JP2007113796A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007113796A
JP2007113796A JP2005302726A JP2005302726A JP2007113796A JP 2007113796 A JP2007113796 A JP 2007113796A JP 2005302726 A JP2005302726 A JP 2005302726A JP 2005302726 A JP2005302726 A JP 2005302726A JP 2007113796 A JP2007113796 A JP 2007113796A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
reservoir
pipe
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005302726A
Other languages
Japanese (ja)
Other versions
JP4209881B2 (en
Inventor
Shigeo Aoyama
繁男 青山
Akira Takushima
多久島 朗
Eiji Wakizaka
脇坂 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2005302726A priority Critical patent/JP4209881B2/en
Priority to KR1020060013646A priority patent/KR101166376B1/en
Priority to CNB2006100767080A priority patent/CN100453923C/en
Publication of JP2007113796A publication Critical patent/JP2007113796A/en
Application granted granted Critical
Publication of JP4209881B2 publication Critical patent/JP4209881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of efficiently performing cooling operation and reheating dehumidifying operation. <P>SOLUTION: In this air conditioner 1, a first heat exchanger 21 and a second heat exchanger 22 are successively mounted in an air flow passage A in an indoor machine 2. Piping 24 extending from an outflow port 21B at a lower part of the first heat exchanger 21 extends upward, and is connected with a reservoir 26 after forming an approximately U-shaped curved branch portion 25. Piping 27 connected with a lower part of the reservoir 26, is further connected with an inflow port 22A of the second heat exchanger 22 after mounting a two-way valve 28. Piping 29 extends from a part projecting to an uppermost side of the branch portion 25, and is connected with the inflow port 22A of the second heat exchanger 22 after mounting a second pressure reducing device 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷房運転と除湿運転が可能な空気調和装置に関する。   The present invention relates to an air conditioner capable of cooling operation and dehumidifying operation.

空気調和装置には、除湿冷房運転と除湿暖房運転が切り替え可能に構成された除湿専用型の再熱除湿エアコンと言われるものがある。この空気調和装置の室内機は、除湿用熱交換器と、減圧装置と、冷媒の貯溜器と、放熱用熱交換器とを直列に配置したものがある(例えば、特許文献1参照)。貯溜器は、放熱用熱交換器から減圧装置に送り込まれる液冷媒のうちで余剰な液冷媒を蓄えるもので、冷媒が過剰圧にならないようにするために設けられている。除湿冷房運転時には、ガス冷媒が放熱用熱交換器で放熱して液化する。液化した冷媒は、貯溜器に殆ど留まることなく放熱用熱交換器に流入し、ここで若干放熱する。除湿用熱交換器で除湿された空気は、僅かに加熱されるだけで室内に吹き出す。
特開2002−60930号公報
Some air conditioners are called dehumidification-only reheat dehumidification air conditioners configured to be switchable between a dehumidifying and cooling operation and a dehumidifying and heating operation. As an indoor unit of this air conditioner, there is one in which a dehumidifying heat exchanger, a pressure reducing device, a refrigerant reservoir, and a heat radiating heat exchanger are arranged in series (for example, see Patent Document 1). The reservoir stores excess liquid refrigerant among the liquid refrigerant sent from the heat-dissipating heat exchanger to the decompression device, and is provided to prevent the refrigerant from becoming excessive pressure. During the dehumidifying and cooling operation, the gas refrigerant radiates and liquefies by the heat dissipation heat exchanger. The liquefied refrigerant flows into the heat radiating heat exchanger almost without staying in the reservoir, and radiates a little here. The air dehumidified by the heat exchanger for dehumidification is blown out into the room with only slight heating.
JP 2002-60930 A

しかしながら、この種の空気調和装置では、冷房運転時でも放熱用熱交換器における放熱がゼロにはならないため、冷房運転時の効率が悪かった。また、空気調和装置の能力を大きくするためには、液冷媒が流れる配管の管径を大きくすれば良いが、冷房運転時と除湿運転(再熱除湿運転)時のそれぞれにおける最適な冷媒量の差が大きくなり、空気調和装置全体としての効率が低下するという問題があった。
この発明は、このような事情に鑑みてなされたものであり、効率良く冷房運転と再熱除湿運転が可能にすることを主な目的とする。
However, in this type of air conditioner, the heat dissipation in the heat exchanger for heat dissipation does not become zero even during the cooling operation, so the efficiency during the cooling operation is poor. In order to increase the capacity of the air conditioner, the pipe diameter of the pipe through which the liquid refrigerant flows may be increased. However, the optimum refrigerant amount in each of the cooling operation and the dehumidifying operation (reheat dehumidifying operation) can be obtained. There is a problem that the difference becomes large and the efficiency of the entire air conditioner decreases.
The present invention has been made in view of such circumstances, and a main object thereof is to enable efficient cooling operation and reheat dehumidification operation.

