JP2013185790A - Heat exchanger, and refrigeration cycle device - Google Patents

Heat exchanger, and refrigeration cycle device Download PDF

Info

Publication number
JP2013185790A
JP2013185790A JP2012053290A JP2012053290A JP2013185790A JP 2013185790 A JP2013185790 A JP 2013185790A JP 2012053290 A JP2012053290 A JP 2012053290A JP 2012053290 A JP2012053290 A JP 2012053290A JP 2013185790 A JP2013185790 A JP 2013185790A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
tube
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012053290A
Other languages
Japanese (ja)
Inventor
Akira Ishibashi
晃 石橋
Takuya Matsuda
拓也 松田
Soubu Ri
相武 李
Atsushi Mochizuki
厚志 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012053290A priority Critical patent/JP2013185790A/en
Publication of JP2013185790A publication Critical patent/JP2013185790A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a heat exchanger, or the like, capable of properly splitting a flow according to a configuration.SOLUTION: A heat exchanger is configured such that a plurality of heat exchanger bodies are arranged to surround a fan, and the heat exchanger bodies are connected with each other through a pipe. The heat exchanger includes: a solenoid valve 1 arranged between one or more heat exchanger bodies and two or more heat exchanger bodies to control the pressure of refrigerant; and a T-shaped pipe 4 connected to the solenoid valve 1, and for splitting a flow of refrigerant to allow the refrigerant to flow into the two or more heat exchanger bodies.

Description

本発明は、空気調和装置等に用いられる熱交換器等に関するものである。   The present invention relates to a heat exchanger or the like used for an air conditioner or the like.

例えば、従来、ルームエアコンの室内機において、電磁弁の前後に三方管を配し、冷媒分岐を図るようにした熱交換器が提案されている(例えば特許文献1参照)。   For example, conventionally, in a room air conditioner indoor unit, a heat exchanger has been proposed in which a three-way pipe is arranged before and after the solenoid valve so as to branch the refrigerant (see, for example, Patent Document 1).

特開2001−082761号公報(第1図)Japanese Patent Laid-Open No. 2001-072861 (FIG. 1)

上に述べた従来の方法では、電磁弁を通過した後の分流比の調整が困難という問題があった。   The conventional method described above has a problem that it is difficult to adjust the diversion ratio after passing through the electromagnetic valve.

本発明は、上記のような課題を解決するためになされたもので、構成に応じて適正に分流を行うことができる熱交換器等を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a heat exchanger or the like that can perform a proper flow division according to the configuration.

本発明に係る熱交換器は、送風機を囲むように複数の熱交換器本体を配置し、各熱交換器本体を配管接続して構成する熱交換器であって、1台以上の熱交換器本体と2台以上の熱交換器本体との間に配置して冷媒の圧力を制御する流量制御装置と、流量制御装置と接続し、冷媒を分岐して2台以上の熱交換器本体に流入させるT字管とを備えるものである。   The heat exchanger according to the present invention is a heat exchanger in which a plurality of heat exchanger bodies are arranged so as to surround a blower, and each heat exchanger body is connected by piping, and one or more heat exchangers A flow control device that is arranged between the main body and two or more heat exchanger main bodies to control the pressure of the refrigerant and connected to the flow control device, branches the refrigerant and flows into two or more heat exchanger main bodies And a T-shaped tube.

本発明によれば、流量制御装置にT字管を接続して、2台以上の熱交換器本体に冷媒を分岐させるようにしたので、熱交換器本体に冷媒を分流する際のばらつきを抑え、適正に分岐させることが容易となり、熱交換器性能を向上することができる。このとき、例えば流量制御装置となる弁と削り出しを行ったディストリビュータとを接合するよりも、容積、製造コスト等を大幅に低減することができる。   According to the present invention, the T-tube is connected to the flow rate control device so that the refrigerant is branched into two or more heat exchanger bodies, so that variation when the refrigerant is divided into the heat exchanger bodies is suppressed. It becomes easy to branch properly, and the heat exchanger performance can be improved. At this time, for example, the volume, the manufacturing cost, and the like can be significantly reduced as compared with the case where the valve serving as the flow rate control device and the distributor that has been cut out are joined.

