JPH1089803A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1089803A
JPH1089803A JP24014696A JP24014696A JPH1089803A JP H1089803 A JPH1089803 A JP H1089803A JP 24014696 A JP24014696 A JP 24014696A JP 24014696 A JP24014696 A JP 24014696A JP H1089803 A JPH1089803 A JP H1089803A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor
indoor heat
dehumidifying
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24014696A
Other languages
Japanese (ja)
Other versions
JP3677887B2 (en
Inventor
Hiroo Nakamura
啓夫 中村
Shoji Takaku
昭二 高久
Saho Funakoshi
砂穂 舟越
Mitsuo Kudo
光夫 工藤
芳廣 ▲高▼田
Yoshihiro Takada
Motoo Morimoto
素生 森本
Hidenori Yokoyama
英範 横山
Hiroshi Kogure
博志 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24014696A priority Critical patent/JP3677887B2/en
Publication of JPH1089803A publication Critical patent/JPH1089803A/en
Application granted granted Critical
Publication of JP3677887B2 publication Critical patent/JP3677887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the drop of outlet temperature at dehumidification while improving the air-conditioning capacity by equipping an air conditioner with an indoor auxiliary heat exchanger upstream of the indoor heat exchanger of a refrigerant passage at operation of dehumidification. SOLUTION: An indoor heat exchanger 1 is constituted sot that the heat transfer tube may be two systems of refrigerant passages 54 and 55 by connecting a front upper stage part 3 and a rear part 4 integrally Then, the heat exchanger part 2 on the lower stage separated thermally by a cutting line 24 is constituted of two refrigerant passages 56 and 57. These heat transfer refrigerant passages 54 and 55, and 56 and 57 are connected with each other through a throttle device 5 for dehumidification by connection tubes 6 and 7. Furthermore, an indoor auxiliary heat exchanger 26 constituted of an indoor heat exchanger 59 is connected by a connection pipe. Hereby, the drop of the outlet temperature at dehumidification can be prevented while improving the air conditioning capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房運転、あるい
は冷房運転及び暖房運転が可能な空気調和機であって、
冷凍サイクルの凝縮熱で室内空気を加熱する除湿運転を
可能にした空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of cooling operation or cooling operation and heating operation,
The present invention relates to an air conditioner that enables a dehumidifying operation in which room air is heated by condensation heat of a refrigeration cycle.

【0002】[0002]

【従来の技術】従来の空気調和機において、湿度を下げ
るための除湿運転として、冷却・除湿された空気流を冷
凍サイクルの凝縮熱により再加熱する方式のものが知ら
れており、代表例として、特開平2−183776号公
報(文献1)に記載のものがある。
2. Description of the Related Art In a conventional air conditioner, as a dehumidifying operation for lowering humidity, a system in which a cooled and dehumidified air flow is reheated by the heat of condensation of a refrigeration cycle is known. And JP-A-2-183776 (Document 1).

【0003】これには、圧縮機、四方弁、室外熱交換
器、絞り装置、室内熱交換器等を順次冷媒配管で接続
し、さらに室内熱交換器を上下に二分割してこれらの間
に除湿運転用の小孔付き二方弁を設けたサイクル構成が
開示されている。そして除湿運転時には小孔付二方弁を
閉じて冷媒を小孔を通して流すことにより絞り作用を行
い、上側室内熱交換器を凝縮器、下側室内熱交換器を蒸
発器とする。さらに室内空気流をこれらの室内熱交換器
に並列に流し、蒸発器で冷却・除湿し、凝縮器で加熱す
ることにより、冷え過ぎを防止しながら湿度を下げる除
湿運転を可能にしている。
[0003] To this end, a compressor, a four-way valve, an outdoor heat exchanger, a throttle device, an indoor heat exchanger, and the like are sequentially connected by a refrigerant pipe, and the indoor heat exchanger is divided into upper and lower parts to be divided therebetween. A cycle configuration having a two-way valve with a small hole for a dehumidifying operation is disclosed. During the dehumidifying operation, the two-way valve with a small hole is closed, and the refrigerant is caused to flow through the small hole to perform a throttling action. The upper indoor heat exchanger is a condenser and the lower indoor heat exchanger is an evaporator. Furthermore, the indoor air flow is passed in parallel to these indoor heat exchangers, cooled and dehumidified by an evaporator, and heated by a condenser, thereby enabling a dehumidifying operation for reducing humidity while preventing overcooling.

【0004】一方、特開平7−139848号公報(文
献2)にも、上側を再熱器として下側を冷却器として動
作させ、全面パネルに設けられた吸入口から空気を取り
入れて、除湿された冷たい空気と暖まった空気とを内部
でブレンドして、本体下部にある吹出口から、除湿され
好みの温度に調温された空気を吹き出す温度調節自在な
除湿機能付きルームエアコンが記載されている。
On the other hand, Japanese Patent Application Laid-Open No. Hei 7-139848 (Document 2) also discloses that the upper side is operated as a reheater and the lower side is operated as a cooler, and air is taken in from a suction port provided in the entire panel to dehumidify. A room air conditioner with a dehumidifying function that has adjustable temperature and blows air that has been dehumidified and adjusted to the desired temperature from the outlet at the bottom of the main body by blending cold and warm air inside, is described. .

【0005】また空気調和機では、除湿運転の他に冷房
運転や暖房運転を行うが、最近は省エネルギに対するニ
ーズが非常に大きい。これを満足する一手段として室内
熱交換器の伝熱面積を十分大きくすることがあるが、ル
ームエアコン等の小形の空気調和機では、室内機の寸法
に制限がある。そこでこうした制限下で伝熱面積を大き
くするために、文献:「新除湿方式を採用した省エネル
ギー型エアコンGDシリーズ:東芝レビュー,Vol.51,
No.2,1996、第67頁から第70頁」(文献3)に記載のよ
うに、最近では、室内熱交換器を室内機の前面から背面
にかけて設けた構造にしたり、さらには暖房運転時にお
ける室内熱交換器の下流側に過冷却器として使用する室
内補助熱交換器を設けた空気調和機が開発されている。
[0005] In the air conditioner, a cooling operation and a heating operation are performed in addition to the dehumidifying operation. Recently, there is a great need for energy saving. One way to satisfy this is to make the heat transfer area of the indoor heat exchanger sufficiently large. However, in a small air conditioner such as a room air conditioner, the size of the indoor unit is limited. Therefore, in order to increase the heat transfer area under these restrictions, the literature: "GD series energy-saving air conditioners employing a new dehumidification method: Toshiba Review, Vol. 51,
No.2, 1996, pp. 67 to 70 ”(Reference 3), recently, the indoor heat exchanger is provided from the front to the back of the indoor unit, or the heating unit is used for heating operation. An air conditioner provided with an indoor auxiliary heat exchanger used as a subcooler downstream of the indoor heat exchanger in the above has been developed.

【0006】[0006]

【発明が解決しようとする課題】以上のように、室内機
において室内熱交換器を十分大きくしたり、さらには室
内補助熱交換器を設けた空気調和機の場合にも、冷房・
暖房運転と同時に除湿運転を可能にし、さらに、室内熱
交換器の配管構成やこれと空気流との関係等を工夫し
て、冷房、暖房、除湿の各運転において室内熱交換器で
の伝熱性能をできるだけ良くし、冷凍サイクルの性能を
十分高く保つ必要がある。
As described above, in the case of an air conditioner having an indoor heat exchanger which is sufficiently large in an indoor unit, or an air conditioner provided with an indoor auxiliary heat exchanger, cooling / cooling is not possible.
The dehumidification operation can be performed simultaneously with the heating operation, and the piping configuration of the indoor heat exchanger and the relationship between this and the air flow are devised to perform heat transfer in the indoor heat exchanger in each of the cooling, heating, and dehumidifying operations. It is necessary to improve the performance as much as possible and keep the performance of the refrigeration cycle high enough.

【0007】これに対して、前述の文献1及び文献2で
は、単に室内熱交換器を二分してこれらの間に膨張弁を
介させることによって、室温の低下を防ぎながら除湿を
行う空気調和機の記載はあるものの、上記した性能面に
関して配慮する記載はない。さらに、除湿運転時には除
湿用絞り装置の所で不快な冷媒流動音が発生するが、こ
の冷媒流動音については何等の配慮もなされていない。
On the other hand, in the above-mentioned Documents 1 and 2, the air conditioner performs dehumidification while preventing a decrease in room temperature by simply dividing the indoor heat exchanger into two and passing an expansion valve therebetween. However, there is no description that considers the above-mentioned performance aspects. Further, during the dehumidifying operation, unpleasant refrigerant flow noise is generated at the dehumidifying expansion device, but no consideration is given to the refrigerant flow noise.

【0008】さて、冷房時及び暖房時の熱交換率向上を
図るため、文献1及び文献2に記載のような平面形の熱
交換器に代えて、文献3に記載されているような熱交換
器を多段曲げや円弧状に形成して伝熱面積を増大させ、
前面及び上部に設けられた吸込口から空気を取り入れ、
熱交換後の空気を下部の吹出口から吹き出すようにして
いる。
Now, in order to improve the heat exchange rate during cooling and heating, a heat exchanger as described in Reference 3 is used instead of a flat heat exchanger as described in References 1 and 2. The heat transfer area is increased by forming the vessel in a multi-stage bending or arc shape,
Intake air from the inlet provided on the front and top,
The air after heat exchange is blown out from the lower outlet.

【0009】しかしながら、文献3に記載の空気調和機
は、文献1及び文献2に記載の室内機側に再熱器を有
し、調温しながら除湿するものではない。すなわち、前
記文献3に記載のものは、室内熱交換器を二分割してそ
の間に除湿運転用の絞り装置を設け、除湿運転時にはこ
の絞り装置の上流側を加熱器(凝縮器)、下流側を冷却器
(蒸発器)として、冷凍サイクルにより室内空気の冷却・
除湿と加熱を同時に行いながら除湿運転を行うものでは
なく、除湿中室内機に熱を発生する熱交換器がないため
室温の低下はやむを得ないものであった。
However, the air conditioner described in Document 3 has a reheater on the indoor unit side described in Documents 1 and 2, and does not dehumidify while controlling the temperature. That is, the thing described in the above-mentioned document 3 is that an indoor heat exchanger is divided into two parts, and a throttle device for a dehumidifying operation is provided between the two. During the dehumidifying operation, the upstream side of the throttle device is a heater (condenser) and the downstream side The cooler
(Evaporator)
The dehumidification operation is not performed while simultaneously performing the dehumidification and the heating, and the room temperature must be reduced because there is no heat exchanger that generates heat in the indoor unit during the dehumidification.