上記の課題を解決する本発明は、室内機に第一熱交換器と第二熱交換器とを気流の流れる方向に沿って順番に設け、前記第一熱交換器から前記第二熱交換器に冷媒が流れる経路中に減圧装置を設けると共に、前記減圧装置をバイパスする回路を設け、この回路に冷媒の貯溜器と二方弁とを第一熱交換器側から順番に設けたことを特徴とする空気調和装置とした。
この空気調和装置では、冷房時に二方弁を開いて、貯溜器及び減圧装置のそれぞれを通って冷媒を第一熱交換器から第二熱交換器に流入させる。再熱除湿時に二方弁を閉じて、貯溜器に余剰な冷媒を溜め込み、その他の冷媒を減圧装置で減圧させた後、第二熱交換器に流入させる。
The present invention that solves the above-described problems provides an indoor unit with a first heat exchanger and a second heat exchanger in order along the flow direction of the air flow, from the first heat exchanger to the second heat exchanger. And a circuit for bypassing the pressure reducing device is provided in the path through which the refrigerant flows, and a refrigerant reservoir and a two-way valve are provided in this circuit in order from the first heat exchanger side. It was set as the air conditioning apparatus.
In this air conditioner, the two-way valve is opened during cooling, and the refrigerant flows from the first heat exchanger to the second heat exchanger through each of the reservoir and the pressure reducing device. At the time of reheat dehumidification, the two-way valve is closed, excess refrigerant is stored in the reservoir, and the other refrigerant is decompressed by the decompression device, and then flows into the second heat exchanger.

本発明によれば、第一熱交換器から第二熱交換器に至るまでの経路中に減圧装置をバイパスする経路を設け、この経路中に貯溜器を設けたので、冷媒の一部を第二熱交換器に供給しながら、冷媒を貯溜器に溜めることが可能になる。したがって、空気調和装置の運転モードに合わせて冷媒の循環量を室内機側で変化させることができ、運転モードに依らずに効率の良い運転が可能になる。   According to the present invention, the path from the first heat exchanger to the second heat exchanger is provided with a path that bypasses the decompression device, and the reservoir is provided in the path, so that a part of the refrigerant is While supplying the two heat exchangers, the refrigerant can be stored in the reservoir. Therefore, the circulation amount of the refrigerant can be changed on the indoor unit side in accordance with the operation mode of the air conditioner, and efficient operation is possible regardless of the operation mode.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1に空気調和装置の概略構成を示す。空気調和装置1は、室外機2と室内機3とが配管4,5で接続された構成を有している。
室外機2は、圧縮機10の吐出口に接続された吐出配管11が室外熱交換器12の流入口に接続されている。室外熱交換器12の流出口には、配管4が接続されており、配管4はその経路中に第一減圧装置13が設けられた後に室内機3に導かれている。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
FIG. 1 shows a schematic configuration of the air conditioner. The air conditioner 1 has a configuration in which an outdoor unit 2 and an indoor unit 3 are connected by pipes 4 and 5.
In the outdoor unit 2, the discharge pipe 11 connected to the discharge port of the compressor 10 is connected to the inlet of the outdoor heat exchanger 12. A pipe 4 is connected to the outlet of the outdoor heat exchanger 12, and the pipe 4 is led to the indoor unit 3 after the first pressure reducing device 13 is provided in the path.

室内機3は、第一熱交換器21と第二熱交換器22とを有し、第一、第二熱交換器21,22が送風ファン23の形成する気流の経路(図中に矢印Aで示す)中に、第二熱交換器22、第一熱交換器21の順番に略平行に配置されている。第一、第二熱交換器21,22の容量は、略等しい。第一熱交換器21の上部には、冷媒の流入口21Aが設けられており、この流入口21Aに配管4が接続されている。第一熱交換器21の流出口21Bは下部に設けられており、ここには配管24が接続されている。   The indoor unit 3 includes a first heat exchanger 21 and a second heat exchanger 22, and the first and second heat exchangers 21 and 22 form an air flow path formed by the blower fan 23 (arrow A in the drawing). In the order of the second heat exchanger 22 and the first heat exchanger 21. The capacity | capacitance of the 1st, 2nd heat exchangers 21 and 22 is substantially equal. A refrigerant inlet 21A is provided in the upper part of the first heat exchanger 21, and a pipe 4 is connected to the inlet 21A. The outlet 21B of the first heat exchanger 21 is provided in the lower part, and a pipe 24 is connected to the outlet 21B.

