ン18aは、吹出し口21の手前側端部に沿って設けら
れ、後ドレンパン18bは、送風路20の上部側に沿っ
て設けられることになる。
Between the inner position of the indoor heat exchanger 17 formed in an inverted V shape in side view, that is, between the front heat exchanger portion 17A and the rear heat exchanger portion 17B, these heat exchanger portions are provided. The indoor blower 19 is arranged so as to be covered. Rear plate 1
3, the air duct 2 is provided on the lower side of the rear drain pan 18b.
0 is formed, and a blowout port 21 is opened in the lower portion of the front panel 12 that communicates with the ventilation path 20. The front drain pan 18a is provided along the front end of the outlet 21, and the rear drain pan 18b is provided along the upper side of the air passage 20.

【0019】つぎに、図2の空気調和機の全体構成と、
冷凍サイクル回路および室内熱交換器の冷媒流路構成を
説明する。空気調和機として、一点鎖線で概略を示す室
外機本体30および室内機本体11とから構成される。
上記室内機本体11内に収容配置される冷凍サイクル構
成部品は、先に図1で説明したように室内熱交換器17
のみである。室外機本体30内には、圧縮機1、四方切
換弁2、室外熱交換器3、膨張手段である電子式自動膨
張弁4等の冷凍サイクル構成部品が収容配置される。
Next, the overall structure of the air conditioner shown in FIG.
The refrigerant flow path configuration of the refrigeration cycle circuit and the indoor heat exchanger will be described. The air conditioner is composed of an outdoor unit main body 30 and an indoor unit main body 11, which are schematically indicated by a chain line.
The refrigeration cycle components housed and arranged in the indoor unit body 11 are the indoor heat exchanger 17 as described above with reference to FIG.
Only. In the outdoor unit main body 30, refrigeration cycle components such as the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, and the electronic automatic expansion valve 4 that is an expansion unit are housed and arranged.

【0020】そして、圧縮機1、四方切換弁2、室外熱
交換器3、電子式自動膨張弁4、室内熱交換器17が冷
媒配管6を介してヒートポンプ式の冷凍サイクルを構成
するよう連通される。上記前後側熱交換器部17A,1
7Bとも、所定間隔を存して並置される多数枚のフィン
Fに熱交換パイプPが蛇行状に貫通してなる。前側熱交
換器部17Aと、後側熱交換器部17Bのうちの主熱交
換器部17b1は、熱交換パイプPが2列並設され、補
助熱交換器17b2は熱交換パイプPが1列設けられ
る。
Then, the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the electronic automatic expansion valve 4, and the indoor heat exchanger 17 are connected to each other through the refrigerant pipe 6 so as to constitute a heat pump type refrigeration cycle. It The front and rear heat exchanger parts 17A, 1
7B, the heat exchange pipe P penetrates in a meandering manner through a large number of fins F juxtaposed at a predetermined interval. The main heat exchanger part 17b1 of the front side heat exchanger part 17A and the rear side heat exchanger part 17B has two rows of heat exchange pipes P arranged in parallel, and the auxiliary heat exchanger 17b2 has one line of heat exchange pipes P. It is provided.

【0021】熱交換空気は、上述したように前側熱交換
器部17Aと、後側熱交換器部17Bとのそれぞれに導
かれるようになっている。前側熱交換器部17Aに導か
れる熱交換空気は、2列の熱交換パイプPと熱交換をな
し、後側熱交換器部17Bに導かれる熱交換空気は補助
熱交換器17b2の1列と主熱交換器部17b1の2列
との、合計3列の熱交換パイプPと熱交換をなす。同図
の室内熱交換器17における冷媒流路構成は、冷房運転
および除湿運転サイクル時の状態を示しており、以下、
これらの運転サイクル時における冷媒の流れを基準にし
て説明する。また、暖房運転サイクル時の冷媒流路構成
は同図とは全く逆となり、したがって入口と出口の表現
を逆にする必要がある。
The heat exchange air is introduced into each of the front heat exchanger section 17A and the rear heat exchanger section 17B as described above. The heat exchange air guided to the front heat exchanger portion 17A performs heat exchange with the two rows of heat exchange pipes P, and the heat exchange air guided to the rear heat exchanger portion 17B is one row of the auxiliary heat exchanger 17b2. Heat exchange is performed with the heat exchange pipes P in a total of three rows with the two rows of the main heat exchanger portion 17b1. The refrigerant flow path configuration in the indoor heat exchanger 17 in the figure shows the state during the cooling operation and dehumidifying operation cycle.
The description will be given based on the flow of the refrigerant during these operation cycles. Further, the refrigerant flow path configuration during the heating operation cycle is completely opposite to that in the figure, and therefore the expressions of the inlet and the outlet need to be reversed.

【0022】室内熱交換器17の冷媒入口部7aは、上
記後側熱交換器部17Bの熱交換空気流風上側(以下、
単に、風上側と言う)に位置する補助熱交換器部17b
2で、熱交換パイプPを構成するU字管Paに設けられ
る。このU字管Paから上下2方向に分流案内され、そ
れぞれが主熱交換器部17b1における風上側列Kaの
熱交換パイプPに連通し、さらにこの風下側に回ったあ
と、風下側列Kbに設けられるU字管Pbにおいて合流
する。
The refrigerant inlet portion 7a of the indoor heat exchanger 17 has a heat exchange air flow windward side of the rear heat exchanger portion 17B.
Auxiliary heat exchanger part 17b located simply on the windward side)
2, the heat exchange pipe P is provided in the U-shaped pipe Pa. The U-shaped pipe Pa is divided and guided in two up and down directions, and each of the U-shaped pipes is communicated with the heat exchange pipes P of the windward row Ka in the main heat exchanger portion 17b1, and after further turning to the leeward side, to the leeward row Kb. They meet at the U-shaped pipe Pb provided.

【0023】合流した冷媒は、後側熱交換器部17Bか
ら出て絞り装置を構成する上記除湿用絞り弁5の入口部
5aに導かれる。そして、この除湿用絞り弁5から導出
される冷媒は、出口部5bに接続した直後部位に設けら
れるU字状分流管8を介して2方向に分流案内され、そ
れぞれが前側熱交換器部17Aに導かれる。上記前側熱
交換器部17Aは、上下方向のほぼ中央部から上下に2
分される流路構成をなしている。上下部それぞれの流路
における風上側列Kaに、上記除湿用絞り弁5から分流
案内された冷媒を導入するようになっている。
The combined refrigerant flows out from the rear side heat exchanger portion 17B and is guided to the inlet portion 5a of the dehumidifying throttle valve 5 constituting the throttle device. Then, the refrigerant led out from the dehumidifying throttle valve 5 is diverted and guided in two directions via a U-shaped flow dividing pipe 8 provided immediately after being connected to the outlet portion 5b, and each of them is connected to the front heat exchanger portion 17A. Be led to. The front side heat exchanger portion 17A is vertically moved from the substantially central portion in the vertical direction.
The flow path is divided. The refrigerant, which is split and guided from the dehumidifying throttle valve 5, is introduced into the windward row Ka in each of the upper and lower flow paths.