【0010】ところで、文献1及び文献2に記載の再熱
器を有する除湿機能を備えた空気調和機の室内熱交換器
を、冷房及び暖房時における熱交換能力を向上させるた
め、文献3に記載の多段若しくは円弧熱交換器を採用す
ると、梅雨時など湿度は高いが肌寒い日や冬季における
除湿運転時、再熱器によって暖めているにも拘わらず、
温度が低下してしまうという問題があった。
Meanwhile, the indoor heat exchanger of the air conditioner having the dehumidifying function having the reheater described in Documents 1 and 2 is described in Document 3 in order to improve the heat exchange capacity during cooling and heating. When using a multi-stage or arc heat exchanger, the humidity is high such as during the rainy season, but during the dehumidifying operation on chilly days or winter, despite being heated by the reheater,
There was a problem that the temperature was lowered.

【0011】本発明の第1の目的は、冷暖房能力を向上
しつつ、除湿時における吹出温度の低下を防止すること
にある。
A first object of the present invention is to improve the cooling / heating capacity and prevent a decrease in the blow-out temperature during dehumidification.

【0012】[0012]

【課題を解決するための手段】上記目的は、冷媒を圧縮
する圧縮機と、この圧縮機からの冷媒が室外熱交換器を
介して流入される熱的に二分割された室内熱交換器と、
この熱的に二分割された室内熱交換器の間に設けられた
除湿運転時に絞りとして使用する除湿用絞り手段とを備
えた空気調和機において、除湿運転時における冷媒流路
の前記室内熱交換器の上流側に室内補助熱交換器を備え
ることにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a compressor for compressing a refrigerant, and a thermally split indoor heat exchanger in which the refrigerant from the compressor flows through an outdoor heat exchanger. ,
An air conditioner provided between the thermally split indoor heat exchanger and a dehumidifying throttle unit used as a throttle during a dehumidifying operation, wherein the indoor heat exchange of the refrigerant flow path during the dehumidifying operation is performed. This is achieved by providing an indoor auxiliary heat exchanger upstream of the vessel.

【0013】[0013]

【発明の実施の形態】本発明による一実施の形態を図
1、図2、及び図3に示す。図1は本実施の形態である
室内機の側断面を示す図である。図1において、1は室
内機内に組み込まれた多段(3段)曲げ構造の室内熱交
換器であり、熱的な切断線24により、室内機における
前面下段部分2と前面側上段部分3から背面部分4にか
けての部分とに熱的に分離されて構成されている。ま
た、26は冷媒流路において、除湿運転あるいは冷房運
転の時には室内熱交換器1の上流側になり、暖房運転の
時には室内熱交換器1の下流側になる位置に設けた室内
補助熱交換器である。これらの熱交換器において、○印
で示した20は、複数枚の放熱フィン23を貫通するよ
うに設けられた伝熱管、21及び破線22は伝熱管20
同士の接続管である。さらに、5は除湿運転時に絞り作
用を行う除湿用絞り装置であり、室内熱交換器1におけ
る前面上段部分3と背面部分4が熱的に一体に結合され
接続配管6により除湿用絞り装置5の一方の接続口に接
続され、除湿用絞り装置5の他方の接続口は接続配管7
を介して熱的に分離された室内熱交換器1の前面下段部
分2に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIGS. FIG. 1 is a diagram showing a side cross section of the indoor unit according to the present embodiment. In FIG. 1, reference numeral 1 denotes an indoor heat exchanger having a multi-stage (three-stage) bending structure incorporated in an indoor unit, which is cut from a lower front part 2 and a front upper part 3 in the indoor unit by a thermal cutting line 24. It is configured so as to be thermally separated from a portion extending to the portion 4. An indoor auxiliary heat exchanger 26 is provided in the refrigerant flow path at a position upstream of the indoor heat exchanger 1 during a dehumidifying operation or a cooling operation, and downstream of the indoor heat exchanger 1 during a heating operation. It is. In these heat exchangers, 20 indicated by a circle denotes a heat transfer tube provided so as to penetrate a plurality of radiating fins 23, and a broken line 22 denotes a heat transfer tube 20.
It is a connecting pipe between each other. Reference numeral 5 denotes a dehumidifying throttle device that performs a throttling action during the dehumidifying operation. The upper front portion 3 and the rear portion 4 of the indoor heat exchanger 1 are thermally integrally connected, and the dehumidifying throttle device 5 is connected by a connection pipe 6. Connected to one connection port, the other connection port of the dehumidifying throttle device 5 is connected to a connection pipe 7.
Is connected to the lower part 2 of the front surface of the indoor heat exchanger 1 which is thermally separated through the heat exchanger.

【0014】また、9は貫流ファンタイプの室内ファ
ン、10は前面吸込グリル、11は前面側上部吸込グリ
ル、12は背面側上部吸込グリル、13はフィルタ、1
4は背面ケーシング、15は吹出口、16は吹出口風向
板であり、室内空気は、室内ファン9により、矢印9
1、92、93のように、それぞれ前面吸込グリル1
0、前面側上部吸込グリル11及び背面側上部吸込グリ
ル12からフィルタ13を通って吸い込まれ、多段曲げ
室内熱交換器1で冷媒と熱交換したあと、室内ファン9
を通り、吹出口15から室内に吹き出される。
Reference numeral 9 denotes a once-through fan type indoor fan, 10 denotes a front suction grill, 11 denotes a front upper suction grill, 12 denotes a rear upper suction grill, 13 denotes a filter,
Reference numeral 4 denotes a rear casing, 15 denotes an air outlet, 16 denotes an air outlet wind direction plate.
1, 92, 93, respectively, front suction grill 1
0, the air is sucked through the filter 13 from the front-side upper suction grill 11 and the rear-side upper suction grill 12 and exchanges heat with the refrigerant in the multi-stage bending indoor heat exchanger 1.
, And is blown into the room from the outlet 15.

【0015】17は多段曲げ室内熱交換器1の前面側部
分2及び3に対する露受皿、18は多段曲げ室内熱交換
器1の背面部分4に対する露受皿であり、冷房運転や除
湿運転の時に生じる除湿水を受ける働きをする。
Reference numeral 17 denotes a dew tray for the front side portions 2 and 3 of the multi-stage bending indoor heat exchanger 1, and 18 denotes a dew tray for the rear portion 4 of the multi-stage bending indoor heat exchanger 1, which is generated during a cooling operation or a dehumidifying operation. Works to receive dehumidified water.

【0016】図2は、図1における除湿用絞り装置5の
一実施の形態を示す図であり、このうち図2(a)は除
湿運転時の除湿用絞り装置5の動作状態を示す図、図2
(b)は冷房及び暖房運転時の除湿用絞り装置5の動作
状態を示す図である。
FIG. 2 is a view showing one embodiment of the dehumidifying throttle device 5 in FIG. 1. FIG. 2 (a) is a diagram showing an operation state of the dehumidifying throttle device 5 during a dehumidifying operation. FIG.
(B) is a figure which shows the operation state of the throttle device 5 for dehumidification at the time of cooling and heating operation.

【0017】これらの図において、30は弁本体、31
は弁座、32は弁体、33は弁体32の弁部、34、3
5は接続管、36は弁体32を動かす電磁モ−タであ
り、さらに大きい矢印38、39は冷媒流方向(配管方
向)、矢印40は除湿運転時の冷媒流方向を示す。
In these figures, reference numeral 30 denotes a valve body, 31
Is a valve seat, 32 is a valve body, 33 is a valve portion of the valve body 32, 34, 3
5 is a connecting pipe, 36 is an electromagnetic motor for moving the valve element 32, larger arrows 38 and 39 indicate the refrigerant flow direction (pipe direction), and arrow 40 indicates the refrigerant flow direction during the dehumidifying operation.

【0018】そして除湿運転時には、図2(a)のよう
に、弁体32は電磁モ−タ36により閉じられた状態に
なっている。この時、凝縮器となる室内補助熱交換器2
6及び室内熱交換器1の前面上段から背面にかけての部
分3及び4を通過した高圧の凝縮液冷媒は、接続管34
から流入し、弁部33と弁座31との隙間で構成される
狭い通路37を矢印40のように流れ、ここで絞り作用
を受け低圧・低温の冷媒となった後、接続管35を通っ
て蒸発器となる室内熱交換器1の前面下段部分2に流入
する。
During the dehumidifying operation, the valve body 32 is closed by the electromagnetic motor 36 as shown in FIG. At this time, the indoor auxiliary heat exchanger 2 serving as a condenser
6 and the high-pressure condensed liquid refrigerant that has passed through the portions 3 and 4 from the upper front to the back of the indoor heat exchanger 1
And flows through a narrow passage 37 formed by a gap between the valve portion 33 and the valve seat 31 as shown by an arrow 40. Then, it flows into the lower part 2 on the front surface of the indoor heat exchanger 1 serving as an evaporator.

【0019】この結果、室内補助熱交換器26及び室内
熱交換器1の前面上段から背面にかけての部分3及び4
が加熱器(再熱器)、前面下段部分2が冷却器となっ
て、室内空気を加熱すると同時に冷却・除湿する除湿運
転が可能になる。
As a result, the portions 3 and 4 of the indoor auxiliary heat exchanger 26 and the indoor heat exchanger 1 from the upper front stage to the rear surface
Is a heater (reheater), and the lower part 2 on the front side is a cooler, which enables the dehumidification operation of heating and cooling and dehumidifying indoor air at the same time.

【0020】また冷房及び暖房運転時には、図2(b)
のように、除湿用絞り装置5は、電磁モータ36により
弁体32が引き上げられ全開の状態になる。この結果、
接続管34と35はほとんど流通抵抗なしで連通し、冷
媒はほとんど抵抗なしで流れることになる。
In the cooling and heating operations, FIG.
As described above, the valve element 32 of the dehumidifying throttle device 5 is pulled up by the electromagnetic motor 36 and is fully opened. As a result,
The connecting pipes 34 and 35 communicate with almost no flow resistance, and the refrigerant flows with almost no resistance.