配管24は、上向きに引き回された後に分岐部25が形成されている。分岐部25は、上向きに凸となるように略U字状に湾曲している。分岐部25は、配管24と一体に構成されても良いし、別の配管を接続させても良い。分岐部25の下向きに折り返された端部25Aは、貯溜器26に上方から引き込まれている。貯溜器26は、所定量の冷媒を内部に溜めることができるタンクであり、各熱交換器21,22を通過して室内に吹き出される気流の経路A中に配置されている。貯溜器26の下端からは、配管27が延びており、この配管27は二方弁28が設けられた後に、第二熱交換器22の下部に形成された流入口22Aに接続されている。二方弁28は、各熱交換器21,22を通過して室内に吹き出される気流の経路Aから外れた位置に配置されている。なお、図1においては、気流の経路Aに直交する左右方向にはずれた位置に配置されているが、気流の経路Aの上側や、下側に配置しても良い。   The piping 24 has a branching portion 25 formed after being routed upward. The branch part 25 is curved in a substantially U shape so as to be convex upward. The branch portion 25 may be configured integrally with the pipe 24 or may be connected to another pipe. An end portion 25 </ b> A that is folded downward in the branch portion 25 is drawn into the reservoir 26 from above. The reservoir 26 is a tank that can store a predetermined amount of refrigerant inside, and is disposed in the path A of the airflow that passes through the heat exchangers 21 and 22 and is blown into the room. A pipe 27 extends from the lower end of the reservoir 26, and this pipe 27 is connected to an inlet 22 </ b> A formed in the lower part of the second heat exchanger 22 after a two-way valve 28 is provided. The two-way valve 28 is disposed at a position away from the path A of the airflow that passes through the heat exchangers 21 and 22 and is blown into the room. In FIG. 1, the airflow path A is disposed at a position shifted in the left-right direction orthogonal to the airflow path A, but may be disposed above or below the airflow path A.

分岐部25の中央、つまり最も高い位置には、配管29が接続されている。配管29は、分岐部25から上方に略垂直に延びた後に、下方に向けて引き回され、第二減圧装置30が設けられた後に配管27に、二方弁28より第二熱交換器22側で接続されている。なお、第二減圧装置30は、気流の経路A中に配置しても良いが、気流の経路Aの外に配置することが好ましい。なお、配管29を通る経路は、後述するように常に開放されており、貯溜器26側の経路が配管29の経路をバイパスする回路となる。   A pipe 29 is connected to the center of the branch portion 25, that is, the highest position. The pipe 29 extends substantially vertically upward from the branch portion 25 and is then routed downward. After the second pressure reducing device 30 is provided, the pipe 27 is connected to the second heat exchanger 22 from the two-way valve 28. Connected on the side. The second decompression device 30 may be disposed in the airflow path A, but is preferably disposed outside the airflow path A. In addition, the path | route which passes along the piping 29 is always open | released so that it may mention later, and the path | route by the side of the reservoir 26 becomes a circuit which bypasses the path | route of the piping 29. FIG.

第二熱交換器22は、上部に冷媒の流出口22Bが設けられており、ここに配管5が接続されている。配管5は、室外機2に導かれ、気液分離装置31に上方から挿入されている。気液分離装置31からは吸入配管32が延びている。吸入配管32は、圧縮機10の吸入口に接続されている。圧縮機10、第一減圧装置13、二方弁28、第2減圧装置30は、制御装置40によって制御されている。   The second heat exchanger 22 is provided with a refrigerant outlet 22 </ b> B in the upper part, and a pipe 5 is connected thereto. The pipe 5 is guided to the outdoor unit 2 and inserted into the gas-liquid separator 31 from above. A suction pipe 32 extends from the gas-liquid separator 31. The suction pipe 32 is connected to the suction port of the compressor 10. The compressor 10, the first pressure reducing device 13, the two-way valve 28, and the second pressure reducing device 30 are controlled by the control device 40.