本発明の実施の形態1の熱交換器が有する電磁弁1とT字管4とを中心とする分岐部分の構成における外観図である。It is an external view in the structure of the branch part centering on the solenoid valve 1 and the T-tube 4 which the heat exchanger of Embodiment 1 of this invention has. 本発明の実施の形態1の熱交換器が有する電磁弁1とT字管4とを中心とする分岐部分の別構成における外観図である。It is an external view in another structure of the branched part centering on the solenoid valve 1 and the T-tube 4 which the heat exchanger of Embodiment 1 of this invention has. 本発明の実施の形態1による熱交換器における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the heat exchanger by Embodiment 1 of this invention. 電磁弁1からT字管4を通過するまでの液冷媒17の分布を示す図である。It is a figure which shows distribution of the liquid refrigerant 17 until it passes the T-tube 4 from the solenoid valve 1. FIG. 本発明の実施の形態1のT字管4の分流比を説明するための図である。It is a figure for demonstrating the shunt ratio of the T-shaped tube 4 of Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は本発明の実施の形態1に係る熱交換器が有する電磁弁1及びT字管4を中心とする分岐部分の構成における外観図である。流量制御弁(膨張弁)となる電磁弁1は、例えばルームエアコンの除湿モード時において、熱交換器を、蒸発器と凝縮器として共存させて機能させ、再熱除湿するため、制御装置(図示せず)の指示に基づいて開度を変更し、冷媒の流れを制御する。冷房等を行う際には、弁を全開にしておけば、蒸発器又は凝縮器として機能する。電磁弁1は、他の配管と接続するための上流部側配管2および下流部側配管3を有している。上流部側配管2および下流部側配管3はアルミニウムロウ材で覆われたステンレス製の配管である。また、流入側配管5及び三方管であるT字管4は、アルミニウム製の配管である。ここではT字管4として説明するがバルジ三方管等であってもよい。ここで、流入側配管5から電磁弁1に冷媒が流れる方向を水平方向とし、電磁弁1からT字管4に冷媒が流れる方向を垂直方向として説明する。
Embodiment 1 FIG.
FIG. 1 is an external view of a configuration of a branching portion centering on a solenoid valve 1 and a T-shaped tube 4 included in a heat exchanger according to Embodiment 1 of the present invention. The electromagnetic valve 1 serving as a flow control valve (expansion valve) is, for example, a control device (depicted in FIG. 1) in order to deheat and dehumidify the heat exchanger in a dehumidifying mode of the room air conditioner. The opening degree is changed based on an instruction (not shown) to control the flow of the refrigerant. When performing cooling or the like, if the valve is fully opened, it functions as an evaporator or a condenser. The solenoid valve 1 has an upstream side pipe 2 and a downstream side pipe 3 for connecting to other pipes. The upstream part side pipe 2 and the downstream part side pipe 3 are stainless steel pipes covered with an aluminum brazing material. The inflow side pipe 5 and the T-shaped pipe 4 which is a three-way pipe are aluminum pipes. Although described here as a T-shaped tube 4, a bulge three-way tube or the like may be used. Here, the direction in which the refrigerant flows from the inflow side pipe 5 to the electromagnetic valve 1 is defined as a horizontal direction, and the direction in which the refrigerant flows from the electromagnetic valve 1 to the T-shaped tube 4 is described as a vertical direction.

そして、流入側配管5と上流部側配管2とをロウ付けして接合し、電磁弁1と流入側配管5とを直接接続している。同様に、T字管4と下流部側配管3とをロウ付けして接合し、電磁弁1とT字管4とを直接接続している。電磁弁1を通過してT字管4に流れた冷媒は、ほぼ均等に分配することができる。   And the inflow side piping 5 and the upstream part side piping 2 are brazed and joined, and the solenoid valve 1 and the inflow side piping 5 are directly connected. Similarly, the T-shaped tube 4 and the downstream side pipe 3 are brazed and joined, and the solenoid valve 1 and the T-shaped tube 4 are directly connected. The refrigerant that has passed through the electromagnetic valve 1 and has flowed into the T-tube 4 can be distributed almost evenly.

電磁弁1とT字管4とを直接接合することで、例えば電磁弁1と削り出しを行ったディストリビュータ(分配器)とを接合するよりも、容積、製造コスト等を大幅に低減することができる。また、上流部側配管2および下流部側配管3として、ステンレス製のロウ材に覆われた配管を用いることでアルミニウム製の配管との接合が容易である。そして、電磁弁1内の構成部品には鉄系の金属が用いられているが、電磁弁1の表面を樹脂で被覆しておけば防食性を保つことができる。   By directly joining the solenoid valve 1 and the T-shaped tube 4, it is possible to significantly reduce the volume, manufacturing cost, etc., compared to joining the solenoid valve 1 and a machined distributor. it can. Moreover, as the upstream part side pipe 2 and the downstream part side pipe 3, it is easy to join the aluminum pipe by using a pipe covered with a stainless steel brazing material. And although the iron-type metal is used for the component in the solenoid valve 1, if the surface of the solenoid valve 1 is coat | covered with resin, corrosion resistance can be maintained.