【0021】図3は、本実施の形態の全体のサイクル構
成を示す図であり、50は回転数制御等により能力可変
の冷媒を圧縮する圧縮機、51は運転状態を切り換える
四方弁、52は室外熱交換器、53は絞り作用の無い全
開状態が可能な電動膨張弁で、さらに前述の室内補助熱
交換器26、多段曲げ室内熱交換器1、及び除湿用絞り
装置5を加えて、これらが接続配管により環状に接続さ
れて冷凍サイクルを構成している。また図3において
は、室内補助熱交換器26及び多段曲げ室内熱交換器1
の伝熱管の流路状態の一実施の形態を模式的に示してあ
る。そして室内補助熱交換器26は、伝熱管が一系統の
冷媒流路59で構成され、接続管29により室内熱交換
器1に接続されている。
FIG. 3 is a diagram showing the entire cycle configuration of the present embodiment, wherein 50 is a compressor for compressing a refrigerant having a variable capacity by controlling the number of revolutions, 51 is a four-way valve for switching the operation state, and 52 is The outdoor heat exchanger 53 is a motor-operated expansion valve that can be fully opened without a throttling effect, and further includes the indoor auxiliary heat exchanger 26, the multistage bending indoor heat exchanger 1, and the dehumidifying throttle device 5, Are connected in a ring by a connection pipe to form a refrigeration cycle. In FIG. 3, the indoor auxiliary heat exchanger 26 and the multi-stage bending indoor heat exchanger 1 are shown.
1 schematically shows an embodiment of the flow path state of the heat transfer tube. In the indoor auxiliary heat exchanger 26, a heat transfer tube is configured by a refrigerant passage 59 of one system, and is connected to the indoor heat exchanger 1 by a connection pipe 29.

【0022】室内熱交換器1は、前面上段部分3と背面
部分4が一体に接続され伝熱管が二系統の冷媒流路5
4、55となるように構成され、さらに切断線24によ
り熱的に分離された下段熱交換器部分2が56、57の
二冷媒流路から構成されている。さらにはこれらの伝熱
管冷媒流路の54、55と56、57は除湿用絞り装置
5を介して接続管6及び7により接続されている。さら
に58は室外ファンである。
The indoor heat exchanger 1 has an upper front portion 3 and a rear portion 4 which are integrally connected to each other and have two heat transfer tubes.
4 and 55, and the lower heat exchanger portion 2 thermally separated by the cutting line 24 is constituted by two refrigerant passages 56 and 57. Further, these heat transfer tube refrigerant passages 54, 55, 56, and 57 are connected by connection tubes 6 and 7 via a dehumidifying expansion device 5. Further, 58 is an outdoor fan.

【0023】以上の室内機構造及び冷凍サイクル構成に
おいて、除湿運転時には、四方弁2を冷房運転時と同様
に切り換え、除湿用絞り装置5を適当に絞り電動膨張弁
53を全開にすることにより、冷媒を一点鎖線で示すよ
うに圧縮機50、四方弁51、室外熱交換器52、電動
膨張弁53、室内補助熱交換器26、室内熱交換器1の
前面上段部分3及び背面部分4、除湿用絞り装置5、室
内熱交換器1の前面下段部分2、四方弁51、圧縮機5
0の順に循環させ、室外熱交換器52が上流側の凝縮
器、室内補助熱交換器26及び室内熱交換器1の前面上
段部分3と背面部分4が下流側の凝縮器、室内熱交換器
1の前面下段部分2が蒸発器となるように運転する。
In the above indoor unit structure and refrigeration cycle configuration, during the dehumidifying operation, the four-way valve 2 is switched in the same manner as during the cooling operation, the dehumidifying expansion device 5 is appropriately throttled, and the electric expansion valve 53 is fully opened. As shown by a dashed line, the refrigerant is the compressor 50, the four-way valve 51, the outdoor heat exchanger 52, the electric expansion valve 53, the indoor auxiliary heat exchanger 26, the front upper part 3 and the rear part 4 of the indoor heat exchanger 1, dehumidification. Throttle device 5, lower part 2 on the front of indoor heat exchanger 1, four-way valve 51, compressor 5
0, the outdoor heat exchanger 52 is the upstream condenser, the indoor auxiliary heat exchanger 26 and the upper front part 3 and the rear part 4 of the indoor heat exchanger 1 are the downstream condenser and the indoor heat exchanger. 1 is operated so that the lower part 2 on the front side becomes an evaporator.

【0024】そして、室内空気を室内ファン9により矢
印91、92、93で示すように流すと、室内空気は蒸
発器として作用する前面下段熱交換器部分2で冷却・除
湿されたると同時に、下流側の凝縮器すなわち加熱器と
なる室内補助熱交換器26及び室内熱交換器の前面上段
部分3と背面部分4で加熱され、さらにこれらの空気が
混合されて室内に吹き出される。
When the indoor air is flown by the indoor fan 9 as shown by arrows 91, 92, and 93, the indoor air is cooled and dehumidified by the front lower heat exchanger portion 2 acting as an evaporator, and at the same time, downstream. Is heated by the indoor auxiliary heat exchanger 26 as a condenser or a heater and the upper front part 3 and the rear part 4 of the indoor heat exchanger, and these airs are mixed and blown out into the room.

【0025】この場合、回転数を制御して圧縮機50の
能力や室内ファン9及び室外ファン58の送風能力を制
御することにより、冷却器2及び加熱器26、3、4の
能力を調節することができ、除湿量や吹出空気温度を広
い範囲で変えることができる。
In this case, by controlling the number of revolutions to control the capacity of the compressor 50 and the blowing capacity of the indoor fan 9 and the outdoor fan 58, the capacity of the cooler 2 and the heaters 26, 3, and 4 is adjusted. Therefore, the amount of dehumidification and the temperature of the blown air can be changed in a wide range.

【0026】さて、前述したように、除湿運転時、室内
補助熱交換器26がない場合、再熱器として作用する室
内熱交換器1の前面上段部分3と背面部分4が存在する
にも拘わらず、室温が低下してしまう理由を説明する。
図1を参照して、このようなファン構造では、矢印9
1、92及び93の吸込み空気の70%がパネル前面か
らの矢印91からの空気であり、残りの30%が矢印9
2及び93からの空気であり、冷却器として作用する熱
交換器を上段に配置し再熱器を下段に配置すると除湿水
が再熱器によって再び蒸発して除湿しないことから、冷
却器として作用する熱交換器は前面下段部分に配置しな
ければならず、図1に示すように、再熱器と冷却器を配
置する必要があり、この再熱器として作用する前面上段
部分3と背面部分4を流れる空気は、冷却器として作用
する前面下段部分2を流れる空気よりも少なく、その分
外気温が低い場合は、室温が低下するという問題があっ
た。
As described above, when the indoor auxiliary heat exchanger 26 is not provided during the dehumidifying operation, the front upper part 3 and the rear part 4 of the indoor heat exchanger 1 acting as a reheater are present. First, the reason why the room temperature decreases will be described.
Referring to FIG. 1, in such a fan structure, arrows 9
70% of the suction air of 1, 92 and 93 is air from arrow 91 from the front of the panel, and the remaining 30% is arrow 9
When the heat exchanger acting as a cooler is arranged in the upper stage and the reheater is arranged in the lower stage, the dehumidified water is evaporated again by the reheater and does not dehumidify. The heat exchanger must be arranged in the lower part of the front, and as shown in FIG. 1, it is necessary to arrange a reheater and a cooler. The amount of air flowing through the lower part 4 acting as a cooler is smaller than the amount of air flowing through the lower front part 2, and there is a problem that the room temperature decreases when the outside air temperature is correspondingly low.

【0027】本実施形態では、除湿運転時、再熱器とし
て作用する室内補助熱交換器26を通風路に設けたの
で、除湿運転時における温度の低下を抑制することがで
きる。また、再熱側にこの室内補助熱交換器を設けたの
で再熱器の熱交換量が増大し、冷媒の凝縮量が増え、サ
イクル全体の能力が向上すると共に、除湿用絞り装置5
に、冷媒流動音の原因となる気液2相流の気相が減少し
て、除湿用絞り装置5の動作時(除湿運転時)における
冷媒流動音を低減することができる。
In the present embodiment, since the indoor auxiliary heat exchanger 26 acting as a reheater is provided in the ventilation path during the dehumidifying operation, a decrease in temperature during the dehumidifying operation can be suppressed. In addition, since this indoor auxiliary heat exchanger is provided on the reheating side, the amount of heat exchange of the reheater increases, the amount of refrigerant condensed increases, the capacity of the entire cycle improves, and the dehumidifying throttle device 5 is provided.
In addition, the gas phase of the gas-liquid two-phase flow that causes the refrigerant flow noise is reduced, and the refrigerant flow noise during the operation of the dehumidifying expansion device 5 (during the dehumidification operation) can be reduced.

【0028】以上のように、本実施の形態によれば、除
湿運転時には、室内補助熱交換器、及び熱的に二分割さ
れた室内熱交換器における除湿用絞り装置の上流側がそ
れぞれ加熱器1、加熱器2、除湿用絞り装置の下流側が
冷却器となり、室内機に吸い込まれた空気は加熱器1お
よび加熱器2で暖められると同時に冷却器で冷やされて
湿気が除去されたあと混合されて吹き出され、冷え過ぎ
の無い快適な除湿運転を行うことができる。特に加熱器
が2個になり、加熱器の伝熱面積が冷却器の伝熱面積に
比べて十分大きくなって加熱能力が増すため、より冷え
過ぎの無い快適な除湿運転が可能になる。
As described above, according to the present embodiment, during the dehumidifying operation, the upstream side of the dehumidifying throttle device in the indoor auxiliary heat exchanger and the thermally split indoor heat exchanger are each provided with the heater 1. The downstream side of the heater 2 and the dehumidifying expansion device becomes a cooler, and the air sucked into the indoor unit is heated by the heater 1 and the heater 2 and simultaneously cooled by the cooler to remove moisture and then mixed. The air is blown out, and a comfortable dehumidifying operation without excessive cooling can be performed. In particular, the number of heaters is two, and the heat transfer area of the heater is sufficiently larger than the heat transfer area of the cooler to increase the heating capacity, so that a comfortable dehumidifying operation without excessive cooling can be performed.