この実施の形態の作用について説明する。
冷房運転を行う際には、図1に矢印Bで示すように冷媒を循環させる。すなわち、制御装置40は、第一減圧装置13を予め定められた所定開度に設定する。さらに、二方弁28を開いて、第二減圧装置30を全開にする。圧縮機10を運転させると、圧縮機10から吐出される高圧のガス冷媒が室外熱交換器12に流入する。第一減圧装置13が所定開度に設定されているので、室外熱交換器12ではガス冷媒が凝縮して液冷媒となる。これによって、第一減圧装置13で減圧された二相冷媒が室内機3に流入する。室内機3では、第一熱交換器21の上部に二相冷媒が流入し、送風ファン23で送気される気流と熱交換を行って蒸発しながら下方に向かって流れる。この二相冷媒は、配管24を通って分岐部25で端部25A側と配管29に分岐する。分岐部25は略U字状になっているので、二相冷媒であっても流動抵抗が少なくなっており、スムーズに通過することができる。
The operation of this embodiment will be described.
When performing the cooling operation, the refrigerant is circulated as shown by an arrow B in FIG. That is, the control device 40 sets the first pressure reducing device 13 to a predetermined opening degree. Further, the two-way valve 28 is opened and the second pressure reducing device 30 is fully opened. When the compressor 10 is operated, high-pressure gas refrigerant discharged from the compressor 10 flows into the outdoor heat exchanger 12. Since the first decompression device 13 is set to a predetermined opening, the gas refrigerant condenses into the liquid refrigerant in the outdoor heat exchanger 12. Thereby, the two-phase refrigerant decompressed by the first decompression device 13 flows into the indoor unit 3. In the indoor unit 3, the two-phase refrigerant flows into the upper portion of the first heat exchanger 21 and flows downward while performing heat exchange with the airflow sent by the blower fan 23 and evaporating. This two-phase refrigerant branches through the pipe 24 to the end 25 </ b> A side and the pipe 29 at the branch section 25. Since the branch part 25 is substantially U-shaped, even if it is a two-phase refrigerant | coolant, flow resistance is less and it can pass smoothly.

貯溜器26では、二方弁28が開いているので、冷媒は溜まることなく第二熱交換器22に流入する。貯溜器26は、気流の経路Aの下流側に配置されているので、貯溜器26が蒸発器として機能する。つまり、貯溜器26を流れる液冷媒が、貯溜器26の周囲を流れる空気と熱交換して一部が気化しながら、配管27に流出する。一方、配管29では、第二減圧装置30が全開しているので、冷媒は大きく減圧されることなく流れ、配管27を流れる冷媒と合流して第二熱交換器22に流入する。第二熱交換器22では、二相冷媒が熱交換によって蒸発し、飽和冷媒又はガス冷媒が形成される。送風ファン23から送気される空気は、第一、第二熱交換器21,22で冷却されて、室内に吹き出される。第二熱交換器22から流出する冷媒は、配管5を通って室外機2に導かれ、気液分離装置31を通って各圧縮機10に吸入される。そして、再び圧縮されて吐出配管11に吐出される。   In the reservoir 26, since the two-way valve 28 is open, the refrigerant flows into the second heat exchanger 22 without accumulating. Since the reservoir 26 is disposed on the downstream side of the airflow path A, the reservoir 26 functions as an evaporator. That is, the liquid refrigerant flowing through the reservoir 26 flows out into the pipe 27 while exchanging heat with the air flowing around the reservoir 26 and partially vaporizing. On the other hand, since the second pressure reducing device 30 is fully opened in the pipe 29, the refrigerant flows without being greatly depressurized, merges with the refrigerant flowing in the pipe 27, and flows into the second heat exchanger 22. In the second heat exchanger 22, the two-phase refrigerant evaporates by heat exchange, and a saturated refrigerant or a gas refrigerant is formed. The air supplied from the blower fan 23 is cooled by the first and second heat exchangers 21 and 22 and blown into the room. The refrigerant flowing out from the second heat exchanger 22 is guided to the outdoor unit 2 through the pipe 5, and is sucked into each compressor 10 through the gas-liquid separation device 31. Then, it is compressed again and discharged to the discharge pipe 11.