【0024】前側熱交換器部17Aにおける上下部流路
では、それぞれ上下2方向に分流案内される。上部側流
路では、風上側列Kaの上下端部から風下側列Kbに回
り込み、ここに設けられるU字管Pcで合流する。下部
側流路においても、風上側列Kaの上下端部から風下側
列Kbに回り込み、ここに設けられるU字管Pdで合流
する。前側熱交換器部17Aにおける上部側流路と下部
側流路でそれぞれ合流し、かつ出口部7b,7bから導
出される冷媒は、所定の部位において合流して上記四方
切換弁2に導かれるようになっている。
In the upper and lower flow passages in the front side heat exchanger portion 17A, the diversion is guided in the upper and lower directions. In the upper side flow path, the upper side flow path Ka wraps around from the upper and lower ends of the windward side row Ka to the leeward side row Kb and joins at the U-shaped pipe Pc provided therein. Also in the lower side flow path, the upper and lower end portions of the windward side row Ka wrap around to the leeward side row Kb and join at the U-shaped pipe Pd provided there. Refrigerant that merges in the upper side flow passage and the lower side flow passage in the front side heat exchanger portion 17A and is discharged from the outlet portions 7b, 7b merges at a predetermined portion and is guided to the four-way switching valve 2. It has become.

【0025】この室内熱交換器17の冷媒流路構成の特
徴として、後側熱交換器部17Bの冷媒入口部7aから
冷媒が導入された直後に2流路に分流され、そのあと合
流して除湿用絞り弁5に導かれる。さらに、この除湿用
絞り弁5から導出され、4流路に分流されて出口部7
b,7bに至る、いわゆる2−4パス(流路)を備えて
いる。4流路の内容は、除湿用絞り弁5を出てから前側
熱交換器部17Aの上部側流路と下部側流路へ導かれる
2列の並列流路が構成されるうえに、上下部側流路のそ
れぞれにおいて、上下に2分される2つの並列流路とな
っていて、結局、合計4つの並列流路となる。
A feature of the refrigerant flow passage structure of the indoor heat exchanger 17 is that the refrigerant is split into two flow passages immediately after being introduced from the refrigerant inlet portion 7a of the rear heat exchanger portion 17B, and then merged. It is guided to the dehumidification throttle valve 5. Further, it is led out from the dehumidifying throttle valve 5 and is divided into four flow paths so that the outlet portion 7
It is provided with so-called 2-4 paths (flow paths) reaching b and 7b. The contents of the four flow passages are two rows of parallel flow passages that are guided from the dehumidification throttle valve 5 to the upper side flow passage and the lower side flow passage of the front side heat exchanger unit 17A, and the upper and lower portions. In each of the side flow passages, there are two parallel flow passages divided into upper and lower parts, and in the end, there are a total of four parallel flow passages.

【0026】このようにして構成される空気調和機であ
り、冷房運転サイクル時は、圧縮機1で圧縮された高温
高圧の冷媒ガスが四方切換弁2を介して室外熱交換器3
に導かれ、凝縮液化する。この液冷媒は電子自動膨張弁
4で断熱膨張化し、室内熱交換器17に導かれて後述す
るように蒸発する。室内機本体11内では、室内送風機
19が駆動され、室内空気を前部吸込口12aと上部吸
込口12bから本体11内に吸込み、室内熱交換器17
を流通させて熱交換パイプPを導かれる冷媒と熱交換す
る。熱交換した後の熱交換空気は、送風路20に案内さ
れ吹出口21から室内へ吹出され、冷房作用をなす。
In the air conditioner constructed in this way, during the cooling operation cycle, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 is passed through the four-way switching valve 2 to the outdoor heat exchanger 3
And is condensed and liquefied. This liquid refrigerant is adiabatically expanded by the electronic automatic expansion valve 4, guided to the indoor heat exchanger 17, and evaporated as described later. In the indoor unit main body 11, the indoor blower 19 is driven, and indoor air is sucked into the main body 11 through the front suction port 12a and the upper suction port 12b, and the indoor heat exchanger 17
To exchange heat with the refrigerant guided through the heat exchange pipe P. The heat-exchanged air after the heat exchange is guided to the air passage 20 and blown out from the air outlet 21 into the room to perform a cooling operation.

【0027】除湿運転サイクル時は、冷房運転サイクル
時と全く同一の冷媒流路を構成する。そして、除湿用絞
り弁5が絞り作用を行うことで、この絞り弁5の上流側
である後側熱交換器部17Bが冷媒凝縮作用をなし、下
流側である前側熱交換器部17Aが冷媒蒸発作用をな
す。すなわち、除湿用絞り弁5が後側熱交換器部17B
と前側熱交換器部17Aを凝縮器と蒸発器とに切り分け
ることとなり、再熱除湿機能を得られる。室内の湿気が
除去され乾燥化する。暖房運転サイクル時は、冷房運転
と除湿運転とは全く逆の冷媒流路を構成する。圧縮機1
から四方切換弁2を介して室内熱交換器17に導かれた
冷媒は、前側熱交換器部17Aの上下部側流路に分流さ
れ、それぞれ並列流路を構成して除湿用絞り弁5を通過
し、さらに後側熱交換器部17Bに導かれる。
During the dehumidifying operation cycle, the same refrigerant flow path as during the cooling operation cycle is constructed. When the dehumidifying throttle valve 5 performs the throttle action, the rear heat exchanger portion 17B on the upstream side of the throttle valve 5 performs the refrigerant condensing action, and the front heat exchanger portion 17A on the downstream side cools the refrigerant. Evaporate. That is, the dehumidifying throttle valve 5 is connected to the rear heat exchanger portion 17B.
Therefore, the front heat exchanger portion 17A is divided into a condenser and an evaporator, and a reheat dehumidifying function can be obtained. The moisture in the room is removed and it dries. During the heating operation cycle, the refrigerant flow path is completely opposite to the cooling operation and the dehumidifying operation. Compressor 1
The refrigerant guided to the indoor heat exchanger 17 via the four-way switching valve 2 is divided into upper and lower side flow passages of the front heat exchanger portion 17A, each of which constitutes a parallel flow passage to form the dehumidifying throttle valve 5 After passing through, it is guided to the rear heat exchanger portion 17B.