図2は本発明の実施の形態1に係る熱交換器が有する電磁弁1とT字管4とを中心とする分岐部分の別構成における外観図である。ここでは、電磁弁1からT字管4に流れる間で、一度、冷媒が水平方向(電磁弁1から流出する冷媒と直交する方向)に流れるようにする。このため、図2に示すように、下流部側配管3(電磁弁1)と下流側配管用ベンド7とを接続し、また、T字管用ベンド6とT字管4とを接続して、ベンド間を、直線に(水平方向に)冷媒が流れるようにするベンド間配管8で接続している。ここで、ベンド間配管8の長さL1とT字管4において冷媒の流入側の接続部分となり、管の向きが垂直方向となるT字管入口部9の長さL2との関係がL1>L2となるようにする。ここでは、電磁弁1とT字管4との間を、下流側配管用ベンド7、ベンド間配管8、T字管用ベンド6で接続し、冷媒の流れが2度変化するようにしているが、分流比を適正にするために、さらにベンドを接続するようにしてもよい。   FIG. 2 is an external view of another configuration of a branching portion centering on the solenoid valve 1 and the T-shaped tube 4 included in the heat exchanger according to Embodiment 1 of the present invention. Here, while flowing from the solenoid valve 1 to the T-tube 4, the refrigerant once flows in the horizontal direction (direction orthogonal to the refrigerant flowing out of the solenoid valve 1). For this reason, as shown in FIG. 2, the downstream side pipe 3 (solenoid valve 1) and the downstream pipe bend 7 are connected, and the T-shaped pipe bend 6 and the T-shaped pipe 4 are connected, The bends are connected by an inter-bend pipe 8 that allows the refrigerant to flow in a straight line (in the horizontal direction). Here, the relationship between the length L1 of the inter-bend pipe 8 and the length L2 of the T-shaped pipe inlet portion 9 which becomes a connecting portion on the refrigerant inflow side in the T-shaped tube 4 and in which the direction of the tube is vertical is L1>. L2 is set. Here, the solenoid valve 1 and the T-shaped pipe 4 are connected by a downstream pipe bend 7, an inter-bend pipe 8, and a T-shaped bend 6, so that the refrigerant flow changes twice. Further, a bend may be further connected in order to make the diversion ratio appropriate.

次に例えば、本実施の形態における熱交換器を室内機に搭載した空気調和装置において、冷房を行う場合の冷媒の流れについて説明する。冷媒は流入側配管5から流入し、上流部側配管2を介して電磁弁1を通過する。このとき、蒸発器として機能させる場合は、例えば電磁弁1を全開にしておく。そして、電磁弁1から下流部側配管3、下流側配管用ベンド7、ベンド間配管8、T字管用ベンド6を通過してT字管入口部9からT字管4に流入する。このとき、下流側配管用ベンド7により、冷媒の流れがほぼ90°曲がり、垂直方向から水平方向に流れる。また、T字管用ベンド6により、冷媒の流れがほぼ90°曲がり、水平方向から垂直方向に流れる。T字管4に流入した冷媒は、A方向側およびB方向側に分岐して流出する。   Next, for example, the flow of the refrigerant when performing cooling in the air conditioner in which the heat exchanger according to the present embodiment is mounted in an indoor unit will be described. The refrigerant flows in from the inflow side pipe 5 and passes through the solenoid valve 1 through the upstream side pipe 2. At this time, when functioning as an evaporator, for example, the electromagnetic valve 1 is fully opened. Then, the electromagnetic valve 1 passes through the downstream pipe 3, the downstream pipe bend 7, the inter-bend pipe 8, and the T-shaped pipe bend 6 and flows into the T-shaped pipe 4 from the T-shaped pipe inlet 9. At this time, the flow of the refrigerant is bent by approximately 90 ° by the downstream pipe bend 7 and flows from the vertical direction to the horizontal direction. Further, the flow of the refrigerant is bent by approximately 90 ° by the T-tube bend 6 and flows from the horizontal direction to the vertical direction. The refrigerant flowing into the T-shaped tube 4 branches out to the A direction side and the B direction side and flows out.

図3は本発明の実施の形態1による熱交換器における冷媒の流れを示す図である。本実施の形態では、複数の熱交換器本体を配管接続して熱交換器を構成している(以下、熱交換器本体もそれぞれ熱交換器と呼んで説明する)。本実施の形態では、送風機(図示せず)を囲むように、筐体内の背面側、前面上部側及び前面下部側に熱交換器本体をそれぞれ配置している。そして、各場所での熱交換器本体は、それぞれ円管アシスト熱交換器(補助熱交換器)と扁平管熱交換器とを有している。そして、各熱交換器本体の間を配管接続することにより冷媒が流れるようにしている。   FIG. 3 is a diagram showing a refrigerant flow in the heat exchanger according to Embodiment 1 of the present invention. In the present embodiment, a plurality of heat exchanger bodies are connected by piping to form a heat exchanger (hereinafter, the heat exchanger bodies are also referred to as heat exchangers for explanation). In this Embodiment, the heat exchanger main body is arrange | positioned at the back side in a housing | casing, the front upper part side, and the front lower part side so that an air blower (not shown) may be enclosed. And the heat exchanger main body in each place has a circular tube assist heat exchanger (auxiliary heat exchanger) and a flat tube heat exchanger, respectively. And it is made for a refrigerant | coolant to flow by connecting between each heat exchanger main body by piping.

次に熱交換器における冷媒の流れについて説明する。例えば前述したように、冷房を行う際、冷媒は背面円管アシスト熱交換器15から流入する。そして、前面上部円管アシスト熱交換器14、前面下部円管アシスト熱交換器13を通過する。その後、バルジ三方管16Aで2分岐され、前面上部扁平管熱交換器11の2つのバルジ三方管16B、16Cに流入する。前面上部扁平管熱交換器11内の伝熱管内を通過後、バルジ三方管16Dを介して合流する。   Next, the flow of the refrigerant in the heat exchanger will be described. For example, as described above, when cooling is performed, the refrigerant flows from the back tube assist heat exchanger 15. Then, it passes through the front upper circular tube assisted heat exchanger 14 and the front lower circular tube assisted heat exchanger 13. Then, it branches into two by the bulge three-way pipe 16 </ b> A and flows into the two bulge three-way pipes 16 </ b> B and 16 </ b> C of the front upper flat tube heat exchanger 11. After passing through the heat transfer tube in the front upper flat tube heat exchanger 11, they merge through a bulge three-way tube 16D.

そして、前述したように、流入側配管5から冷媒が流入し、電磁弁1、T字管4を通過する。T字管4における分岐によりA方向に流れた冷媒は前面下部扁平管熱交換器12に流入し、B方向に流れた冷媒は背面扁平管熱交換器10に流入する。前面下部扁平管熱交換器12、背面扁平管熱交換器10において、バルジ三方管16E、16Fで2分岐後、それぞれ内部の伝熱管を通過し、バルジ三方管16Gにて合流して流出する。ここで、T字管4で分岐した後に、バルジ三方管16E、16Fで分岐することで、ディストリビュータ等で一度に分岐する場合よりも配管を少なくすることができる。   Then, as described above, the refrigerant flows in from the inflow side pipe 5 and passes through the electromagnetic valve 1 and the T-shaped tube 4. The refrigerant flowing in the A direction due to the branching in the T-shaped tube 4 flows into the front lower flat tube heat exchanger 12, and the refrigerant flowing in the B direction flows into the rear flat tube heat exchanger 10. In the front lower flat tube heat exchanger 12 and the back flat tube heat exchanger 10, after bifurcating at the bulge three-way pipes 16E and 16F, each passes through the internal heat transfer pipe, and merges and flows out at the bulge three-way pipe 16G. Here, after branching at the T-shaped tube 4, branching at the bulge three-way pipes 16 </ b> E and 16 </ b> F can reduce the number of pipes compared to branching at a distributor or the like.

ここで、風上側にある前面下部円管アシスト熱交換器13が6段配置されているのに対し、風上側にある背面円管アシスト熱交換器15は4段配置である。このため、熱負荷は背面扁平管熱交換器10の方が前面下部扁平管熱交換器12よりも大きい。よって、冷房を行う際の液冷媒流量は背面扁平管熱交換器10の方が多く必要となる。   Here, the front lower circular tube assisted heat exchanger 13 on the windward side is arranged in six stages, while the rear circular pipe assisted heat exchanger 15 on the windward side is arranged in four stages. For this reason, the heat load of the back flat tube heat exchanger 10 is larger than that of the front lower flat tube heat exchanger 12. Therefore, the back flat tube heat exchanger 10 requires a larger amount of liquid refrigerant flow for cooling.

図4は電磁弁1からT字管4を通過するまでの液冷媒17の分布を示す図である。電磁弁1を流出した液冷媒17は下流部側配管3の内管壁を均等な液膜厚で流れ、下流側配管用ベンド7において水平方向に曲がって流れる。水平方向(90°)に曲がる際、冷媒には遠心力が働くため、外周側となる内壁における液膜厚の方が厚くなる。そして、ベンド間配管8内を通過している間に、蒸気せん断力により、上下方向に均一となるような液膜厚に若干回復する。その後、T字管用ベンド6において垂直方向に曲がって流れる。垂直方向に曲がる際にも冷媒には遠心力が働くので、遠心力によって外周側壁(B方向側)の液膜厚はA方向側の壁の液膜厚より厚くなる。このため、T字管4から流出する液冷媒17の流量は、B方向側に偏りが生じ、A方向よりB方向の方が多くなる。ここで、重力方向の収容スペースが収まりやすいため、ここでは冷媒流入方向に対して90°曲げるようにしているが、遠心力を働かせることができれば90°傾斜のみに限定するものではない。   FIG. 4 is a view showing the distribution of the liquid refrigerant 17 from the electromagnetic valve 1 to the passage through the T-shaped tube 4. The liquid refrigerant 17 that has flowed out of the solenoid valve 1 flows in the inner pipe wall of the downstream side pipe 3 with an equal liquid film thickness, and bends in the horizontal direction in the downstream pipe bend 7. When bending in the horizontal direction (90 °), centrifugal force acts on the refrigerant, so that the liquid film thickness on the inner wall on the outer peripheral side becomes thicker. Then, while passing through the inter-bend pipe 8, the liquid film thickness is slightly recovered by the steam shear force so as to be uniform in the vertical direction. After that, it flows in the T-shaped bend 6 by bending in the vertical direction. Since the centrifugal force acts on the refrigerant even when it bends in the vertical direction, the liquid film thickness on the outer peripheral side wall (B direction side) becomes thicker than the liquid film thickness on the wall on the A direction side. For this reason, the flow rate of the liquid refrigerant 17 flowing out from the T-shaped tube 4 is biased toward the B direction, and is larger in the B direction than in the A direction. Here, since the accommodation space in the gravitational direction is easy to be accommodated, it is bent 90 ° with respect to the refrigerant inflow direction here, but is not limited to the 90 ° inclination as long as centrifugal force can be applied.

上述したように、背面扁平管熱交換器10の熱負荷は前面下部扁平管熱交換器12の熱負荷より大きいため、B方向側の配管を背面扁平管熱交換器10と接続するようにする。そして、A方向側の配管を前面下部扁平管熱交換器12と接続する。ベンド間配管8で内壁の液膜厚ができるだけ均一に戻るようにするため、ベンド間配管8の長さL1を長くする。一方、T字管用ベンド6での液膜分布を維持してT字管9に冷媒を流入させるため、T字管入口部9の長さL2を短くする。このため、少なくとも配管長さの関係がL2>L1となるようにする。   As described above, since the heat load of the back flat tube heat exchanger 10 is larger than the heat load of the front lower flat tube heat exchanger 12, the B direction side pipe is connected to the back flat tube heat exchanger 10. . Then, the pipe on the A direction side is connected to the front lower flat tube heat exchanger 12. In order to return the liquid film thickness of the inner wall as uniform as possible in the inter-bend pipe 8, the length L1 of the inter-bend pipe 8 is increased. On the other hand, in order to maintain the liquid film distribution in the T-tube bend 6 and allow the refrigerant to flow into the T-tube 9, the length L2 of the T-tube inlet 9 is shortened. For this reason, at least the relationship between the pipe lengths is set to satisfy L2> L1.

図5は本発明の実施の形態1のT字管4の分流比を説明するための図である。冷媒流量が変化した場合であっても、B方向への液冷媒流量比は55〜58%となり、A方向に流れる冷媒よりも多い。このような場合には、冷房時の前面下部扁平管熱交換器12と背面扁平管熱交換器10の冷媒流出口における冷媒の温度はほぼ同一となり、熱交換器性能を十分に引き出すことができる。   FIG. 5 is a diagram for explaining the diversion ratio of the T-shaped tube 4 according to the first embodiment of the present invention. Even when the refrigerant flow rate changes, the liquid refrigerant flow rate ratio in the B direction is 55 to 58%, which is larger than the refrigerant flowing in the A direction. In such a case, the temperature of the refrigerant at the refrigerant outlet of the front lower flat tube heat exchanger 12 and the rear flat tube heat exchanger 10 during cooling is substantially the same, and the heat exchanger performance can be sufficiently extracted. .

以上のように、実施の形態1の熱交換器によれば、電磁弁1にT字管4を接続して冷媒を分岐させるようにしたので、例えば電磁弁1と削り出しを行ったディストリビュータ(分配器)とを接合するよりも、容積、製造コスト等を大幅に低減しつつ、冷媒分配のばらつきを抑え、適正に分岐させることが容易となり、熱交換器性能を向上することができる。   As described above, according to the heat exchanger of the first embodiment, since the refrigerant is branched by connecting the T-tube 4 to the electromagnetic valve 1, for example, the distributor (see FIG. Compared with a distributor, the volume, production cost, and the like can be greatly reduced, variation in refrigerant distribution can be suppressed, and proper branching can be facilitated, and heat exchanger performance can be improved.

特に、電磁弁1からT字管4との間の配管として、T字管用ベンド6、下流側配管用ベンド7及びベンド間配管8で接続し、一度、冷媒が水平方向に流れるようにすることで、B方向への分流量を増やすことができ、前面下部扁平管熱交換器12、背面扁平管熱交換器10に流入する冷媒を適切な量で分流することができる。このとき、ベンド間配管8の長さL1をT字管入口部9の長さL2より長くし、下流側配管用ベンド7における遠心力によって差が生じた内壁の液膜厚をベンド間配管8においてできるだけ均一に戻すようにすることで、よりばらつきを抑え、適正な分流を行うことができる。   In particular, as a pipe between the solenoid valve 1 and the T-shaped pipe 4, a T-shaped pipe bend 6, a downstream pipe bend 7 and an inter-bend pipe 8 are connected so that the refrigerant once flows in the horizontal direction. Thus, the flow rate in the B direction can be increased, and the refrigerant flowing into the front lower flat tube heat exchanger 12 and the rear flat tube heat exchanger 10 can be divided in an appropriate amount. At this time, the length L1 of the inter-bend pipe 8 is made longer than the length L2 of the T-shaped pipe inlet 9, and the liquid film thickness on the inner wall caused by the centrifugal force in the downstream pipe bend 7 is determined. In this case, by returning as uniform as possible, it is possible to further suppress variation and perform proper diversion.

また、上流部側配管2および下流部側配管3に、ステンレス製のロウ材に覆われた配管を用いることでアルミニウム製の配管と容易に接合することができる。   Further, by using a pipe covered with a stainless steel brazing material for the upstream part side pipe 2 and the downstream part side pipe 3, it can be easily joined to the aluminum pipe.

実施の形態2.
図6は本発明の実施の形態2に係る冷凍サイクル装置の構成を示す図である。図6の冷凍サイクル装置は、圧縮機33、凝縮器34、絞り装置35及び蒸発器36を配管接続して冷媒回路(冷媒循環回路)を構成している。また、送風機37は、それぞれ送風機用モータ38の駆動により、凝縮器34、蒸発器36を通過する冷媒と空気との熱交換を促すために空気の流れを形成する。
Embodiment 2. FIG.
FIG. 6 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the refrigeration cycle apparatus of FIG. 6, a compressor 33, a condenser 34, a throttling device 35, and an evaporator 36 are connected by piping to form a refrigerant circuit (refrigerant circulation circuit). In addition, the blower 37 forms a flow of air in order to promote heat exchange between the refrigerant passing through the condenser 34 and the evaporator 36 and air by driving the blower motor 38.

圧縮機33は冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。ここで、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。熱交換器を有する凝縮器34は、例えば送風機(図示せず)から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮させて液状の冷媒にする(凝縮液化させる)ものである。   The compressor 33 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. Here, for example, it may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the refrigerant. The condenser 34 having a heat exchanger performs heat exchange between air supplied from a blower (not shown) and a refrigerant, for example, and condenses the refrigerant into a liquid refrigerant (condensates and liquefies). is there.

また、絞り装置35は、冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段で構成するが、例えば、感温筒を有する膨張弁、毛細管(キャピラリ)等の冷媒流量調節手段等で構成してもよい。蒸発器36は、空気等との熱交換により冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。   The expansion device 35 expands the refrigerant by decompressing it. For example, it is constituted by a flow rate control means such as an electronic expansion valve, but may be constituted by an expansion valve having a temperature sensing cylinder, a refrigerant flow rate adjustment means such as a capillary tube (capillary), or the like. The evaporator 36 evaporates the refrigerant by heat exchange with air or the like to form a gas (gas) refrigerant (evaporates into gas).

例えば、蒸発器36、凝縮器34の少なくとも一方に、実施の形態1において説明した熱交換器を用いることができる。これにより、実施の形態2の装置においては、伝熱性能を向上させることができる。伝熱性能が向上することにより、エネルギー効率がよく、省エネルギーの冷凍サイクル装置を得ることができる。   For example, the heat exchanger described in Embodiment 1 can be used for at least one of the evaporator 36 and the condenser 34. Thereby, in the apparatus of Embodiment 2, heat transfer performance can be improved. By improving the heat transfer performance, an energy-efficient and energy-saving refrigeration cycle apparatus can be obtained.

ここで、エネルギー効率は、次式(1)及び(2)で構成されるものである。
暖房エネルギー効率=室内熱交換器(凝縮器)能力/全入力 …(1)
冷房エネルギー効率=室内熱交換器(蒸発器)能力/全入力 …(2)
Here, energy efficiency is comprised by following Formula (1) and (2).
Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input (1)
Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input (2)

次に、冷凍サイクル装置の各構成機器における動作等を、冷媒回路を循環する冷媒の流れに基づいて説明する。まず、圧縮機33は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は凝縮器34へ流入する。凝縮器34は、送風機37から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化させる。凝縮液化した冷媒は絞り装置35を通過する。絞り装置35は、通過する凝縮液化した冷媒を減圧する。減圧した冷媒は蒸発器36に流入する。蒸発器36は、送風機37から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化する。蒸発ガス化した冷媒を圧縮機33が吸入する。   Next, operation | movement in each component apparatus of a refrigerating-cycle apparatus is demonstrated based on the flow of the refrigerant | coolant which circulates through a refrigerant circuit. First, the compressor 33 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the condenser 34. The condenser 34 performs heat exchange between the air supplied from the blower 37 and the refrigerant, and condenses and liquefies the refrigerant. The condensed and liquefied refrigerant passes through the expansion device 35. The expansion device 35 depressurizes the condensed and liquefied refrigerant passing therethrough. The decompressed refrigerant flows into the evaporator 36. The evaporator 36 exchanges heat between the air supplied from the blower 37 and the refrigerant to evaporate the refrigerant. The compressor 33 sucks the evaporated gas refrigerant.

ここで、上述の冷凍サイクル装置については、HCFC(R22)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41、RC318など、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなど、これら冷媒の数種の混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなど、これら冷媒の数種の混合冷媒)、HFO1234yf等の低GWP冷媒、またこれら冷媒の数種の混合冷媒など、どんな種類の冷媒を用いても、その効果を達成することができる。   Here, the refrigeration cycle apparatus described above includes HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc. Several refrigerants such as R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, R508B, etc.), HC (butane, isobutane, ethane, propane, propylene, etc.) What kind of refrigerant is used, such as mixed refrigerant), natural refrigerant (several mixed refrigerants such as air, carbon dioxide, ammonia, etc.), low GWP refrigerants such as HFO1234yf, and several mixed refrigerants of these refrigerants , It can achieve its effect.

また、作動流体として、空気と冷媒とを例に示したが、他の気体、液体、気液混合流体を用いるようにしても、同様の効果を奏することができる。   Moreover, although air and a refrigerant | coolant were shown as an example as a working fluid, even if it uses other gas, a liquid, and a gas-liquid mixed fluid, there can exist the same effect.

さらに、通常、伝熱管2と板状フィン1とが異なった材料を用いていることが多いが、伝熱管2と板状フィン1に銅、アルミニウム等、同じ材料を用いて構成するようにしてもよい。例えば、板状フィン1と伝熱管2とをロウ付け等することが可能となり、板状フィン1と伝熱管2とにおける接触熱伝達率が飛躍的に向上することで、熱交換能力を大幅に向上させることができる。また、リサイクル性も向上させることができる。   Furthermore, the heat transfer tube 2 and the plate-like fin 1 are usually made of different materials, but the heat transfer tube 2 and the plate-like fin 1 are made of the same material such as copper or aluminum. Also good. For example, it becomes possible to braze the plate-like fins 1 and the heat transfer tubes 2, and the contact heat transfer coefficient between the plate-like fins 1 and the heat transfer tubes 2 is greatly improved, thereby greatly increasing the heat exchange capacity. Can be improved. Moreover, recyclability can also be improved.

さらに、伝熱管2と板状フィンを密着させる方法として、炉中ロウ付けを行う場合、フィンに親水材を塗布するのに後処理で行うことで、前処理の場合のロウ付け中の親水材の焼け落ちを防ぐことができる。   Further, as a method for bringing the heat transfer tube 2 and the plate fin into close contact, when brazing in a furnace, the hydrophilic material during brazing in the case of pretreatment is performed by performing post-treatment to apply a hydrophilic material to the fin. Can prevent burnout.

また、上述の実施の形態1で述べた熱交換器を室外機で用いた場合においても同様な効果を奏することができる。   Further, the same effect can be obtained when the heat exchanger described in the first embodiment is used in an outdoor unit.

なお、上述の実施の形態で述べた熱交換器およびそれを用いた空調冷凍装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。   For the heat exchanger described in the above embodiment and the air-conditioning refrigeration system using the heat exchanger, it is possible to dissolve the refrigerant and oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil. The effect can be achieved with any refrigeration oil, whether or not.

本発明の活用例として、熱交換性能を向上し、省エネルギー性能を向上することが必要なヒートポンプ装置に使用することができる。   As an application example of the present invention, it can be used in a heat pump device that requires improved heat exchange performance and improved energy saving performance.

1 電磁弁、2 上流部側配管、3 下流部側配管、4 T字管、5 流入側配管、6 T字管用ベンド、7 下流側配管用ベンド、8 ベンド間配管、9 T字管入口部、10 背面扁平管熱交換器、11 前面上部扁平管熱交換器、12 前面下部扁平管熱交換器、13 前面下部円管アシスト熱交換器、14 前面上部円管アシスト熱交換器、15 背面円管アシスト熱交換器、16A〜16F バルジ三方管、17 液冷媒、33 圧縮機、34 凝縮器、35 絞り装置、36 蒸発器、37 送風機、38 送風機用モータ。   DESCRIPTION OF SYMBOLS 1 Solenoid valve, 2 Upstream side piping, 3 Downstream side piping, 4 T-shaped pipe, 5 Inflow side piping, 6 T-shaped bend, 7 Downstream piping bend, 8 Inter-bend piping, 9 T-shaped pipe inlet DESCRIPTION OF SYMBOLS 10 Back flat tube heat exchanger, 11 Front upper flat tube heat exchanger, 12 Front lower flat tube heat exchanger, 13 Front lower circular tube assisted heat exchanger, 14 Front upper circular tube assisted heat exchanger, 15 Back circle Pipe assist heat exchanger, 16A-16F Bulge three-way pipe, 17 liquid refrigerant, 33 compressor, 34 condenser, 35 expansion device, 36 evaporator, 37 blower, 38 blower motor.

Claims (6)

送風機を囲むように複数の熱交換器本体を配置し、各熱交換器本体を配管接続して構成する熱交換器であって、
1台以上の前記熱交換器本体と2台以上の熱交換器本体との間に配置して冷媒の圧力を制御する流量制御装置と、
該流量制御装置と接続し、冷媒を分岐して前記2台以上の熱交換器本体に流入させるT字管と
を備えることを特徴とする熱交換器。
A plurality of heat exchanger bodies are arranged so as to surround the blower, and each heat exchanger body is a pipe connected to the heat exchanger,
A flow rate control device arranged between one or more heat exchanger bodies and two or more heat exchanger bodies to control the pressure of the refrigerant;
A heat exchanger comprising: a T-tube connected to the flow rate control device and branching the refrigerant to flow into the two or more heat exchanger bodies.
前記流量制御装置に付設する配管を、表面にロウ材を塗布したステンレスを材料として構成し、アルミニウムを材料とする管と接続することを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the pipe attached to the flow rate control device is made of stainless steel with a brazing material applied on the surface thereof and connected to a pipe made of aluminum. 前記流量制御装置及び前記T字管を流れる冷媒の方向とほぼ直交する方向に冷媒の流れを変更させる直線配管を、前記流量制御装置と前記T字管との間に接続することを特徴とする請求項1又は2記載の熱交換器。   A straight pipe that changes the flow of the refrigerant in a direction substantially orthogonal to the direction of the refrigerant flowing through the flow control device and the T-shaped tube is connected between the flow control device and the T-shaped tube. The heat exchanger according to claim 1 or 2. 前記直線配管の長さが、前記T字管における冷媒流入側の接続部分の長さよりも長いことを特徴とする請求項3記載の熱交換器。   The heat exchanger according to claim 3, wherein a length of the straight pipe is longer than a length of a connection portion on the refrigerant inflow side in the T-shaped pipe. 前記T字管と熱交換器の流出口までの間に、2つのバルジ三方管を接続して4分岐させることを特徴とする請求項1〜4のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein two bulge three-way pipes are connected and branched into four between the T-shaped tube and the outlet of the heat exchanger. 冷媒を圧縮して吐出する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮に係る冷媒を減圧する絞り装置と、熱交換により前記冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成し、
請求項1〜5のいずれかに記載の熱交換器を、前記蒸発器及び/又は前記凝縮器として機能させることを特徴とする冷凍サイクル装置。
Pipe connection is made between a compressor that compresses and discharges the refrigerant, a condenser that condenses the refrigerant by heat exchange, a throttle device that depressurizes the refrigerant related to condensation, and an evaporator that evaporates the refrigerant by heat exchange. Configure the refrigerant circuit,
A refrigeration cycle apparatus, wherein the heat exchanger according to claim 1 functions as the evaporator and / or the condenser.
JP2012053290A 2012-03-09 2012-03-09 Heat exchanger, and refrigeration cycle device Pending JP2013185790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053290A JP2013185790A (en) 2012-03-09 2012-03-09 Heat exchanger, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053290A JP2013185790A (en) 2012-03-09 2012-03-09 Heat exchanger, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2013185790A true JP2013185790A (en) 2013-09-19

Family

ID=49387374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053290A Pending JP2013185790A (en) 2012-03-09 2012-03-09 Heat exchanger, and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2013185790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7105123B2 (en) 2018-07-06 2022-07-22 株式会社コロナ cooling device
WO2023018251A1 (en) * 2021-08-11 2023-02-16 한온시스템 주식회사 Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189498A (en) * 1996-01-09 1997-07-22 Nippon Light Metal Co Ltd Header with thermal medium flow dividing promotion mechanism and its forming method
JP2001074340A (en) * 1999-09-06 2001-03-23 Tabai Espec Corp Equally branching refrigerant pipe, and environment tester using the same
JP2002107006A (en) * 2000-10-03 2002-04-10 Daikin Ind Ltd Branch pipe and air-conditioning equipment having the branch pipe
JP2003254555A (en) * 2002-02-28 2003-09-10 Toshiba Kyaria Kk Air conditioner
JP2008115912A (en) * 2006-11-01 2008-05-22 Saginomiya Seisakusho Inc Piping member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189498A (en) * 1996-01-09 1997-07-22 Nippon Light Metal Co Ltd Header with thermal medium flow dividing promotion mechanism and its forming method
JP2001074340A (en) * 1999-09-06 2001-03-23 Tabai Espec Corp Equally branching refrigerant pipe, and environment tester using the same
JP2002107006A (en) * 2000-10-03 2002-04-10 Daikin Ind Ltd Branch pipe and air-conditioning equipment having the branch pipe
JP2003254555A (en) * 2002-02-28 2003-09-10 Toshiba Kyaria Kk Air conditioner
JP2008115912A (en) * 2006-11-01 2008-05-22 Saginomiya Seisakusho Inc Piping member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7105123B2 (en) 2018-07-06 2022-07-22 株式会社コロナ cooling device
WO2023018251A1 (en) * 2021-08-11 2023-02-16 한온시스템 주식회사 Heat exchanger

Similar Documents

Publication Publication Date Title
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
EP2952821B1 (en) Method for manufacturing an outdoor unit
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
TW200921030A (en) Economized vapor compression circuit
JP2009133500A (en) Air conditioner
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
CN103982943B (en) Multi-online air-conditioning system
WO2012101672A1 (en) Air conditioner device
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
WO2015132963A1 (en) Heat exchanger and air conditioner
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
JP2012032089A (en) Finned tube heat exchanger and air conditioner using the same
JP5812997B2 (en) Condenser with refrigeration cycle and supercooling section
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2016020760A (en) Air conditioner
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
JP2013185790A (en) Heat exchanger, and refrigeration cycle device
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2013134024A (en) Refrigeration cycle device
JP2012237518A (en) Air conditioner
JP5404729B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2015125525A1 (en) Heat exchanger and refrigerating cycle device
JP5312512B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204