再熱除湿運転を行う際には、図1に矢印Cで示すように冷媒を循環させる。すなわち、制御装置40は、第一減圧装置13を全開にする。さらに、二方弁28を閉じて、第二減圧装置30を予め定められた所定の開度に設定する。圧縮機10を運転させると、高圧のガス冷媒が室外熱交換器12に流入する。第一減圧装置13は全開なので、室外熱交換器12及び第一熱交換器21によって高圧のガス冷媒から液冷媒が形成される。この際に、第一熱交換器21の周囲に放熱が行われる。第一熱交換器21の下部から流出する高圧の液冷媒は、分岐部25において端部25A側と配管29とに分流する。端部25Aを流れる液冷媒は、貯溜器26に流入する、二方弁28が閉じているので、貯溜器26に液冷媒が溜まる。配管29を流れる液冷媒は第二減圧装置30で減圧されつつ、第二熱交換器22に流入し、熱交換によって気化する。この際の吸熱によって周囲の空気が除湿冷却される。第二熱交換器22で除湿冷却された空気は、送風ファン23によって第一熱交換器21の周囲に導かれ、第一熱交換器21の放熱によって暖められて、除湿空気として室内に吹き出される。第二熱交換器22から流出する冷媒は、室外機2の圧縮機10に吸入されて、再び圧縮、吐出される。   When performing the reheat dehumidifying operation, the refrigerant is circulated as shown by an arrow C in FIG. That is, the control device 40 fully opens the first decompression device 13. Further, the two-way valve 28 is closed, and the second pressure reducing device 30 is set to a predetermined opening degree. When the compressor 10 is operated, a high-pressure gas refrigerant flows into the outdoor heat exchanger 12. Since the first decompression device 13 is fully open, the outdoor heat exchanger 12 and the first heat exchanger 21 form a liquid refrigerant from the high-pressure gas refrigerant. At this time, heat is dissipated around the first heat exchanger 21. The high-pressure liquid refrigerant flowing out from the lower portion of the first heat exchanger 21 is divided into the end portion 25 </ b> A side and the pipe 29 at the branch portion 25. The liquid refrigerant flowing through the end portion 25A flows into the reservoir 26. Since the two-way valve 28 is closed, the liquid refrigerant is accumulated in the reservoir 26. The liquid refrigerant flowing through the pipe 29 flows into the second heat exchanger 22 while being decompressed by the second decompression device 30, and is vaporized by heat exchange. The surrounding air is dehumidified and cooled by the heat absorption at this time. The air dehumidified and cooled by the second heat exchanger 22 is guided around the first heat exchanger 21 by the blower fan 23, warmed by the heat radiation of the first heat exchanger 21, and blown into the room as dehumidified air. The The refrigerant flowing out from the second heat exchanger 22 is sucked into the compressor 10 of the outdoor unit 2 and compressed and discharged again.

冷媒の一部が貯溜器26に溜まることで再熱除湿運転時に空気調和装置1を循環する冷媒量が減る。貯溜器26の容積は、冷房運転に最適な冷媒量と、再熱除湿運転に最適な冷媒量との差に略相当する大きさになっている。再熱除湿運転から冷房運転に切り替わったときには、二方弁28が開くので、貯溜器26に溜まっている液冷媒が第二室外熱交換器22に供給され、空気調和装置1を循環する冷媒量が増加する。   Since a part of the refrigerant is accumulated in the reservoir 26, the amount of refrigerant circulating in the air conditioner 1 during the reheat dehumidifying operation is reduced. The volume of the reservoir 26 has a size substantially corresponding to the difference between the optimum refrigerant amount for the cooling operation and the optimum refrigerant amount for the reheat dehumidifying operation. When the reheat dehumidifying operation is switched to the cooling operation, the two-way valve 28 is opened, so that the liquid refrigerant accumulated in the reservoir 26 is supplied to the second outdoor heat exchanger 22 and circulates through the air conditioner 1. Will increase.

この実施の形態によれば、貯溜器26と第二減圧装置30とを並列に接続し、貯溜器26側に二方弁28を設けて第二減圧装置30の経路に対するバイパス回路とし、冷房運転時と再熱除湿運転時とで冷媒の経路を異なるように構成したので、2つの熱交換器21,22を共に蒸発器として用いる冷房運転が可能になる。また、再熱除湿運転時には、二方弁28を閉じることで余剰となる冷媒を貯溜器26に溜めて冷媒の循環量を減少させることができるので、冷房運転と再熱除湿運転のそれぞれにおいて最適な冷媒量で効率良く運転することが可能になる。
第一熱交換器21の下部から第二熱交換器22に冷媒が流れるようにしたので、第一熱交換器21で液冷媒が形成されるときに、液冷媒を速やかに第二熱交換器22に向けて流出させることが可能になり、第一熱交換器21内に液冷媒が滞溜しなくなる。このため、第一熱交換器21における熱交換の効率を高く維持することができる。
According to this embodiment, the reservoir 26 and the second pressure reducing device 30 are connected in parallel, and the two-way valve 28 is provided on the side of the reservoir 26 to form a bypass circuit with respect to the path of the second pressure reducing device 30. Since the refrigerant path is different between the time and the reheat dehumidifying operation, the cooling operation using both of the two heat exchangers 21 and 22 as an evaporator becomes possible. Also, during the reheat dehumidification operation, by closing the two-way valve 28, excess refrigerant can be stored in the reservoir 26 to reduce the circulation amount of the refrigerant, which is optimal for both the cooling operation and the reheat dehumidification operation. It is possible to operate efficiently with a small amount of refrigerant.
Since the refrigerant flows from the lower part of the first heat exchanger 21 to the second heat exchanger 22, when the liquid refrigerant is formed in the first heat exchanger 21, the liquid refrigerant is quickly transferred to the second heat exchanger 21. Therefore, the liquid refrigerant does not stay in the first heat exchanger 21. For this reason, the efficiency of heat exchange in the first heat exchanger 21 can be maintained high.