【0028】図7は、冷房運転サイクル時と、暖房運転
サイクル時および除湿運転サイクル時における冷媒温度
と空気温度の関係を示している。冷房運転サイクル時の
み説明すると、除湿用絞り弁5の上流側である後側熱交
換器部17Bでは、冷媒が風上側列Kaを気液二相状態
で導通され熱交換空気との熱交換にともなって温度低下
する。冷媒が後側熱交換器部17Bの風下側列Kbを導
通する間にも気液二相割合が変化し、さらに冷媒温度が
低下する。
FIG. 7 shows the relationship between the refrigerant temperature and the air temperature during the cooling operation cycle, the heating operation cycle and the dehumidification operation cycle. Explaining only during the cooling operation cycle, in the rear heat exchanger portion 17B, which is on the upstream side of the dehumidification throttle valve 5, the refrigerant is conducted in the gas-liquid two-phase state in the windward row Ka to exchange heat with the heat exchange air. Along with that, the temperature drops. The gas-liquid two-phase ratio also changes while the refrigerant is conducting in the leeward side row Kb of the rear heat exchanger portion 17B, and the refrigerant temperature further decreases.

【0029】絞り弁5の下流側である前側熱交換器部1
7Aにおいて、この風上側列Kaに冷媒が導かれるが、
このときもなお冷媒の気液二相割合の変化が継続し、さ
らに温度低下がある。前側熱交換器部17Aの風下側列
Kbに冷媒が導かれると、冷媒の気液二相割合は変化
し、さらに温度低下がある。暖房運転と、除湿運転サイ
クル時には、特に詳細な説明は省略するが、前側と後側
のそれぞれの熱交換器部17A,17Bにおいて、図に
示すような冷媒の状態変化があり、温度変化がある。
The front heat exchanger section 1 which is the downstream side of the throttle valve 5
In 7A, the refrigerant is guided to the windward row Ka,
At this time, the change in the gas-liquid two-phase ratio of the refrigerant still continues, and the temperature further decreases. When the refrigerant is guided to the leeward side row Kb of the front heat exchanger portion 17A, the gas-liquid two-phase ratio of the refrigerant changes, and the temperature further decreases. During the heating operation and the dehumidifying operation cycle, a detailed description is omitted, but there is a change in the state of the refrigerant and a change in the temperature in the front and rear heat exchanger parts 17A and 17B as shown in the figure. .

【0030】また、冷房運転サイクル時では、室内側熱
交換器17において冷媒が液相からガス相に変化するに
したがって、冷媒流路構成が後側熱交換器部17Bの2
列から前側熱交換器部17Aの4列になるので、冷媒の
流通圧力が低減する。暖房運転サイクル時には、室内側
熱交換器17において冷媒がガス相から液相に変わるに
したがって、冷媒流路構成が前側熱交換器部17Aの4
列から後側熱交換器部17Bの2列になる。すなわち、
冷媒の密度に対応した冷媒流路となって、流通抵抗が低
減する。
Further, during the cooling operation cycle, as the refrigerant in the indoor heat exchanger 17 changes from the liquid phase to the gas phase, the structure of the refrigerant flow passage is changed to 2 in the rear heat exchanger section 17B.
Since there are four rows of the front heat exchanger portion 17A from the rows, the refrigerant circulation pressure is reduced. During the heating operation cycle, as the refrigerant in the indoor heat exchanger 17 changes from the gas phase to the liquid phase, the refrigerant flow path configuration changes to 4 of the front heat exchanger section 17A.
There are two rows of the rear heat exchanger portion 17B from the row. That is,
The flow path becomes a coolant flow channel corresponding to the density of the coolant, and the flow resistance is reduced.

【0031】また、冷房運転サイクル時に、室内側熱交
換器17において冷媒の流れが風上側列Kaの熱交換パ
イプPから風下側列Kbの熱交換パイプPに移るよう構
成されているため、冷媒圧力が比較的高い風上側列Ka
から、これよりも低くなる風下側列Kbに導通していく
につれて、冷媒温度が円滑に低下する。同時に、室内熱
交換器17を流通する熱交換空気も熱交換にともなって
温度低下があるので、熱交換空気の風上側から風下側ま
で冷媒との温度差を比較的大きくとることができ、熱交
換作用が効率よく行われる。
Further, during the cooling operation cycle, the flow of the refrigerant in the indoor heat exchanger 17 is configured to move from the heat exchange pipe P in the windward row Ka to the heat exchange pipe P in the leeward row Kb. Windward row Ka with relatively high pressure
Therefore, the refrigerant temperature smoothly decreases as it is conducted to the leeward side row Kb which becomes lower than this. At the same time, since the temperature of the heat exchange air flowing through the indoor heat exchanger 17 also decreases due to the heat exchange, the temperature difference between the heat exchange air and the refrigerant can be made relatively large from the windward side to the leeward side. The exchange action is performed efficiently.

【0032】また、暖房時においては、冷媒が風下側列
Kbの熱交換パイプPから風上側列Kaの熱交換パイプ
Pに導かれるよう構成されているため、圧力の比較的高
い風下側列Kbから圧力の低くなる風上側列Kaに導か
れるにつれて冷媒温度が低下する。同時に、室内熱交換
器17を流通する熱交換空気も熱交換にともなって温度
上昇するので、熱交換空気の風上側から風下側まで冷媒
との温度差を比較的大きくとることができ、熱交換作用
が効率よく行われる。
Further, during heating, since the refrigerant is guided from the heat exchange pipe P of the leeward row Kb to the heat exchange pipe P of the leeward row Ka, the leeward row Kb having a relatively high pressure. The temperature of the refrigerant decreases as the pressure is introduced from the side to the windward row Ka where the pressure decreases. At the same time, the temperature of the heat exchange air flowing through the indoor heat exchanger 17 also rises along with the heat exchange, so that the temperature difference between the heat exchange air and the refrigerant can be made relatively large from the windward side to the leeward side, and the heat exchange can be performed. The action is performed efficiently.

【0033】さらに、除湿運転サイクル時には、除湿用
絞り弁5から前側熱交換器部17Aに構成される4つの
並列流路に冷媒が分流して流れ、前側熱交換器部17A
全体に亘って冷却除湿作用を効率よく行える。そのた
め、たとえば5.6KW以上の大能力機種においても再
熱除湿機能を充分に発揮し得ることとなる。図8は、先
に説明した従来の除湿弁B付きで冷媒流路構成が1列か
ら2列の変化(1−2パス)である室内熱交換器Aと、
本発明の除湿用絞り弁(除湿弁)5付きで冷媒流路構成
が2列から4列の変化(2−4パス)である室内熱交換
器17での、圧縮機回転数比に対する冷房能力の特性図
である。従来構成と本発明構成とを比較すると、同じ圧
縮機回転数比において冷媒能力が1.3〜1.6KWの
差が存在する。すなわち、本発明の冷媒流路構成を採用
することによって、冷房能力の大幅増大化が得られる。
Further, during the dehumidifying operation cycle, the refrigerant is branched and flows from the dehumidifying throttle valve 5 to the four parallel flow paths formed in the front heat exchanger portion 17A, and the front heat exchanger portion 17A is flown.
The cooling and dehumidifying action can be efficiently performed over the whole. Therefore, the reheat dehumidifying function can be sufficiently exerted even in a model having a large capacity of 5.6 KW or more. FIG. 8 shows an indoor heat exchanger A having the conventional dehumidification valve B described above and having a refrigerant flow passage configuration changing from one row to two rows (1-2 passes);
In the indoor heat exchanger 17 with the dehumidifying throttle valve (dehumidification valve) 5 of the present invention and the refrigerant flow passage configuration changing from two rows to four rows (2-4 passes), the cooling capacity with respect to the compressor rotation speed ratio FIG. When the conventional configuration and the configuration of the present invention are compared, there is a difference in refrigerant capacity of 1.3 to 1.6 KW at the same compressor rotation speed ratio. That is, by adopting the refrigerant channel structure of the present invention, the cooling capacity can be greatly increased.

【0034】図3は、上記絞り装置を構成する除湿用絞
り弁5の概略の断面図である。この除湿用絞り弁5は、
弁本体25と、この弁本体25内に収容される弁体26
と、この弁体26を上下駆動する電磁駆動機構27と、
上記弁体26の上下駆動にともなって開閉される弁座2
8を備えている。さらに、弁本体25の側面壁には、冷
房・除湿運転サイクル時に冷媒を弁本体25内に導入案
内する入口冷媒配管6aが接続され、弁本体25の下端
部には冷房・除湿運転サイクル時に冷媒を弁本体25か
ら外部へ導出案内する出口冷媒配管6bが接続される。
FIG. 3 is a schematic sectional view of the dehumidifying throttle valve 5 which constitutes the above throttle device. This dehumidifying throttle valve 5 is
Valve body 25 and valve body 26 housed in the valve body 25
And an electromagnetic drive mechanism 27 for vertically driving the valve body 26,
The valve seat 2 which is opened and closed with the vertical drive of the valve body 26.
Eight. Further, an inlet refrigerant pipe 6a for introducing and guiding the refrigerant into the valve body 25 during the cooling / dehumidifying operation cycle is connected to the side wall of the valve body 25, and the lower end portion of the valve body 25 has the refrigerant during the cooling / dehumidifying operation cycle. An outlet refrigerant pipe 6b is connected to guide the valve from the valve body 25 to the outside.

【0035】上記弁本体25内には、入口冷媒配管6a
から弁本体25内に導入された冷媒が弁座28を介して
出口冷媒配管6bへ導かれる主流路が構成される。上記
弁座には切欠き溝29が設けられていて、図のように弁
体26が弁座28を閉成する状態にあっても、上記切欠
き溝29の存在によりある程度の流量が確保されるよう
になっている。すなわち、弁体26が弁座28を閉成し
たときは、上記切欠き溝29を介して冷媒が導かれる絞
り流路が構成されている。この絞り流路は、除湿運転サ
イクル時に機能するようになっていて、切欠き溝29を
冷媒が流通することで所定絞り量が確保される。
In the valve body 25, the inlet refrigerant pipe 6a is provided.
A main flow path is formed in which the refrigerant introduced into the valve body 25 is guided to the outlet refrigerant pipe 6b via the valve seat 28. A cutout groove 29 is provided in the valve seat, and even if the valve body 26 closes the valve seat 28 as shown in the figure, the presence of the cutout groove 29 ensures a certain flow rate. It has become so. That is, when the valve body 26 closes the valve seat 28, a throttle channel is formed through which the refrigerant is guided through the cutout groove 29. The throttle channel is designed to function during the dehumidifying operation cycle, and the refrigerant flows through the notch groove 29 to secure a predetermined throttle amount.

【0036】図4は、上記除湿用絞り弁5周りの配管構
成を示す斜視図である。冷房・除湿運転サイクル時に、
ここでは図示しない後側熱交換器部17Bから上記除湿
用絞り弁5に冷媒を導入案内する入口冷媒配管6aは、
直状であり、かつ水平姿勢で除湿用絞り弁5の側面壁に
接続される。一方、除湿用絞り弁5から冷媒を導出案内
する出口冷媒配管6bは、除湿用絞り弁5の下端部に接
続され、下方向に延出したあと屈曲され、水平方向に延
在する。この水平方向延在部の端部は、U字状分流管8
の中央部に接続される。
FIG. 4 is a perspective view showing a piping structure around the dehumidifying throttle valve 5. During the cooling / dehumidifying operation cycle,
Here, the inlet refrigerant pipe 6a for introducing and guiding the refrigerant from the rear heat exchanger portion 17B (not shown) to the dehumidification throttle valve 5 is
It is straight and is connected to the side wall of the dehumidification throttle valve 5 in a horizontal posture. On the other hand, the outlet refrigerant pipe 6b for guiding and guiding the refrigerant from the dehumidification throttle valve 5 is connected to the lower end of the dehumidification throttle valve 5, extends downward, is bent, and extends horizontally. The end of this horizontally extending portion has a U-shaped distribution pipe 8
Is connected to the central part of.

【0037】上記U字状分流管8の両端に接続される出
口冷媒配管6c、6cは、ここでは図示しない前側熱交
換器部17Aの上下部に分割された流路に連通する。そ
して、U字状分流管7の両端に接続される出口冷媒配管
6c、6cの相互間に、上記入口冷媒配管6aの直状で
水平方向に延在される部位が介挿される。このように、
除湿用絞り弁5周りの配管構成において、U字状分流管
8の両端に接続される出口冷媒配管6c,6cの相互間
に入口冷媒配管6aが介挿されるようになっていること
から、室内機本体11内に室内熱交換器17が配置され
た状態で配管構成がコンパクト化し、室内機本体11の
小型化に繋げられる。
The outlet refrigerant pipes 6c, 6c connected to both ends of the U-shaped distribution pipe 8 communicate with a flow passage divided into upper and lower parts of the front heat exchanger portion 17A (not shown here). A straight and horizontally extending portion of the inlet refrigerant pipe 6a is inserted between the outlet refrigerant pipes 6c, 6c connected to both ends of the U-shaped distribution pipe 7. in this way,
In the piping configuration around the dehumidifying throttle valve 5, the inlet refrigerant pipe 6a is inserted between the outlet refrigerant pipes 6c, 6c connected to both ends of the U-shaped distribution pipe 8, so that With the indoor heat exchanger 17 arranged in the machine body 11, the piping configuration is made compact, which leads to downsizing of the indoor machine body 11.

【0038】そして、除湿用絞り弁5に接続される出口
冷媒配管6cは、絞り弁5から導出された直後に垂直方
向から水平方向へ略L字状に屈曲されており、この屈曲
部位において冷媒に対して遠心力を与え、そのあとU字
状分流管8に導くようになっている。すなわち、U字状
分流管8の両端に接続される出口冷媒配管6cに対して
冷媒を均等に分流でき、これら出口冷媒配管6cに接続
される前側熱交換器部17Aの上下部冷媒流路に対する
分流作用が効果的になされる。
The outlet refrigerant pipe 6c connected to the dehumidifying throttle valve 5 is bent substantially vertically from the vertical direction to the horizontal direction immediately after being drawn out from the throttle valve 5, and the refrigerant is bent at this bent portion. A centrifugal force is applied to the U-shaped flow dividing pipe 8 and then the U-shaped flow dividing pipe 8 is guided. That is, the refrigerant can be evenly distributed to the outlet refrigerant pipes 6c connected to both ends of the U-shaped distribution pipe 8, and the upper and lower refrigerant flow passages of the front heat exchanger portion 17A connected to the outlet refrigerant pipes 6c can be connected. The shunt action is effectively performed.

【0039】図5は、上記室内熱交換器17を構成する
後側熱交換器部17Bの冷媒入口部7aと、その周辺に
おける配管構成を示し、図6は、その一部を拡大して示
す、それぞれ斜視図である。上述したように、後側熱交
換器部17Bは、2列の配管流路を有する主熱交換器部
17b1と、1列の配管流路を備えた補助熱交換器17
b2とから構成され、冷媒入口部7aは補助熱交換器部
17b2のU字管Paに設けられる。
FIG. 5 shows the refrigerant inlet portion 7a of the rear side heat exchanger portion 17B constituting the indoor heat exchanger 17 and the piping configuration around it, and FIG. 6 shows a part of it in an enlarged manner. 3 and 4 are perspective views, respectively. As described above, the rear heat exchanger section 17B includes the main heat exchanger section 17b1 having two rows of piping flow paths and the auxiliary heat exchanger 17 having one row of piping paths.
b2 and the refrigerant inlet portion 7a is provided in the U-shaped pipe Pa of the auxiliary heat exchanger portion 17b2.

【0040】冷媒入口部7aに接続される入口冷媒配管
6dは、補助熱交換器部17b2表面の長手方向に沿っ
て延在され、所定の部位でU字状に屈曲形成されたあ
と、補助熱交換器部17b2のU字管Paに接続され
る。この入口冷媒配管6dは、補助熱交換器部17b2
の風上側に位置することとなり、補助熱交換器部17b
2より先に熱交換空気と熱交換する。すなわち、冷房運
転サイクル時には入口冷媒配管6dである程度熱交換し
たあと、補助熱交換器部17b2に導入されるようにな
り、熱交換効率が向上する。
The inlet refrigerant pipe 6d connected to the refrigerant inlet portion 7a extends along the longitudinal direction of the surface of the auxiliary heat exchanger portion 17b2, is bent in a U-shape at a predetermined portion, and then the auxiliary heat exchanger portion 17b2 is bent. It is connected to the U-shaped pipe Pa of the exchange part 17b2. The inlet refrigerant pipe 6d is connected to the auxiliary heat exchanger portion 17b2.
Will be located on the windward side of the auxiliary heat exchanger portion 17b.
Heat exchange with heat exchange air prior to 2. That is, during the cooling operation cycle, the heat is exchanged in the inlet refrigerant pipe 6d to some extent and then introduced into the auxiliary heat exchanger portion 17b2, and the heat exchange efficiency is improved.

【0041】上記入口冷媒配管6dは、補助熱交換器部
17b2に接続する直前部位でL字状に屈曲形成されて
いるので、この屈曲部位で冷媒に遠心力を与えてからU
字管Paに導くようになる。上記U字管Paは均等に冷
媒を分流して、補助熱交換器部17b2から主熱交換器
部17b1への冷媒流路に対する分流作用が効果的にな
される。また、室内熱交換器17を構成する熱交換パイ
プPの直径と、この熱交換パイプPに連結される室内熱
交換器17周りの冷媒配管6の直径とは、互いに異なる
ものが用いられる。
Since the inlet refrigerant pipe 6d is bent and formed in an L shape at a portion immediately before being connected to the auxiliary heat exchanger portion 17b2, a centrifugal force is applied to the refrigerant at this bent portion, and then U is applied.
It leads to the character tube Pa. The U-shaped pipe Pa divides the refrigerant evenly, and effectively divides the refrigerant flow path from the auxiliary heat exchanger portion 17b2 to the main heat exchanger portion 17b1. In addition, the diameter of the heat exchange pipe P constituting the indoor heat exchanger 17 and the diameter of the refrigerant pipe 6 around the indoor heat exchanger 17 connected to the heat exchange pipe P are different from each other.

【0042】なお説明すれば、後側熱交換器部17Bに
おける冷媒入口部7aに接続される冷媒配管6dと、後
側熱交換器部17Bと除湿用絞り弁5の入口部5aとを
連通する冷媒配管6aと、上記絞り弁5の出口部5bに
接続される出口冷媒管6b、6cおよびU字状分流管8
と、前側熱交換器部17Aの出口部7bに接続される冷
媒配管6eは、直径(φ)が8mmのものが用いられ
る。
To explain further, the refrigerant pipe 6d connected to the refrigerant inlet portion 7a in the rear heat exchanger portion 17B, the rear heat exchanger portion 17B and the inlet portion 5a of the dehumidifying throttle valve 5 are communicated with each other. The refrigerant pipe 6a, the outlet refrigerant pipes 6b and 6c connected to the outlet portion 5b of the throttle valve 5, and the U-shaped diversion pipe 8
The refrigerant pipe 6e connected to the outlet portion 7b of the front heat exchanger portion 17A has a diameter (φ) of 8 mm.

【0043】これに対して、フィンPとともに室内熱交
換器17の前側熱交換器部17Aと後側熱交換器部17
Bを構成する熱交換パイプPは、直径(φ)が6.3m
mのものが用いられている。すなわち、室内熱交換器1
7周りの連結用としての冷媒配管6は、熱交換パイプP
直径よりも太い直径のものが用いられているので、冷媒
が連結用冷媒配管6と前後側熱交換器部17A,17B
の熱交換パイプPとの接続部とを導通する際の圧力の急
激な変動を抑え、騒音発生の低減化を得る。
On the other hand, together with the fins P, the front heat exchanger portion 17A and the rear heat exchanger portion 17 of the indoor heat exchanger 17 are arranged.
The heat exchange pipe P constituting B has a diameter (φ) of 6.3 m.
m is used. That is, the indoor heat exchanger 1
The refrigerant pipe 6 for connection around 7 is a heat exchange pipe P
Since the one having a diameter larger than the diameter is used, the refrigerant is connected to the connecting refrigerant pipe 6 and the front and rear heat exchanger parts 17A and 17B.
It is possible to suppress a sudden change in pressure when conducting the connection with the heat exchange pipe P and to reduce noise generation.

【0044】[0044]

【発明の効果】以上説明したように本発明は、冷房運
転、除湿運転、暖房運転のそれぞれに、冷媒の流通作用
および熱交換空気の流通作用をともに効率よく行え、た
とえ大能力機種においても充分に再熱除湿機能を発揮で
きる空気調和機を提供できる。
As described above, the present invention can efficiently perform both the refrigerant circulation action and the heat exchange air circulation action in each of the cooling operation, the dehumidifying operation, and the heating operation, and is sufficient even for a large-capacity model. It is possible to provide an air conditioner that can exert the reheat dehumidification function.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す、空気調和機の室
内ユニットの縦断面図。
FIG. 1 is a vertical cross-sectional view of an indoor unit of an air conditioner, showing an embodiment of the present invention.

【図2】同実施の形態を示す、室内熱交換器の冷媒流路
構成と、空気調和機と、その冷凍サイクル構成を表す
図。
FIG. 2 is a diagram showing a refrigerant flow path configuration of an indoor heat exchanger, an air conditioner, and a refrigeration cycle configuration thereof showing the embodiment.

【図3】同実施の形態を示す、除湿用絞り弁の概略の断
面図。
FIG. 3 is a schematic cross-sectional view of a dehumidifying throttle valve showing the same embodiment.

【図4】同実施の形態を示す、除湿用絞り弁周りの配管
構成を説明する斜視図。
FIG. 4 is a perspective view illustrating a piping configuration around a dehumidifying throttle valve according to the embodiment.

【図5】同実施の形態を示す、室内熱交換器の後側熱交
換器部周りの配管構成を説明する斜視図。
FIG. 5 is a perspective view illustrating a pipe configuration around a rear heat exchanger portion of the indoor heat exchanger according to the embodiment.

【図6】同実施の形態を示す、後側熱交換器部周りの配
管構成の一部を拡大した斜視図。
FIG. 6 is an enlarged perspective view showing a part of a piping configuration around a rear heat exchanger section showing the embodiment.

【図7】同実施の形態を示す、冷房運転と、暖房運転お
よび除湿運転における室内熱交換器の冷媒温度と、流通
する熱交換空気の温度の変化を説明する図。
FIG. 7 is a diagram illustrating changes in the refrigerant temperature of the indoor heat exchanger and the temperature of circulating heat exchange air in the cooling operation, the heating operation, and the dehumidifying operation, showing the embodiment.

【図8】本発明と、従来構造の冷媒流路を備えた室内熱
交換器における、圧縮機の回転数比に対応する冷房能力
の特性図。
FIG. 8 is a characteristic diagram of the cooling capacity corresponding to the rotation speed ratio of the compressor in the present invention and the indoor heat exchanger provided with the refrigerant passage of the conventional structure.

【図9】従来の、室内熱交換器の冷媒流路構成を表す
図。
FIG. 9 is a view showing a conventional refrigerant flow path configuration of an indoor heat exchanger.

【符号の説明】 30…室外機本体、 11…室内機本体、 6…冷媒配管、 1…圧縮機、 2…四方切換弁、 3…室外熱交換器、 17…室内熱交換器、 F…フィン、 P…熱交換パイプ、 17A…前側熱交換器部、 17B…後側熱交換器部、 5…除湿用絞り弁、 8…U字状分流管、 7a…冷媒入口部、 7b…冷媒出口部。[Explanation of symbols] 30 ... Outdoor unit body, 11 ... Indoor unit body, 6 ... Refrigerant piping, 1 ... Compressor, 2 ... four-way switching valve, 3 ... Outdoor heat exchanger, 17 ... Indoor heat exchanger, F ... Fin, P ... Heat exchange pipe, 17A ... Front heat exchanger section, 17B: rear heat exchanger part, 5 ... Throttle valve for dehumidification, 8 ... U-shaped distribution pipe, 7a ... Refrigerant inlet, 7b ... Refrigerant outlet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F24F 1/00 391C (72)発明者 和田 宏二 静岡県富士市蓼原336番地 東芝キヤリア 株式会社内 Fターム(参考) 3L051 BE05 BE07 BF01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F24F 1/00 391C (72) Inventor Koji Wada 336 Tatehara, Fuji-shi, Shizuoka Toshiba Faria (term) Reference) 3L051 BE05 BE07 BF01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】室外機本体および室内機本体とからなり、 これら室外機本体と室内機本体に分散して配置され、冷
房運転と暖房運転との切換えが可能なヒートポンプ式冷
凍サイクルを構成するよう冷媒配管を介して連通され
る、圧縮機、四方切換弁、室外熱交換器、膨張手段およ
び室内熱交換器とを具備し、 上記室内熱交換器は、所定間隔を存して並設される複数
枚のフィンと、これらフィンを貫通し内部に冷媒が導通
する流路を形成する熱交換パイプとからなるフィンチュ
ーブタイプであって、上記フィンの相互間に熱交換空気
が流通し、 さらに、この室内熱交換器は、室内機本体の前面部に対
向して配置される前側熱交換器部と上面部に対向して配
置される後側熱交換器部とから、側面視で逆V字状に形
成され、 上記前側熱交換器部と上記後側熱交換器部とを連通する
冷媒流路の中途部に、前側熱交換器部で冷媒の凝縮作用
を行わせ、後側熱交換器部で冷媒の蒸発作用を行わせ
て、除湿運転サイクルを成立させる絞り装置が設けら
れ、 冷房・除湿運転サイクルにおいて、上記絞り装置の冷媒
流路上流側に後側熱交換器部、絞り装置の冷媒流路下流
側に前側熱交換器部を位置させ、 上記後側熱交換器部は、熱交換空気流の風上側に冷媒入
口部が設けられ、この冷媒入口部から前後2方向に分流
案内されて、それぞれが熱交換空気流の風下側に導かれ
たあと合流して上記絞り装置に導入される流路構成をな
し、 上記絞り装置から導出される冷媒は、2方向に分流案内
されて、上記前側熱交換器部に導かれる流路構成をな
し、 上記前側熱交換器部では、上下方向のほぼ中央部から上
下に2分される並列冷媒流路を備え、 上下それぞれの流路における熱交換空気流の風上側に、
上記絞り装置から分流案内された冷媒を導入する冷媒配
管が接続され、 上下各流路において、上下2方向に分岐して熱交換空気
流の風下側において合流したのち導出される並列流路を
備えたことを特徴とする空気調和機。
1. A heat pump refrigeration cycle comprising an outdoor unit main body and an indoor unit main body, which are arranged in a distributed manner in the outdoor unit main body and the indoor unit main body so that switching between cooling operation and heating operation is possible. A compressor, a four-way switching valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger, which are communicated with each other through a refrigerant pipe, are provided, and the indoor heat exchangers are arranged side by side with a predetermined interval. A fin tube type consisting of a plurality of fins and a heat exchange pipe that penetrates these fins and forms a flow path through which a refrigerant is conducted inside, wherein heat exchange air flows between the fins, This indoor heat exchanger has an inverted V-shape in a side view from a front heat exchanger portion arranged to face a front surface portion of an indoor unit body and a rear heat exchanger portion arranged to face an upper surface portion. Formed in the shape of In the middle part of the refrigerant flow path communicating with the rear heat exchanger part, the front heat exchanger part is caused to perform the condensation action of the refrigerant, and the rear heat exchanger part is caused to perform the evaporation action of the refrigerant to dehumidify. A throttling device that establishes an operation cycle is provided, and in the cooling / dehumidifying operation cycle, a rear heat exchanger unit is provided on the upstream side of the refrigerant passage of the expansion device, and a front heat exchanger portion is provided on the downstream side of the refrigerant passage of the throttling device. In the rear heat exchanger portion, a refrigerant inlet portion is provided on the windward side of the heat exchange air flow, and the refrigerant inlet portion is diverted and guided in two front and rear directions. The flow path is configured to be introduced into the expansion device after being joined to the expansion device, and the refrigerant discharged from the expansion device is flow-divided in two directions to be introduced into the front heat exchanger section. In the above-mentioned front heat exchanger part, the upper part of It is equipped with a parallel refrigerant channel divided into two below, and on the windward side of the heat exchange air flow in each of the upper and lower channels,
Refrigerant piping that introduces the refrigerant that is branched and guided from the expansion device is connected, and in each of the upper and lower flow paths, there are provided parallel flow paths that branch out in the two upper and lower directions and join at the leeward side of the heat exchange airflow before being led out. An air conditioner characterized by that.
【請求項2】上記絞り装置は、冷房運転サイクル時に開
放され、除湿運転サイクル時に閉成される主流路と、除
湿運転サイクル時に冷媒を導通させ所定絞り量を確保す
る絞り流路を備えた除湿用絞り弁であり、 冷房・除湿運転サイクル時に上記除湿用絞り弁に冷媒を
導入案内する冷媒配管は、直状で、かつ除湿用絞り弁側
壁にほぼ水平姿勢で接続され、 上記除湿用絞り弁から冷媒を導出案内する冷媒配管は、
除湿用絞り弁下端部に接続され、下方向に延出したあと
水平方向に屈曲され、さらにこの水平端部は両端に冷媒
配管が接続されたU字状分流管のほぼ中央部に接続さ
れ、 このU字状分流管両端に接続される冷媒配管相互間に、
上記除湿用絞り弁に冷媒を導入案内する冷媒配管が介挿
されることを特徴とする請求項1記載の空気調和機。
2. A dehumidifying device having a main flow passage opened during a cooling operation cycle and closed during a dehumidifying operation cycle, and a throttle passage for conducting a refrigerant during the dehumidifying operation cycle to secure a predetermined throttle amount. The refrigerant pipe for introducing and guiding the refrigerant into the dehumidifying throttle valve during the cooling / dehumidifying operation cycle is straight and connected to the dehumidifying throttle valve side wall in a substantially horizontal posture. The refrigerant pipe that guides the refrigerant from the
It is connected to the lower end of the dehumidification throttle valve, extends downward, and is then bent in the horizontal direction. Furthermore, this horizontal end is connected to the substantially central portion of the U-shaped distribution pipe whose refrigerant pipes are connected to both ends. Between the refrigerant pipes connected to both ends of this U-shaped distribution pipe,
The air conditioner according to claim 1, wherein a refrigerant pipe for introducing and guiding a refrigerant is inserted into the dehumidification throttle valve.
【請求項3】上記後側熱交換器部の冷媒入口部に接続さ
れる冷媒配管、後側熱交換器部出口と上記絞り装置入口
とを連通する冷媒配管、絞り装置出口と前側熱交換器部
入口を連通するU字状分流管を備えた冷媒配管、および
前側熱交換器部の冷媒出口部に接続される冷媒配管は、
その直径が、上記室内熱交換器を構成する熱交換パイプ
の直径よりも太い直径であることを特徴とする請求項2
記載の空気調和機。
3. A refrigerant pipe connected to a refrigerant inlet of the rear heat exchanger, a refrigerant pipe communicating the outlet of the rear heat exchanger with the inlet of the expansion device, an outlet of the expansion device and a front heat exchanger. The refrigerant pipe provided with a U-shaped distribution pipe communicating with the inlet of the section, and the refrigerant pipe connected to the refrigerant outlet of the front heat exchanger unit are
The diameter thereof is larger than the diameter of the heat exchange pipe constituting the indoor heat exchanger.
Air conditioner described.
JP2002054992A 2002-02-28 2002-02-28 Air conditioner Pending JP2003254555A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002054992A JP2003254555A (en) 2002-02-28 2002-02-28 Air conditioner
CN 03106785 CN1209591C (en) 2002-02-28 2003-02-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054992A JP2003254555A (en) 2002-02-28 2002-02-28 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003254555A true JP2003254555A (en) 2003-09-10

Family

ID=27784599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054992A Pending JP2003254555A (en) 2002-02-28 2002-02-28 Air conditioner

Country Status (2)

Country Link
JP (1) JP2003254555A (en)
CN (1) CN1209591C (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112685A (en) * 2004-10-13 2006-04-27 Rinnai Corp Bathroom heater
JP2006145050A (en) * 2004-11-16 2006-06-08 Daikin Ind Ltd Indoor unit for air conditioner
JP2007132646A (en) * 2005-10-11 2007-05-31 Fujitsu General Ltd Air conditioner
JP2007192442A (en) * 2006-01-18 2007-08-02 Daikin Ind Ltd Heat exchanger
JP2007212111A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Indoor unit for air conditioner
JP2007232266A (en) * 2006-02-28 2007-09-13 Fujitsu General Ltd Air conditioner
JP2008121997A (en) * 2006-11-13 2008-05-29 Fujitsu General Ltd Air conditioner
JP2008196811A (en) * 2007-02-14 2008-08-28 Mitsubishi Electric Corp Air conditioner
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
JP2009257744A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
US7987680B2 (en) 2005-10-11 2011-08-02 Fujitsu General Limited Air conditioner
JP2013185790A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Heat exchanger, and refrigeration cycle device
JP2014040985A (en) * 2012-08-23 2014-03-06 Daikin Ind Ltd Heat exchanger of air conditioner
JP2014126336A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Air conditioner
WO2014178176A1 (en) * 2013-04-30 2014-11-06 ダイキン工業株式会社 Indoor unit for air conditioning devices
JP2015021676A (en) * 2013-07-19 2015-02-02 三菱電機株式会社 Indoor heat exchanger, indoor equipment, outdoor heat exchanger, outdoor equipment, and air conditioner
JP2015105771A (en) * 2013-11-29 2015-06-08 株式会社富士通ゼネラル Heat exchanger
CN106404439A (en) * 2016-09-08 2017-02-15 海信(广东)空调有限公司 Wide-capacity air conditioner production detection device and detection method thereof
JP2017083115A (en) * 2015-10-30 2017-05-18 東芝キヤリア株式会社 Indoor unit of air conditioner
CN109099524A (en) * 2018-09-28 2018-12-28 四川长虹空调有限公司 A kind of air conditioner electronic expansion valve component installation structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353127C (en) * 2004-10-21 2007-12-05 海尔集团公司 High efficiency air conditioner
KR100656083B1 (en) * 2005-01-31 2006-12-11 엘지전자 주식회사 Heat exchanger in an air harmonizing system
CN104791910A (en) * 2015-04-03 2015-07-22 广东美的制冷设备有限公司 Refrigeration equipment and heat exchange assembly for same
JP2018115831A (en) * 2017-01-20 2018-07-26 ダイキン工業株式会社 Indoor unit
CN111023312B (en) * 2019-12-11 2021-07-30 青岛海信日立空调系统有限公司 Air conditioner indoor unit

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112685A (en) * 2004-10-13 2006-04-27 Rinnai Corp Bathroom heater
JP2006145050A (en) * 2004-11-16 2006-06-08 Daikin Ind Ltd Indoor unit for air conditioner
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
JP2007132646A (en) * 2005-10-11 2007-05-31 Fujitsu General Ltd Air conditioner
US7987680B2 (en) 2005-10-11 2011-08-02 Fujitsu General Limited Air conditioner
JP2007192442A (en) * 2006-01-18 2007-08-02 Daikin Ind Ltd Heat exchanger
JP4700513B2 (en) * 2006-02-13 2011-06-15 東芝キヤリア株式会社 Air conditioner indoor unit
JP2007212111A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Indoor unit for air conditioner
JP2007232266A (en) * 2006-02-28 2007-09-13 Fujitsu General Ltd Air conditioner
JP2008121997A (en) * 2006-11-13 2008-05-29 Fujitsu General Ltd Air conditioner
JP4628380B2 (en) * 2007-02-14 2011-02-09 三菱電機株式会社 Air conditioner
JP2008196811A (en) * 2007-02-14 2008-08-28 Mitsubishi Electric Corp Air conditioner
JP2009257744A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2013185790A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Heat exchanger, and refrigeration cycle device
JP2014040985A (en) * 2012-08-23 2014-03-06 Daikin Ind Ltd Heat exchanger of air conditioner
JP2014126336A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Air conditioner
WO2014178176A1 (en) * 2013-04-30 2014-11-06 ダイキン工業株式会社 Indoor unit for air conditioning devices
JP2014215011A (en) * 2013-04-30 2014-11-17 ダイキン工業株式会社 Air conditioner indoor unit
AU2014260980B2 (en) * 2013-04-30 2016-05-26 Daikin Industries, Ltd. Indoor unit for air conditioning devices
JP2015021676A (en) * 2013-07-19 2015-02-02 三菱電機株式会社 Indoor heat exchanger, indoor equipment, outdoor heat exchanger, outdoor equipment, and air conditioner
JP2015105771A (en) * 2013-11-29 2015-06-08 株式会社富士通ゼネラル Heat exchanger
JP2017083115A (en) * 2015-10-30 2017-05-18 東芝キヤリア株式会社 Indoor unit of air conditioner
CN106404439A (en) * 2016-09-08 2017-02-15 海信(广东)空调有限公司 Wide-capacity air conditioner production detection device and detection method thereof
CN109099524A (en) * 2018-09-28 2018-12-28 四川长虹空调有限公司 A kind of air conditioner electronic expansion valve component installation structure
CN109099524B (en) * 2018-09-28 2024-02-02 四川长虹空调有限公司 Air conditioner electronic expansion valve assembly mounting structure

Also Published As

Publication number Publication date
CN1209591C (en) 2005-07-06
CN1441203A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP2003254555A (en) Air conditioner
JP3204546B2 (en) Heat exchanger
JP2001174047A (en) Indoor unit of air conditioner
JP2005265263A (en) Heat-exchanger and air-conditioner
JP4411986B2 (en) Dehumidifier
WO2017208493A1 (en) Air conditioner
JP2003232553A (en) Air conditioner
EP2568247A2 (en) Air conditioner
JP2005133976A (en) Air-conditioner
JP2005273923A (en) Air conditioner
JP3851403B2 (en) Indoor unit for air conditioner
JP2006177573A (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP2003214723A (en) Air conditioner
JP3724011B2 (en) Air conditioner
JP4300502B2 (en) Parallel flow type heat exchanger for air conditioning
JP2007113796A (en) Air conditioner
JPH10196984A (en) Air conditioner
JP3885063B2 (en) Air conditioner
JPH04240364A (en) Heat exchanger
JP2000039167A (en) Air-conditioning equipment and heat exchanger unit
JP7392757B2 (en) Air conditioner indoor unit
JPH02203172A (en) Air conditioner
JPH1089803A (en) Air conditioner
JP4496951B2 (en) Air conditioner