【0029】また、前記の如く、除湿運転においては、
除湿絞り装置の所での絞り(減圧)作用により不快な冷
媒流動音が発生する。この冷媒流動音は、除湿絞り装置
における入口側の高圧冷媒流の流動様式に大きく影響さ
れ、この入口冷媒流が液状態の時には冷媒流動音の騒音
レベルが最も低く音質も良いが、入口冷媒流が気液二相
状態になると騒音レベルが大きくなり音質も悪くなる。
As described above, in the dehumidifying operation,
Unpleasant refrigerant flow noise is generated by the throttle (decompression) action at the dehumidifying throttle device. This refrigerant flow noise is greatly influenced by the flow pattern of the high-pressure refrigerant flow on the inlet side in the dehumidifying expansion device. When the inlet refrigerant flow is in a liquid state, the noise level of the refrigerant flow noise is the lowest and the sound quality is good, but the inlet refrigerant flow is good. However, when the state becomes a gas-liquid two-phase state, the noise level increases and the sound quality deteriorates.

【0030】しかし、本発明では、除湿運転時に室内補
助熱交換器26も凝縮器として作用し、凝縮能力が増大
する。この結果、除湿用絞り装置の入口側冷媒流はより
乾き度の小さいところから液の状態になり、冷媒流動音
の騒音レベルが下がり、音質も改善される。
However, in the present invention, the indoor auxiliary heat exchanger 26 also functions as a condenser during the dehumidifying operation, and the condensing capacity increases. As a result, the refrigerant flow on the inlet side of the dehumidifying throttle device becomes a liquid state from a place where the degree of dryness is smaller, the noise level of the refrigerant flow noise is reduced, and the sound quality is also improved.

【0031】また室内熱交換器1を多段曲げ熱交換器に
して伝熱面積を大きくしたことにより、相対的に冷却器
部分も大きくなり除湿能力を向上できる。またさらには
除湿運転において加熱器での加熱量を大きくするために
は、室内熱交換器の加熱器部分の割合を冷却器部分に比
べて大きくする必要があるが、室内補助熱交換器26と
多段曲げにした室内熱交換器1の前面側上段から背面に
かけての部分3、4を加熱器、室内熱交換器1の前面側
下段部分2を冷却器になるようにすることにより、加熱
器部分の伝熱面積を冷却器部分より十分大きくすること
ができる。
Further, by making the indoor heat exchanger 1 a multi-stage bending heat exchanger to increase the heat transfer area, the size of the cooler portion becomes relatively large and the dehumidifying ability can be improved. Further, in order to increase the amount of heating in the heater in the dehumidifying operation, it is necessary to increase the ratio of the heater portion of the indoor heat exchanger as compared with the cooler portion. The heater part is formed by making the portions 3 and 4 from the front upper stage to the rear surface of the indoor heat exchanger 1 formed as a multistage bend into a heater and the front lower portion 2 of the indoor heat exchanger 1 into a cooler. Can have a sufficiently large heat transfer area than the cooler portion.

【0032】さらに冷却器(室内熱交換器の前面下段部
分2)の下側に加熱器(室内補助熱交換器26及び室内
熱交換器の前面上段から背面にかけての部分3、4)が
配置されないことから冷却器で生じた除湿水が加熱器に
かかって再蒸発することがない。
Further, the heaters (the indoor auxiliary heat exchanger 26 and the portions 3, 4 from the front upper stage to the rear surface of the indoor heat exchanger) are not arranged below the cooler (the lower front portion 2 of the indoor heat exchanger). Therefore, the dehumidified water generated in the cooler does not reach the heater and re-evaporate.

【0033】次に冷房運転時には、除湿用絞り装置5を
開き電動膨張弁53を適当に絞り、冷媒を実線の矢印で
示すように循環させることにより、室外熱交換器52を
凝縮器、室内補助熱交換器26及び多段曲げ室内熱交換
器1を蒸発器として室内の冷房を行う。
Next, during the cooling operation, the dehumidifying throttle device 5 is opened, the electric expansion valve 53 is appropriately throttled, and the refrigerant is circulated as shown by the solid line arrow, so that the outdoor heat exchanger 52 is connected to the condenser and the auxiliary room. Indoor cooling is performed using the heat exchanger 26 and the multi-stage bending indoor heat exchanger 1 as evaporators.

【0034】暖房運転時には、四方弁51を切り換え除
湿用絞り装置5を開き電動膨張弁53を適当に絞り、冷
媒を破線の矢印で示すように循環させることにより、多
段曲げ室内熱交換器1を凝縮器、室内補助熱交換器26
を過冷却器、室外熱交換器52を蒸発器として室内の暖
房を行う。
In the heating operation, the four-way valve 51 is switched, the dehumidifying expansion device 5 is opened, the electric expansion valve 53 is appropriately throttled, and the refrigerant is circulated as indicated by the dashed arrow, so that the multistage bending indoor heat exchanger 1 is operated. Condenser, indoor auxiliary heat exchanger 26
Is used as a supercooler and the outdoor heat exchanger 52 is used as an evaporator to heat the room.

【0035】そして冷房、暖房の各運転に対してもサイ
クル性能及び多段曲げ室内熱交換器1や室内補助熱交換
器26での熱交換性能を確保して効率良く運転する必要
がある。以下、この方法について説明する。
It is necessary to ensure efficient cycle operation and heat exchange performance in the multistage bending indoor heat exchanger 1 and the indoor auxiliary heat exchanger 26 for each of the cooling and heating operations. Hereinafter, this method will be described.

【0036】まず図3において、冷房運転では冷媒が室
内補助熱交換器26から多段曲げ室内熱交換器1に流
れ、これらの両熱交換器とも低圧でガス冷媒の比容積が
大きくて体積流量が多くなる蒸発器となるため、流路面
積が小さいとここでの圧力損失が大きくなってサイクル
の性能が低下する。そこで図3においては、主熱交換器
である多段曲げ室内熱交換器1の前面上段から背面にか
けての部分3、4と前面下段部分2の各冷媒流路をそれ
ぞれ54、55と56、57の二系統にしてある。この
結果、冷媒流路での圧力損失が十分小さくなり、これに
よる性能低下を十分小さくできる。更には室内補助熱交
換器26を設けたり、室内熱交換器1を前面から背面に
かけて設けて蒸発器としての伝熱面積を十分大きくでき
ることから性能を向上でき、トータルとしては性能向上
を図ることが可能である。
First, in FIG. 3, in the cooling operation, the refrigerant flows from the indoor auxiliary heat exchanger 26 to the multi-stage bending indoor heat exchanger 1, and both of these heat exchangers have a low pressure, a large specific volume of the gas refrigerant, and a large volume flow rate. Since the number of evaporators increases, if the flow path area is small, the pressure loss here becomes large and the performance of the cycle decreases. Therefore, in FIG. 3, the refrigerant flow paths of the portions 3 and 4 from the front upper stage to the rear surface and the front lower portion 2 of the multistage bending indoor heat exchanger 1 as the main heat exchanger are respectively denoted by 54, 55 and 56 and 57. There are two systems. As a result, the pressure loss in the refrigerant flow path is sufficiently reduced, and the performance degradation due to this is sufficiently reduced. Furthermore, since the indoor auxiliary heat exchanger 26 is provided or the indoor heat exchanger 1 is provided from the front to the back, the heat transfer area as the evaporator can be sufficiently increased, so that the performance can be improved, and the performance can be improved as a whole. It is possible.

【0037】また暖房運転での性能を向上するために
は、凝縮器となる室内側の熱交換器の出口で十分な過冷
却を取る必要がある。そしてこの過冷却域では、冷媒が
液状態であると同時に冷媒温度が凝縮温度から徐々に下
がることから、液冷媒流の速度を速めて伝熱管内の熱伝
達率を高めてやると共に、伝熱管が風上側になるように
して熱交換前の比較的温度の低い空気流と熱交換するよ
うにする必要がある。またさらには室内熱交換器1の前
面下段部分2における暖房運転時の入口部分では高温ガ
ス冷媒の温度が凝縮温度まで低下するため、この部分で
も冷媒流と空気流とが対向流になるようにしてやる必要
がある。
Further, in order to improve the performance in the heating operation, it is necessary to take sufficient supercooling at the outlet of the indoor heat exchanger serving as a condenser. In this supercooling region, the refrigerant temperature is gradually lowered from the condensing temperature at the same time as the refrigerant is in a liquid state, so that the speed of the liquid refrigerant flow is increased to increase the heat transfer coefficient in the heat transfer tube, Is required to be on the windward side to exchange heat with a relatively low-temperature air flow before heat exchange. Furthermore, the temperature of the high-temperature gas refrigerant is reduced to the condensing temperature at the inlet portion of the lower front portion 2 of the indoor heat exchanger 1 at the time of the heating operation. I need to do it.

【0038】図3において、凝縮器の出口側は室内補助
熱交換器26であり、この部分は、冷媒流路が一系統で
流路面積を十分小さくできることから冷媒流速を速くし
て熱伝達率を十分高くでき、さらに室内熱交換器1の風
上側に配置してある。したがって室内補助熱交換器1は
過冷却器として十分な性能を発揮できる。また冷媒流路
を56、57の二系統にした室内熱交換器前面下段部分
2において、暖房運転時の高温ガス冷媒流の入口側を空
気流の風下側に設けた配管構成にし、この熱交換器部分
2では冷媒流と空気流とが向流になるようにしてあり、
熱交換性能を向上できる。
In FIG. 3, the outlet side of the condenser is an indoor auxiliary heat exchanger 26, which has a single refrigerant flow path and a sufficiently small flow path area. Can be made sufficiently high, and it is arranged on the windward side of the indoor heat exchanger 1. Therefore, the indoor auxiliary heat exchanger 1 can exhibit sufficient performance as a subcooler. Further, in the lower part 2 on the front surface of the indoor heat exchanger in which the refrigerant flow paths are divided into two systems of 56 and 57, a piping configuration is provided in which the inlet side of the high-temperature gas refrigerant flow during the heating operation is provided on the leeward side of the air flow. In the vessel part 2, the refrigerant flow and the air flow are made to be countercurrent,
Heat exchange performance can be improved.

【0039】ここで室内機寸法を十分大きくできない時
には、室内補助熱交換器26を暖房運転における過冷却
器として十分な大きさにできない場合がある。この問題
を解決できる一実施の形態を図4に示す。
Here, when the size of the indoor unit cannot be sufficiently increased, the indoor auxiliary heat exchanger 26 may not be sufficiently large as a subcooler in the heating operation. FIG. 4 shows an embodiment capable of solving this problem.

【0040】図4においては、多段曲げ室内熱交換器1
の前面上段から背面にかけての部分3、4を、風上側に
設けた一系統の冷媒流路部分60と二系統の冷媒流路部
分61、62から構成する。さらに室内熱交換器1の前
面下段部分2の冷媒流路を56、57の二系統にすると
同時に前面下段部分2における暖房運転時の冷媒流入口
部分を空気流の風下側に設けた配管構成にしてある。ま
た図3と同一番号を付けたものは同一部分を示す。
In FIG. 4, a multi-stage bending indoor heat exchanger 1 is shown.
The portions 3 and 4 from the upper front side to the rear side of the above are composed of a single-system refrigerant flow path portion 60 and two-system refrigerant flow path portions 61 and 62 provided on the windward side. Further, the refrigerant flow path of the front lower part 2 of the indoor heat exchanger 1 is made into two systems of 56 and 57, and at the same time, the refrigerant inlet part at the time of heating operation in the front lower part 2 is provided on the leeward side of the air flow. It is. Those denoted by the same reference numerals as those in FIG. 3 indicate the same parts.

【0041】このサイクル構成により、暖房運転におい
ては、圧縮機50を出て四方弁51を通った後の高温高
圧のガス冷媒は、室内熱交換器1に入り、前面下段部分
2の冷媒流路が二系統の伝熱管56、57を分流して通
った後、全開となっている除湿用絞り装置5を通って室
内熱交換器1の前面上段から背面にかけての部分3、4
に入り、冷媒流路が二系統の伝熱管61、62を分流し
て流れ、この後合流して冷媒流路が一系統の伝熱管60
を流れ、さらに冷媒流路が1系統の室内補助熱交換器2
6を流れる。
With this cycle configuration, in the heating operation, the high-temperature and high-pressure gas refrigerant that has exited the compressor 50 and passed through the four-way valve 51 enters the indoor heat exchanger 1 and passes through the refrigerant flow path in the front lower part 2. Diverges through the two heat transfer tubes 56 and 57 and then passes through the fully open dehumidifying throttle device 5 to the portions 3 and 4 from the upper front to the back of the indoor heat exchanger 1.
And the refrigerant flow path branches and flows through the two heat transfer tubes 61 and 62, and then merges to form a single heat transfer tube 60.
, And the refrigerant passage is a single-system indoor auxiliary heat exchanger 2
Flow through 6.

【0042】この場合、室内熱交換器1の前面下段部分
2では高温のガス冷媒が流れる入口側が空気流の風下側
になり二相冷媒の流れる出口側が温度の低い空気流の風
上側になるため、前面下段部分2では冷媒流と空気流と
が熱交換性能の優れた対向流状態となる。また多段曲げ
室内熱交換器1の前面上段から背面にかけての部分3、
4の冷媒流出口側の伝熱管60及び室内補助熱交換器2
6の伝熱管59が一系統冷媒流路となっており、さらに
飽和温度から徐々に温度の下がるサブクール域となるこ
れらの伝熱管60及び59は温度の低い上流側空気流と
熱交換をするため、十分なサブクールが取れ、室内機か
ら室外機に向かう冷媒温度はほぼ室温となるので、暖房
性能を向上することができる。
In this case, in the lower front part 2 of the indoor heat exchanger 1, the inlet side where the high-temperature gas refrigerant flows is on the leeward side of the air flow, and the outlet side where the two-phase refrigerant flows is on the leeward side of the low-temperature air flow. In the lower front part 2, the refrigerant flow and the air flow are in a counterflow state with excellent heat exchange performance. Also, a part 3 from the upper front to the back of the multi-stage bending indoor heat exchanger 1,
Heat transfer tube 60 on the refrigerant outlet side and the indoor auxiliary heat exchanger 2
The sixth heat transfer tube 59 is a single-system refrigerant flow path, and further, these heat transfer tubes 60 and 59, which form a subcool region where the temperature gradually decreases from the saturation temperature, exchange heat with the low-temperature upstream airflow. As a result, a sufficient subcool is obtained, and the temperature of the refrigerant flowing from the indoor unit to the outdoor unit becomes almost room temperature, so that the heating performance can be improved.

【0043】さらに冷房運転においては、電動膨張弁5
3で絞られ低圧・低温になった二相冷媒は、最初室内補
助熱交換器26に入って冷媒流路が一系統の伝熱管59
を通り、次に室内熱交換器1に入り、前面上段から背面
にかけての熱交換器部分3、4において一系統の伝熱管
60を通ったあと分流して二系統の伝熱管61、62に
入り、さらに除湿用絞り装置5を通って前面下段部分2
に入り二系統の伝熱管56、57に分流して流れる。こ
の場合、伝熱管59及び60では冷媒の乾き度が比較的
小さいため一系統の冷媒流路でも圧力損失は比較的小さ
い。また乾き度が比較的大きい伝熱管61、62と5
6、57の部分では冷媒流路をそれぞれ二系統にしたこ
とから圧力損失が十分小さくなる。この結果、圧力損失
による冷房性能の低下を防ぐことができる。さらに室内
補助熱交換器26を設けたことにより、蒸発器としての
伝熱面積が増加し、冷房性能が向上する。
Further, in the cooling operation, the electric expansion valve 5
The two-phase refrigerant which has been squeezed into a low pressure and low temperature in step 3 first enters the indoor auxiliary heat exchanger 26 and has a refrigerant flow path of one system of the heat transfer tube 59.
, And then enters the indoor heat exchanger 1, passes through one system of heat transfer tubes 60 in the heat exchanger portions 3 and 4 from the front upper stage to the rear surface, and branches into two systems of heat transfer tubes 61 and 62. , And further through the dehumidifying squeezing device 5 to lower the front lower part 2
Into the heat transfer tubes 56 and 57 of two systems. In this case, since the dryness of the refrigerant in the heat transfer tubes 59 and 60 is relatively small, the pressure loss is relatively small even in a single-system refrigerant flow path. The heat transfer tubes 61, 62 and 5 having relatively large dryness
At portions 6 and 57, the pressure loss is sufficiently reduced because the refrigerant flow paths are divided into two systems. As a result, a decrease in cooling performance due to pressure loss can be prevented. Further, by providing the indoor auxiliary heat exchanger 26, the heat transfer area as the evaporator increases, and the cooling performance improves.

【0044】ここで、図3及び図4に示す実施の形態で
は、室内熱交換器1の伝熱管を二系統に分ける場合及び
一系統と二系統を組み合わせた場合を示したが、これら
に限るものではなく、冷媒流路をさらに多くの系統に分
ける事も可能であり、この場合も室内熱交換器1での冷
媒流圧力損失を低減し、特に冷房性能の低下を防止でき
る。但し、冷媒流路をあまり多系統にすると、冷媒流の
圧力損失は低下するが、熱伝達率の低下が著しく、冷房
運転及び暖房運転における能力や動作係数といった空気
調和機全体の性能が低下してしまうため、最適な系統数
の冷媒流路に設定する必要があり、この系統数は主に冷
媒配管の内径に応じて決定される。また室内熱交換器1
で、多系統の冷媒流路にした所を管径の太い伝熱管とし
一系統の冷媒流路にしても(図示省略)同様の効果が得
られる。すなわち管径を太くしたことにより、冷媒流の
流速が遅くなり、特に冷房運転での性能低下を防止でき
る。
Here, in the embodiment shown in FIGS. 3 and 4, the case where the heat transfer tubes of the indoor heat exchanger 1 are divided into two systems and the case where one system and two systems are combined are shown, but the present invention is not limited to these. Instead, it is possible to divide the refrigerant flow path into more systems, and in this case as well, the pressure loss of the refrigerant flow in the indoor heat exchanger 1 can be reduced, and particularly, the cooling performance can be prevented from lowering. However, if the number of refrigerant channels is too large, the pressure loss of the refrigerant flow is reduced, but the heat transfer coefficient is significantly reduced, and the performance of the air conditioner as a whole in the cooling operation and the heating operation is reduced. Therefore, it is necessary to set an optimal number of refrigerant channels in the system, and the number of systems is determined mainly according to the inner diameter of the refrigerant pipe. Indoor heat exchanger 1
Thus, the same effect can be obtained by using a heat transfer tube having a large pipe diameter at the place where the refrigerant flow path of the multi-system is formed and a single refrigerant flow path (not shown). That is, by increasing the diameter of the pipe, the flow velocity of the refrigerant flow is reduced, and it is possible to prevent performance degradation particularly during cooling operation.

【0045】さらに図1、3、4における室内補助熱交
換器26は、空気流に対して室内熱交換器1の風上側に
設けてあるため、室内補助熱交換器26と室内熱交換器
1の重なった部分では通風抵抗の増大により風量が減少
し伝熱性能が低下してしまう。そこで室内補助熱交換器
26は、室内熱交換器1に対して通風抵抗の小さいもの
にする必要がある。このためには、室内補助熱交換器2
6は、室内熱交換器1に比べて、フィンピッチを大きく
したり、あるいは奥行き寸法(風の流れる方向の寸法)
を薄くしたり、あるいは室内熱交換器1が伝熱性能を上
げるためにフィンにスリットを設けるのに対してスリッ
トを設けない構造にする(図示省略)。
Further, since the indoor auxiliary heat exchanger 26 in FIGS. 1, 3 and 4 is provided on the windward side of the indoor heat exchanger 1 with respect to the airflow, the indoor auxiliary heat exchanger 26 and the indoor heat exchanger 1 In the overlapped portion, the airflow decreases due to the increase in ventilation resistance, and the heat transfer performance decreases. Therefore, it is necessary that the indoor auxiliary heat exchanger 26 has a small ventilation resistance with respect to the indoor heat exchanger 1. For this purpose, the indoor auxiliary heat exchanger 2
Numeral 6 indicates that the fin pitch is increased or the depth dimension (dimension in the direction in which the wind flows) as compared with the indoor heat exchanger 1.
Or the indoor heat exchanger 1 has a structure in which no slit is provided while a slit is provided in the fin in order to improve the heat transfer performance (not shown).

【0046】次に図1の室内機構造において、多段曲げ
室内熱交換器1における矢印91、92、93で示す吸
込空気の風速分布は、前面下段部分2に相当する91が
比較的早い。さらにデザインの点から、図5に示すよう
に、室内機の前面において上方部分80はふさいで空気
吸込口とせず、下方部分のみを吸込グリル81とする室
内機構造にする場合があり、この場合、矢印91、9
2、93で示す吸込空気流の風速分布は前面下方吸込グ
リル81に相当する矢印91の風速分布が最も速い。な
お図5において、図1と同一番号を付したものは同一部
分を示す。
Next, in the indoor unit structure shown in FIG. 1, the wind speed distribution of the intake air indicated by arrows 91, 92 and 93 in the multi-stage bending indoor heat exchanger 1 is relatively fast at 91 corresponding to the lower part 2 on the front side. Further, from the design point of view, as shown in FIG. 5, there is a case where the upper part 80 is not covered with the air suction port at the front surface of the indoor unit, and only the lower part is a suction grille 81. , Arrows 91, 9
As for the wind speed distribution of the suction airflow indicated by 2, 93, the wind speed distribution indicated by an arrow 91 corresponding to the front lower suction grille 81 is the fastest. In FIG. 5, the same reference numerals as in FIG. 1 denote the same parts.

【0047】こうした場合、代表例を図5に示すよう
に、補助熱交換器26を多段曲げ室内熱交換器1の前面
下段部分2の風上側に設けることにより、冷房及び暖房
の性能をさらに向上することができる。すなわち冷房及
び暖房運転において、矢印91に相当する風量が比較的
多いことから、この風量に対応した室内補助熱交換器2
6及び室内熱交換器の前面下段部分2からなる熱交換器
部分が風の流れる奥行き方向に厚くなっても、この熱交
換器部分の温度効率は比較的高く保たれる。さらに室内
熱交換器1における風速分布の速いところに(多少)通
風抵抗となる補助熱交換器26を設けたことから、室内
熱交換器1全体の前面における吸込風速分布がより均一
になる。これらの結果、図5の室内機構造は、図1の室
内機構造に比べて冷房及び暖房の性能を向上することが
できる。
In such a case, as shown in FIG. 5 as a representative example, by providing the auxiliary heat exchanger 26 on the windward side of the lower front part 2 of the multistage bending indoor heat exchanger 1, the cooling and heating performance is further improved. can do. That is, in the cooling and heating operations, since the air volume corresponding to the arrow 91 is relatively large, the indoor auxiliary heat exchanger 2 corresponding to this air volume is used.
Even if the heat exchanger portion composed of 6 and the lower front portion 2 of the indoor heat exchanger becomes thicker in the depth direction in which the wind flows, the temperature efficiency of this heat exchanger portion is kept relatively high. Further, since the auxiliary heat exchanger 26 having a (slightly) ventilation resistance is provided at a place where the wind speed distribution in the indoor heat exchanger 1 is fast, the suction wind speed distribution on the front surface of the entire indoor heat exchanger 1 becomes more uniform. As a result, the indoor unit structure of FIG. 5 can improve the cooling and heating performance as compared with the indoor unit structure of FIG.

【0048】また図5の構造における除湿運転の性能
は、実測によると、図1の室内機構造と大差はなく(除
湿量はやや減少する傾向にあるが、逆に吹出空気温度は
上昇する傾向になる)、冷え過ぎの無い快適な除湿運転
を行うことがきる。
The performance of the dehumidifying operation in the structure of FIG. 5 is not greatly different from the indoor unit structure of FIG. 1 according to actual measurement (the amount of dehumidification tends to decrease slightly, while the temperature of the blown air tends to increase). ), It is possible to perform comfortable dehumidifying operation without excessive cooling.

【0049】またさらには、室内機の構造上の制約か
ら、室内補助熱交換器26を、室内熱交換器の背面部分
4の風上側や前面下段部分2の風上側におけない場合に
は、、室内熱交換器の前面上段部分3の風上側において
も、多少性能は低下するかも知れないがこれまで述べて
きた除湿、冷房及び暖房の運転における補助熱交換器の
効果を得ることができる。
Furthermore, if the indoor auxiliary heat exchanger 26 cannot be located on the windward side of the rear part 4 or the windward side of the front lower part 2 of the indoor heat exchanger due to structural restrictions of the indoor unit, The performance of the auxiliary heat exchanger in the dehumidification, cooling and heating operations described above can be obtained, although the performance may slightly decrease on the windward side of the upper front section 3 of the indoor heat exchanger.

【0050】なお図3及び図4のサイクル構成において
も、図5の室内機構造あるいは室内補助熱交換器26を
室内熱交換器の前面上段部分3の風上側に設けた室内機
構造を適用でき、同様の効果を得ることができる(図示
省略)。
3 and 4, the indoor unit structure of FIG. 5 or the indoor unit structure in which the indoor auxiliary heat exchanger 26 is provided on the windward side of the upper front part 3 of the indoor heat exchanger can be applied. The same effect can be obtained (not shown).

【0051】ところで図1、図3、図4、図5の実施の
形態では室内熱交換器1を、前面下段部分2、前面上段
部分3、背面部分4の三段に曲げた場合を示したが、こ
れに限るものではなく、各部分を必要に応じてそれぞれ
多段に構成しても良い。図6には熱的な切断線63の下
段部分である室内熱交換器1の前面下段部分2’を6
4、65、66の3段にした場合を示す。これにより伝
熱面積を図3より大きくできる。さらには図7に示すよ
うに前面下段から前面上段、背面までを折れ線でなく連
続した曲線にした一体構造にして、さらに除湿運転時に
加熱器となる前面上段から背面にかけての部分と冷却器
となる前面下段部分とを、切断線67により68と69
の二つに熱的に分離した構造にしても良く、同様に伝熱
面積を大きくすることができる。特に小形の空気調和機
であるルームエアコン等では、室内熱交換器を収納する
スペースが十分に取れないことが多く、この場合には室
内熱交換器の曲げ回数を多くしたり、曲線状にすること
により、狭いスペースに十分な伝熱面積を持つ室内熱交
換器を収納できる。そしてこれらの室内熱交換器の場合
にも、図1あるいは図5等のように、室内熱交換器の風
上側に室内補助熱交換器を設けて、同様の効果を得るこ
とができる。
In the embodiments shown in FIGS. 1, 3, 4, and 5, the indoor heat exchanger 1 is bent into three steps of a lower front part 2, a front upper part 3, and a rear part 4. However, the present invention is not limited to this, and each part may be configured in multiple stages as needed. FIG. 6 shows the lower part 2 ′ of the front of the indoor heat exchanger 1, which is the lower part of the thermal cutting line 63.
The case where there are three stages of 4, 65 and 66 is shown. Thereby, the heat transfer area can be made larger than that of FIG. Furthermore, as shown in FIG. 7, the lower part of the front surface, the upper part of the front part, and the back part have an integrated structure that is not a broken line but a continuous curve. The lower part of the front surface is connected to 68 and 69 by a cutting line 67.
The structure may be thermally separated into two, and the heat transfer area can be similarly increased. In particular, room air conditioners, which are small air conditioners, often do not have enough room to accommodate the indoor heat exchanger. In this case, the number of bending times of the indoor heat exchanger is increased or the indoor heat exchanger is curved. Thus, the indoor heat exchanger having a sufficient heat transfer area can be stored in a small space. Also in the case of these indoor heat exchangers, a similar effect can be obtained by providing an indoor auxiliary heat exchanger on the windward side of the indoor heat exchanger as shown in FIG. 1 or FIG.

【0052】また図1、図3、図4、図5における除湿
用絞り装置5や電動膨張弁53はキャピラリーチューブ
あるいは通常の膨張弁と二方弁とを並列に設けた構成の
ものにしてもよく(図示省略)、二方弁の開閉によりこ
れまでの実施の形態と同様の作用を実現することができ
る。
The dehumidifying throttle device 5 and the electric expansion valve 53 shown in FIGS. 1, 3, 4 and 5 may have a configuration in which a capillary tube or a normal expansion valve and a two-way valve are provided in parallel. Often (not shown), by opening and closing the two-way valve, the same operation as in the previous embodiments can be realized.

【0053】ここで除湿運転において、図3における室
外ファン58の送風能力を落とすと室外熱交換器52で
外気に放熱する能力が減少して加熱器となる室内補助熱
交換器26及び室内熱交換器1の前面上段から背面にか
けての部分3、4での放熱能力が増大する。また圧縮機
50の能力を増す事によりこれらの加熱器部分での加熱
能力を増したり、冷却器となる室内熱交換器1の前面下
段部分2での除湿能力を増すことができる。またさらに
は室内ファン9の送風能力を変えることによりいろいろ
な使用状態に適した除湿運転を行うことができる。たと
えば通常の除湿運転では人の好みに応じて室内風量を変
え、洗濯物を乾燥するときには室内風量を増して運転
し、寝るときには室内風量を落として運転するようにす
る。この場合、最近ではDCモータファンやインバータ
圧縮機が採用されており、これらは回転数の制御が容易
なことからファンや圧縮機の能力を容易に変えて、除湿
運転における加熱能力を広い範囲で変えて吹出温度を冷
房気味から等温気味、暖房気味まで変えたり、除湿能力
を変えたり、さらには使用状態に合わせて室内風量を変
えて上記種々の除湿運転を行うことができる。
Here, in the dehumidifying operation, if the blowing capacity of the outdoor fan 58 in FIG. 3 is reduced, the ability of the outdoor heat exchanger 52 to radiate heat to the outside air decreases, and the indoor auxiliary heat exchanger 26 and the indoor heat exchange, which serve as heaters, The heat dissipating ability in the portions 3 and 4 from the upper front stage to the rear surface of the container 1 is increased. Further, by increasing the capacity of the compressor 50, the heating capacity of these heaters can be increased, and the dehumidifying capacity of the lower front part 2 of the indoor heat exchanger 1 serving as a cooler can be increased. Further, by changing the air blowing capacity of the indoor fan 9, a dehumidifying operation suitable for various use conditions can be performed. For example, in a normal dehumidifying operation, the indoor air volume is changed according to the preference of a person, and the laundry is operated by increasing the indoor air volume when drying the laundry, and by decreasing the indoor air volume when sleeping. In this case, recently, a DC motor fan or an inverter compressor has been adopted, and since the number of rotations is easily controlled, the capacity of the fan or the compressor is easily changed so that the heating capacity in the dehumidifying operation can be widened. The various dehumidifying operations described above can be performed by changing the outlet temperature from cooling to isothermal and heating, changing the dehumidifying capacity, and changing the amount of indoor air in accordance with the use condition.

【0054】ここで、これまでは室内熱交換器としては
室内機の前面から背面にかけて設けた構造を考えてきた
が、これに限らず、室内熱交換器を室内機の前面にだけ
設けて背面には設けない構造にし、この風上側に補助熱
交換器を設けた室内機構造の場合にも(図示省略;例え
ば図1あるいは図5において室内熱交換器1の背面部分
4を設けない場合等に相当)、これまでの説明と同様な
室内補助熱交換器の効果を得ることができる。
Heretofore, the structure in which the indoor heat exchanger is provided from the front to the back of the indoor unit has been considered. However, the present invention is not limited to this. In the case of an indoor unit structure in which an auxiliary heat exchanger is provided on the windward side (not shown; for example, when the rear portion 4 of the indoor heat exchanger 1 is not provided in FIG. 1 or FIG. 5) ), The same effect of the indoor auxiliary heat exchanger as described above can be obtained.

【0055】さらにまた、室内機の前面から背面にかけ
て設けた室内熱交換器構造に対して、これまでに述べた
図1、図3、図4、図5の実施の形態では前面上段から
背面にかけての部分と前面下段部分とに熱的に二分割し
て、これらの間に除湿用絞り装置を設けた構成にした
が、これに限らず、前面部分全体(上段及び下段)と背
面部分とを切断線等により熱的に二分割し、この間に除
湿用絞り装置を設けた構成とし、図1、図3、図4、図
5における室内熱交換器1の前面上段から背面にかけて
の部分3、4に相当する所を室内熱交換器1の前面下段
から前面上段にかけての部分2、3とし、前面下段部分
2に相当する所を背面部分4とする構成にし(図示省
略)、さらに室内補助熱交換器を、図1、図3、図4、
図5等と同様に、除湿運転時冷媒流路における室内熱交
換器の上流側で室内機送風路における室内熱交換器の風
上側に設けても、同様の作用及び効果が得られる。すな
わち除湿運転においては、室内補助熱交換器及び室内熱
交換器の前面部分全体が加熱器、室内熱交換器の背面部
分が冷却器となり、加熱器部分が冷却器部分より大き
く、暖房ぎみ除湿運転が可能で、しかも冷却器の下側に
加熱器が配置されないことから冷却器で生じた除湿水が
加熱器にかかって再蒸発することがない。また室内熱交
換器の前面部分及び背面部分の冷媒流路をそれぞれ二系
統以上にしたり、室内補助熱交換器の冷媒流路を一系統
にすると同時に室内熱交換器の風上側に配置することに
より、冷房運転や暖房運転において圧力損失を低減でき
ると共に冷媒流と空気流とを対向流にでき、さらには暖
房運転時において室内補助熱交換器が過冷却器として作
用し効率良く十分な過冷却をとることができる。したが
って、冷房運転及び暖房運転において、図1から図5で
述べた実施の形態と同様に、十分効率の良い運転を行う
ことができる。
Further, with respect to the indoor heat exchanger structure provided from the front to the back of the indoor unit, in the embodiments of FIGS. 1, 3, 4 and 5 described above, from the upper front to the back. And the lower front part are thermally divided into two parts, and a dehumidifying throttle device is provided between them. However, the present invention is not limited to this, and the entire front part (upper and lower parts) and the rear part are separated. It is thermally divided into two by a cutting line or the like, and a dehumidifying throttle device is provided between the two. A portion 3 from the upper front stage to the rear surface of the indoor heat exchanger 1 in FIGS. The portion corresponding to No. 4 is formed as portions 2 and 3 from the lower front stage to the upper front portion of the indoor heat exchanger 1, and the portion corresponding to the lower front portion 2 is formed as a rear portion 4 (not shown). The exchanges are shown in FIGS. 1, 3, 4,
Similarly to FIG. 5 and the like, the same operation and effect can be obtained by providing the air conditioner upstream of the indoor heat exchanger in the refrigerant flow path during the dehumidifying operation and on the windward side of the indoor heat exchanger in the indoor unit air passage. That is, in the dehumidifying operation, the entire front part of the indoor auxiliary heat exchanger and the indoor heat exchanger becomes a heater, the rear part of the indoor heat exchanger becomes a cooler, and the heater part is larger than the cooler part. Since the heater is not disposed below the cooler, the dehumidified water generated in the cooler does not reach the heater and re-evaporate. In addition, by making the refrigerant flow path of the front part and the rear part of the indoor heat exchanger two or more each, or by making the refrigerant flow path of the indoor auxiliary heat exchanger one system and arranging it on the windward side of the indoor heat exchanger In addition, the pressure loss can be reduced in the cooling operation or the heating operation, and the refrigerant flow and the air flow can be made to flow in opposite directions. Further, during the heating operation, the indoor auxiliary heat exchanger acts as a subcooler to efficiently perform sufficient subcooling. Can be taken. Therefore, in the cooling operation and the heating operation, a sufficiently efficient operation can be performed as in the embodiment described with reference to FIGS.

【0056】ところで以上説明した実施の形態において
は、空気調和機でよく使用されるHCFC22(ハイド
ロクロロフルオロカーボン22の略)等の単一冷媒を使
用する場合に付いて説明してきた。しかし最近は、オゾ
ン層破壊や地球温暖化の点からHCFC22に代わる代
替冷媒の研究が盛んになっており、代替冷媒としては単
一冷媒だけでなく、混合冷媒の使用が検討されている。
これに対して、図1から図5に示す実施の形態で述べて
きた室内機の構造、サイクル構成、運転の制御方法を適
用できることは明らかであり、同様の効果が得られる。
In the embodiment described above, the case where a single refrigerant such as HCFC22 (abbreviation of hydrochlorofluorocarbon 22) often used in an air conditioner is used has been described. However, in recent years, research on alternative refrigerants replacing HCFC22 has been actively conducted from the viewpoint of depletion of the ozone layer and global warming, and the use of mixed refrigerants as well as single refrigerants as alternative refrigerants is being studied.
On the other hand, it is clear that the control method of the structure, cycle configuration, and operation of the indoor unit described in the embodiment shown in FIGS. 1 to 5 can be applied, and the same effect can be obtained.

【0057】[0057]

【発明の効果】以上説明したように、本発明の空気調和
機によれば、室内熱交換器を熱的に二分割してその間に
除湿運転時に絞り作用を行う除湿用絞り装置を設け、除
湿運転時においてこの除湿絞り装置の上流側が加熱器
(凝縮機)、下流側が冷却器(蒸発器)になるサイクル構成
にし、さらに除湿運転時における加熱器の上流側に室内
補助熱交換器を設けたサイクル構成にしたものである。
また室内熱交換器を、室内機の前面から背面にかけて設
けて、コンパクトな室内機でも十分大きな伝熱面積を確
保できる構造にしたものである。
As described above, according to the air conditioner of the present invention, the indoor heat exchanger is thermally divided into two parts, and the dehumidifying throttle device for performing the throttling action during the dehumidifying operation is provided therebetween. During operation, the heater is located upstream of the dehumidifying expansion device.
(Condenser), a cycle configuration in which the downstream side is a cooler (evaporator), and a cycle configuration in which an indoor auxiliary heat exchanger is provided upstream of the heater during the dehumidification operation.
In addition, the indoor heat exchanger is provided from the front to the back of the indoor unit, and has a structure in which a sufficiently large heat transfer area can be ensured even in a compact indoor unit.

【0058】この結果、除湿運転では除湿効率(除湿量
/消費電力)を向上させると同時に加熱器での加熱量を
多くできることから吹出空気温度を十分高くでき、さら
には室内補助熱交換器により冷媒流に対する凝縮能力を
増大でき除湿絞り装置入口の冷媒流を(乾き度の十分低
いところから)液の状態にすることができることから、
除湿用絞り装置による冷媒流動音を低減することができ
る。またコンパクトな室内機でも、冷房及び暖房運転に
おいては、伝熱面積を十分大きくでき、特に暖房運転で
は室内補助熱交換器を過冷却器として有効に使用するこ
とができるから、性能を向上して省電力を図ることがで
きる。
As a result, in the dehumidifying operation, since the dehumidifying efficiency (dehumidifying amount / power consumption) can be improved and the amount of heating in the heater can be increased, the temperature of the blown air can be sufficiently increased. Since the condensation capacity for the flow can be increased and the refrigerant flow at the inlet of the dehumidifying expansion device can be brought into a liquid state (from a place where the dryness is sufficiently low),
Refrigerant noise caused by the dehumidifying throttle device can be reduced. Even in a compact indoor unit, the heat transfer area can be made sufficiently large in the cooling and heating operations, and in particular in the heating operation, the indoor auxiliary heat exchanger can be effectively used as a subcooler, so that the performance is improved. Power saving can be achieved.

【0059】さらに、熱的に二分割した室内熱交換器の
各々の冷媒流路をそれぞれ二系統以上にして室内機にお
ける前面から背面にかけて設けた室内熱交換器での冷媒
流の流通抵抗の増加を防止したり、室内熱交換器の冷媒
流路における暖房運転時の出口部分を一系統にして暖房
運転時に十分な冷媒サブクールが取れるようにしたり、
さらには室内熱交換器における冷媒流と空気流とができ
るだけ対向流になるような配管構成にしたことにより、
熱交換器を大きくして冷媒流路が長くなったり、除湿制
御弁を設けたことによる性能の低下を防ぐことができ
る。
Further, the flow resistance of the refrigerant flow in the indoor heat exchanger provided from the front to the rear in the indoor unit is increased by making each of the refrigerant flow paths of the thermally split indoor heat exchanger into two or more systems. Or to prevent a sufficient refrigerant subcooling during the heating operation by making the outlet part during the heating operation in the refrigerant flow path of the indoor heat exchanger a single system,
Furthermore, by making the piping configuration such that the refrigerant flow and the air flow in the indoor heat exchanger are as opposed to each other as possible,
It is possible to prevent the size of the heat exchanger from being increased to make the refrigerant flow path longer, and to prevent performance degradation due to the provision of the dehumidification control valve.

【0060】また、室外ファン及び圧縮機を能力制御可
能なものにしてこれらの機器の能力を適当に制御するこ
とにより加熱器での加熱量を広い範囲で制御して、除湿
水量を十分取れる状態で、暖房気味、等温気味、冷房気
味の除湿運転を行うと同時に、室内ファンの能力制御に
より種々の利用形態の除湿運転を行うことができる。
The capacity of the outdoor fan and the compressor can be controlled, and by appropriately controlling the performance of these devices, the amount of heating by the heater can be controlled in a wide range so that a sufficient amount of dehumidified water can be obtained. Thus, the dehumidifying operation of the heating, isothermal, and cooling feelings can be performed, and at the same time, the dehumidification operation of various usages can be performed by controlling the capacity of the indoor fan.

【0061】さらにまた、以上のような除湿運転方法及
び室内熱交換器の配管構成は、単一冷媒、混合冷媒を問
わず適用でき、同様の効果を得ることができる。
Further, the above-described dehumidifying operation method and the piping configuration of the indoor heat exchanger can be applied to a single refrigerant or a mixed refrigerant, and the same effects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である空気調和機の室内
機構造を示す図である。
FIG. 1 is a diagram showing an indoor unit structure of an air conditioner according to an embodiment of the present invention.

【図2】図1における除湿用絞り装置の一例の構造及動
作状態を示す図である。
FIG. 2 is a diagram showing a structure and an operation state of an example of a dehumidifying throttle device in FIG. 1;

【図3】本発明の一実施の形態である空気調和機のサイ
クル構成を示す図である。
FIG. 3 is a diagram showing a cycle configuration of an air conditioner according to an embodiment of the present invention.

【図4】本発明の他の実施の形態である室内熱交換器の
配管構成を示す図である。
FIG. 4 is a diagram showing a piping configuration of an indoor heat exchanger according to another embodiment of the present invention.

【図5】本発明の他の実施の形態である空気調和機の室
内機構造を示す図である。
FIG. 5 is a diagram showing an indoor unit structure of an air conditioner according to another embodiment of the present invention.

【図6】本発明の他の実施の形態である室内熱交換器の
形状を示す図である。
FIG. 6 is a diagram showing a shape of an indoor heat exchanger according to another embodiment of the present invention.

【図7】本発明のさらに他の実施の形態である室内熱交
換器の形状を示す図である。
FIG. 7 is a view showing a shape of an indoor heat exchanger according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…室内熱交換器、2、2’…室内熱交換器の前面下段
部分、3…室内熱交換器の前面上段部分、4…室内熱交
換器の背面部分、5…除湿用絞り装置、6、7、27、
28、29…接続配管、9…室内ファン、10…前面吸
込グリル、11…上面吸込グリル、12…背面吸込グリ
ル、13…フィルタ、14…背面ケーシング、15…吹
出口、16…吹出口風向版、17…前面露受皿、18…
背面露受皿、20…伝熱管、21、22…伝熱管の接続
配管、23…放熱フィン、24、63、67…熱的切断
線、26…室内補助熱交換器、30…弁本体、31…弁
座、32…弁体、33…弁部、34、35…接続管、3
6…電磁モータ、37…除湿運転時の冷媒流路、50…
圧縮機、51…四方弁、52…室外熱交換器、53…電
動膨張弁、54、55、56、57、59、60、6
1、62…冷媒流路、58…室外ファン、64、65、
66、68、69…熱交換器部分、80…前面上段パネ
ル、81…前面下段吸込グリル、91、92、93…室
内機吸込空気流。
DESCRIPTION OF SYMBOLS 1 ... Indoor heat exchanger, 2 and 2 '... Lower front part of indoor heat exchanger, 3 ... Upper front part of indoor heat exchanger, 4 ... Rear part of indoor heat exchanger, 5 ... Dehumidifying throttle device, 6 , 7, 27,
28, 29: Connection piping, 9: Indoor fan, 10: Front suction grill, 11: Top suction grill, 12: Rear suction grill, 13: Filter, 14: Rear casing, 15: Air outlet, 16: Air outlet wind direction plate , 17 ... front dew tray, 18 ...
Back dew receiving tray, 20: heat transfer tube, 21, 22: connection pipe of heat transfer tube, 23: radiating fin, 24, 63, 67: thermal cutting line, 26: indoor auxiliary heat exchanger, 30: valve body, 31 ... Valve seat, 32 ... valve element, 33 ... valve part, 34, 35 ... connection pipe, 3
6 ... Electromagnetic motor, 37 ... Refrigerant flow path during dehumidification operation, 50 ...
Compressor, 51: Four-way valve, 52: Outdoor heat exchanger, 53: Electric expansion valve, 54, 55, 56, 57, 59, 60, 6
1, 62 ... refrigerant flow path, 58 ... outdoor fan, 64, 65,
66, 68, 69: heat exchanger part, 80: front upper panel, 81: front lower suction grille, 91, 92, 93: indoor unit suction air flow.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 光夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 ▲高▼田 芳廣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 森本 素生 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 横山 英範 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 小暮 博志 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuo Kudo 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. Within Hitachi Machinery Research Laboratories (72) Inventor Motoo Morimoto 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside the Cooling and Cooling Division, Hitachi, Ltd. Hitachi, Ltd.Cooling Division (72) Inventor Hiroshi Kogure 800, Tomita, Ohira, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷媒を圧縮する圧縮機と、この圧縮機から
の冷媒が室外熱交換器を介して流入される熱的に二分割
された室内熱交換器と、この熱的に二分割された室内熱
交換器の間に設けられた除湿運転時に絞りとして使用す
る除湿用絞り手段とを備えた空気調和機において、除湿
運転時における冷媒流路の前記室内熱交換器の上流側に
室内補助熱交換器を備えた空気調和機。
1. A compressor for compressing a refrigerant, a thermally split indoor heat exchanger into which the refrigerant from the compressor flows through an outdoor heat exchanger, and a thermally split indoor heat exchanger. Air conditioner provided with a dehumidifying throttle means used as a throttle during a dehumidifying operation provided between indoor heat exchangers, wherein an indoor auxiliary is provided upstream of the indoor heat exchanger in the refrigerant flow path during the dehumidifying operation. An air conditioner equipped with a heat exchanger.
【請求項2】前記室内熱交換器が収納された室内機は、
前面及び上面に空気吸込口を設けられたものであり、こ
の室内機の前面から背面にかけて前記室内熱交換器が設
けられ、前記室内補助熱交換器は、前記室内熱交換器の
背面部分の風上側に設けられたものである請求項1記載
の空気調和機。
2. The indoor unit in which the indoor heat exchanger is housed,
An air inlet is provided on the front surface and the upper surface, and the indoor heat exchanger is provided from the front surface to the rear surface of the indoor unit, and the indoor auxiliary heat exchanger includes a wind at a rear portion of the indoor heat exchanger. The air conditioner according to claim 1, wherein the air conditioner is provided on an upper side.
【請求項3】前記室内熱交換器が収納された室内機は、
前面及び上面に空気吸込口を設けられたものであり、こ
の室内機の前面から背面にかけて前記室内熱交換器が設
けられ、前記室内補助熱交換器は、前記前面空気吸込口
と前記室内熱交換器の間に設けられた請求項1に記載の
空気調和機。
3. The indoor unit in which the indoor heat exchanger is stored,
An air inlet is provided on a front surface and an upper surface, and the indoor heat exchanger is provided from a front surface to a rear surface of the indoor unit. The indoor auxiliary heat exchanger is provided between the front air inlet and the indoor heat exchanger. The air conditioner according to claim 1, which is provided between the air conditioners.
JP24014696A 1996-09-11 1996-09-11 Air conditioner Expired - Lifetime JP3677887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24014696A JP3677887B2 (en) 1996-09-11 1996-09-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24014696A JP3677887B2 (en) 1996-09-11 1996-09-11 Air conditioner

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001345509A Division JP2002195689A (en) 2001-11-12 2001-11-12 Air conditioner
JP2004110618A Division JP3885063B2 (en) 2004-04-05 2004-04-05 Air conditioner

Publications (2)

Publication Number Publication Date
JPH1089803A true JPH1089803A (en) 1998-04-10
JP3677887B2 JP3677887B2 (en) 2005-08-03

Family

ID=17055186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24014696A Expired - Lifetime JP3677887B2 (en) 1996-09-11 1996-09-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP3677887B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089988A (en) * 2000-09-21 2002-03-27 Mitsubishi Electric Corp Air conditioner, and operating method of air conditioner
JP2002286278A (en) * 2001-03-23 2002-10-03 Toshiba Kyaria Kk Air conditioner
JP2003074890A (en) * 2001-08-28 2003-03-12 Toshiba Kyaria Kk Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089988A (en) * 2000-09-21 2002-03-27 Mitsubishi Electric Corp Air conditioner, and operating method of air conditioner
JP2002286278A (en) * 2001-03-23 2002-10-03 Toshiba Kyaria Kk Air conditioner
JP2003074890A (en) * 2001-08-28 2003-03-12 Toshiba Kyaria Kk Air conditioner
JP4495369B2 (en) * 2001-08-28 2010-07-07 東芝キヤリア株式会社 Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same

Also Published As

Publication number Publication date
JP3677887B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JPH10176867A (en) Air conditioner
JPH09145187A (en) Air conditioner
JP3283706B2 (en) Air conditioner
JP2002333186A (en) Air conditioner
JP3397413B2 (en) Air conditioner
JPH11337104A (en) Air conditioner
JP2005133976A (en) Air-conditioner
JP4092919B2 (en) Air conditioner
JP2006177573A (en) Air conditioner
JP3677887B2 (en) Air conditioner
JP2005273923A (en) Air conditioner
JP3724011B2 (en) Air conditioner
JP3885063B2 (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JPH10246506A (en) Indoor unit for air conditioner
JP6678413B2 (en) Air conditioner
JP2002333191A (en) Air conditioner
JP2001208401A (en) Air conditioner
JPH10196984A (en) Air conditioner
JP3596513B2 (en) Air conditioner
JP2002195689A (en) Air conditioner
JP2021008981A (en) Air conditioning unit, heat exchanger, and air conditioner
JP2002340437A (en) Air conditioner
JPH10253188A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term