第一熱交換器21から延びる配管24に上向きに凸となる分岐部25を設けたので、二相冷媒を通過させる際の流動抵抗を最低限に抑えつつ、ガス冷媒と液冷媒とを速やかに分離することが可能になる。したがって、再熱除湿運転時に、余剰となる液冷媒を貯溜器26に速やかに回収できる。
室内に吹き出す気流の経路A中に貯溜器26を晒すように配置したので、冷房運転時に貯溜器26を蒸発器として使用することが可能になり、冷房効率をさらに向上させることができる。二方弁28は、気流の経路A外に配置したので、第一、第二熱交換器21,22に生じる結露水に二方弁28が晒されないようになる。
Since the pipe 24 extending from the first heat exchanger 21 is provided with an upwardly projecting branching portion 25, the gas refrigerant and the liquid refrigerant can be quickly transferred while minimizing the flow resistance when passing the two-phase refrigerant. It becomes possible to separate. Therefore, at the time of the reheat dehumidifying operation, the excess liquid refrigerant can be quickly collected in the reservoir 26.
Since the reservoir 26 is disposed so as to be exposed in the path A of the air flow blown into the room, the reservoir 26 can be used as an evaporator during the cooling operation, and the cooling efficiency can be further improved. Since the two-way valve 28 is disposed outside the air flow path A, the two-way valve 28 is prevented from being exposed to condensed water generated in the first and second heat exchangers 21 and 22.

ここで、分岐部の変形例を図2に示す。図2に示す分岐部50は、第一熱交換器21から延びる配管24が分岐配管51に略垂直に接続された略T字形になっている。分岐配管51は、斜めに傾斜しており、下方に延びる端部51Aには、貯溜器26が接続される。上方に延びる端部51Bには第二減圧装置30が接続される。この分岐部50に二相冷媒を流すと、配管24を流れる二相冷媒が分岐配管51の内壁に衝突するようになり、液冷媒とガス冷媒とを分離し易くなる。冷房運転から再熱除湿運転に切り替えた直後は、定常運転になるまで分岐配管51に二相冷媒が流れる。この際に、分岐配管51において液冷媒とガス冷媒とが分離され、液冷媒は貯溜器26に溜まる。ガス冷媒は第二減圧装置30を通って第二熱交換器22に供給される。これによって、再熱除湿に直接には寄与しない液冷媒で、余剰となる冷媒が貯溜器26に回収されるようになる。即ち、運転切り替え後の貯溜器26への液冷媒の貯溜が速やかに行われ、再熱除湿運転に適切な冷媒量での運転に至るまでの移行時間を短縮できる。   Here, the modification of a branch part is shown in FIG. 2 has a substantially T-shape in which a pipe 24 extending from the first heat exchanger 21 is connected to a branch pipe 51 substantially perpendicularly. The branch pipe 51 is inclined obliquely, and the reservoir 26 is connected to an end 51A that extends downward. The second decompression device 30 is connected to the end 51B extending upward. When the two-phase refrigerant is caused to flow through the branch portion 50, the two-phase refrigerant flowing through the pipe 24 collides with the inner wall of the branch pipe 51, and the liquid refrigerant and the gas refrigerant are easily separated. Immediately after switching from the cooling operation to the reheat dehumidification operation, the two-phase refrigerant flows through the branch pipe 51 until the steady operation is performed. At this time, the liquid refrigerant and the gas refrigerant are separated in the branch pipe 51, and the liquid refrigerant is accumulated in the reservoir 26. The gas refrigerant is supplied to the second heat exchanger 22 through the second decompression device 30. As a result, excess refrigerant is recovered in the reservoir 26 as a liquid refrigerant that does not directly contribute to reheat dehumidification. That is, the liquid refrigerant is quickly stored in the reservoir 26 after the operation is switched, and the transition time until the operation with the refrigerant amount appropriate for the reheat dehumidification operation can be shortened.

なお、本発明は、前記の実施の形態に限定されずに広く応用することが可能である。
例えば、貯溜器26は、第二熱交換器22と、第一熱交換器21の間で、気流の経路A中に配置しても良い。また、室外機2の構成や数は、図示したものに限定されない。
第一、第二減圧装置13,30は、圧力を制御可能な構成であれば如何なる構成でも良い。二方弁28は、開閉弁など流路の切り替えが可能な弁であれば如何なる弁でも良い。
Note that the present invention can be widely applied without being limited to the above-described embodiment.
For example, the reservoir 26 may be disposed in the airflow path A between the second heat exchanger 22 and the first heat exchanger 21. Further, the configuration and number of the outdoor units 2 are not limited to those illustrated.
The first and second pressure reducing devices 13 and 30 may have any configuration as long as the pressure can be controlled. The two-way valve 28 may be any valve as long as the flow path can be switched, such as an on-off valve.

本発明の実施の形態に係る空気圧縮機の概略構成を示す図である。It is a figure which shows schematic structure of the air compressor which concerns on embodiment of this invention. 分岐の他の形態を示す概略図である。It is the schematic which shows the other form of a branch.

符号の説明Explanation of symbols

1 空気調和装置
21 第一熱交換器
21B 流出口
22 第二熱交換器
24 配管
25,50 分岐部
25A 端部
26 貯溜器
28 二方弁
29 配管
30 第二減圧装置(減圧装置)
51 分岐配管
51A 端部(下方に延びる端部)
51B 端部(上方に延びる端部)

DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 21 1st heat exchanger 21B Outlet 22 2nd heat exchanger 24 Piping 25,50 Branch part 25A End part 26 Reservoir 28 Two-way valve 29 Piping 30 2nd pressure reduction apparatus (pressure reduction apparatus)
51 branch piping 51A end (end extending downward)
51B end (end that extends upward)

Claims (4)

室内機に第一熱交換器と第二熱交換器とを気流の流れる方向に沿って順番に設け、前記第一熱交換器から前記第二熱交換器に冷媒が流れる経路中に減圧装置を設けると共に、前記減圧装置をバイパスする回路を設け、この回路に冷媒の貯溜器と二方弁とを第一熱交換器側から順番に設けたことを特徴とする空気調和装置。   An indoor unit is provided with a first heat exchanger and a second heat exchanger in order along the direction of airflow, and a decompression device is provided in the path through which the refrigerant flows from the first heat exchanger to the second heat exchanger. An air conditioner characterized in that a circuit for bypassing the pressure reducing device is provided, and a refrigerant reservoir and a two-way valve are provided in this circuit in order from the first heat exchanger side. 前記第一熱交換器の下部に冷媒の流出口が設けられ、前記流出口に接続された配管には前記減圧装置と前記貯留器とに分岐する分岐部を有し、前記分岐部は、上向きに凸となる略U字状に湾曲した配管の途中から上向きに延びる配管が設けられ、前記湾曲した配管は前記貯溜器に上方から接続され、前記上向きに延びる配管は前記減圧装置に接続されていることを特徴とする請求項1に記載の空気調和装置。   A refrigerant outlet is provided at a lower portion of the first heat exchanger, and a pipe connected to the outlet has a branch portion that branches into the decompression device and the reservoir, and the branch portion is directed upward. A pipe extending upward from the middle of a substantially U-shaped curved pipe is provided, the curved pipe is connected to the reservoir from above, and the upward extending pipe is connected to the pressure reducing device. The air conditioner according to claim 1, wherein 前記第一熱交換器の下部に冷媒の流出口が設けられ、前記流出口に接続された配管は、冷媒を分岐させる分岐配管に略垂直に接続されており、前記分岐配管の下方に延びる端部は前記貯溜器に接続され、前記分岐配管の上方に延びる端部は前記減圧装置に接続されていることを特徴とする請求項1に記載の空気調和装置。   A refrigerant outlet is provided at a lower portion of the first heat exchanger, and a pipe connected to the outlet is connected substantially perpendicularly to a branch pipe that branches the refrigerant, and extends below the branch pipe. The air conditioner according to claim 1, wherein a portion is connected to the reservoir, and an end portion extending above the branch pipe is connected to the pressure reducing device. 前記第一、第二熱交換器に対して気流の下流側に前記貯溜器が配置され、前記二方弁は前記第一、第二熱交換器を通る気流の経路から外れた位置に設けたことを特徴とする請求項1から請求項3のいずれか一項に記載の空気調和装置。

The reservoir is disposed on the downstream side of the airflow with respect to the first and second heat exchangers, and the two-way valve is provided at a position deviated from the path of the airflow passing through the first and second heat exchangers. The air conditioning apparatus according to any one of claims 1 to 3, wherein

JP2005302726A 2005-10-18 2005-10-18 Air conditioner Expired - Fee Related JP4209881B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005302726A JP4209881B2 (en) 2005-10-18 2005-10-18 Air conditioner
KR1020060013646A KR101166376B1 (en) 2005-10-18 2006-02-13 Air conditioner
CNB2006100767080A CN100453923C (en) 2005-10-18 2006-04-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302726A JP4209881B2 (en) 2005-10-18 2005-10-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007113796A true JP2007113796A (en) 2007-05-10
JP4209881B2 JP4209881B2 (en) 2009-01-14

Family

ID=38058986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302726A Expired - Fee Related JP4209881B2 (en) 2005-10-18 2005-10-18 Air conditioner

Country Status (3)

Country Link
JP (1) JP4209881B2 (en)
KR (1) KR101166376B1 (en)
CN (1) CN100453923C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631464A (en) * 2017-09-13 2018-01-26 珠海格力电器股份有限公司 Heat exchanger assembly and its design method, air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676646B (en) * 2008-09-19 2013-01-23 Tcl集团股份有限公司 Control method of operating modes of air conditioner
CN109386886B (en) * 2014-02-21 2020-12-29 大金工业株式会社 Air conditioner
JP6680601B2 (en) * 2016-04-14 2020-04-15 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172368U (en) 1981-04-22 1982-10-29
CN2293019Y (en) * 1997-03-10 1998-09-30 广东美的集团股份有限公司 Two-driven-by-one split air conditioner
JPH10267504A (en) * 1997-03-25 1998-10-09 Toshiba Corp Refrigerator
JPH1183209A (en) * 1997-09-08 1999-03-26 Hitachi Ltd Air conditioner
CN2327931Y (en) * 1998-03-14 1999-07-07 广东美的集团股份有限公司 Air conditioner with plurality of indoor units
JP2002060930A (en) * 2000-08-24 2002-02-28 Sharp Corp System and method for vapor deposition
JP2002162124A (en) * 2000-11-21 2002-06-07 Saginomiya Seisakusho Inc Refrigeration cycle device refrigerator
JP4348610B2 (en) * 2003-09-29 2009-10-21 株式会社ヴァレオサーマルシステムズ Refrigeration cycle
CN1291196C (en) * 2004-02-18 2006-12-20 株式会社电装 Ejector cycle having multiple evaporators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631464A (en) * 2017-09-13 2018-01-26 珠海格力电器股份有限公司 Heat exchanger assembly and its design method, air conditioner

Also Published As

Publication number Publication date
CN1952528A (en) 2007-04-25
KR20070042437A (en) 2007-04-23
CN100453923C (en) 2009-01-21
JP4209881B2 (en) 2009-01-14
KR101166376B1 (en) 2012-07-23

Similar Documents

Publication Publication Date Title
EP2410249B1 (en) Heat pump-type hot water feeding apparatus
KR102194676B1 (en) Dehumidifier
WO2012043377A1 (en) Refrigeration circuit
JP4864109B2 (en) Air conditioning apparatus and control method thereof
JP2003254555A (en) Air conditioner
JP6606194B2 (en) air compressor
KR20150017069A (en) Air conditioner
JP2009180492A (en) Dehumidifying unit and air conditioner
TWI753323B (en) Dehumidifier
JP4209881B2 (en) Air conditioner
KR101679574B1 (en) Air conditioner
JP2005133976A (en) Air-conditioner
TWI770482B (en) dehumidifier
JP2009133613A (en) Air conditioner
JP5262916B2 (en) Heat exchanger
JP5625699B2 (en) Refrigeration circuit
JP2005273923A (en) Air conditioner
JP5887102B2 (en) Air conditioner for vehicles
JP4495090B2 (en) Air conditioner
JP2007163085A (en) Air-conditioning system
JP2008133994A (en) Heat exchanger
JP6891711B2 (en) Combined heat exchanger
JP2012063083A (en) Heat source unit
JP7450807B2 (en) air conditioner
KR101996408B1 (en) Dehumidifier having evaporative cooling function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees