WO2017208493A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2017208493A1
WO2017208493A1 PCT/JP2017/002899 JP2017002899W WO2017208493A1 WO 2017208493 A1 WO2017208493 A1 WO 2017208493A1 JP 2017002899 W JP2017002899 W JP 2017002899W WO 2017208493 A1 WO2017208493 A1 WO 2017208493A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
fin
flat
end surface
Prior art date
Application number
PCT/JP2017/002899
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 小松
禎夫 関谷
佐々木 重幸
羽生 博之
高藤 亮一
啓二 横山
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Publication of WO2017208493A1 publication Critical patent/WO2017208493A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to an air conditioner.
  • the heat exchanger of an air conditioner performs heat exchange between a refrigerant flowing inside and air flowing outside.
  • a method for improving heat transfer performance there are a method for improving heat transfer performance, a method for reducing flow loss of refrigerant flowing inside, and a method for reducing flow resistance of air flowing outside.
  • Patent Document 1 proposes a heat exchanger in which notched portions in which flat heat transfer tubes are inserted are formed in stacked fins. As a result, a drain water droplet is caused to flow down to the flat surface portion on the side where the notch portion of the fin is not formed (the side opposite to the insertion side of the flat heat transfer tube) using the influence of gravity. Improves drainage.
  • This invention solves the said subject, and it aims at providing the air conditioner which can aim at the improvement of energy saving performance, ensuring the drainage property of drain water.
  • the present invention includes a housing having an air inlet and an air outlet, a heat exchanger that exchanges heat between the air sucked from the air inlet and the refrigerant, and air that has been heat-exchanged in the heat exchanger.
  • a blower that discharges from the air outlet to the outside of the housing, and the heat exchanger is formed with a plurality of flat heat transfer tubes through which the refrigerant flows, and a cutout portion in which the flat heat transfer tubes are inserted.
  • the flat heat transfer tube is located on the inner side of the end surface of the fin on the insertion side of the flat heat transfer tube, and the notch is formed wider than the width of the flat heat transfer tube. It has a wide part.
  • an air conditioner capable of improving energy saving performance while ensuring drainage of drain water.
  • the heat exchanger of the indoor unit which concerns on 2nd Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is the sectional view on the AA line of (a). It is a figure explaining the effect in the front upper part heat exchanger of a 2nd embodiment. It is a figure explaining the effect in the front lower part heat exchanger of a 2nd embodiment.
  • the heat exchanger of the indoor unit which concerns on 3rd Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is the BB sectional view taken on the line of (a).
  • the heat exchanger of the indoor unit which concerns on 4th Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is CC sectional view taken on the line of (a). It is a figure which shows the structure of the refrigerant flow path in the indoor unit which concerns on 5th Embodiment.
  • an air conditioner according to an embodiment of the present invention will be described with reference to the drawings.
  • a home wall-mounted indoor unit will be described as an example of an air conditioner.
  • the present invention can also be applied to a domestic outdoor unit, a commercial indoor unit, and an outdoor unit.
  • FIG. 1 is a configuration diagram illustrating a refrigeration cycle to which the air conditioner of the first embodiment is applied.
  • an indoor unit (air conditioner) 1 and an outdoor unit 2 are connected by connecting pipes 3 and 4.
  • the indoor unit 1 includes a first indoor heat exchanger 11 (heat exchanger), a second indoor heat exchanger 12 (heat exchanger), a first expansion device 13, and a cross-flow fan 14 (blower). It is configured.
  • the first indoor heat exchanger 11 is connected to the connection pipe 3 via the pipe 15a.
  • the second indoor heat exchanger 12 is connected to the connection pipe 4 via the pipe 15b.
  • the first expansion device 13 is provided on a pipe 15 c that connects the first indoor heat exchanger 11 and the second indoor heat exchanger 12.
  • the blower is not limited to the cross-flow fan 14 and may be another type of blower such as a propeller fan.
  • the outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a second expansion device 24, and a blower fan 25.
  • the four-way valve 22 is connected to the discharge port of the compressor 21 via the pipe 26a, connected to the connection pipe 3 via the pipe 26b, connected to the outdoor heat exchanger 23 via the pipe 26d, and via the pipe 26e. And connected to the suction port of the compressor 21.
  • the pipe 26d and the pipe 26e are connected when the pipe 26a and the pipe 26b are connected, and the pipe 26b and the pipe 26e are connected when the pipe 26a and the pipe 26d are connected.
  • a propeller fan is usually used as the blower fan 25.
  • coolant the single refrigerant
  • the refrigerant flow path is switched by the four-way valve 22, and the high-pressure gaseous refrigerant compressed by the compressor 21 flows to the indoor unit 1 through the four-way valve 22 and the connection pipe 3.
  • the refrigerant that has entered the indoor unit 1 sequentially flows through the first indoor heat exchanger 11 and the second indoor heat exchanger 12, and is condensed by dissipating heat to the indoor air to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows to the outdoor unit 2 through the connection pipe 4. At this time, the first diaphragm device 13 is fully opened.
  • the high-pressure liquid refrigerant that has entered the outdoor unit 2 is depressurized by the action of the second expansion device 24, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 23, and absorbs the heat of the outdoor air. It evaporates and becomes a gaseous refrigerant.
  • the refrigerant that has become gaseous in the outdoor heat exchanger 23 passes through the four-way valve 22 and is compressed again by the compressor 21.
  • the high-pressure gaseous refrigerant compressed by the compressor 21 is condensed by dissipating heat to the outside air by the outdoor heat exchanger 23 to become a high-pressure liquid refrigerant.
  • the liquid refrigerant is depressurized by the action of the second expansion device 24, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 1 through the connection pipe 4.
  • the refrigerant that has entered the indoor unit 1 sequentially flows through the second indoor heat exchanger 12 and the first indoor heat exchanger 11, and evaporates by absorbing the heat of the indoor air.
  • the refrigerant evaporated in the indoor unit 1 returns to the outdoor unit 2 through the connection pipe 3, passes through the four-way valve 22, and is compressed again by the compressor 21.
  • the first expansion device 13 is in a fully open state, as in the heating operation mode.
  • the refrigerant flow direction is the same as in the cooling operation mode. That is, the high-pressure gaseous refrigerant compressed by the compressor 21 flows to the indoor unit 1 through the outdoor heat exchanger 23, the second expansion device 24, and the connection pipe 4. The refrigerant that has entered the indoor unit 1 passes through the second indoor heat exchanger 12, passes through the first expansion device 13 and the first indoor heat exchanger 11, returns to the outdoor unit 2 through the connection pipe 3, and enters the four-way valve 22. It flows again to the compressor 21 through.
  • the air passing through the first indoor heat exchanger 11 is cooled and dehumidified, and the air passing through the second indoor heat exchanger 12 is heated to reduce the humidity while suppressing the change in the indoor air temperature. Lowering control is performed.
  • the high-pressure gaseous refrigerant compressed by the compressor 21 is not condensed into the liquid refrigerant by the outdoor heat exchanger 23, and the high-temperature high-pressure gas-liquid is not condensed. It is necessary to flow to the indoor unit 1 through the connection pipe 4 while maintaining the two-phase state. For this reason, the second expansion device 24 is controlled to an open side or a fully open state as compared with the cooling operation mode.
  • the amount of heating in the second indoor heat exchanger 12 controls the amount of heat radiated to the outside air by the outdoor heat exchanger 23 by controlling the rotational speed of the blower fan 25 in addition to the opening degree control of the second expansion device 24.
  • the blower fan 25 is not shown in the figure, it is used for cooling the electrical equipment that controls the compressor 21 and the blower fan 25, so that it can be stopped at a low speed or intermittently. None do.
  • the refrigerant that has entered the indoor unit 1 in the high-temperature and high-pressure gas-liquid two-phase state passes through the second indoor heat exchanger 12 in the second indoor heat exchanger 12 by the operation of the cross-flow fan 14. It is condensed by dissipating heat to the room air and becomes a liquid refrigerant. Thereby, the air which passes the 2nd indoor heat exchanger 12 is heated, and temperature rises. Then, the liquid refrigerant flows to the first expansion device 13.
  • the first throttle device 13 is controlled to the closed side so as to have a flow path resistance, and the liquid refrigerant is decompressed by the action of the first throttle device 13 to be in a low-temperature and low-pressure gas-liquid two-phase state, It flows to the heat exchanger 11.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant evaporates in the first indoor heat exchanger 11 by absorbing heat from the air passing through the first indoor heat exchanger 11 by the operation of the cross-flow fan 14. At this time, the air passing through the first indoor heat exchanger 11 is cooled and dehumidified. In this way, the air is heated in the second indoor heat exchanger 12, and the air is cooled and dehumidified in the first indoor heat exchanger 11, so that the present operation mode is dehumidified while suppressing the temperature change of the indoor air. It is possible.
  • FIG. 2 is a longitudinal sectional view showing the structure of the indoor unit according to the first embodiment.
  • the indoor unit 1 includes a housing 30 having a front air inlet 41 (air inlet), an upper air inlet 42 (air inlet), and an air outlet 43.
  • the indoor unit 1 also includes a front upper heat exchanger 201 (second indoor heat exchanger 12), a front lower heat exchanger 202 (first indoor heat exchanger 11), and a rear heat exchanger 300 (second indoor heat exchanger). 12).
  • the indoor unit 1 includes a cross-flow fan 14 that discharges air exchanged in the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 from the air outlet 43 to the outside of the housing 30. It is equipped with.
  • a front air inlet 41 is provided on the front surface of the housing 30, and an upper air inlet 42 is provided on the upper surface of the housing 30.
  • a rectangular air filter 51 is attached to the casing 30 so as to cover the front air inlet 41 and the upper air inlet 42, and is configured to prevent dust from entering the interior of the indoor unit 1. ing.
  • an air outlet 43 is provided at the lower part of the housing 30, and cool air and hot air are blown out from here.
  • the air direction control board 52 is provided in the air blower outlet 43 of the housing
  • an openable / closable panel 31 is provided on the front surface of the housing 30, and the front air suction port 41 is configured together with the housing 30 by opening the panel 31.
  • the casing 30 has a back casing 32 and a front casing 33.
  • the back casing 32 is located on the back side of the cross-flow fan 14, is formed continuously with the air outlet 43, and has a curved surface 32 a as an air flow path wall surface.
  • the curved surface 32 a is disposed so that the concave surface faces forward, and is curved so as to gradually approach from the opening edge of the air outlet 43 toward the cross-flow fan 14.
  • the back casing 32 has a back nose portion 32b (also referred to as a rear guider) that protrudes between the cross-flow fan 14 and the rear heat exchanger 300 from an upper end portion (tip portion) 32a1 of the curved surface 32a.
  • a back nose portion 32b also referred to as a rear guider
  • the front casing 33 is located in front of the cross-flow fan 14 and below the front lower heat exchanger 202, and constitutes a wall surface 33a that continues to the air outlet 43 and extends toward the cross-flow fan 14 as an air upper flow path wall surface. is doing.
  • a front nose portion 33c also referred to as a stabilizer or a tongue portion
  • a substantially rectangular shape is integrally formed at the front end 33b of the front casing 33.
  • the cross-flow fan 14 is disposed so as to be sandwiched between the back nose portion 32b and the front nose portion 33c. That is, in the cross-flow fan 14, a substantially semicircular portion of the cross-flow fan 14 projects into the housing 30 from the tip 32 b 1 of the back nose portion 32 b and the tip 33 c 1 of the front nose portion 33 c.
  • a circulating vortex is formed at a location facing the front nose portion 33c, and room air is sucked into the housing 30 via the front air inlet 41 and the upper air inlet 42. Then, after passing through the air filter 51, the indoor heat exchanger 10, and the once-through fan 14, the air is blown out to the air outlet 43.
  • the blowing direction of the blown air can be controlled by a wind direction control plate 52 provided at the air outlet 43.
  • the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchange are provided in the middle of the air path from the front air inlet 41 and the upper air inlet 42 to the cross-flow fan 14.
  • the indoor heat exchanger 10 (the 1st indoor heat exchanger 11 and the 2nd indoor heat exchanger 12) comprised with the apparatus 300 is provided.
  • the front upper heat exchanger 201 is configured by combining a first front upper heat exchanger 201A and a second front upper heat exchanger 201B arranged in two rows in the air flow direction.
  • the front lower heat exchanger 202 is configured by combining the first front lower heat exchanger 202A and the second front lower heat exchanger 202B in the same manner as described above.
  • the back heat exchanger 300 is configured by combining the first back heat exchanger 300A and the second back heat exchanger 300B in the same manner as described above.
  • the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 are each configured by a fin 101 formed in a straight line and a plurality of flat heat transfer tubes 103 inserted through the fin 101. Yes.
  • the front upper heat exchanger 201 is arranged so as to be inclined so that the lower side is positioned forward of the upper side.
  • the front lower heat exchanger 202 is disposed so as to be inclined such that the upper side is positioned forward of the lower side.
  • the rear heat exchanger 300 is disposed so as to be inclined such that the upper side is positioned forward of the lower side.
  • the upper end surface 202a (upper end surface of the fin 101) of 202A and the upper end surface 202b (upper end surface of the fin 101) of the second front lower heat exchanger 202B are formed horizontally (or substantially horizontal) and joined together.
  • the upper end surface 201c (upper end surface of the fin 101) of the first front upper heat exchanger 201A, the upper end surface 201d (upper end surface of the fin 101) of the second front upper heat exchanger 201B, and the first rear heat exchanger 300A is formed horizontally (substantially horizontal) and joined so as to be a flat surface.
  • the end surface 201e of the long side of the second front upper heat exchanger 201B and the upper end surface 300b of the second rear heat exchanger 300B are joined to each other.
  • the indoor heat exchanger 10 including the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 has a substantially inverted V shape (substantially ⁇ shape) so as to surround the cross-flow fan 14. ).
  • the second indoor heat exchanger 12 and the first indoor heat exchanger 11 absorb the heat of the indoor air
  • the second indoor heat exchanger 12 and the first indoor heat exchanger 12 are absorbed.
  • Water vapor in the air cooled below the dew point temperature on the surfaces of the fins 101 constituting the heat exchanger 11 may condense and condense to generate drain water. If the drain water generated in this manner stays on the surface of the fins 101 or the flat heat transfer tubes 103 in the form of droplets, the flow of air is hindered. In order to deteriorate the heat transfer performance due to the decrease, it is important to suppress the retention of drain water on the surface of the fin 101.
  • the first indoor heat exchanger 11 absorbs the heat of the indoor air, it is cooled below the dew point temperature on the fin surface of the first indoor heat exchanger 11.
  • the water vapor in the air is condensed and condensed to generate drain water.
  • the drain water generated in this manner stays on the surface of the fin 101 or the flat heat transfer tube 103 in the form of droplets, the flow of air is obstructed, so the input of the cross-flow fan 14 and the blower fan 25 is increased, and the air volume is decreased. Therefore, it is important to suppress the drain water from staying on the surface of the fin 101.
  • FIG. 3 is an enlarged cross-sectional view of the heat exchanger of FIG.
  • the indoor heat exchanger 10 front upper heat exchanger 201, front lower heat exchanger 202, rear heat exchanger 300
  • the indoor heat exchanger 10 is, for example, a cross fin tube type, and includes fins 101 and flat transmission.
  • the heat tube 103 flat tube is combined.
  • the fin 101 is configured by laminating a plurality of strip-like thin plates made of aluminum or aluminum alloy with a plurality of intervals. Further, the fin 101 is formed with a concave notch 102 into which the flat heat transfer tube 103 is inserted.
  • the notch 102 is formed by notching from one end surface 101 a of the long side of the fin 101 (insertion side) toward the other end surface 101 b (opposite to the insertion side). It is formed to extend perpendicularly (substantially perpendicular) to 101a.
  • the notch 102 has an elongated recess 102a in which the flat heat transfer tube 103 is inserted and held, and a substantially triangular wide portion 102b that widens from the recess 102a toward the end surface 101a.
  • the flat heat transfer tube 103 is made of aluminum or aluminum alloy, and connects the opposed flat portions 103a and 103b to one end of the flat portion 103a and one end of the flat portion 103b.
  • the flat heat transfer tube 103 is partitioned by a plurality of partitions 103s extending from the inner wall of the flat surface portion 103a to the inner wall of the flat surface portion 103b, and is partitioned into a plurality of refrigerant flow paths.
  • the flat heat transfer tube 103 has a structure in which it is thermally connected to the notch 102 of the fin 101 by brazing in the furnace. Note that the number of the partitions 103s is not limited to this embodiment, and can be changed as appropriate.
  • the length L in the major axis direction g of the flat heat transfer tube 103 is formed to be shorter than the width W of the fin 101. Further, the flat heat transfer tube 103 is inserted so as to form a right angle (substantially a right angle) with respect to the end surface 101 a of the fin 101.
  • the distance along the major axis direction g from the end surface (end surface on the insertion side) 101a on the side where the notch 102 is provided to the flat heat transfer tube 103 is ⁇ , and the end surface 101b on the side opposite to the insertion side is flat from the end surface 101b.
  • the flat heat transfer tube 103 is set at a position that enters the inside of the fin 101 from the end surface 101 a of the fin 101.
  • the interval (shortest distance) between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103 is L1, and along the edge including the end surface 101a of the fin 101 between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103. If the distance is L2, L1 ⁇ L2.
  • the distance L2 includes an end surface 101a, an inclined end surface 101d extending from the end surface 101a toward the end portion 103c1 of one flat heat transfer tube 103, and an inclination extending from the end surface 101a toward the end portion 103c1 of the other flat heat transfer tube 103. It is the length obtained by adding the end face 101e.
  • the indoor heat exchanger 10 configured in this manner is configured such that the protruding portion 101t of the fin 101 is positioned on the insertion side with respect to the end portion 103c1 of the flat heat transfer tube 103 in the long axis direction g.
  • the fin 101 is formed to have a substantially wave shape along the arrangement direction of the flat heat transfer tubes 103 on the outer side in the long axis direction g than the end portion 103 c 1 of the flat heat transfer tube 103.
  • the fin 101 is formed to have a substantially wave shape along the arrangement direction of the flat heat transfer tubes 103 on the outer side in the long axis direction g than the end portion 103 c 1 of the flat heat transfer tube 103.
  • the indoor heat exchanger 10 has an end surface 101b (between an end portion 103d1 opposite to the insertion side in the major axis direction g of the flat heat transfer tube 103 and an end surface 101b opposite to the insertion side.
  • a flat portion 101u extending along the direction in which the flat heat transfer tubes 103 are arranged) is formed.
  • the planar portion 101u is continuously formed from one end (upper end) in the longitudinal direction of the fin 101 to the other end (lower end).
  • the first front upper heat exchanger 201A and the second front upper heat exchanger 201B are combined, and the first front lower heat is combined.
  • the exchanger 202A and the second front lower heat exchanger 202B are combined, and the first back heat exchanger 300A and the second back heat exchanger 300B are combined and used in a plurality of rows in the air flow direction.
  • the insertion sides of the flat heat transfer tubes 103 of the fins 101 of the first front upper heat exchanger 201A and the second front upper heat exchanger 201B are directed upward with respect to the direction of gravity.
  • the front lower heat exchanger 202 when the insertion side of the flat heat transfer tube 103 of the fin 101 of each of the first front lower heat exchanger 202A and the second front lower heat exchanger 202B is directed downward in the gravity direction, Arranged to face upward.
  • the flat heat transfer tube 103 of the second front upper heat exchanger 201 ⁇ / b> B is connected to the flat heat transfer tube 103 of the first front upper heat exchanger 201 ⁇ / b> A.
  • the positions are shifted in the longitudinal direction and arranged in a staggered pattern.
  • the flat heat transfer tubes 103 of the second back heat exchanger 300B are shifted in the longitudinal direction of the fins 101 in a staggered manner with respect to the flat heat transfer tubes 103 of the first back heat exchanger 300A.
  • the flat heat transfer tubes 103 are not arranged in a staggered manner, but the front lower heat exchanger 202 may also be arranged in a staggered manner in the same manner as described above.
  • FIG. 4 is a diagram illustrating a configuration of a refrigerant flow path in the indoor unit according to the first embodiment.
  • the indoor heat exchanger 10 of the indoor unit 1 is configured with the number of flow path branches (number of passes) corresponding to the flow rate of refrigerant flowing in the pipe. In other words, the number of branches is changed according to the ability.
  • points B, C, D, E, F, G, H, and I indicate branch points or junction points of the refrigerant flow paths.
  • the refrigerant flowing from the outdoor unit 2 flows into the indoor heat exchanger 10 from the point A in FIG. 4.
  • the refrigerant that has flowed in is branched into four flow paths at point B and flows through the front lower heat exchanger 202.
  • the branched refrigerant flows through the plurality of flat heat transfer tubes 103 of the second front lower heat exchanger 202B, and then passes through the flat heat transfer tubes 103 of the first front lower heat exchanger 202A. Streets meet at point C.
  • the merged refrigerant flows from the point C as one flow path, passes through the first expansion device 13 and flows to the point D.
  • the refrigerant that has passed through the first expansion device 13 is branched into three flow paths at the point D, and the second front upper heat exchanger 201B of the front upper heat exchanger 201 on the downstream side (downstream side) of the air flow.
  • the refrigerant merged at point E is branched into three flow paths at point F and flows through the plurality of flat heat transfer tubes 103 of the second rear heat exchanger 300B on the leeward side of the rear heat exchanger 300, and then on the windward side. It flows through the plurality of flat heat transfer tubes 103 of the first back heat exchanger 300A and joins at the point G.
  • the refrigerant merged at point G is directed to point H with one flow path, branched into two flow paths, and after flowing through the plurality of flat heat transfer tubes 103 of the windward first front upper heat exchanger 201A, They merge at point I and reach point J, which is the outlet of the indoor heat exchanger 10.
  • point J which is the outlet of the indoor heat exchanger 10.
  • the air flows from the point J contrary to the heating operation mode, and flows in the indoor heat exchanger 10 in the direction indicated by the broken line arrow in the figure.
  • the high-temperature and high-pressure refrigerant flowing from the outdoor unit 2 flows into the indoor heat exchanger 10 from the point J in FIG. 4 in a gas-liquid two-phase state. While the refrigerant flows from the point J to the point D, the front upper heat exchanger 201 and the rear heat exchanger 300 are condensed and liquefied by releasing heat to the air.
  • the high-pressure liquid refrigerant that has passed the point D is depressurized when passing through the first throttling device 13, enters a low-temperature low-pressure gas-liquid two-phase state, flows to the point C, and is branched into four flow paths.
  • the refrigerant branched at point C cools and dehumidifies the air when flowing through the front lower heat exchanger 202 (first front lower heat exchanger 202A and second front lower heat exchanger 202B), and merges at point B. It flows to the point A that is the outlet of the indoor heat exchanger 10.
  • FIG. 5 is a diagram for explaining the operational effects of the front upper heat exchanger of the first embodiment.
  • FIG. 5 shows the fin 101 and the flat heat transfer tube during the air flow and the cooling operation mode in the front upper heat exchanger 201 in the indoor heat exchanger 10 (see FIG. 2) of the air conditioner of the first embodiment.
  • the flow of drain water generated on the surface of 103 is schematically shown.
  • the rear heat exchanger 300 has the same effects as the front upper heat exchanger 201 except for the orientation different from that of the front upper heat exchanger 201, and thus the description of the rear heat exchanger 300 is omitted.
  • the flat heat transfer tubes 103 are generated by being cooled and dehumidified on the surfaces of the flat heat transfer tubes 103 and the fins 101.
  • the drained water (droplet) is dropped on the surface of the flat heat transfer tube 103 and the fin 101 by the action of gravity. Further, the drain water flows along the flat surface portion 103a of the flat heat transfer tube 103 arranged with an inclination angle from the horizontal, and flows down toward the side where the flat surface portion 101u of the fin 101 is formed.
  • the droplets that have reached the flat surface portion 101 u flow down to the lower end of the fin 101 on the surface of the flat surface portion 101 u of the fin 101 by the action of gravity and surface tension, and finally from the surface of the upper front heat exchanger 201. Drained.
  • the drain water generated on the surface of the fin 101 is discharged along the long axis direction of the flat heat transfer tube 103 having an inclination with respect to the horizontal, and the flat surface portion 101u where the notch portion 102 is not formed.
  • the drain water stays in place by being discharged along.
  • the notch 102 is formed adjacent to the notch 102 by forming the notch 102 in the fin 101 and the wide portion 102 b in the notch 102.
  • the length L2 (see FIG. 3) of the front edge (the end surface 101a and the inclined end surfaces 101d and 101e) of the fin 101A (101) is longer than the interval L1 (see FIG. 3) between the adjacent flat heat transfer tubes 103. Yes.
  • the air flow flows in from the direction substantially orthogonal to the front edge (end surface 101a, inclined end surfaces 101d, 101e) of the fin 101, as indicated by the broken-line arrows in FIG. A long front edge can be secured.
  • the inclined end surfaces 101d and 101e are not limited to those formed in a straight line shape, and can be appropriately changed such as a convexly curved shape, a concavely curved shape, a corrugated shape, and a stepped shape. .
  • a convexly curved shape, a concavely curved shape, a corrugated shape, or a stepped shape By forming a convexly curved shape, a concavely curved shape, a corrugated shape, or a stepped shape, the length L2 of the leading edge can be further increased as compared with the case of forming a linear shape, The exchange performance can be further increased.
  • the front edge (end surface 101a and inclined end surfaces 101d and 101e) is formed in a trapezoidal shape, but the front edge (end surface 101a and inclined end surfaces 101d and 101e) may be formed in an arc shape.
  • the wide portion 102b is formed between the insertion-side end portion 103c1 of the flat heat transfer tube 103 and the insertion-side end surface 101a.
  • the drain water on the surface of the indoor heat exchanger 10 can be efficiently discharged in the cooling operation mode, and the heat transfer performance of the fins 101 can be improved. Therefore, energy saving can be improved.
  • FIG. 6 is a diagram for explaining the effects of the front lower heat exchanger of the first embodiment. 6 shows the air flow and the surfaces of the fins 101 and the flat heat transfer tubes 103 in the cooling operation mode in the lower front heat exchanger 202 of the indoor heat exchanger 10 (see FIG. 2) of the first embodiment. 4 schematically shows the flow of drain water generated in the water.
  • the front lower heat exchanger 202 installed with the inlet of the notch 102 tilted with the gravitational direction on the upper side is generated by being cooled and dehumidified on the surfaces of the flat heat transfer tubes 103 and the fins 101.
  • Part of the drain water droplets is dropped by the action of gravity on the surfaces of the flat heat transfer tubes 103 and the fins 101.
  • the drain water droplets flow down along the long axis direction of the flat heat transfer tube 103 toward the side where the flat portion 101u is formed below the gravitational direction, and the surface of the flat portion 101u of the fin 101 It flows down toward the lower end of the fin 101 and is finally drained from the surface of the front lower heat exchanger 202.
  • some of the droplets of drain water move downstream on the flat portion 103a of the flat heat transfer tube 103 by the air flow (wind pressure) indicated by the white arrow in FIG.
  • the droplet of drain water flows down along the surface of the curved surface part 103c of the flat heat exchanger tube 103 by gravity and surface tension.
  • the drain water droplets flow down along the inclined end surface 101e, the end surface 101a, and the inclined end surface 101d, which are the rear edges of the fin 101, in order by gravity and surface tension.
  • the drain water droplets are captured by the end portion 103c1 on the insertion side of the flat heat transfer tube 103 and the rear edge of the fin 101 (the inclined end surface 101e, the end surface 101a, and the inclined end surface 101d) by gravity and surface tension. However, it flows down to the lower end of the fin 101 and is finally drained from the surface of the front lower heat exchanger 202.
  • the indoor heat exchanger 10 is inserted with a plurality of flat heat transfer tubes 103 through which refrigerant flows and the flat heat transfer tubes 103. And a fin 101 in which a notch 102 is formed. Further, the flat heat transfer tube 103 is positioned on the inner side of the fin 101 than the end surface 101 a of the fin 101 on the insertion side of the flat heat transfer tube 103, and the notch portion 102 is formed wider than the width of the flat heat transfer tube 103. Part 102b.
  • the fin 101 when the fin 101 is arranged with the insertion side of the flat heat transfer tube 103 facing forward and upward in the gravity direction like the front upper heat exchanger 201, a wide area for taking in air into the fin 101 is secured. Therefore, the heat transfer performance can be improved (see FIG. 5). Moreover, when the fins 101 are arranged with the insertion side of the flat heat transfer tube 103 rearward and upward in the gravitational direction as in the lower front heat exchanger 202, drain water (droplets) is driven by the cross-flow fan 14.
  • drain water easily flows from the inclined end surface 101e to the end surface 101a and from the inclined end surface 101d to the end portion 103c1 of the flat heat transfer tube 103. It becomes possible to improve drainage of drain water.
  • the drain water captured by the flat heat transfer tube 103 is used as the inclined end surface 101e of the fin 101.
  • the drainage of drain water can be improved.
  • the distance in the major axis direction g of the flat heat transfer tube 103 from the end surface 101a on the insertion side of the fin 101 to the end portion 103c1 on the insertion side of the flat heat transfer tube 103 is ⁇ (see FIG. 3). ). Further, the distance in the major axis direction g of the flat heat transfer tube 103 from the end surface 101b opposite to the insertion side of the fin 101 to the end 103d1 opposite to the insertion side of the flat heat transfer tube 103 is ⁇ (FIG. 3). At this time, the relation ⁇ ⁇ is set.
  • the flat surface portion 101u defined by the distance (width) ⁇ becomes a flow path through which water droplets of drain water flow, drainage of drain water is set by setting the distance ⁇ larger (wider) than the distance ⁇ . Can be improved.
  • the flat heat transfer tube 103 is inserted perpendicularly (or substantially perpendicularly) to the insertion-side end surface 101a. According to this, it becomes easy to put the flat heat transfer tube 103 into the fin 101.
  • the long axis direction of the flat heat transfer tube 103 is horizontal when the indoor heat exchanger 10 is inclined around the cross-flow fan 14. It will be arranged in.
  • the long axis direction g see FIG.
  • the flat heat transfer tube 103 is inserted perpendicularly to the end surface 101a of the fin 101, Even if the fins 101 are inclined, the flat heat transfer tubes 103 can be reliably arranged at an angle with respect to the horizontal, and the flat heat transfer tubes 103 can be easily installed in an inclined state.
  • the flat heat transfer tube 103 is disposed to be inclined with respect to the end surface 101a, it causes a rise in ventilation resistance.
  • a factor that increases the ventilation resistance by being arranged perpendicular to the end surface 101a. can be suppressed.
  • the indoor heat exchanger 10 (the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300) is inclined with respect to the gravity direction G so as to surround the cross-flow fan 14. Installed.
  • the once-through fan 14 so as to be surrounded by the indoor heat exchanger 10, the heat transfer performance can be improved.
  • the insertion side of the flat heat transfer tube 103 is on the upper side in the gravity direction G.
  • the flat heat transfer tube 103 is installed in a state where the major axis direction g (see FIG. 3) is inclined with respect to the horizontal direction Sh (see FIGS. 5 and 6). According to this, like the indoor heat exchanger 10 (front upper heat exchanger 201, front lower heat exchanger 202, and rear heat exchanger 300), the insertion side of the flat heat transfer tube 103 is directed upward in the gravity direction.
  • the lower end surfaces 201a and 201b of the front upper heat exchanger 201 and the upper end surfaces 202a and 202b of the front lower heat exchanger 202 are formed such that the fin 101 is horizontal (or substantially horizontal), and the horizontal It joins in the state of (or substantially horizontal) (refer FIG. 2).
  • the air flow which does not contribute to heat exchange can be suppressed, and furthermore, since the installation area of the fin 101 can be secured widely, heat exchange efficiency (heat transfer performance) can be improved, and energy saving performance can be improved.
  • the drain water drained from the front upper heat exchanger 201 is disposed on the front surface by not providing a gap in the joint portion between the front upper heat exchanger 201 and the front lower heat exchanger 202. Since it can be received by the lower heat exchanger 202, the drainage of drain water can be further improved.
  • the upper end surfaces 201c and 201d of the front upper heat exchanger 201 (first front upper heat exchanger 201A and second front upper heat exchanger 201B) and the rear heat exchanger 300 (first rear heat exchanger).
  • the upper end surface 300a of the exchanger 300A) is joined in a horizontal (or substantially horizontal) state so that the upper end surfaces 201c, 201d, and 300a are flat surfaces.
  • the end surface 201e of the second front upper heat exchanger 201B and the upper end surface 300b of the second back heat exchanger 300B are in contact with each other.
  • air can be prevented from passing through the gap between the second front upper heat exchanger 201B and the second rear heat exchanger 300B without contributing to heat exchange, so that the heat exchange rate (heat transfer performance) can be reduced.
  • the energy saving performance can be improved.
  • the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger. 300 has the same shape of the fin 101, and only in the installation direction (front upper heat exchanger 201 is facing upwards, front lower heat exchanger 202 is plugging side upwards, and rear heat exchanger 300 is plugging sides facing upwards) It can be configured simply by changing (see FIG. 2). Further, as shown in FIG. 2, the first front upper heat exchanger 201A and the second front upper heat exchanger 201B, the first front lower heat exchanger 202A and the second front lower heat exchanger 202B, and the first rear heat exchange.
  • the arrangement intervals (pitch) La, Lb, Lc of the flat heat transfer tubes 103 between the rows at any location of the heat exchangers arranged in a plurality of rows such as the heat exchanger 300A and the second back heat exchanger 300B (see FIG. 2) are all the same. For this reason, when the refrigerant flow path is configured, the members that connect the flat heat transfer tubes 103 to each other in order to configure the refrigerant flow path can be shared, and the manufacturing cost can be reduced.
  • FIG. 7A and 7B show a heat exchanger for an indoor unit according to the second embodiment, in which FIG. 7A is a longitudinal sectional view, and FIG. 7B is a sectional view taken along line AA in FIG.
  • the indoor unit 1 of the second embodiment includes the cut and raised portions 104, 104, 104, and 104 (protrusions), the cut and raised portion 105, and the ribs on the fin 101 of the first embodiment. 106 is added.
  • a plurality of cut and raised portions 104 are provided between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103. Further, the cut-and-raised portion 104 has a long and narrow plate shape in plan view, and is arranged at intervals along the long axis direction of the flat heat transfer tube 103.
  • the cut-and-raised portion 105 is formed in the same manner as the cut-and-raised portion 104, and is not formed between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103, but is located outside (difference) from the end portion 103c1 of the flat heat transfer tubes 103. It is formed in the protrusion part 101t of the trapezoid shape of planar view of the fin 101 which protrudes toward the end surface 101a) of the insertion side. Further, the cut and raised portion 105 is formed in parallel with the cut and raised portion 104.
  • the rib 106 is formed on the flat surface portion 101 u between the end portion 103 d 1 opposite to the insertion side of the flat heat transfer tube 103 and the end surface 101 b opposite to the insertion side of the fin 101.
  • the rib 106 is continuously formed along the flat surface portion 101u (along the longitudinal direction of the fin 101).
  • the three parallel straight lines shown in FIG. 7A indicate folding curves when the fin 101 is bent.
  • the cut-and-raised portion 104 has, for example, an extruded portion 104a formed by extruding a sheet metal (thin plate) constituting the fin 101 from one surface side to the other surface side by pressing. is doing.
  • the cut and raised portion 104 has slits 104b and 104b (through holes) formed on both sides in the width direction of the extruded portion 104a.
  • the slits 104b and 104b are formed to penetrate from the windward side toward the leeward side. Further, by forming the cut-and-raised portion 104 in the fin 101, the one surface side and the other surface side of the fin 101 communicate with each other.
  • the cut-and-raised portion 105 has the same shape as the cut-and-raised portion 104, has an extruded portion 105a, and slits 105b and 105b are formed on both sides in the width direction of the extruded portion 105a.
  • the rib 106 is formed in a substantially V shape in sectional view by bending the flat surface portion 101u along the end surface 101b.
  • the rib 106 is configured such that the convex side is the same side as the cut and raised side of the cut and raised portions 104 and 105. Accordingly, the dimension D in the stacking direction of one fin 101 can be reduced (shortened), and the fins 101 can be arranged densely when the fins 101 are stacked and arranged.
  • the rib 106 has a slope 106a formed on the convex end face 101a side and a slope 106b formed on the end face 101b side. Further, a groove portion 106 c formed in a V shape is formed on the surface opposite to the convex shape of the rib 106.
  • FIG. 8 is a diagram illustrating the operational effects of the front upper heat exchanger of the second embodiment
  • FIG. 9 is a diagram illustrating operational effects of the front lower heat exchanger of the second embodiment.
  • description about the same effect as 1st Embodiment is abbreviate
  • drain water droplets flow down along the surface of the flat portion 103 a of the flat heat transfer tube 103 and flow into the rib 106 side.
  • the drain water droplets flow down while being captured by the convex slope 106 a of the rib 106, and are finally drained from the surface of the front upper heat exchanger 201.
  • the cut-and-raised portions 104 and 105 are formed, even if drain water droplets generated on the end surface 101a side of the fin 101 are separated from the fin 101 and scattered from the windward side to the leeward side, they are cut and raised. It is possible to catch (capture) the drain water scattered by the portions 104 and 105, and to prevent the drain water from scattering toward the cross-flow fan 14 (see FIG. 2) from the end face 101b.
  • the drain water generated on the surface of the fin 101 is discharged along the major axis direction g (see FIG. 3) of the flat heat transfer tube 103 arranged with an inclination with respect to the horizontal, and the rib 106. Since the cut-and-raised portion is not provided at the location where the bending process is performed, the retention of drain water is suppressed. In addition, by providing the rib 106 on the side where the notch 102 is not provided (the side opposite to the insertion side), drain water can flow down along the rib 106 and ride on the air flow from the fin 101. Therefore, it is possible to prevent the drain water from separating and splashing into the air outlet 43.
  • strength of the fin 101 can be raised by providing the rib 106 on the opposite side to the insertion side of the flat heat exchanger tube 103.
  • FIG. 8 the front upper heat exchanger 201 has been described as an example, but the same effect can be obtained with the rear heat exchanger 300.
  • the drain water droplets moved to the downstream side by the air flow are converted into flat heat transfer tubes by gravity and surface tension.
  • the water flows down and is drained while being supplemented by the end surface 101a and the inclined end surfaces 101e and 101d of the fin 101 on the downstream side of 103.
  • the cut-and-raised portion 105 is provided in the region indicated by the distance ⁇ (see FIG. 7A), it becomes easier to supplement the drain water droplets, and the drain water droplets from the fins 101 It is possible to suppress withdrawal.
  • the rib 106 is configured by bending the fin 101 into a substantially V shape in a cross-sectional view. Thereby, drainage can be improved, improving the intensity
  • FIG. 7B since a substantially V-shaped groove 106c (see FIG. 7B) is formed on the opposite side of the rib 106 from the convex side, it is easy to trap the drain water droplets on the surface opposite to the fin 101. It becomes possible to improve drainage.
  • the fin 101 has the cut-and-raised part 104 as a protrusion between the adjacent flat heat exchanger tubes 103.
  • FIG. Thereby, the detachment
  • it has the cut-and-raised part 105 in the protrusion part 101t (refer Fig.7 (a)) of the fin 101.
  • FIG. Thereby, the separation of drain water droplets can be further suppressed, and the drainage can be further improved.
  • the case where the rib 106 is configured by bending the fin 101 has been described as an example.
  • a plate-like object is erected on the plane of the fin 101. It may be a configuration.
  • FIG. 10 shows a heat exchanger for an indoor unit according to the third embodiment, wherein (a) is a longitudinal sectional view, and (b) is a sectional view taken along line BB of (a).
  • the indoor unit 1 of the third embodiment is obtained by removing the cut and raised portion 105 from the configuration of the fin 101 of the second embodiment. That is, the cut-and-raised portion 104 is provided only between the adjacent flat heat transfer tubes 103, and the cut-and-raised portion (projection) is not provided on the protruding portion 101 t of the fin 101.
  • the cut and raised portion 105 of the second embodiment since the cut and raised portion 105 of the second embodiment is not provided, the deformation of the fin 101 can be suppressed, and the flat heat transfer tube 103 is attached to the fin 101. It is possible to prevent the insertion of the flat heat transfer tube 103 from being difficult, and to improve manufacturability (assembleability).
  • FIG. 11 shows a heat exchanger for an indoor unit according to the fourth embodiment, wherein (a) is a longitudinal sectional view and (b) is a sectional view taken along the line CC of (a).
  • the indoor unit 1 of 4th Embodiment is equipped with the rib 107 instead of the rib 106 of 2nd Embodiment and 3rd Embodiment.
  • the rib 107 is not formed continuously along the longitudinal direction of the fin 101 like the rib 106, and the end surface 101 b and the end portion 103 d 1 of the flat heat transfer tube 103 where the width of the fin 101 is the narrowest (smaller). Is formed intermittently on the flat surface portion 101v.
  • the rib 107 is formed by press-molding a thin plate-like fin 101.
  • the drain water flows down while being guided by the inclined surface 107 a of the rib 107.
  • the V-shaped groove 107c is formed on the opposite side of the convex side of the rib 107, so that the drain water is captured and drained also on the surface opposite to the convex side of the fin 101. can do.
  • the place where the width of the fin 101 is the narrowest in this way is a place where the droplet of drain water falls due to the influence of gravity, a place where the drain water concentrates, or a place where the water condenses. Therefore, in 4th Embodiment, the rib 107 which becomes a guide here can improve the intensity
  • the rib 107 is intermittently provided in the longitudinal direction of the fin 101, so that the air flow between the rib 107 and the rib 107 can be made smooth and the air flow is inhibited. Can be suppressed.
  • the rib 107 is not limited to a V-shape in cross-section, and may be a hemispherical, conical or other protrusion-like shape, or a plurality of such shapes as long as it can guide (guide) drain water. It may be.
  • FIG. 12 is a diagram illustrating a configuration of a refrigerant flow path in the indoor unit according to the fifth embodiment.
  • the indoor unit 1 of the fifth embodiment integrates the fin 101 of the first front upper heat exchanger 201A and the fin 101 of the first front lower heat exchanger 202A in the first embodiment.
  • the fin 101B is formed. That is, the fin 101B is configured by laminating a single thin plate made of aluminum or aluminum alloy with a plurality of intervals. Accordingly, the fin 101B is configured to have a boomerang shape (bent shape) in the side view of FIG.
  • the indoor unit 1 of 5th Embodiment is the fin 101C which formed integrally the fin 101 of the 2nd front upper heat exchanger 201B and the fin 101 of the 2nd front lower heat exchanger 202B in 1st Embodiment. It has. That is, the fin 101C is configured by laminating a single thin plate made of aluminum or aluminum alloy with a plurality of intervals. Thereby, it is comprised in the boomerang shape (bent shape) in the side view of FIG.
  • the fins 101B and 101C when drain water (droplets) flows down along the fins 101B and 101C above the bent portions P1 and P2, the first Compared with the embodiment, it becomes easier to flow from the upper part to the lower part of the bent parts P1 and P2, and the drainage can be improved. Moreover, in 5th Embodiment, since the number of parts can be reduced compared with 1st Embodiment by providing integrated fin 101B, 101C, the manufacturing process of the indoor unit 1 can be simplified.
  • the case where the fins 101B and 101C are applied to the first embodiment has been described as an example.
  • the fins 101B and 101C may be applied to the second to fourth embodiments. .
  • the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 are configured in two rows in the air flow direction, but depending on the capability of the air conditioner, 1 You may comprise by a row
  • the long-axis direction g of the flat heat transfer tube 103 is inserted in a direction substantially perpendicular to the end surface 101a of the aluminum fin 101, but when installed in the indoor unit 1
  • the major axis direction g of the flat heat transfer tube 103 may have an angle with respect to the horizontal so that drain water is drained with respect to the gravity direction G.
  • it installs with a desired angle along the air flow direction so that the further reduction effect of ventilation resistance can be acquired, higher energy saving property can be obtained.
  • the indoor heat exchangers 10 are arranged in a plurality of rows, different angles may be used in each row or in the rows, and the long axis direction of the flat heat transfer tube has an angle with respect to the horizontal. The effects of the present invention can be obtained.
  • the air conditioner having the reheat dehumidifying operation mode has been described as an example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

Provided is an air conditioner comprising: a housing (30) having a front-surface air suction opening (41) and a top-surface air suction opening (42); an indoor heat exchanger (10) for exchanging heat between a refrigerant and air which is sucked in from the front-surface air suction opening (41) and the top-surface air suction opening (42); and a cross-flow fan (14) by which air having been subjected to heat exchange at the indoor heat exchanger (10) is discharged from an air discharge opening (43) to the outside of the housing (30). The indoor heat exchanger (10) is provided with: a plurality of flat heat transfer pipes (103) through which the refrigerant flows; and fins (101) having formed therein cutouts (102) into which the flat heat transfer pipes (103) are inserted. The flat heat transfer pipes (103) are located inside the end surfaces (101a) of the fins (101), which are located on the side into which the flat heat transfer pipes (103) are inserted. The cutouts (102) have wide sections (102b) formed to have a greater width than the flat heat transfer pipes (103).

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 空気調和機の省エネルギ性能を向上させる方法として、空気調和機を構成する熱交換器の性能向上がある。空気調和機の熱交換器は、内部を流れる冷媒と、外部を流れる空気との間で熱交換を行うものである。熱交換器の性能向上には、伝熱性能を上げる方法、内部を流れる冷媒の流動損失を低減する方法、外部を流れる空気の流動抵抗を低減する方法がある。特に、空気調和機の省エネルギ性の向上には、設置性による寸法制約の点から、室内機用熱交換器の性能向上が必要となる。 As a method for improving the energy saving performance of an air conditioner, there is an improvement in the performance of a heat exchanger that constitutes the air conditioner. The heat exchanger of an air conditioner performs heat exchange between a refrigerant flowing inside and air flowing outside. For improving the performance of the heat exchanger, there are a method for improving heat transfer performance, a method for reducing flow loss of refrigerant flowing inside, and a method for reducing flow resistance of air flowing outside. In particular, in order to improve the energy saving performance of the air conditioner, it is necessary to improve the performance of the heat exchanger for indoor units from the viewpoint of dimensional constraints due to installation.
 これまで、空気調和機用熱交換器では、性能向上を図るべく、さまざまな工夫が行われ、伝熱管に扁平伝熱管を用いることで、伝熱性能を上げ、かつ、外部を流れる空気の流動抵抗を低減する方法が考えられてきた。扁平伝熱管を用いた空気調和機用熱交換器の例として、特許文献1では、積層されたフィンに扁平伝熱管が挿入される切欠部が形成された熱交換器が提案されている。これにより、フィンの切欠部が形成されていない側(扁平伝熱管の差込側とは反対側)の平面部に、重力の影響を利用してドレン水の液滴を流下させることでドレンの排水性を向上させている。 Up to now, in air conditioner heat exchangers, various devices have been devised to improve performance. By using flat heat transfer tubes as heat transfer tubes, heat transfer performance is improved and the flow of air flowing outside Methods for reducing the resistance have been considered. As an example of a heat exchanger for an air conditioner using a flat heat transfer tube, Patent Document 1 proposes a heat exchanger in which notched portions in which flat heat transfer tubes are inserted are formed in stacked fins. As a result, a drain water droplet is caused to flow down to the flat surface portion on the side where the notch portion of the fin is not formed (the side opposite to the insertion side of the flat heat transfer tube) using the influence of gravity. Improves drainage.
特開2010-139166号公報JP 2010-139166 A
 しかしながら、前記特許文献1に記載の空気調和機では、扁平伝熱管の差込側を風下側(空気の流れ方向の下流側)に向けて熱交換器を配置した場合、送風ファンの風(空気)によってドレン水が扁平伝熱管の端部で離脱して飛び散り、排水性が損なわれる課題がある。 However, in the air conditioner described in Patent Document 1, when the heat exchanger is arranged with the insertion side of the flat heat transfer tube facing the leeward side (downstream side in the air flow direction), the wind (air) of the blower fan ) Causes the drain water to detach and scatter at the end of the flat heat transfer tube, which impairs drainage.
 本発明は、前記課題を解決するものであり、ドレン水の排水性を確保しつつ、省エネルギ性能の向上を図ることが可能な空気調和機を提供することを目的とするものである。 This invention solves the said subject, and it aims at providing the air conditioner which can aim at the improvement of energy saving performance, ensuring the drainage property of drain water.
 本発明は、空気吸込口および空気吹出口を有する筐体と、前記空気吸込口から吸い込まれた空気と冷媒とを熱交換する熱交換器と、前記熱交換器において熱交換された空気を前記空気吹出口から前記筐体の外部に排出する送風機と、を備え、前記熱交換器は、前記冷媒が通流する複数の扁平伝熱管と、前記扁平伝熱管が挿入されている切欠部が形成されたフィンと、を備え、前記扁平伝熱管は、前記フィンの当該扁平伝熱管の差込側の端面よりも内側に位置し、前記切欠部は、前記扁平伝熱管の幅よりも幅広く形成された幅広部を有することを特徴とする。 The present invention includes a housing having an air inlet and an air outlet, a heat exchanger that exchanges heat between the air sucked from the air inlet and the refrigerant, and air that has been heat-exchanged in the heat exchanger. A blower that discharges from the air outlet to the outside of the housing, and the heat exchanger is formed with a plurality of flat heat transfer tubes through which the refrigerant flows, and a cutout portion in which the flat heat transfer tubes are inserted. The flat heat transfer tube is located on the inner side of the end surface of the fin on the insertion side of the flat heat transfer tube, and the notch is formed wider than the width of the flat heat transfer tube. It has a wide part.
 本発明によれば、ドレン水の排水性を確保しつつ、省エネルギ性能の向上を図ることが可能な空気調和機を提供できる。 According to the present invention, it is possible to provide an air conditioner capable of improving energy saving performance while ensuring drainage of drain water.
第1実施形態の空気調和機が適用される冷凍サイクルを示す構成図である。It is a lineblock diagram showing the refrigerating cycle to which the air harmony machine of a 1st embodiment is applied. 第1実施形態に係る室内機の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the indoor unit which concerns on 1st Embodiment. 図2の熱交換器の拡大断面図である。It is an expanded sectional view of the heat exchanger of FIG. 第1実施形態に係る室内機における冷媒流路の構成を示す図である。It is a figure which shows the structure of the refrigerant flow path in the indoor unit which concerns on 1st Embodiment. 第1実施形態の前面上部熱交換器における作用効果を説明する図である。It is a figure explaining the effect in the front upper part heat exchanger of a 1st embodiment. 第1実施形態の前面下部熱交換器における作用効果を説明する図である。It is a figure explaining the effect in the front lower part heat exchanger of a 1st embodiment. 第2実施形態に係る室内機の熱交換器を示し、(a)は縦断面図、(b)は(a)のA-A線断面図である。The heat exchanger of the indoor unit which concerns on 2nd Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is the sectional view on the AA line of (a). 第2実施形態の前面上部熱交換器における作用効果を説明する図である。It is a figure explaining the effect in the front upper part heat exchanger of a 2nd embodiment. 第2実施形態の前面下部熱交換器における作用効果を説明する図である。It is a figure explaining the effect in the front lower part heat exchanger of a 2nd embodiment. 第3実施形態に係る室内機の熱交換器を示し、(a)は縦断面図、(b)は(a)のB-B線断面図である。The heat exchanger of the indoor unit which concerns on 3rd Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is the BB sectional view taken on the line of (a). 第4実施形態に係る室内機の熱交換器を示し、(a)は縦断面図、(b)は(a)のC-C線断面図である。The heat exchanger of the indoor unit which concerns on 4th Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is CC sectional view taken on the line of (a). 第5実施形態に係る室内機における冷媒流路の構成を示す図である。It is a figure which shows the structure of the refrigerant flow path in the indoor unit which concerns on 5th Embodiment.
 以下、本発明の実施形態に係る空気調和機について図面を参照して説明する。なお、以下では、空気調和機として、家庭用の壁掛け式の室内機を例に挙げて説明するが、家庭用の室外機、業務用の室内機や室外機にも適用することができる。 Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings. In the following description, a home wall-mounted indoor unit will be described as an example of an air conditioner. However, the present invention can also be applied to a domestic outdoor unit, a commercial indoor unit, and an outdoor unit.
(第1実施形態)
 図1は、第1実施形態の空気調和機が適用される冷凍サイクルを示す構成図である。
 図1に示すように、空気調和装置100は、室内機(空気調和機)1と室外機2とが、接続配管3,4によって接続されている。
(First embodiment)
FIG. 1 is a configuration diagram illustrating a refrigeration cycle to which the air conditioner of the first embodiment is applied.
As shown in FIG. 1, in an air conditioner 100, an indoor unit (air conditioner) 1 and an outdoor unit 2 are connected by connecting pipes 3 and 4.
 室内機1は、第一室内熱交換器11(熱交換器)と、第二室内熱交換器12(熱交換器)と、第一絞り装置13、貫流ファン14(送風機)と、を備えて構成されている。第一室内熱交換器11は、配管15aを介して接続配管3と接続されている。第二室内熱交換器12は、配管15bを介して接続配管4と接続されている。第一絞り装置13は、第一室内熱交換器11と第二室内熱交換器12とを結ぶ配管15c上に設けられている。なお、送風機としては、貫流ファン14に限定されるものではなく、プロペラファンなどの他の種類の送風機であってもよい。 The indoor unit 1 includes a first indoor heat exchanger 11 (heat exchanger), a second indoor heat exchanger 12 (heat exchanger), a first expansion device 13, and a cross-flow fan 14 (blower). It is configured. The first indoor heat exchanger 11 is connected to the connection pipe 3 via the pipe 15a. The second indoor heat exchanger 12 is connected to the connection pipe 4 via the pipe 15b. The first expansion device 13 is provided on a pipe 15 c that connects the first indoor heat exchanger 11 and the second indoor heat exchanger 12. Note that the blower is not limited to the cross-flow fan 14 and may be another type of blower such as a propeller fan.
 室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、第二絞り装置24と、送風ファン25と、を備えて構成されている。四方弁22は、配管26aを介して圧縮機21の吐出口と接続され、配管26bを介して接続配管3と接続され、配管26dを介して室外熱交換器23と接続され、配管26eを介して圧縮機21の吸込口と接続されている。また、四方弁22は、配管26aと配管26bとを接続したときに配管26dと配管26eとが接続され、また配管26aと配管26dとを接続したときに配管26bと配管26eとが接続されるように冷媒流路が切り替えられる。なお、送風ファン25は、通常、プロペラファンが用いられる。 The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a second expansion device 24, and a blower fan 25. The four-way valve 22 is connected to the discharge port of the compressor 21 via the pipe 26a, connected to the connection pipe 3 via the pipe 26b, connected to the outdoor heat exchanger 23 via the pipe 26d, and via the pipe 26e. And connected to the suction port of the compressor 21. In the four-way valve 22, the pipe 26d and the pipe 26e are connected when the pipe 26a and the pipe 26b are connected, and the pipe 26b and the pipe 26e are connected when the pipe 26a and the pipe 26d are connected. Thus, the refrigerant flow path is switched. Note that a propeller fan is usually used as the blower fan 25.
 次に、暖房運転、冷房運転、再熱除湿運転の各運転モードにおける各要素の作用について、図1を参照しながら説明する。なお、冷媒としては、R32、R1234yf、R1234ze、R1123の単一冷媒、または、それらを主成分とする混合冷媒などが用いられる。 Next, the action of each element in each operation mode of heating operation, cooling operation, and reheat dehumidification operation will be described with reference to FIG. In addition, as a refrigerant | coolant, the single refrigerant | coolant of R32, R1234yf, R1234ze, R1123, or the mixed refrigerant | coolant which has them as a main component is used.
 暖房運転モードの場合、四方弁22によって冷媒流路が切り替えられ、圧縮機21で圧縮された高圧のガス状冷媒は、四方弁22および接続配管3を通って室内機1に流れる。室内機1に入った冷媒は、第一室内熱交換器11および第二室内熱交換器12を順に流れ、室内空気に放熱することで凝縮し、高圧の液状冷媒となる。高圧の液状冷媒は、接続配管4を通って室外機2に流れる。このとき、第一絞り装置13は全開状態である。 In the heating operation mode, the refrigerant flow path is switched by the four-way valve 22, and the high-pressure gaseous refrigerant compressed by the compressor 21 flows to the indoor unit 1 through the four-way valve 22 and the connection pipe 3. The refrigerant that has entered the indoor unit 1 sequentially flows through the first indoor heat exchanger 11 and the second indoor heat exchanger 12, and is condensed by dissipating heat to the indoor air to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flows to the outdoor unit 2 through the connection pipe 4. At this time, the first diaphragm device 13 is fully opened.
 室外機2に入った高圧の液状冷媒は、第二絞り装置24の作用で減圧され、低温低圧の気液二相状態となり、室外熱交換器23に流れ、室外空気の熱を吸熱することで蒸発し、ガス状冷媒となる。室外熱交換器23でガス状となった冷媒は、四方弁22を通って再び圧縮機21で圧縮される。 The high-pressure liquid refrigerant that has entered the outdoor unit 2 is depressurized by the action of the second expansion device 24, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 23, and absorbs the heat of the outdoor air. It evaporates and becomes a gaseous refrigerant. The refrigerant that has become gaseous in the outdoor heat exchanger 23 passes through the four-way valve 22 and is compressed again by the compressor 21.
 冷房運転モードの場合、圧縮機21で圧縮された高圧のガス状冷媒は、室外熱交換器23で外気に放熱することで凝縮し、高圧の液状冷媒となる。液状冷媒は、第二絞り装置24の作用で減圧され、低温低圧の気液二相状態となり、接続配管4を通って室内機1へ流れる。 In the cooling operation mode, the high-pressure gaseous refrigerant compressed by the compressor 21 is condensed by dissipating heat to the outside air by the outdoor heat exchanger 23 to become a high-pressure liquid refrigerant. The liquid refrigerant is depressurized by the action of the second expansion device 24, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 1 through the connection pipe 4.
 室内機1に入った冷媒は、第二室内熱交換器12および第一室内熱交換器11を順次流れ、室内空気の熱を吸熱することで蒸発する。室内機1で蒸発した冷媒は、接続配管3を通って、室外機2へ戻り、四方弁22を通って再び圧縮機21で圧縮されることになる。冷房運転モードの場合も、暖房運転モードと同様に、第一絞り装置13は全開状態である。 The refrigerant that has entered the indoor unit 1 sequentially flows through the second indoor heat exchanger 12 and the first indoor heat exchanger 11, and evaporates by absorbing the heat of the indoor air. The refrigerant evaporated in the indoor unit 1 returns to the outdoor unit 2 through the connection pipe 3, passes through the four-way valve 22, and is compressed again by the compressor 21. Also in the cooling operation mode, the first expansion device 13 is in a fully open state, as in the heating operation mode.
 再熱除湿運転モードの場合、冷媒の流れ方向は、冷房運転モードと同様である。すなわち、圧縮機21で圧縮された高圧のガス状冷媒は、室外熱交換器23、第二絞り装置24、接続配管4を通り、室内機1へ流れる。室内機1に入った冷媒は、第二室内熱交換器12を通り、第一絞り装置13、第一室内熱交換器11を通り、接続配管3を通じて、室外機2へ戻り、四方弁22を通って再び圧縮機21へと流れる。 In the reheat dehumidifying operation mode, the refrigerant flow direction is the same as in the cooling operation mode. That is, the high-pressure gaseous refrigerant compressed by the compressor 21 flows to the indoor unit 1 through the outdoor heat exchanger 23, the second expansion device 24, and the connection pipe 4. The refrigerant that has entered the indoor unit 1 passes through the second indoor heat exchanger 12, passes through the first expansion device 13 and the first indoor heat exchanger 11, returns to the outdoor unit 2 through the connection pipe 3, and enters the four-way valve 22. It flows again to the compressor 21 through.
 再熱除湿運転モードでは、第一室内熱交換器11を通過する空気を冷却除湿し、第二室内熱交換器12を通過する空気を加熱することで、室内空気温度の変化を抑えつつ湿度を下げるような制御が行われる。第二室内熱交換器12を通過する空気を加熱するため、圧縮機21で圧縮された高圧のガス状冷媒を、室外熱交換器23で液状冷媒までには凝縮させず、高温高圧の気液二相の状態のまま、接続配管4を介して室内機1へ流す必要がある。このため、第二絞り装置24は、冷房運転モードに比べて開側あるいは全開の状態に制御される。第二室内熱交換器12での加熱量は、第二絞り装置24の開度制御に加えて、送風ファン25の回転速度を制御して、室外熱交換器23で外気に放熱する量を制御する。なお、送風ファン25は、図示されていないが、圧縮機21や送風ファン25を制御する電気品の冷却にも用いられるため、低回転あるいは間欠的に動作することはあっても、完全に停止することはない。 In the reheat dehumidifying operation mode, the air passing through the first indoor heat exchanger 11 is cooled and dehumidified, and the air passing through the second indoor heat exchanger 12 is heated to reduce the humidity while suppressing the change in the indoor air temperature. Lowering control is performed. In order to heat the air passing through the second indoor heat exchanger 12, the high-pressure gaseous refrigerant compressed by the compressor 21 is not condensed into the liquid refrigerant by the outdoor heat exchanger 23, and the high-temperature high-pressure gas-liquid is not condensed. It is necessary to flow to the indoor unit 1 through the connection pipe 4 while maintaining the two-phase state. For this reason, the second expansion device 24 is controlled to an open side or a fully open state as compared with the cooling operation mode. The amount of heating in the second indoor heat exchanger 12 controls the amount of heat radiated to the outside air by the outdoor heat exchanger 23 by controlling the rotational speed of the blower fan 25 in addition to the opening degree control of the second expansion device 24. To do. Although the blower fan 25 is not shown in the figure, it is used for cooling the electrical equipment that controls the compressor 21 and the blower fan 25, so that it can be stopped at a low speed or intermittently. Never do.
 前記した制御によって、高温高圧の気液二相状態のまま、室内機1に入った冷媒は、第二室内熱交換器12において、貫流ファン14の動作により第二室内熱交換器12を通過する室内空気に放熱することで凝縮し、液状冷媒となる。これにより、第二室内熱交換器12を通過する空気は加熱されて温度上昇する。そして、液状冷媒は、第一絞り装置13へと流れる。第一絞り装置13では、流路抵抗を持つように閉側に制御され、液状冷媒は、第一絞り装置13の作用で減圧され、低温低圧の気液二相状態となって、第一室内熱交換器11へと流れる。低温低圧の気液二相の冷媒は、第一室内熱交換器11において、貫流ファン14の動作により第一室内熱交換器11を通過する空気から熱を吸熱することで蒸発する。このとき、第一室内熱交換器11を通過する空気は冷却除湿される。このように、第二室内熱交換器12において空気を加熱し、第一室内熱交換器11において空気を冷却除湿することで、本運転モードは室内空気の温度変化を抑えつつ、除湿することを可能としている。 By the above-described control, the refrigerant that has entered the indoor unit 1 in the high-temperature and high-pressure gas-liquid two-phase state passes through the second indoor heat exchanger 12 in the second indoor heat exchanger 12 by the operation of the cross-flow fan 14. It is condensed by dissipating heat to the room air and becomes a liquid refrigerant. Thereby, the air which passes the 2nd indoor heat exchanger 12 is heated, and temperature rises. Then, the liquid refrigerant flows to the first expansion device 13. The first throttle device 13 is controlled to the closed side so as to have a flow path resistance, and the liquid refrigerant is decompressed by the action of the first throttle device 13 to be in a low-temperature and low-pressure gas-liquid two-phase state, It flows to the heat exchanger 11. The low-temperature and low-pressure gas-liquid two-phase refrigerant evaporates in the first indoor heat exchanger 11 by absorbing heat from the air passing through the first indoor heat exchanger 11 by the operation of the cross-flow fan 14. At this time, the air passing through the first indoor heat exchanger 11 is cooled and dehumidified. In this way, the air is heated in the second indoor heat exchanger 12, and the air is cooled and dehumidified in the first indoor heat exchanger 11, so that the present operation mode is dehumidified while suppressing the temperature change of the indoor air. It is possible.
 図2は、第1実施形態に係る室内機の構造を示す縦断面図である。
 図2に示すように、室内機1は、前面空気吸込口41(空気吸込口)、上面空気吸込口42(空気吸込口)および空気吹出口43を有する筐体30を備えている。また、室内機1は、前面上部熱交換器201(第二室内熱交換器12)、前面下部熱交換器202(第一室内熱交換器11)および背面熱交換器300(第二室内熱交換器12)を備えている。また、室内機1は、前面上部熱交換器201、前面下部熱交換器202および背面熱交換器300において熱交換された空気を空気吹出口43から筐体30の外部に排出する貫流ファン14と、を備えている。
FIG. 2 is a longitudinal sectional view showing the structure of the indoor unit according to the first embodiment.
As shown in FIG. 2, the indoor unit 1 includes a housing 30 having a front air inlet 41 (air inlet), an upper air inlet 42 (air inlet), and an air outlet 43. The indoor unit 1 also includes a front upper heat exchanger 201 (second indoor heat exchanger 12), a front lower heat exchanger 202 (first indoor heat exchanger 11), and a rear heat exchanger 300 (second indoor heat exchanger). 12). In addition, the indoor unit 1 includes a cross-flow fan 14 that discharges air exchanged in the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 from the air outlet 43 to the outside of the housing 30. It is equipped with.
 筐体30の前面には、前面空気吸込口41が設けられ、筐体30の上面には、上面空気吸込口42が設けられている。また、筐体30には、矩形状のエアフィルタ51が前面空気吸込口41と上面空気吸込口42を覆うように取り付けられ、室内機1の内部への塵埃の侵入を防止するように構成されている。 A front air inlet 41 is provided on the front surface of the housing 30, and an upper air inlet 42 is provided on the upper surface of the housing 30. In addition, a rectangular air filter 51 is attached to the casing 30 so as to cover the front air inlet 41 and the upper air inlet 42, and is configured to prevent dust from entering the interior of the indoor unit 1. ing.
 また、筐体30の下部には空気吹出口43が設けられ、ここから冷風や温風が吹き出すようになっている。また、筐体30の空気吹出口43には、風向制御板52が開閉自在に設けられている。また、筐体30の前面には、開閉式のパネル31が設けられ、パネル31が開くことで筐体30とともに前面空気吸込口41を構成している。 In addition, an air outlet 43 is provided at the lower part of the housing 30, and cool air and hot air are blown out from here. Moreover, the air direction control board 52 is provided in the air blower outlet 43 of the housing | casing 30 so that opening and closing is possible. In addition, an openable / closable panel 31 is provided on the front surface of the housing 30, and the front air suction port 41 is configured together with the housing 30 by opening the panel 31.
 また、筐体30は、バックケーシング32およびフロントケーシング33を有している。バックケーシング32は、貫流ファン14の背面側に位置するとともに、空気吹出口43に連続して形成され、空気の流路壁面としての湾曲面32aを有している。この湾曲面32aは、凹面が前方を向くように配設され、空気吹出口43の開口縁部から貫流ファン14に向けて徐々に近づくように湾曲して形成されている。 The casing 30 has a back casing 32 and a front casing 33. The back casing 32 is located on the back side of the cross-flow fan 14, is formed continuously with the air outlet 43, and has a curved surface 32 a as an air flow path wall surface. The curved surface 32 a is disposed so that the concave surface faces forward, and is curved so as to gradually approach from the opening edge of the air outlet 43 toward the cross-flow fan 14.
 また、バックケーシング32は、湾曲面32aの上端部(先端部)32a1から、貫流ファン14と背面熱交換器300との間に突出するバックノーズ部32b(リアガイダともいう)を有している。 Further, the back casing 32 has a back nose portion 32b (also referred to as a rear guider) that protrudes between the cross-flow fan 14 and the rear heat exchanger 300 from an upper end portion (tip portion) 32a1 of the curved surface 32a.
 フロントケーシング33は、貫流ファン14の前方かつ前面下部熱交換器202の下方に位置し、空気の上部流路壁面として、空気吹出口43に連続して貫流ファン14に向けて延びる壁面33aを構成している。また、フロントケーシング33の奥側の先端33bには、略矩形状に曲げ形成されたフロントノーズ部33c(スタビライザ、舌部ともいう)が一体に形成されている。 The front casing 33 is located in front of the cross-flow fan 14 and below the front lower heat exchanger 202, and constitutes a wall surface 33a that continues to the air outlet 43 and extends toward the cross-flow fan 14 as an air upper flow path wall surface. is doing. In addition, a front nose portion 33c (also referred to as a stabilizer or a tongue portion) that is bent into a substantially rectangular shape is integrally formed at the front end 33b of the front casing 33.
 貫流ファン14は、バックノーズ部32bとフロントノーズ部33cとで挟まれるように配置されている。すなわち、貫流ファン14は、バックノーズ部32bの先端32b1とフロントノーズ部33cの先端33c1から、貫流ファン14の略半円部分が筐体30内に突出している。 The cross-flow fan 14 is disposed so as to be sandwiched between the back nose portion 32b and the front nose portion 33c. That is, in the cross-flow fan 14, a substantially semicircular portion of the cross-flow fan 14 projects into the housing 30 from the tip 32 b 1 of the back nose portion 32 b and the tip 33 c 1 of the front nose portion 33 c.
 貫流ファン14が回転すると、フロントノーズ部33cに対向する箇所に循環渦が形成され、室内空気が前面空気吸込口41および上面空気吸込口42を介して筐体30内に吸い込まれる。そして、エアフィルタ51、室内熱交換器10、貫流ファン14を通過した後、空気吹出口43へと吹き出される。吹出される空気の吹出方向は、空気吹出口43に設けられた風向制御板52によって制御可能となっている。 When the cross-flow fan 14 rotates, a circulating vortex is formed at a location facing the front nose portion 33c, and room air is sucked into the housing 30 via the front air inlet 41 and the upper air inlet 42. Then, after passing through the air filter 51, the indoor heat exchanger 10, and the once-through fan 14, the air is blown out to the air outlet 43. The blowing direction of the blown air can be controlled by a wind direction control plate 52 provided at the air outlet 43.
 また、筐体30の内部には、前面空気吸込口41および上面空気吸込口42から貫流ファン14までの風路の途中に、前面上部熱交換器201と前面下部熱交換器202と背面熱交換器300とで構成される室内熱交換器10(第一室内熱交換器11および第二室内熱交換器12)が設けられている。 Further, inside the housing 30, the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchange are provided in the middle of the air path from the front air inlet 41 and the upper air inlet 42 to the cross-flow fan 14. The indoor heat exchanger 10 (the 1st indoor heat exchanger 11 and the 2nd indoor heat exchanger 12) comprised with the apparatus 300 is provided.
 前面上部熱交換器201は、空気の流れ方向に2列並べた第一前面上部熱交換器201Aと第二前面上部熱交換器201Bとを組み合わせて構成されている。前面下部熱交換器202は、前記と同様にして、第一前面下部熱交換器202Aと第二前面下部熱交換器202Bとを組み合わせて構成されている。背面熱交換器300は、前記と同様にして、第一背面熱交換器300Aと第二背面熱交換器300Bとを組み合わせて構成されている。 The front upper heat exchanger 201 is configured by combining a first front upper heat exchanger 201A and a second front upper heat exchanger 201B arranged in two rows in the air flow direction. The front lower heat exchanger 202 is configured by combining the first front lower heat exchanger 202A and the second front lower heat exchanger 202B in the same manner as described above. The back heat exchanger 300 is configured by combining the first back heat exchanger 300A and the second back heat exchanger 300B in the same manner as described above.
 前面上部熱交換器201、前面下部熱交換器202および背面熱交換器300は、それぞれ、直線状に形成されたフィン101と、フィン101に挿通される複数の扁平伝熱管103とによって構成されている。 The front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 are each configured by a fin 101 formed in a straight line and a plurality of flat heat transfer tubes 103 inserted through the fin 101. Yes.
 前面上部熱交換器201は、下側が上側よりも前方に位置するように傾斜して配置されている。前面下部熱交換器202は、上側が下側よりも前方に位置するように傾斜して配置されている。背面熱交換器300は、上側が下側よりも前方に位置するように傾斜して配置されている。 The front upper heat exchanger 201 is arranged so as to be inclined so that the lower side is positioned forward of the upper side. The front lower heat exchanger 202 is disposed so as to be inclined such that the upper side is positioned forward of the lower side. The rear heat exchanger 300 is disposed so as to be inclined such that the upper side is positioned forward of the lower side.
 また、第一前面上部熱交換器201Aの下端面201a(フィン101の下端面)および第二前面上部熱交換器201Bの下端面201b(フィン101の下端面)と、第一前面下部熱交換器202Aの上端面202a(フィン101の上端面)および第二前面下部熱交換器202Bの上端面202b(フィン101の上端面)とが水平(または略水平)に形成され、互いに接合されている。 Also, the lower end surface 201a (lower end surface of the fin 101) of the first front upper heat exchanger 201A, the lower end surface 201b (lower end surface of the fin 101) of the second front upper heat exchanger 201B, and the first front lower heat exchanger. The upper end surface 202a (upper end surface of the fin 101) of 202A and the upper end surface 202b (upper end surface of the fin 101) of the second front lower heat exchanger 202B are formed horizontally (or substantially horizontal) and joined together.
 また、第一前面上部熱交換器201Aの上端面201c(フィン101の上端面)および第二前面上部熱交換器201Bの上端面201d(フィン101の上端面)と第一背面熱交換器300Aの上端面300a(フィン101の上端面)とが水平(略水平)に形成され、平坦面となるように接合されている。また、第二前面上部熱交換器201Bの長辺の端面201eと第二背面熱交換器300Bの上端面300bとが面同士で接合されている。 Further, the upper end surface 201c (upper end surface of the fin 101) of the first front upper heat exchanger 201A, the upper end surface 201d (upper end surface of the fin 101) of the second front upper heat exchanger 201B, and the first rear heat exchanger 300A. The upper end surface 300a (the upper end surface of the fin 101) is formed horizontally (substantially horizontal) and joined so as to be a flat surface. Moreover, the end surface 201e of the long side of the second front upper heat exchanger 201B and the upper end surface 300b of the second rear heat exchanger 300B are joined to each other.
 これにより、前面上部熱交換器201と前面下部熱交換器202と背面熱交換器300とで構成される室内熱交換器10は、貫流ファン14を囲むように略逆V字状(略Λ状)に配設されている。 Thereby, the indoor heat exchanger 10 including the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 has a substantially inverted V shape (substantially Λ shape) so as to surround the cross-flow fan 14. ).
 ところで、図1で説明した冷房運転モードの場合、第二室内熱交換器12および第一室内熱交換器11において、室内空気の熱を吸熱する際、第二室内熱交換器12および第一室内熱交換器11を構成するフィン101の表面上において露点温度以下に冷却された空気中の水蒸気が凝縮結露し、ドレン水を発生することがある。このようにして発生したドレン水が液滴の状態でフィン101あるいは扁平伝熱管103の表面上に滞留すると、空気の流れを阻害するため、貫流ファン14および送風ファン25の入力の増加、風量の低下による伝熱性能の悪化を生じるため、フィン101の表面上でのドレン水の滞留を抑制することが重要となる。 By the way, in the cooling operation mode described with reference to FIG. 1, when the second indoor heat exchanger 12 and the first indoor heat exchanger 11 absorb the heat of the indoor air, the second indoor heat exchanger 12 and the first indoor heat exchanger 12 are absorbed. Water vapor in the air cooled below the dew point temperature on the surfaces of the fins 101 constituting the heat exchanger 11 may condense and condense to generate drain water. If the drain water generated in this manner stays on the surface of the fins 101 or the flat heat transfer tubes 103 in the form of droplets, the flow of air is hindered. In order to deteriorate the heat transfer performance due to the decrease, it is important to suppress the retention of drain water on the surface of the fin 101.
 また、図1で説明した再熱除湿運転モードの場合、第一室内熱交換器11において、室内空気の熱を吸熱する際、第一室内熱交換器11のフィン表面上において露点温度以下に冷却された空気中の水蒸気が凝縮結露し、ドレン水を発生する。このように発生したドレン水が液滴の状態でフィン101あるいは扁平伝熱管103の表面上に滞留すると、空気の流れを阻害するため、貫流ファン14および送風ファン25の入力の増加、風量の低下による伝熱性能の悪化を生じるため、フィン101の表面上でのドレン水の滞留を抑制することが重要となる。 In the case of the reheat dehumidifying operation mode described with reference to FIG. 1, when the first indoor heat exchanger 11 absorbs the heat of the indoor air, it is cooled below the dew point temperature on the fin surface of the first indoor heat exchanger 11. The water vapor in the air is condensed and condensed to generate drain water. When the drain water generated in this manner stays on the surface of the fin 101 or the flat heat transfer tube 103 in the form of droplets, the flow of air is obstructed, so the input of the cross-flow fan 14 and the blower fan 25 is increased, and the air volume is decreased. Therefore, it is important to suppress the drain water from staying on the surface of the fin 101.
 図3は、図2の熱交換器の拡大断面図である。
 図3に示すように、室内熱交換器10(前面上部熱交換器201、前面下部熱交換器202、背面熱交換器300)は、例えば、クロスフィンチューブ型であり、フィン101と、扁平伝熱管103(扁平管)と、を組み合わせて構成されている。
FIG. 3 is an enlarged cross-sectional view of the heat exchanger of FIG.
As shown in FIG. 3, the indoor heat exchanger 10 (front upper heat exchanger 201, front lower heat exchanger 202, rear heat exchanger 300) is, for example, a cross fin tube type, and includes fins 101 and flat transmission. The heat tube 103 (flat tube) is combined.
 フィン101は、アルミニウム製またはアルミニウム合金製の短冊ストレート状の薄板を、複数枚間隔を空けて積層することで構成されている。また、フィン101には、扁平伝熱管103が差し込まれる凹状の切欠部102が形成されている。 The fin 101 is configured by laminating a plurality of strip-like thin plates made of aluminum or aluminum alloy with a plurality of intervals. Further, the fin 101 is formed with a concave notch 102 into which the flat heat transfer tube 103 is inserted.
 切欠部102は、フィン101の長辺の一方(差込側)の端面101aから、他方(差込側とは反対側)の端面101bに向けて切り欠かれることで形成され、フィン101の端面101aに対して垂直(略垂直)に延びて形成されている。この切欠部102は、扁平伝熱管103が挿入されて保持される細長形状の凹部102aと、この凹部102aから端面101aに向けて拡幅する略三角形状の幅広部102bと、を有している。 The notch 102 is formed by notching from one end surface 101 a of the long side of the fin 101 (insertion side) toward the other end surface 101 b (opposite to the insertion side). It is formed to extend perpendicularly (substantially perpendicular) to 101a. The notch 102 has an elongated recess 102a in which the flat heat transfer tube 103 is inserted and held, and a substantially triangular wide portion 102b that widens from the recess 102a toward the end surface 101a.
 図3の一部分解断面図に示すように、扁平伝熱管103は、アルミニウム製またはアルミニウム合金製であり、対向する平面部103a,103bと、平面部103aの一端と平面部103bの一端とを接続する曲面部103cと、平面部103aの他端と平面部103bの他端とを接続する曲面部103dと、を有し、断面視において略競技トラック状に形成されている。また、扁平伝熱管103は、平面部103aの内壁から平面部103bの内壁にかけて延びる複数の仕切り103sによって仕切られ、複数の冷媒流路に区画されている。また、扁平伝熱管103は、フィン101の切欠部102に炉中ロウ付によって熱的に接続された構造となっている。なお、仕切り103sの数は、本実施形態に限定されるものではなく、適宜変更できる。 As shown in the partially exploded sectional view of FIG. 3, the flat heat transfer tube 103 is made of aluminum or aluminum alloy, and connects the opposed flat portions 103a and 103b to one end of the flat portion 103a and one end of the flat portion 103b. A curved surface portion 103c, and a curved surface portion 103d that connects the other end of the flat surface portion 103a and the other end of the flat surface portion 103b. The flat heat transfer tube 103 is partitioned by a plurality of partitions 103s extending from the inner wall of the flat surface portion 103a to the inner wall of the flat surface portion 103b, and is partitioned into a plurality of refrigerant flow paths. Further, the flat heat transfer tube 103 has a structure in which it is thermally connected to the notch 102 of the fin 101 by brazing in the furnace. Note that the number of the partitions 103s is not limited to this embodiment, and can be changed as appropriate.
 扁平伝熱管103の長軸方向gの長さLは、フィン101の幅Wよりも短くなるように形成されている。また、扁平伝熱管103は、フィン101の端面101aに対して直角(略直角)を成すように挿入される。そして、切欠部102が設けられた側の端面(差込側の端面)101aから扁平伝熱管103までの長軸方向gに沿う距離をαとし、差込側とは反対側の端面101bから扁平伝熱管103までの長軸方向gに沿う距離をβとしたときに、α<βの関係となるように構成されている。このように、扁平伝熱管103は、フィン101の端面101aよりもフィン101の内側に入り込む位置に設定されている。 The length L in the major axis direction g of the flat heat transfer tube 103 is formed to be shorter than the width W of the fin 101. Further, the flat heat transfer tube 103 is inserted so as to form a right angle (substantially a right angle) with respect to the end surface 101 a of the fin 101. The distance along the major axis direction g from the end surface (end surface on the insertion side) 101a on the side where the notch 102 is provided to the flat heat transfer tube 103 is α, and the end surface 101b on the side opposite to the insertion side is flat from the end surface 101b. When the distance along the major axis direction g to the heat transfer tube 103 is β, the relationship is α <β. As described above, the flat heat transfer tube 103 is set at a position that enters the inside of the fin 101 from the end surface 101 a of the fin 101.
 また、隣り合う扁平伝熱管103と扁平伝熱管103との間隔(最短距離)をL1とし、隣り合う扁平伝熱管103と扁平伝熱管103との間におけるフィン101の端面101aを含む縁部に沿った距離をL2とすると、L1<L2となるように形成されている。なお、距離L2は、端面101aと、端面101aから一方の扁平伝熱管103の端部103c1に向けて延びる傾斜端面101dと、端面101aから他方の扁平伝熱管103の端部103c1に向けて延びる傾斜端面101eと、を加算した長さである。 Further, the interval (shortest distance) between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103 is L1, and along the edge including the end surface 101a of the fin 101 between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103. If the distance is L2, L1 <L2. The distance L2 includes an end surface 101a, an inclined end surface 101d extending from the end surface 101a toward the end portion 103c1 of one flat heat transfer tube 103, and an inclination extending from the end surface 101a toward the end portion 103c1 of the other flat heat transfer tube 103. It is the length obtained by adding the end face 101e.
 このように構成された室内熱交換器10は、扁平伝熱管103の長軸方向gの端部103c1よりも差込側にフィン101の突出部101tが位置するように構成されている。これにより、フィン101の差込側では、扁平伝熱管103の端部103c1よりも長軸方向gの外側において、フィン101が扁平伝熱管103の並び方向に沿って略波型を呈するように形成されている。 The indoor heat exchanger 10 configured in this manner is configured such that the protruding portion 101t of the fin 101 is positioned on the insertion side with respect to the end portion 103c1 of the flat heat transfer tube 103 in the long axis direction g. Thereby, on the insertion side of the fin 101, the fin 101 is formed to have a substantially wave shape along the arrangement direction of the flat heat transfer tubes 103 on the outer side in the long axis direction g than the end portion 103 c 1 of the flat heat transfer tube 103. Has been.
 また、室内熱交換器10は、扁平伝熱管103の長軸方向gの差込側とは反対側の端部103d1と、差込側とは反対側の端面101bとの間に、端面101b(扁平伝熱管103の並び方向)に沿って延びる平面部101uが形成されている。この平面部101uは、フィン101の長手方向の一端(上端)から他端(下端)まで連続して形成されている。 Further, the indoor heat exchanger 10 has an end surface 101b (between an end portion 103d1 opposite to the insertion side in the major axis direction g of the flat heat transfer tube 103 and an end surface 101b opposite to the insertion side. A flat portion 101u extending along the direction in which the flat heat transfer tubes 103 are arranged) is formed. The planar portion 101u is continuously formed from one end (upper end) in the longitudinal direction of the fin 101 to the other end (lower end).
 図2に戻って、第1実施形態の室内機1では、所望の能力を得るために、第一前面上部熱交換器201Aと第二前面上部熱交換器201Bとを組み合わせ、第一前面下部熱交換器202Aと第二前面下部熱交換器202Bとを組み合わせ、第一背面熱交換器300Aと第二背面熱交換器300Bとを組み合わせて、空気流れ方向に複数列並べて用いている。 Returning to FIG. 2, in the indoor unit 1 of the first embodiment, in order to obtain a desired capacity, the first front upper heat exchanger 201A and the second front upper heat exchanger 201B are combined, and the first front lower heat is combined. The exchanger 202A and the second front lower heat exchanger 202B are combined, and the first back heat exchanger 300A and the second back heat exchanger 300B are combined and used in a plurality of rows in the air flow direction.
 また、前面上部熱交換器201では、第一前面上部熱交換器201Aと第二前面上部熱交換器201Bのそれぞれのフィン101の扁平伝熱管103の差込側が重力方向に対して前方上向きとなるように配置されている。また、前面下部熱交換器202では、第一前面下部熱交換器202Aと第二前面下部熱交換器202Bのそれぞれのフィン101の扁平伝熱管103の差込側が重力方向を下向きとしたときに後方上向きとなるように配置されている。また、背面熱交換器300では、第一背面熱交換器300Aと第二背面熱交換器300Bのそれぞれのフィン101の扁平伝熱管103の差込側が重力方向を下向きとしたときに後方上向きとなるように配置されている。 Further, in the front upper heat exchanger 201, the insertion sides of the flat heat transfer tubes 103 of the fins 101 of the first front upper heat exchanger 201A and the second front upper heat exchanger 201B are directed upward with respect to the direction of gravity. Are arranged as follows. Further, in the front lower heat exchanger 202, when the insertion side of the flat heat transfer tube 103 of the fin 101 of each of the first front lower heat exchanger 202A and the second front lower heat exchanger 202B is directed downward in the gravity direction, Arranged to face upward. Moreover, in the back surface heat exchanger 300, when the insertion side of the flat heat exchanger tube 103 of each fin 101 of the 1st back surface heat exchanger 300A and the 2nd back surface heat exchanger 300B makes a gravity direction downward, it becomes back upward. Are arranged as follows.
 また、図2に示すように、前面上部熱交換器201では、第一前面上部熱交換器201Aの扁平伝熱管103に対して第二前面上部熱交換器201Bの扁平伝熱管103がフィン101の長手方向に位置をずらして千鳥状に配置されている。また、背面熱交換器300では、第一背面熱交換器300Aの扁平伝熱管103に対して第二背面熱交換器300Bの扁平伝熱管103がフィン101の長手方向に位置をずらして千鳥状に配置されている。なお、前面下部熱交換器202では、扁平伝熱管103が千鳥状に配置されていないが、前面下部熱交換器202についても、前記と同様にして千鳥状に配置してもよい。 As shown in FIG. 2, in the front upper heat exchanger 201, the flat heat transfer tube 103 of the second front upper heat exchanger 201 </ b> B is connected to the flat heat transfer tube 103 of the first front upper heat exchanger 201 </ b> A. The positions are shifted in the longitudinal direction and arranged in a staggered pattern. Further, in the back heat exchanger 300, the flat heat transfer tubes 103 of the second back heat exchanger 300B are shifted in the longitudinal direction of the fins 101 in a staggered manner with respect to the flat heat transfer tubes 103 of the first back heat exchanger 300A. Has been placed. In the front lower heat exchanger 202, the flat heat transfer tubes 103 are not arranged in a staggered manner, but the front lower heat exchanger 202 may also be arranged in a staggered manner in the same manner as described above.
 図4は、第1実施形態に係る室内機における冷媒流路の構成を示す図である。室内機1の室内熱交換器10は、管内を流れる冷媒流量に応じた流路分岐数(パス数)で構成される。つまり、能力に応じて、分岐の数を変えるようになっている。なお、図4において、点B,C,D,E,F,G,H,Iは、冷媒流路の分岐点または合流点を示している。 FIG. 4 is a diagram illustrating a configuration of a refrigerant flow path in the indoor unit according to the first embodiment. The indoor heat exchanger 10 of the indoor unit 1 is configured with the number of flow path branches (number of passes) corresponding to the flow rate of refrigerant flowing in the pipe. In other words, the number of branches is changed according to the ability. In FIG. 4, points B, C, D, E, F, G, H, and I indicate branch points or junction points of the refrigerant flow paths.
 図4に示すように、暖房運転モードでは、実線矢印で示すように、室外機2(図1参照)から流入した冷媒は、図4中のA点から室内熱交換器10に流入する。流入した冷媒は、B点で4つの流路に分岐されて前面下部熱交換器202を流れる。前面下部熱交換器202では、分岐された冷媒が第二前面下部熱交換器202Bの複数の扁平伝熱管103を通流した後、第一前面下部熱交換器202Aの複数の扁平伝熱管103を通り、C点で合流する。合流した冷媒は、C点からは1つの流路のまま流れ、第一絞り装置13を通過してD点まで流れる。 As shown in FIG. 4, in the heating operation mode, as indicated by the solid line arrow, the refrigerant flowing from the outdoor unit 2 (see FIG. 1) flows into the indoor heat exchanger 10 from the point A in FIG. 4. The refrigerant that has flowed in is branched into four flow paths at point B and flows through the front lower heat exchanger 202. In the front lower heat exchanger 202, the branched refrigerant flows through the plurality of flat heat transfer tubes 103 of the second front lower heat exchanger 202B, and then passes through the flat heat transfer tubes 103 of the first front lower heat exchanger 202A. Streets meet at point C. The merged refrigerant flows from the point C as one flow path, passes through the first expansion device 13 and flows to the point D.
 次に、第一絞り装置13を通過した冷媒は、D点で3つの流路に分岐されて前面上部熱交換器201の空気流れ下流側(風下側)の第二前面上部熱交換器201Bの複数の扁平伝熱管103を流れた後、E点で合流する。E点で合流した冷媒は、F点で3つの流路に分岐されて背面熱交換器300の風下側の第二背面熱交換器300Bの複数の扁平伝熱管103を流れた後、風上側の第一背面熱交換器300Aの複数の扁平伝熱管103を流れ、G点で合流する。G点で合流した冷媒は、1つの流路のままH点に向かい、2つの流路に分岐し、風上側の第一前面上部熱交換器201Aの複数の扁平伝熱管103を流れた後、I点で合流し、室内熱交換器10の出口であるJ点に達する。なお、冷房運転モードでは、暖房運転モードとは逆にJ点から流入し、図中破線矢印で示す向きに室内熱交換器10内を流れる。 Next, the refrigerant that has passed through the first expansion device 13 is branched into three flow paths at the point D, and the second front upper heat exchanger 201B of the front upper heat exchanger 201 on the downstream side (downstream side) of the air flow. After flowing through the plurality of flat heat transfer tubes 103, they merge at point E. The refrigerant merged at point E is branched into three flow paths at point F and flows through the plurality of flat heat transfer tubes 103 of the second rear heat exchanger 300B on the leeward side of the rear heat exchanger 300, and then on the windward side. It flows through the plurality of flat heat transfer tubes 103 of the first back heat exchanger 300A and joins at the point G. The refrigerant merged at point G is directed to point H with one flow path, branched into two flow paths, and after flowing through the plurality of flat heat transfer tubes 103 of the windward first front upper heat exchanger 201A, They merge at point I and reach point J, which is the outlet of the indoor heat exchanger 10. In the cooling operation mode, the air flows from the point J contrary to the heating operation mode, and flows in the indoor heat exchanger 10 in the direction indicated by the broken line arrow in the figure.
 また、再熱除湿運転モードでは、室外機2(図1参照)から流入した高温高圧の冷媒は、気液二相の状態で図4中のJ点から室内熱交換器10に流入する。冷媒がJ点からD点へと流れる途上、前面上部熱交換器201、背面熱交換器300において、空気へ放熱することで凝縮液化する。D点を通過した高圧の液冷媒は、第一絞り装置13を通過する際に減圧され、低温低圧の気液二相状態となってC点へと流れ、4つの流路に分岐される。C点で分岐された冷媒は、前面下部熱交換器202(第一前面下部熱交換器202Aおよび第二前面下部熱交換器202B)を流れる際に、空気を冷却除湿し、B点で合流し室内熱交換器10の出口であるA点へと流れる。 In the reheat dehumidifying operation mode, the high-temperature and high-pressure refrigerant flowing from the outdoor unit 2 (see FIG. 1) flows into the indoor heat exchanger 10 from the point J in FIG. 4 in a gas-liquid two-phase state. While the refrigerant flows from the point J to the point D, the front upper heat exchanger 201 and the rear heat exchanger 300 are condensed and liquefied by releasing heat to the air. The high-pressure liquid refrigerant that has passed the point D is depressurized when passing through the first throttling device 13, enters a low-temperature low-pressure gas-liquid two-phase state, flows to the point C, and is branched into four flow paths. The refrigerant branched at point C cools and dehumidifies the air when flowing through the front lower heat exchanger 202 (first front lower heat exchanger 202A and second front lower heat exchanger 202B), and merges at point B. It flows to the point A that is the outlet of the indoor heat exchanger 10.
 図5は、第1実施形態の前面上部熱交換器における作用効果を説明する図である。なお、図5は、第1実施形態の空気調和機の室内熱交換器10(図2参照)のうち、前面上部熱交換器201における、空気の流れと冷房運転モード時にフィン101および扁平伝熱管103の表面に発生するドレン水の流れを模式的に示したものである。なお、背面熱交換器300については、前面上部熱交換器201とは向きが異なるだけで、前面上部熱交換器201と同様の作用効果を有するので、背面熱交換器300の説明を省略する。 FIG. 5 is a diagram for explaining the operational effects of the front upper heat exchanger of the first embodiment. FIG. 5 shows the fin 101 and the flat heat transfer tube during the air flow and the cooling operation mode in the front upper heat exchanger 201 in the indoor heat exchanger 10 (see FIG. 2) of the air conditioner of the first embodiment. The flow of drain water generated on the surface of 103 is schematically shown. The rear heat exchanger 300 has the same effects as the front upper heat exchanger 201 except for the orientation different from that of the front upper heat exchanger 201, and thus the description of the rear heat exchanger 300 is omitted.
 図5に示すように、扁平伝熱管103を、切欠部102を設けたフィン101に挿入した前面上部熱交換器201では、扁平伝熱管103およびフィン101の表面上で冷却除湿されることで生成されたドレン水(液滴)が、扁平伝熱管103およびフィン101の表面を重力の作用で滴下する。さらに、ドレン水は、水平より傾き角を持って配置された扁平伝熱管103の平面部103a上に沿って流れ、フィン101の平面部101uが形成された側に向かって流下する。平面部101uに到達した液滴は、重力の作用と表面張力の作用によって、フィン101の平面部101uの表面上をフィン101の下端まで流下し、最終的に前面上部熱交換器201の表面から排水される。このように、フィン101の表面上で発生するドレン水は、水平に対して傾きを持つ扁平伝熱管103の長軸方向に沿って排出されるとともに、切欠部102の形成されていない平面部101uに沿って排出されることで、ドレン水の滞留が抑性される。 As shown in FIG. 5, in the front upper heat exchanger 201 in which the flat heat transfer tubes 103 are inserted into the fins 101 provided with the notches 102, the flat heat transfer tubes 103 are generated by being cooled and dehumidified on the surfaces of the flat heat transfer tubes 103 and the fins 101. The drained water (droplet) is dropped on the surface of the flat heat transfer tube 103 and the fin 101 by the action of gravity. Further, the drain water flows along the flat surface portion 103a of the flat heat transfer tube 103 arranged with an inclination angle from the horizontal, and flows down toward the side where the flat surface portion 101u of the fin 101 is formed. The droplets that have reached the flat surface portion 101 u flow down to the lower end of the fin 101 on the surface of the flat surface portion 101 u of the fin 101 by the action of gravity and surface tension, and finally from the surface of the upper front heat exchanger 201. Drained. Thus, the drain water generated on the surface of the fin 101 is discharged along the long axis direction of the flat heat transfer tube 103 having an inclination with respect to the horizontal, and the flat surface portion 101u where the notch portion 102 is not formed. The drain water stays in place by being discharged along.
 また、図5において白抜き矢印で示す空気流れ方向の上流側(風上側)において、フィン101に切欠部102を形成するとともに切欠部102に幅広部102bを形成することによって、隣り合う切欠部102の間のフィン101A(101)の前縁(端面101aおよび傾斜端面101d,101e)の長さL2(図3参照)を、隣り合う扁平伝熱管103の間隔L1(図3参照)より長くしている。このとき、空気の流れは、図5中の破線矢印で示すように、フィン101の前縁(端面101a、傾斜端面101d,101e)に対して略直交する方向から流入することになり、フィン101の前縁長さを長く確保できる。これにより、高い熱伝達率を確保できるため、その結果としてフィン101の熱交換性能を上げることが可能となる。また、幅広部102bを形成してフィン101の前縁に傾斜端面101d,101eが形成されることで、空気が流れ込む風上側に向けられる前縁の長さをより長く形成できるので、熱交換性能をさらに上げることが可能になる。 Further, on the upstream side (windward side) in the air flow direction indicated by the white arrow in FIG. 5, the notch 102 is formed adjacent to the notch 102 by forming the notch 102 in the fin 101 and the wide portion 102 b in the notch 102. The length L2 (see FIG. 3) of the front edge (the end surface 101a and the inclined end surfaces 101d and 101e) of the fin 101A (101) is longer than the interval L1 (see FIG. 3) between the adjacent flat heat transfer tubes 103. Yes. At this time, the air flow flows in from the direction substantially orthogonal to the front edge (end surface 101a, inclined end surfaces 101d, 101e) of the fin 101, as indicated by the broken-line arrows in FIG. A long front edge can be secured. Thereby, since a high heat transfer rate can be ensured, it is possible to improve the heat exchange performance of the fins 101 as a result. Moreover, since the inclined end faces 101d and 101e are formed on the front edge of the fin 101 by forming the wide portion 102b, the length of the front edge directed toward the windward side where air flows can be formed longer, so that heat exchange performance Can be further increased.
 なお、傾斜端面101d,101eは、直線状に形成されたものに限定されず、凸状に湾曲した形状、凹状に湾曲した形状、波型の形状、階段状の形状など適宜変更することができる。凸状に湾曲した形状、凹状に湾曲した形状、波型の形状、階段状の形状にすることで、直線状に形成する場合よりも前縁の長さL2をさらに長くすることができ、熱交換性能をさらに上げることが可能になる。また、本実施形態では、前縁(端面101aおよび傾斜端面101d,101e)が台形状に形成されているが、前縁(端面101aおよび傾斜端面101d,101e)を円弧形状にしてもよい。 The inclined end surfaces 101d and 101e are not limited to those formed in a straight line shape, and can be appropriately changed such as a convexly curved shape, a concavely curved shape, a corrugated shape, and a stepped shape. . By forming a convexly curved shape, a concavely curved shape, a corrugated shape, or a stepped shape, the length L2 of the leading edge can be further increased as compared with the case of forming a linear shape, The exchange performance can be further increased. In this embodiment, the front edge (end surface 101a and inclined end surfaces 101d and 101e) is formed in a trapezoidal shape, but the front edge (end surface 101a and inclined end surfaces 101d and 101e) may be formed in an arc shape.
 また、幅広部102bは、扁平伝熱管103の差込側の端部103c1と差込側の端面101aとの間に形成されている。これにより、扁平伝熱管103の平面部103a,103bおよび曲面部103dにフィン101の凹部102aの端面を面接触させることができるので、扁平伝熱管103内を流れる冷媒と、空気との間における熱交換効率を高めることができる。 The wide portion 102b is formed between the insertion-side end portion 103c1 of the flat heat transfer tube 103 and the insertion-side end surface 101a. Thereby, since the end surface of the recessed part 102a of the fin 101 can be brought into surface contact with the flat surface portions 103a and 103b and the curved surface portion 103d of the flat heat transfer tube 103, heat between the refrigerant flowing in the flat heat transfer tube 103 and the air. Exchange efficiency can be improved.
 このように、第1実施形態の室内機1では、冷房運転モード時における室内熱交換器10の表面上のドレン水の排出を効率よく行うことができ、またフィン101の伝熱性能を高めることができるので、省エネルギ性を向上させることができる。 Thus, in the indoor unit 1 of the first embodiment, the drain water on the surface of the indoor heat exchanger 10 can be efficiently discharged in the cooling operation mode, and the heat transfer performance of the fins 101 can be improved. Therefore, energy saving can be improved.
 図6は、第1実施形態の前面下部熱交換器における作用効果を説明する図である。なお、図6は、第1実施形態の室内熱交換器10(図2参照)のうち、前面下部熱交換器202における、空気の流れと冷房運転モード時のフィン101および扁平伝熱管103の表面に発生するドレン水の流れを模式的に示したものである。 FIG. 6 is a diagram for explaining the effects of the front lower heat exchanger of the first embodiment. 6 shows the air flow and the surfaces of the fins 101 and the flat heat transfer tubes 103 in the cooling operation mode in the lower front heat exchanger 202 of the indoor heat exchanger 10 (see FIG. 2) of the first embodiment. 4 schematically shows the flow of drain water generated in the water.
 図6に示すように、切欠部102の入口を重力方向上側にして傾けて設置した前面下部熱交換器202では、扁平伝熱管103およびフィン101の表面上で冷却除湿されることで生成されたドレン水の液滴は、その一部が扁平伝熱管103およびフィン101の表面を重力の作用で滴下する。そして、ドレン水の液滴は、扁平伝熱管103の長軸方向に沿って、重力方向の下方にある平面部101uが形成された側に向かって流下し、そしてフィン101の平面部101uの表面上をフィン101の下端に向かって流下し、最終的に前面下部熱交換器202の表面から排水される。 As shown in FIG. 6, the front lower heat exchanger 202 installed with the inlet of the notch 102 tilted with the gravitational direction on the upper side is generated by being cooled and dehumidified on the surfaces of the flat heat transfer tubes 103 and the fins 101. Part of the drain water droplets is dropped by the action of gravity on the surfaces of the flat heat transfer tubes 103 and the fins 101. Then, the drain water droplets flow down along the long axis direction of the flat heat transfer tube 103 toward the side where the flat portion 101u is formed below the gravitational direction, and the surface of the flat portion 101u of the fin 101 It flows down toward the lower end of the fin 101 and is finally drained from the surface of the front lower heat exchanger 202.
 また、ドレン水の液滴の一部は、図6において白抜き矢印で示す空気流れ(風圧)によって扁平伝熱管103の平面部103a上を下流側に移動する。そして、扁平伝熱管103より下流側の端部103c1では、ドレン水の液滴が重力および表面張力によって扁平伝熱管103の曲面部103cの表面を伝って流下する。そして、ドレン水の液滴は、重力および表面張力によって、フィン101の後縁である傾斜端面101e、端面101aおよび傾斜端面101dを順に伝って流下する。このように、ドレン水の液滴は、重力および表面張力により、扁平伝熱管103の差込側の端部103c1およびフィン101の後縁(傾斜端面101e、端面101aおよび傾斜端面101d)で捕捉されながら、フィン101の下端まで流下し、最終的に前面下部熱交換器202の表面から排水される。 Further, some of the droplets of drain water move downstream on the flat portion 103a of the flat heat transfer tube 103 by the air flow (wind pressure) indicated by the white arrow in FIG. And in the edge part 103c1 downstream from the flat heat exchanger tube 103, the droplet of drain water flows down along the surface of the curved surface part 103c of the flat heat exchanger tube 103 by gravity and surface tension. Then, the drain water droplets flow down along the inclined end surface 101e, the end surface 101a, and the inclined end surface 101d, which are the rear edges of the fin 101, in order by gravity and surface tension. As described above, the drain water droplets are captured by the end portion 103c1 on the insertion side of the flat heat transfer tube 103 and the rear edge of the fin 101 (the inclined end surface 101e, the end surface 101a, and the inclined end surface 101d) by gravity and surface tension. However, it flows down to the lower end of the fin 101 and is finally drained from the surface of the front lower heat exchanger 202.
 以上説明したように、第1実施形態の空気調和機(室内機1)では、室内熱交換器10が、冷媒が通流する複数の扁平伝熱管103と、この扁平伝熱管103が挿入される切欠部102が形成されたフィン101と、を備える。また、扁平伝熱管103が、フィン101の扁平伝熱管103の差込側の端面101aよりもフィン101の内側に位置し、切欠部102が、扁平伝熱管103の幅よりも幅広く形成された幅広部102bを有している。これによれば、前面上部熱交換器201のように、扁平伝熱管103の差込側を前方かつ重力方向上側に向けてフィン101を配置したときに、フィン101に空気を取り込む領域を広く確保できるので、伝熱性能を向上させることが可能になる(図5参照)。しかも、前面下部熱交換器202のように、扁平伝熱管103の差込側を後方かつ重力方向上側に向けてフィン101を配置したときに、ドレン水(液滴)が貫流ファン14の駆動による風によって扁平伝熱管103の長軸方向に沿って風下側に流れたとしても、フィン101から飛び散ることがなく、扁平伝熱管103の端部103c1、フィン101の傾斜端面101e、端面101a、傾斜端面101dを伝って流れるので、ドレン水の排水を良好に行うことが可能になる。 As described above, in the air conditioner (indoor unit 1) of the first embodiment, the indoor heat exchanger 10 is inserted with a plurality of flat heat transfer tubes 103 through which refrigerant flows and the flat heat transfer tubes 103. And a fin 101 in which a notch 102 is formed. Further, the flat heat transfer tube 103 is positioned on the inner side of the fin 101 than the end surface 101 a of the fin 101 on the insertion side of the flat heat transfer tube 103, and the notch portion 102 is formed wider than the width of the flat heat transfer tube 103. Part 102b. According to this, when the fin 101 is arranged with the insertion side of the flat heat transfer tube 103 facing forward and upward in the gravity direction like the front upper heat exchanger 201, a wide area for taking in air into the fin 101 is secured. Therefore, the heat transfer performance can be improved (see FIG. 5). Moreover, when the fins 101 are arranged with the insertion side of the flat heat transfer tube 103 rearward and upward in the gravitational direction as in the lower front heat exchanger 202, drain water (droplets) is driven by the cross-flow fan 14. Even if it flows to the leeward side along the long axis direction of the flat heat transfer tube 103 by the wind, it does not scatter from the fin 101, and the end portion 103c1 of the flat heat transfer tube 103, the inclined end surface 101e of the fin 101, the end surface 101a, the inclined end surface Since it flows through 101d, it becomes possible to drain drain water well.
 また、第1実施形態では、切欠部102に幅広部102bが形成されているので、ドレン水が傾斜端面101eから端面101aに,そして傾斜端面101dから扁平伝熱管103の端部103c1に流れ易くなり、ドレン水の排水性を向上させることが可能になる。 In the first embodiment, since the wide portion 102b is formed in the notch portion 102, drain water easily flows from the inclined end surface 101e to the end surface 101a and from the inclined end surface 101d to the end portion 103c1 of the flat heat transfer tube 103. It becomes possible to improve drainage of drain water.
 また、第1実施形態では、扁平伝熱管103の端部103c1の位置から幅広部102bによる傾斜端面101eが形成されているので、扁平伝熱管103で捕捉されたドレン水をフィン101の傾斜端面101eに確実に伝えることができ、ドレン水の排水性を向上させることができる。 In the first embodiment, since the inclined end surface 101e is formed by the wide portion 102b from the position of the end portion 103c1 of the flat heat transfer tube 103, the drain water captured by the flat heat transfer tube 103 is used as the inclined end surface 101e of the fin 101. The drainage of drain water can be improved.
 また、第1実施形態では、フィン101の差込側の端面101aから、扁平伝熱管103の差込側の端部103c1までの扁平伝熱管103の長軸方向gの距離をα(図3参照)とする。また、フィン101の差込側とは反対側の端面101bから、扁平伝熱管103の差込側とは反対側の端部103d1までの扁平伝熱管103の長軸方向gの距離をβ(図3参照)とする。このとき、α<βの関係となるように設定されている。このように、距離(幅)βで規定される平面部101uがドレン水の水滴が流れる流路になるので、距離βを距離αよりも大きく(幅広に)設定することで、ドレン水の排水性を向上させることができる。 In the first embodiment, the distance in the major axis direction g of the flat heat transfer tube 103 from the end surface 101a on the insertion side of the fin 101 to the end portion 103c1 on the insertion side of the flat heat transfer tube 103 is α (see FIG. 3). ). Further, the distance in the major axis direction g of the flat heat transfer tube 103 from the end surface 101b opposite to the insertion side of the fin 101 to the end 103d1 opposite to the insertion side of the flat heat transfer tube 103 is β (FIG. 3). At this time, the relation α <β is set. Thus, since the flat surface portion 101u defined by the distance (width) β becomes a flow path through which water droplets of drain water flow, drainage of drain water is set by setting the distance β larger (wider) than the distance α. Can be improved.
 また、第1実施形態では、扁平伝熱管103が、差込側の端面101aに対して垂直(または略垂直)に挿入されている。これによれば、扁平伝熱管103をフィン101に入れ込み易くなる。また、端面101aに対して扁平伝熱管103を傾斜させて配置すると、貫流ファン14の周りに室内熱交換器10を傾斜して配置する際に、扁平伝熱管103の長軸方向が水平の状態で配置されることが生じる。しかし、第1実施形態では、扁平伝熱管103をフィン101に差し込む際に、扁平伝熱管103の長軸方向g(図3参照)をフィン101の端面101aに対して垂直に挿入することで、フィン101を傾けて配置したとしても、扁平伝熱管103を水平に対して角度を持って確実に配置することが可能になり、扁平伝熱管103を傾斜させた状態で設置し易くなる。また、端面101aに対して扁平伝熱管103を傾斜して配置すると、通風抵抗を上げる要因になるが、第1実施形態では、端面101aに対して垂直に配置することで、通風抵抗を上げる要因を抑制できる。 In the first embodiment, the flat heat transfer tube 103 is inserted perpendicularly (or substantially perpendicularly) to the insertion-side end surface 101a. According to this, it becomes easy to put the flat heat transfer tube 103 into the fin 101. In addition, when the flat heat transfer tube 103 is inclined with respect to the end surface 101a, the long axis direction of the flat heat transfer tube 103 is horizontal when the indoor heat exchanger 10 is inclined around the cross-flow fan 14. It will be arranged in. However, in the first embodiment, when the flat heat transfer tube 103 is inserted into the fin 101, the long axis direction g (see FIG. 3) of the flat heat transfer tube 103 is inserted perpendicularly to the end surface 101a of the fin 101, Even if the fins 101 are inclined, the flat heat transfer tubes 103 can be reliably arranged at an angle with respect to the horizontal, and the flat heat transfer tubes 103 can be easily installed in an inclined state. In addition, when the flat heat transfer tube 103 is disposed to be inclined with respect to the end surface 101a, it causes a rise in ventilation resistance. However, in the first embodiment, a factor that increases the ventilation resistance by being arranged perpendicular to the end surface 101a. Can be suppressed.
 また、第1実施形態では、室内熱交換器10(前面上部熱交換器201、前面下部熱交換器202および背面熱交換器300)が、貫流ファン14を囲うように重力方向Gに対して傾けて設置されている。このように、貫流ファン14を室内熱交換器10で囲むように配置することで、伝熱性能を向上させることができる。 In the first embodiment, the indoor heat exchanger 10 (the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300) is inclined with respect to the gravity direction G so as to surround the cross-flow fan 14. Installed. Thus, by arranging the once-through fan 14 so as to be surrounded by the indoor heat exchanger 10, the heat transfer performance can be improved.
 また、第1実施形態では、室内熱交換器10(前面上部熱交換器201、前面下部熱交換器202および背面熱交換器300)において、扁平伝熱管103の差込側が重力方向Gの上側に向けられ、扁平伝熱管103の長軸方向g(図3参照)が水平方向Shに対して傾斜した状態で設置されている(図5および図6参照)。これによれば、室内熱交換器10(前面上部熱交換器201、前面下部熱交換器202および背面熱交換器300)のように、扁平伝熱管103の差込側を重力方向上側に向けてフィン101を設置したときに、扁平伝熱管103およびフィン101の表面上で冷却除湿されることで生じたドレン水の液滴が、水平方向Shに対して角度をもって配置された扁平伝熱管103の長軸方向gに沿って流れることになる。そして、扁平伝熱管103から流下したドレン水の液滴は、フィン101の長手方向に連続して形成されている平面部101uの表面上を流下し、最終的に、室内熱交換器10の表面から排水される(図5および図6参照)。 Further, in the first embodiment, in the indoor heat exchanger 10 (the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300), the insertion side of the flat heat transfer tube 103 is on the upper side in the gravity direction G. The flat heat transfer tube 103 is installed in a state where the major axis direction g (see FIG. 3) is inclined with respect to the horizontal direction Sh (see FIGS. 5 and 6). According to this, like the indoor heat exchanger 10 (front upper heat exchanger 201, front lower heat exchanger 202, and rear heat exchanger 300), the insertion side of the flat heat transfer tube 103 is directed upward in the gravity direction. When the fins 101 are installed, the drainage water droplets generated by cooling and dehumidifying the flat heat transfer tubes 103 and the surfaces of the fins 101 of the flat heat transfer tubes 103 disposed at an angle with respect to the horizontal direction Sh. It flows along the major axis direction g. Then, the drain water droplets flowing down from the flat heat transfer tube 103 flow down on the surface of the flat portion 101u formed continuously in the longitudinal direction of the fin 101, and finally the surface of the indoor heat exchanger 10 (See FIGS. 5 and 6).
 また、第1実施形態では、前面上部熱交換器201の下端面201a,201bと前面下部熱交換器202における上端面202a,202bとは、フィン101が水平(または略水平)に形成され、水平(または略水平)の状態で接合されている(図2参照)。これにより、熱交換に寄与しない空気流れを抑制することができ、さらにフィン101の設置面積を広く確保できるので、熱交換効率(伝熱性能)を向上でき、省エネルギ性能を向上できる。また、第1実施形態では、前面上部熱交換器201と前面下部熱交換器202との合わせ部に空隙を設けないようにすることで、前面上部熱交換器201から排水されるドレン水を前面下部熱交換器202で受けることができるので、ドレン水の排水性をさらに向上でききる。 In the first embodiment, the lower end surfaces 201a and 201b of the front upper heat exchanger 201 and the upper end surfaces 202a and 202b of the front lower heat exchanger 202 are formed such that the fin 101 is horizontal (or substantially horizontal), and the horizontal It joins in the state of (or substantially horizontal) (refer FIG. 2). Thereby, the air flow which does not contribute to heat exchange can be suppressed, and furthermore, since the installation area of the fin 101 can be secured widely, heat exchange efficiency (heat transfer performance) can be improved, and energy saving performance can be improved. Further, in the first embodiment, the drain water drained from the front upper heat exchanger 201 is disposed on the front surface by not providing a gap in the joint portion between the front upper heat exchanger 201 and the front lower heat exchanger 202. Since it can be received by the lower heat exchanger 202, the drainage of drain water can be further improved.
 また、第1実施形態では、前面上部熱交換器201(第一前面上部熱交換器201Aおよび第二前面上部熱交換器201B)の上端面201c,201dと背面熱交換器300(第一背面熱交換器300A)の上端面300aとが、それぞれ、水平(または略水平)の状態で且つ上端面201c,201d,300aが平坦面(面一)となるようにして接合されている。これにより、エアフィルタ51と、前面上部熱交換器201および背面熱交換器300との隙間を最小にしつつ、前面上部熱交換器201および背面熱交換器300のフィン101の設置面積を広く確保できるので、伝熱性能を向上でき、省エネルギ性能を向上できる。 Further, in the first embodiment, the upper end surfaces 201c and 201d of the front upper heat exchanger 201 (first front upper heat exchanger 201A and second front upper heat exchanger 201B) and the rear heat exchanger 300 (first rear heat exchanger). The upper end surface 300a of the exchanger 300A) is joined in a horizontal (or substantially horizontal) state so that the upper end surfaces 201c, 201d, and 300a are flat surfaces. Thereby, the installation area of the fin 101 of the front upper heat exchanger 201 and the rear heat exchanger 300 can be secured widely while minimizing the gap between the air filter 51 and the front upper heat exchanger 201 and the rear heat exchanger 300. Therefore, heat transfer performance can be improved and energy saving performance can be improved.
 また、第1実施形態では、第二前面上部熱交換器201Bの端面201eと第二背面熱交換器300Bの上端面300bとが面で接触している。これにより、空気が熱交換に寄与することなく第二前面上部熱交換器201Bと第二背面熱交換器300Bとの間の隙間を抜けるのを防止できるので、熱交換率(伝熱性能)を向上でき、省エネルギ性能を向上できる。 In the first embodiment, the end surface 201e of the second front upper heat exchanger 201B and the upper end surface 300b of the second back heat exchanger 300B are in contact with each other. As a result, air can be prevented from passing through the gap between the second front upper heat exchanger 201B and the second rear heat exchanger 300B without contributing to heat exchange, so that the heat exchange rate (heat transfer performance) can be reduced. The energy saving performance can be improved.
 また、第1実施形態では、フィン101の端面101aに対して、扁平伝熱管103を略直角に挿入して構成する場合、前面上部熱交換器201、前面下部熱交換器202、背面熱交換器300を同じフィン101の形状とし、設置向き(前面上部熱交換器201では前方上向き、前面下部熱交換器202では差込側を後方上向き、背面熱交換器300では差込側を後方上向き)のみを変えるだけで構成できる(図2参照)。また、図2に示すように、第一前面上部熱交換器201Aと第二前面上部熱交換器201B、第一前面下部熱交換器202Aと第二前面下部熱交換器202B、第一背面熱交換器300Aと第二背面熱交換器300Bのように複数列配置してなる熱交換器のどの個所であっても、列間の扁平伝熱管103の配置間隔(ピッチ)La,Lb,Lc(図2参照)がすべて同一となるように構成できる。このことから、冷媒流路を構成する際に、冷媒流路を構成するために扁平伝熱管103同士を接続する部材の共用化が図れ、製造コストを下げることが可能となる。 In the first embodiment, when the flat heat transfer tube 103 is inserted at a substantially right angle with respect to the end surface 101a of the fin 101, the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger. 300 has the same shape of the fin 101, and only in the installation direction (front upper heat exchanger 201 is facing upwards, front lower heat exchanger 202 is plugging side upwards, and rear heat exchanger 300 is plugging sides facing upwards) It can be configured simply by changing (see FIG. 2). Further, as shown in FIG. 2, the first front upper heat exchanger 201A and the second front upper heat exchanger 201B, the first front lower heat exchanger 202A and the second front lower heat exchanger 202B, and the first rear heat exchange. The arrangement intervals (pitch) La, Lb, Lc of the flat heat transfer tubes 103 between the rows at any location of the heat exchangers arranged in a plurality of rows such as the heat exchanger 300A and the second back heat exchanger 300B (see FIG. 2) are all the same. For this reason, when the refrigerant flow path is configured, the members that connect the flat heat transfer tubes 103 to each other in order to configure the refrigerant flow path can be shared, and the manufacturing cost can be reduced.
(第2実施形態)
 図7は、第2実施形態に係る室内機の熱交換器を示し、(a)は縦断面図、(b)は(a)のA-A線断面図である。なお、第2実施形態において、第1実施形態と同様の構成については、同一の符号を付して重複する説明を省略する(以降の実施形態についても同様)。
 図7(a)に示すように、第2実施形態の室内機1は、第1実施形態のフィン101に、切り起こし部104,104,104,104(突起部)、切り起こし部105およびリブ106を追加したものである。
(Second Embodiment)
7A and 7B show a heat exchanger for an indoor unit according to the second embodiment, in which FIG. 7A is a longitudinal sectional view, and FIG. 7B is a sectional view taken along line AA in FIG. Note that in the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted (the same applies to the following embodiments).
As shown in FIG. 7 (a), the indoor unit 1 of the second embodiment includes the cut and raised portions 104, 104, 104, and 104 (protrusions), the cut and raised portion 105, and the ribs on the fin 101 of the first embodiment. 106 is added.
 切り起こし部104は、隣り合う扁平伝熱管103と扁平伝熱管103との間に複数設けられている。また、切り起こし部104は、平面視において細長い板状であり、扁平伝熱管103の長軸方向に沿って間隔を空けて配置されている。 A plurality of cut and raised portions 104 are provided between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103. Further, the cut-and-raised portion 104 has a long and narrow plate shape in plan view, and is arranged at intervals along the long axis direction of the flat heat transfer tube 103.
 切り起こし部105は、切り起こし部104と同様に形成され、隣り合う扁平伝熱管103と扁平伝熱管103との間に形成されるものではなく、扁平伝熱管103の端部103c1から外側(差込側の端面101a)に向けて突出しているフィン101の平面視台形状の突出部101tに形成されている。また、切り起こし部105は、切り起こし部104と平行に形成されている。 The cut-and-raised portion 105 is formed in the same manner as the cut-and-raised portion 104, and is not formed between the adjacent flat heat transfer tubes 103 and the flat heat transfer tubes 103, but is located outside (difference) from the end portion 103c1 of the flat heat transfer tubes 103. It is formed in the protrusion part 101t of the trapezoid shape of planar view of the fin 101 which protrudes toward the end surface 101a) of the insertion side. Further, the cut and raised portion 105 is formed in parallel with the cut and raised portion 104.
 リブ106は、扁平伝熱管103の差込側とは反対側の端部103d1とフィン101の差込側とは反対側の端面101bとの間の平面部101uに形成されている。また、リブ106は、平面部101uに沿って(フィン101の長手方向に沿って)連続して形成されている。なお、図7(a)において示される3本の平行な直線は、フィン101を曲げ形成したときの折曲線を示している。 The rib 106 is formed on the flat surface portion 101 u between the end portion 103 d 1 opposite to the insertion side of the flat heat transfer tube 103 and the end surface 101 b opposite to the insertion side of the fin 101. The rib 106 is continuously formed along the flat surface portion 101u (along the longitudinal direction of the fin 101). In addition, the three parallel straight lines shown in FIG. 7A indicate folding curves when the fin 101 is bent.
 図7(b)に示すように、切り起こし部104は、例えば、フィン101を構成する板金(薄板)を一面側から他面側に向けてプレス加工によって押し出して形成される押出部104aを有している。また、切り起こし部104は、押出部104aの幅方向の両側にスリット104b,104b(貫通孔)が形成されている。スリット104b,104bは、風上側から風下側に向けて貫通して形成されている。また、フィン101に切り起こし部104を形成することで、フィン101の一面側と他面側が連通している。 As shown in FIG. 7B, the cut-and-raised portion 104 has, for example, an extruded portion 104a formed by extruding a sheet metal (thin plate) constituting the fin 101 from one surface side to the other surface side by pressing. is doing. In addition, the cut and raised portion 104 has slits 104b and 104b (through holes) formed on both sides in the width direction of the extruded portion 104a. The slits 104b and 104b are formed to penetrate from the windward side toward the leeward side. Further, by forming the cut-and-raised portion 104 in the fin 101, the one surface side and the other surface side of the fin 101 communicate with each other.
 切り起こし部105は、切り起こし部104と同様な形状であり、押出部105aを有し、押出部105aの幅方向の両側にスリット105b,105bが形成されている。 The cut-and-raised portion 105 has the same shape as the cut-and-raised portion 104, has an extruded portion 105a, and slits 105b and 105b are formed on both sides in the width direction of the extruded portion 105a.
 リブ106は、平面部101uを端面101bに沿って曲げ加工することによって断面視略V字状に形成されている。また、リブ106は、凸側が切り起こし部104,105の切り起こし側と同じ側となるように構成されている。これにより、1枚のフィン101の積層方向の寸法Dを小さく(短く)することができ、フィン101を積層して配置する際に、フィン101を密に配置することが可能になる。 The rib 106 is formed in a substantially V shape in sectional view by bending the flat surface portion 101u along the end surface 101b. The rib 106 is configured such that the convex side is the same side as the cut and raised side of the cut and raised portions 104 and 105. Accordingly, the dimension D in the stacking direction of one fin 101 can be reduced (shortened), and the fins 101 can be arranged densely when the fins 101 are stacked and arranged.
 また、リブ106は、凸形状の端面101a側に斜面106aが形成され、端面101b側に斜面106bが形成されている。また、リブ106の凸形状とは反対面には、V字状に形成された溝部106cが形成されている。 Further, the rib 106 has a slope 106a formed on the convex end face 101a side and a slope 106b formed on the end face 101b side. Further, a groove portion 106 c formed in a V shape is formed on the surface opposite to the convex shape of the rib 106.
 図8は、第2実施形態の前面上部熱交換器における作用効果を説明する図、図9は、第2実施形態の前面下部熱交換器における作用効果を説明する図である。なお、第1実施形態と同様の作用効果については、説明を省略する。
 図8に示すように、切欠部102を前方かつ重力方向上側にした前面上部熱交換器201では、扁平伝熱管103およびフィン101の表面上で冷却除湿されることで生じたドレン水の液滴が、切り起こし部104,105に沿って重力の作用で流下し、扁平伝熱管103の平面部103aに流れ込む。そして、ドレン水の液滴は、扁平伝熱管103の平面部103aの表面に沿って流下し、リブ106側に流れ込む。そして、ドレン水の液滴は、リブ106の凸側の斜面106aに捕捉されながら流下し、最終的に前面上部熱交換器201の表面から排水される。
FIG. 8 is a diagram illustrating the operational effects of the front upper heat exchanger of the second embodiment, and FIG. 9 is a diagram illustrating operational effects of the front lower heat exchanger of the second embodiment. In addition, description about the same effect as 1st Embodiment is abbreviate | omitted.
As shown in FIG. 8, in the front upper heat exchanger 201 with the notch 102 on the front side and in the gravity direction, a droplet of drain water generated by cooling and dehumidification on the surface of the flat heat transfer tube 103 and the fin 101. However, it flows down along the cut and raised portions 104 and 105 by the action of gravity and flows into the flat portion 103 a of the flat heat transfer tube 103. Then, the drain water droplets flow down along the surface of the flat portion 103 a of the flat heat transfer tube 103 and flow into the rib 106 side. The drain water droplets flow down while being captured by the convex slope 106 a of the rib 106, and are finally drained from the surface of the front upper heat exchanger 201.
 また、切り起こし部104,105が形成されていることで、フィン101の端面101a側で発生したドレン水の液滴が風上側から風下側にフィン101から離脱して飛散したとしても、切り起こし部104,105によって飛散したドレン水をキャッチ(捕捉)することができ、ドレン水が端面101bから貫流ファン14(図2参照)に向けて飛び散るのを抑えることが可能になる。 Further, since the cut-and-raised portions 104 and 105 are formed, even if drain water droplets generated on the end surface 101a side of the fin 101 are separated from the fin 101 and scattered from the windward side to the leeward side, they are cut and raised. It is possible to catch (capture) the drain water scattered by the portions 104 and 105, and to prevent the drain water from scattering toward the cross-flow fan 14 (see FIG. 2) from the end face 101b.
 このように、フィン101の表面上で発生するドレン水は、水平に対して傾きを持って配置された扁平伝熱管103の長軸方向g(図3参照)に沿って排出され、またリブ106(曲げ加工)が施された箇所には切り起こし部を設けていないことからドレン水の滞留が抑制される。また、リブ106を、切欠部102が設けられていない側(差込側とは反対側)に設けることで、ドレン水をリブ106に沿って流下させることができ、フィン101から空気流れに乗って離脱して空気吹出口43にドレン水が飛散することを抑制できる。また、リブ106を、扁平伝熱管103の差込側とは反対側に設けることで、フィン101の強度を高めることができる。なお、図8では、前面上部熱交換器201を例に挙げて説明したが、背面熱交換器300についても同様の作用効果が得られるものである。 In this way, the drain water generated on the surface of the fin 101 is discharged along the major axis direction g (see FIG. 3) of the flat heat transfer tube 103 arranged with an inclination with respect to the horizontal, and the rib 106. Since the cut-and-raised portion is not provided at the location where the bending process is performed, the retention of drain water is suppressed. In addition, by providing the rib 106 on the side where the notch 102 is not provided (the side opposite to the insertion side), drain water can flow down along the rib 106 and ride on the air flow from the fin 101. Therefore, it is possible to prevent the drain water from separating and splashing into the air outlet 43. Moreover, the intensity | strength of the fin 101 can be raised by providing the rib 106 on the opposite side to the insertion side of the flat heat exchanger tube 103. FIG. In FIG. 8, the front upper heat exchanger 201 has been described as an example, but the same effect can be obtained with the rear heat exchanger 300.
 図9に示すように、切欠部102を後方かつ重力方向上側にした前面下部熱交換器202では、空気流れにより下流側に移動したドレン水の液滴が、重力および表面張力によって、扁平伝熱管103より下流側のフィン101の端面101a、傾斜端面101e,101dで補足されながら流下し、排水される。このとき、距離α(図7(a)参照)で示す領域に切り起こし部105が設けられているので、ドレン水の液滴をより補足し易くなり、フィン101からのドレン水の液滴の離脱を抑制することが可能となる。 As shown in FIG. 9, in the front lower heat exchanger 202 with the notch 102 rearward and on the upper side in the direction of gravity, the drain water droplets moved to the downstream side by the air flow are converted into flat heat transfer tubes by gravity and surface tension. The water flows down and is drained while being supplemented by the end surface 101a and the inclined end surfaces 101e and 101d of the fin 101 on the downstream side of 103. At this time, since the cut-and-raised portion 105 is provided in the region indicated by the distance α (see FIG. 7A), it becomes easier to supplement the drain water droplets, and the drain water droplets from the fins 101 It is possible to suppress withdrawal.
 このように構成された第2実施形態では、フィン101の差込側とは反対側の端面101bと扁平伝熱管103の端部103d1との間に、端面101bと平行(または略平行)に延びるリブ106が設けられている。このようなリブ106を設けることにより、重力の影響で流下したドレン水の液滴を捕捉し易くなり、排水性を向上させることが可能になる。 In 2nd Embodiment comprised in this way, it extends in parallel (or substantially parallel) with the end surface 101b between the end surface 101b on the opposite side to the insertion side of the fin 101, and the edge part 103d1 of the flat heat exchanger tube 103. Ribs 106 are provided. By providing such a rib 106, it becomes easy to capture the droplet of drain water that has flowed down due to the influence of gravity, and the drainage performance can be improved.
 また、第2実施形態では、リブ106が、フィン101を断面視において略V字状に曲げ加工することで構成されている。これにより、フィン101の強度を向上させつつ、排水性を向上できる。また、リブ106の凸側とは反対側に略V字状の溝部106c(図7(b)参照)が形成されるので、フィン101の反対側の面においてドレン水の液滴を捕捉し易くなり、排水性を向上させることが可能になる。 In the second embodiment, the rib 106 is configured by bending the fin 101 into a substantially V shape in a cross-sectional view. Thereby, drainage can be improved, improving the intensity | strength of the fin 101. FIG. Further, since a substantially V-shaped groove 106c (see FIG. 7B) is formed on the opposite side of the rib 106 from the convex side, it is easy to trap the drain water droplets on the surface opposite to the fin 101. It becomes possible to improve drainage.
 また、第2実施形態では、フィン101が、隣り合う扁平伝熱管103の間に突部としての切り起こし部104を有している。これにより、フィン101からのドレン水の液滴の離脱を抑制することができ、排水性を向上できる。また、第2実施形態では、フィン101の突出部101t(図7(a)参照)に切り起こし部105を有する。これにより、ドレン水の液滴の離脱をさらに抑制でき、排水性をさらに向上できる。 Moreover, in 2nd Embodiment, the fin 101 has the cut-and-raised part 104 as a protrusion between the adjacent flat heat exchanger tubes 103. FIG. Thereby, the detachment | leave of the drain water of the drain water from the fin 101 can be suppressed, and drainage can be improved. Moreover, in 2nd Embodiment, it has the cut-and-raised part 105 in the protrusion part 101t (refer Fig.7 (a)) of the fin 101. FIG. Thereby, the separation of drain water droplets can be further suppressed, and the drainage can be further improved.
 また、第2実施形態では、図7(b)に示すように、切り起こし部104,105に風上側から風下側に向けて(端面101aから端面101bに向けて)貫通するスリット104b,104b,105b,105bを形成することで、排水性の向上とともに、空気の流れが阻害されるのを抑制でき、通風抵抗が過大になるのを抑制することができる(図7(b)の破線矢印Y参照)。 In the second embodiment, as shown in FIG. 7 (b), slits 104b, 104b, which penetrate the cut and raised portions 104, 105 from the windward side to the leeward side (from the end surface 101a to the end surface 101b), By forming 105b and 105b, it is possible to suppress the air flow from being inhibited and to prevent the airflow resistance from becoming excessive as well as improving drainage (dashed line arrow Y in FIG. 7B). reference).
 なお、第2実施形態では、リブ106がフィン101を折り曲げ加工することで構成された場合を例に挙げて説明したが、折り曲げ加工ではなく、板状のものをフィン101の平面に立設させる構成であってもよい。 In the second embodiment, the case where the rib 106 is configured by bending the fin 101 has been described as an example. However, instead of the bending process, a plate-like object is erected on the plane of the fin 101. It may be a configuration.
(第3実施形態)
 図10は、第3実施形態に係る室内機の熱交換器を示し、(a)は縦断面図、(b)は(a)のB-B線断面図である。
 図10(a)および図10(b)に示すように、第3実施形態の室内機1は、第2実施形態のフィン101の構成から切り起こし部105を無くしたものである。つまり、隣り合う扁平伝熱管103の間にのみ切り起こし部104を設け、フィン101の突出部101tに切り起こし部(突部)を設けないようにしたものである。
(Third embodiment)
FIG. 10 shows a heat exchanger for an indoor unit according to the third embodiment, wherein (a) is a longitudinal sectional view, and (b) is a sectional view taken along line BB of (a).
As shown in FIGS. 10A and 10B, the indoor unit 1 of the third embodiment is obtained by removing the cut and raised portion 105 from the configuration of the fin 101 of the second embodiment. That is, the cut-and-raised portion 104 is provided only between the adjacent flat heat transfer tubes 103, and the cut-and-raised portion (projection) is not provided on the protruding portion 101 t of the fin 101.
 このように、第3実施形態では、第2実施形態の切り起こし部105を設けないようにしたことで、フィン101の変形を抑制することができ、扁平伝熱管103をフィン101に取り付ける際に扁平伝熱管103の挿入が困難になるのを抑制でき、製造性(組立性)を向上できる。 As described above, in the third embodiment, since the cut and raised portion 105 of the second embodiment is not provided, the deformation of the fin 101 can be suppressed, and the flat heat transfer tube 103 is attached to the fin 101. It is possible to prevent the insertion of the flat heat transfer tube 103 from being difficult, and to improve manufacturability (assembleability).
(第4実施形態)
 図11は、第4実施形態に係る室内機の熱交換器を示し、(a)は縦断面図、(b)は(a)のC-C線断面図である。
 図11(a)に示すように、第4実施形態の室内機1は、第2実施形態および第3実施形態のリブ106に替えてリブ107を備えたものである。
(Fourth embodiment)
FIG. 11 shows a heat exchanger for an indoor unit according to the fourth embodiment, wherein (a) is a longitudinal sectional view and (b) is a sectional view taken along the line CC of (a).
As shown to Fig.11 (a), the indoor unit 1 of 4th Embodiment is equipped with the rib 107 instead of the rib 106 of 2nd Embodiment and 3rd Embodiment.
 リブ107は、リブ106のようにフィン101の長手方向に沿って連続的に形成されるものではなく、フィン101の幅が最も狭く(小さく)なる、端面101bと扁平伝熱管103の端部103d1との間の平面部101vに、間欠的に形成したものである。 The rib 107 is not formed continuously along the longitudinal direction of the fin 101 like the rib 106, and the end surface 101 b and the end portion 103 d 1 of the flat heat transfer tube 103 where the width of the fin 101 is the narrowest (smaller). Is formed intermittently on the flat surface portion 101v.
 図11(b)に示すように、リブ107は、薄板状のフィン101をプレス成形することによって形成されている。ドレン水は、リブ107の傾斜面107aに案内されながら流下する。また、リブ106と同様にリブ107の凸側とは反対側にV字状の溝部107cが形成されているので、フィン101の凸側とは反対側の面においてもドレン水を捕捉しながら排水することができる。 As shown in FIG. 11B, the rib 107 is formed by press-molding a thin plate-like fin 101. The drain water flows down while being guided by the inclined surface 107 a of the rib 107. Similarly to the rib 106, the V-shaped groove 107c is formed on the opposite side of the convex side of the rib 107, so that the drain water is captured and drained also on the surface opposite to the convex side of the fin 101. can do.
 このようにフィン101の幅が最も狭くなる場所が、重力の影響でドレン水の液滴が落ちてくる所、またドレン水が集中する所、合流する所である。よって、第4実施形態では、ここにガイドとなるリブ107を設けることで、フィン101の強度を向上できるとともに、排水性も向上できる。フィン101の強度(平面部101vの強度)が向上することで、フィン101の片側から扁平伝熱管103を差し込むときに、差し込み易くなり、製造性(組立性)を向上できる。 The place where the width of the fin 101 is the narrowest in this way is a place where the droplet of drain water falls due to the influence of gravity, a place where the drain water concentrates, or a place where the water condenses. Therefore, in 4th Embodiment, the rib 107 which becomes a guide here can improve the intensity | strength of the fin 101, and can also improve drainage. By improving the strength of the fin 101 (strength of the flat portion 101v), when the flat heat transfer tube 103 is inserted from one side of the fin 101, it becomes easy to insert, and the manufacturability (assembly) can be improved.
 また、第4実施形態では、フィン101の長手方向において、リブ107を間欠的に設けることで、リブ107とリブ107との間の空気の流れを円滑にでき、空気流れが阻害されるのを抑制できる。 In the fourth embodiment, the rib 107 is intermittently provided in the longitudinal direction of the fin 101, so that the air flow between the rib 107 and the rib 107 can be made smooth and the air flow is inhibited. Can be suppressed.
 なお、リブ107は、断面視V字状のものに限定されず、ドレン水を誘導(案内)可能な形状であれば、半球状、円錐状など突起状のもの、それを複数配列したものなどであってもよい。 The rib 107 is not limited to a V-shape in cross-section, and may be a hemispherical, conical or other protrusion-like shape, or a plurality of such shapes as long as it can guide (guide) drain water. It may be.
(第5実施形態)
 図12は、第5実施形態に係る室内機における冷媒流路の構成を示す図である。
 図12に示すように、第5実施形態の室内機1は、第1実施形態における、第一前面上部熱交換器201Aのフィン101と、第一前面下部熱交換器202Aのフィン101とを一体に形成したフィン101Bを備えている。すなわち、フィン101Bは、アルミニウム製またはアルミニウム合金製の一枚ものの薄板で構成したものを、複数枚間隔を空けて積層することで構成されている。これにより、フィン101Bは、図12の側面視においてブーメラン形状(屈曲した形状)となるように構成されている。
(Fifth embodiment)
FIG. 12 is a diagram illustrating a configuration of a refrigerant flow path in the indoor unit according to the fifth embodiment.
As shown in FIG. 12, the indoor unit 1 of the fifth embodiment integrates the fin 101 of the first front upper heat exchanger 201A and the fin 101 of the first front lower heat exchanger 202A in the first embodiment. The fin 101B is formed. That is, the fin 101B is configured by laminating a single thin plate made of aluminum or aluminum alloy with a plurality of intervals. Accordingly, the fin 101B is configured to have a boomerang shape (bent shape) in the side view of FIG.
 また、第5実施形態の室内機1は、第1実施形態における、第二前面上部熱交換器201Bのフィン101と、第二前面下部熱交換器202Bのフィン101とを一体に形成したフィン101Cを備えている。すなわち、フィン101Cは、アルミニウム製またはアルミニウム合金製の一枚ものの薄板で構成したものを、複数枚間隔を空けて積層することで構成されている。これにより、図12の側面視においてブーメラン形状(屈曲した形状)に構成されている。 Moreover, the indoor unit 1 of 5th Embodiment is the fin 101C which formed integrally the fin 101 of the 2nd front upper heat exchanger 201B and the fin 101 of the 2nd front lower heat exchanger 202B in 1st Embodiment. It has. That is, the fin 101C is configured by laminating a single thin plate made of aluminum or aluminum alloy with a plurality of intervals. Thereby, it is comprised in the boomerang shape (bent shape) in the side view of FIG.
 このように構成された第5実施形態では、フィン101B,101Cを備えることで、屈曲部P1,P2の上方においてドレン水(液滴)がフィン101B,101Cに沿って流れ落ちたときに、第1実施形態と比べて屈曲部P1,P2の上部から下部に流れ易くなり、排水性を向上させることができる。また、第5実施形態では、一体にしたフィン101B,101Cを備えることで、第1実施形態に比べて部品点数を減らすことができるので、室内機1の製造工程を簡略化できる。 In the fifth embodiment configured as described above, by providing the fins 101B and 101C, when drain water (droplets) flows down along the fins 101B and 101C above the bent portions P1 and P2, the first Compared with the embodiment, it becomes easier to flow from the upper part to the lower part of the bent parts P1 and P2, and the drainage can be improved. Moreover, in 5th Embodiment, since the number of parts can be reduced compared with 1st Embodiment by providing integrated fin 101B, 101C, the manufacturing process of the indoor unit 1 can be simplified.
 なお、第5実施形態では、第1実施形態にフィン101B,101Cを適用した場合を例に挙げて説明したが、第2実施形態ないし第4実施形態にフィン101B,101Cを適用してもよい。 In the fifth embodiment, the case where the fins 101B and 101C are applied to the first embodiment has been described as an example. However, the fins 101B and 101C may be applied to the second to fourth embodiments. .
 以上、実施形態を説明したが、実施形態はこれらに限定されるものではない。
 例えば、前記した実施形態では、前面上部熱交換器201、前面下部熱交換器202、背面熱交換器300を空気流れ方向に2列で構成しているが、空気調和機の能力に応じて1列で構成してもよく、3列以上で構成してもよい。また、前面上部熱交換器201、前面下部熱交換器202、背面熱交換器300の列数が同一である必要はない。
As mentioned above, although embodiment was described, embodiment is not limited to these.
For example, in the above-described embodiment, the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 are configured in two rows in the air flow direction, but depending on the capability of the air conditioner, 1 You may comprise by a row | line | column and may comprise 3 or more rows. Further, the number of rows of the front upper heat exchanger 201, the front lower heat exchanger 202, and the rear heat exchanger 300 need not be the same.
 また、前記した実施形態では、扁平伝熱管103の長軸方向gがアルミ製のフィン101の端面101aに対して、略直角となる向きに挿入されているが、室内機1に設置した際に、重力方向Gに対してドレン水が排水されるように扁平伝熱管103の長軸方向gが水平に対して角度を持っていればよい。また、さらなる通風抵抗の低減効果が得られるように空気流れ方向に沿うように所望の角度を持って設置すれば、より高い省エネルギ性を得ることができる。また、室内熱交換器10が複数列配置される場合には各列で、あるいは列の中でも、異なる角度としてもよく、あくまで扁平伝熱管の長軸方向が水平に対して角度を持っていれば本発明の効果を得ることができる。 Further, in the above-described embodiment, the long-axis direction g of the flat heat transfer tube 103 is inserted in a direction substantially perpendicular to the end surface 101a of the aluminum fin 101, but when installed in the indoor unit 1 The major axis direction g of the flat heat transfer tube 103 may have an angle with respect to the horizontal so that drain water is drained with respect to the gravity direction G. Moreover, if it installs with a desired angle along the air flow direction so that the further reduction effect of ventilation resistance can be acquired, higher energy saving property can be obtained. Further, when the indoor heat exchangers 10 are arranged in a plurality of rows, different angles may be used in each row or in the rows, and the long axis direction of the flat heat transfer tube has an angle with respect to the horizontal. The effects of the present invention can be obtained.
 さらに、前記した実施形態では、再熱除湿運転モードを有する空気調和機を例に説明したが、冷房運転と暖房運転の2つの運転モードのみを有する空気調和機や、冷房運転のみを行う空気調和機に適用することもできる。その場合でも、本実施の形態で述べた省エネルギ性に関する効果は同様に得られる。したがって、冷媒流路の構成も、必ずしも本実施の形態と同一である必要はない。 Further, in the above-described embodiment, the air conditioner having the reheat dehumidifying operation mode has been described as an example. However, the air conditioner having only two operation modes of the cooling operation and the heating operation, or the air conditioner performing only the cooling operation. It can also be applied to the machine. Even in that case, the effects related to energy saving described in the present embodiment can be obtained in the same manner. Therefore, the configuration of the refrigerant flow path is not necessarily the same as that in the present embodiment.
 1   室内機
 2   室外機
 3,4 接続配管
 10  室内熱交換器(熱交換器)
 11  第一室内熱交換器(熱交換器)
 12  第二室内熱交換器(熱交換器)
 13  第一絞り装置
 14  貫流ファン(送風機)
 21  圧縮機
 22  四方弁
 23  室外熱交換器
 24  第二絞り装置
 25  プロペラファン
 30  筐体
 31  パネル
 33c フロントノーズ部
 41  前面空気吸込口(空気吸込口)
 42  上面空気吸込口(空気吸込口)
 43  空気吹出口
 51  エアフィルタ
 52  風向制御板
 101 フィン
 101a 差込側の端面
 101b 差込側とは反対側の端面
 101d,101e 傾斜端面
 101u 平面部
 102 切欠部
 102a 保持部
 102b 幅広部
 103 扁平伝熱管
 103a,103b 平面部
 103c,103d 曲面部
 103c1 差込側の端部
 103d1 差込側とは反対側の端部
 103s 仕切り
 104,105 切り起こし部(突部)
 104a,105a スリット(貫通孔)
 106,107 リブ
 106a,107a 傾斜面
 106c,107c 溝部
 201 前面上部熱交換器
 201A 第一前面上部熱交換器
 201B 第二前面上部熱交換器
 201a,201b 前面上部熱交換器の下端面
 201c,201d 前面上部熱交換器の上端面
 202 前面下部熱交換器
 202A 第一前面下部熱交換器
 202B 第二前面下部熱交換器
 202a,202b 前面下部熱交換器の上端面
 300 背面熱交換器
 300A 第一背面熱交換器
 300B 第二背面熱交換器
 g   扁平伝熱管の長軸方向
 G   重力方向
 Sh  水平方向
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 3, 4 Connection piping 10 Indoor heat exchanger (heat exchanger)
11 First indoor heat exchanger (heat exchanger)
12 Second indoor heat exchanger (heat exchanger)
13 First throttle device 14 Cross-flow fan (blower)
21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 24 Second throttle device 25 Propeller fan 30 Housing 31 Panel 33c Front nose part 41 Front air inlet (air inlet)
42 Top air inlet (air inlet)
43 Air outlet 51 Air filter 52 Air direction control plate 101 Fin 101a Insertion end face 101b Insertion end face 101d, 101e Inclined end face 101u Plane part 102 Notch part 102a Holding part 102b Wide part 103 Flat heat transfer tube 103a, 103b Plane part 103c, 103d Curved surface part 103c1 End part on the insertion side 103d1 End part on the opposite side to the insertion side 103s Partition 104, 105 Cut and raised part (protrusion part)
104a, 105a Slit (through hole)
106, 107 Ribs 106a, 107a Inclined surfaces 106c, 107c Groove 201 Front upper heat exchanger 201A First front upper heat exchanger 201B Second front upper heat exchanger 201a, 201b Lower end surface 201c, 201d Front upper heat exchanger Upper end surface of upper heat exchanger 202 Front lower heat exchanger 202A First lower front heat exchanger 202B Second lower front heat exchanger 202a, 202b Upper end surface of lower front heat exchanger 300 Rear heat exchanger 300A First rear heat Exchanger 300B Second back heat exchanger g Long axis direction of flat heat transfer tube G Gravitational direction Sh Horizontal direction

Claims (15)

  1.  空気吸込口および空気吹出口を有する筐体と、
     前記空気吸込口から吸い込まれた空気と冷媒とを熱交換する熱交換器と、
     前記熱交換器において熱交換された空気を前記空気吹出口から前記筐体の外部に排出する送風機と、を備え、
     前記熱交換器は、前記冷媒が通流する複数の扁平伝熱管と、前記扁平伝熱管が挿入されている切欠部が形成されたフィンと、を備え、
     前記扁平伝熱管は、前記フィンの当該扁平伝熱管の差込側の端面よりも内側に位置し、
     前記切欠部は、前記扁平伝熱管の幅よりも幅広く形成された幅広部を有することを特徴とする空気調和機。
    A housing having an air inlet and an air outlet;
    A heat exchanger for exchanging heat between the air sucked from the air suction port and the refrigerant;
    A blower for discharging the air heat-exchanged in the heat exchanger from the air outlet to the outside of the housing, and
    The heat exchanger includes a plurality of flat heat transfer tubes through which the refrigerant flows, and fins in which cutout portions into which the flat heat transfer tubes are inserted are formed,
    The flat heat transfer tube is located on the inner side of the end surface on the insertion side of the flat heat transfer tube of the fin,
    The air conditioner characterized in that the notch has a wide part formed wider than the width of the flat heat transfer tube.
  2.  前記幅広部は、前記扁平伝熱管の前記差込側の端部から前記差込側の端面に向けて拡幅しながら形成されていることを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the wide portion is formed while being widened from an end portion on the insertion side of the flat heat transfer tube toward an end surface on the insertion side.
  3.  前記フィンの前記差込側の端面から、前記扁平伝熱管の前記差込側の端部までの前記扁平伝熱管の長軸方向に沿った距離をαとし、前記フィンの前記差込側とは反対側の端面から、前記扁平伝熱管の前記差込側とは反対側の端部までの前記扁平伝熱管の長軸方向に沿った距離をβとしたときに、α<βの関係であることを特徴とする請求項1に記載の空気調和機。 The distance along the long axis direction of the flat heat transfer tube from the end surface on the insertion side of the fin to the end portion on the insertion side of the flat heat transfer tube is α, and the insertion side of the fin is When the distance along the long axis direction of the flat heat transfer tube from the opposite end surface to the end opposite to the insertion side of the flat heat transfer tube is β, α <β is satisfied. The air conditioner according to claim 1.
  4.  前記扁平伝熱管は、前記差込側の端面に対して垂直または略垂直に挿入されていることを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the flat heat transfer tube is inserted perpendicularly or substantially perpendicularly to an end surface on the insertion side.
  5.  前記熱交換器は、前記送風機を囲うように重力方向に対して傾けて設置されていることを特徴とする請求項4に記載の空気調和機。 The air conditioner according to claim 4, wherein the heat exchanger is installed to be inclined with respect to a direction of gravity so as to surround the blower.
  6.  前記熱交換器は、前記扁平伝熱管の前記差込側が重力方向上側に向けられ、前記扁平伝熱管の長軸方向が水平方向に対して傾斜した状態で設置されていることを特徴とする請求項1に空気調和機。 The heat exchanger is installed in a state where the insertion side of the flat heat transfer tube is directed upward in the direction of gravity and the long axis direction of the flat heat transfer tube is inclined with respect to the horizontal direction. Item 1 is an air conditioner.
  7.  前記フィンは、少なくとも前記差込側とは反対側の端面と前記扁平伝熱管との間に、前記反対側の端面と平行または略平行に延びるリブを有することを特徴とする請求項1に記載の空気調和機。 The said fin has a rib extended in parallel or substantially parallel to the said end surface on the opposite side between the said end surface and the said flat heat exchanger tube at least on the opposite side to the said insertion side. Air conditioner.
  8.  前記リブは、前記フィンを断面視において略V字状に曲げ加工することで形成されていることを特徴とする請求項7に記載の空気調和機。 The air conditioner according to claim 7, wherein the rib is formed by bending the fin into a substantially V shape in a sectional view.
  9.  前記フィンは、隣り合う前記扁平伝熱管の間に突部を有することを特徴とする請求項7に記載の空気調和機。 The air conditioner according to claim 7, wherein the fin has a protrusion between the adjacent flat heat transfer tubes.
  10.  前記突部は、前記フィンを切り起こして形成された切り起こし部であることを特徴とする請求項9に記載の空気調和機。 The air conditioner according to claim 9, wherein the protrusion is a cut-and-raised part formed by cutting and raising the fin.
  11.  前記フィンは、隣り合う前記幅広部の間に前記切り起こし部を設けないことを特徴とする請求項10に記載の空気調和機。 The air conditioner according to claim 10, wherein the fin does not provide the cut-and-raised portion between the adjacent wide portions.
  12.  前記突部は、風上側から風下側に向けて貫通する貫通孔が形成されていることを特徴とする請求項9に記載の空気調和機。 The air conditioner according to claim 9, wherein the protrusion has a through-hole penetrating from the windward side toward the leeward side.
  13.  前記リブと前記突部は、同一面側に突出して形成されていることを特徴とする請求項9に記載の空気調和機。 The air conditioner according to claim 9, wherein the rib and the protrusion are formed so as to protrude on the same surface side.
  14.  前記熱交換器は、前記送風機の前面上部に位置する前面上部熱交換器と、前記送風機の前面下側に位置する前面下部熱交換器と、を備え、
     前記前面上部熱交換器の下端面と前記前面下部熱交換器の上端面とは、水平または略水平の状態で接合されていることを特徴とする請求項1から請求項13のいずれか1項に記載の空気調和機。
    The heat exchanger includes a front upper heat exchanger located at the upper front of the blower, and a lower front heat exchanger located at the lower front of the blower,
    The lower end surface of the front upper heat exchanger and the upper end surface of the lower front heat exchanger are joined in a horizontal or substantially horizontal state. Air conditioner as described in.
  15.  前記熱交換器は、前記送風機の前面上部に位置する前面上部熱交換器と、前記送風機の背面に位置する背面熱交換器と、を備え、
     前記前面上部熱交換器の上端面と前記背面熱交換器の上端面とが、水平または略水平且つ平坦面になるように接合されていることを特徴とする請求項1から請求項13のいずれか1項に記載の空気調和機。
    The heat exchanger comprises a front upper heat exchanger located at the upper front of the blower, and a rear heat exchanger located at the rear of the blower,
    The upper end surface of the front upper heat exchanger and the upper end surface of the rear heat exchanger are joined so as to be horizontal or substantially horizontal and flat. The air conditioner of Claim 1.
PCT/JP2017/002899 2016-06-03 2017-01-27 Air conditioner WO2017208493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-112067 2016-06-03
JP2016112067 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017208493A1 true WO2017208493A1 (en) 2017-12-07

Family

ID=60478161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002899 WO2017208493A1 (en) 2016-06-03 2017-01-27 Air conditioner

Country Status (1)

Country Link
WO (1) WO2017208493A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134100A (en) * 2019-02-25 2020-08-31 株式会社富士通ゼネラル Heat exchanger
JP2020159616A (en) * 2019-03-26 2020-10-01 株式会社富士通ゼネラル Air conditioner
US20220128319A1 (en) * 2019-03-28 2022-04-28 Fujitsu General Limited Heat exchanger
JP2023148248A (en) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル Indoor unit for air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560482A (en) * 1991-08-29 1993-03-09 Showa Alum Corp Manufacture of heat exchanger
JP2003202119A (en) * 2002-01-08 2003-07-18 Hitachi Ltd Air conditioner
JP2010139166A (en) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp Air conditioner
WO2012098921A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2015049008A (en) * 2013-09-03 2015-03-16 日立アプライアンス株式会社 Air conditioner, and heat exchanger for air conditioner
JP2016102592A (en) * 2014-11-27 2016-06-02 株式会社富士通ゼネラル Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560482A (en) * 1991-08-29 1993-03-09 Showa Alum Corp Manufacture of heat exchanger
JP2003202119A (en) * 2002-01-08 2003-07-18 Hitachi Ltd Air conditioner
JP2010139166A (en) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp Air conditioner
WO2012098921A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2015049008A (en) * 2013-09-03 2015-03-16 日立アプライアンス株式会社 Air conditioner, and heat exchanger for air conditioner
JP2016102592A (en) * 2014-11-27 2016-06-02 株式会社富士通ゼネラル Heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134100A (en) * 2019-02-25 2020-08-31 株式会社富士通ゼネラル Heat exchanger
WO2020175492A1 (en) * 2019-02-25 2020-09-03 株式会社富士通ゼネラル Heat exchanger
JP2020159616A (en) * 2019-03-26 2020-10-01 株式会社富士通ゼネラル Air conditioner
WO2020195153A1 (en) * 2019-03-26 2020-10-01 株式会社富士通ゼネラル Air conditioner
CN113498471A (en) * 2019-03-26 2021-10-12 富士通将军股份有限公司 Air conditioner
EP3951303A4 (en) * 2019-03-26 2022-12-14 Fujitsu General Limited Air conditioner
US20220128319A1 (en) * 2019-03-28 2022-04-28 Fujitsu General Limited Heat exchanger
JP2023148248A (en) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル Indoor unit for air conditioner
JP7392757B2 (en) 2022-03-30 2023-12-06 株式会社富士通ゼネラル Air conditioner indoor unit

Similar Documents

Publication Publication Date Title
JP6615316B2 (en) Finless type heat exchanger, outdoor unit of air conditioner equipped with the finless type heat exchanger, and indoor unit of air conditioner equipped with the finless type heat exchanger
JP6352401B2 (en) Air conditioner
KR102227419B1 (en) Heat exchanger and air conditioner having the same
WO2017208493A1 (en) Air conditioner
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
WO2018003123A1 (en) Heat exchanger and refrigeration cycle apparatus
JP4178472B2 (en) Heat exchanger and air conditioner
EP3091322A1 (en) Fin and tube-type heat exchanger and refrigeration cycle device provided therewith
US5417279A (en) Heat exchanger having in fins flow passageways constituted by heat exchange pipes and U-bend portions
JP6223596B2 (en) Air conditioner indoor unit
WO2019142642A1 (en) Indoor heat exchanger and air conditioning device
JP2009150574A (en) Distributor, and heat exchanger and air conditioner loading the same
JPWO2018235215A1 (en) Heat exchangers, refrigeration cycle devices and air conditioners
JP6678413B2 (en) Air conditioner
JP7158601B2 (en) Heat exchanger and refrigeration cycle equipment
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP6590957B2 (en) Refrigeration equipment
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JP2015227754A (en) Heat exchanger
JP7392757B2 (en) Air conditioner indoor unit
WO2011111602A1 (en) Air conditioner
KR102088826B1 (en) Heat exchanger
JP4496951B2 (en) Air conditioner
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment
WO2018020552A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP