JP2000039167A - Air-conditioning equipment and heat exchanger unit - Google Patents

Air-conditioning equipment and heat exchanger unit

Info

Publication number
JP2000039167A
JP2000039167A JP10210601A JP21060198A JP2000039167A JP 2000039167 A JP2000039167 A JP 2000039167A JP 10210601 A JP10210601 A JP 10210601A JP 21060198 A JP21060198 A JP 21060198A JP 2000039167 A JP2000039167 A JP 2000039167A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat transfer
flow
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10210601A
Other languages
Japanese (ja)
Inventor
Teruhiko Taira
輝彦 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10210601A priority Critical patent/JP2000039167A/en
Publication of JP2000039167A publication Critical patent/JP2000039167A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a refrigerant flow sound in dehumidification operation while suppressing the reduction of basic performance in cooling and heating operations in air-conditioning equipment with an indoor heat exchanger unit in a structure where two fin-tube-type heat exchangers are connected via a refrigerant constriction mechanism. SOLUTION: In air-conditioning equipment where a refrigerant passes through a refrigerant constriction mechanism 27 where the chanel resistance of a refrigerant is large and flows to a second heat exchanger 34 from a first heat exchanger 33 in dehumidification operation, a heat transfer pipe 26 immediately after an inlet 33a of the refrigerant of the first heat exchanger 33 in dehumidification operation and a heat transfer pipe 26 immediately before an outlet 33b of the refrigerant are arranged in a row at the upstream side of the air flow, the heat transfer pipe 26 immediately after an inlet 34a of the refrigerant of the second heat exchanger 34 and the heat transfer pipe 26 immediately before an outlet 34b of the refrigerant are arranged at the row of the upstream side of the air flow and at the row of the downstream side of the air flow, respectively, thus suppressing the reduction of basic performance on cooling and heating operations and reducing a refrigerant flow sound on dehumidification operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルの凝
縮熱で室内空気を加熱する除湿運転が可能な空気調和機
とそれに用いる熱交換器ユニットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of performing a dehumidifying operation in which room air is heated by the heat of condensation of a refrigeration cycle and a heat exchanger unit used therefor.

【0002】[0002]

【従来の技術】従来のこの種の空気調和機としては特開
平9−42706号公報に示されるものがある。以下、
図面を参照しながら上記従来の空気調和機を説明する。
2. Description of the Related Art A conventional air conditioner of this type is disclosed in Japanese Patent Application Laid-Open No. 9-42706. Less than,
The conventional air conditioner will be described with reference to the drawings.

【0003】図6に上記従来の空気調和機の室内機の側
断面図を示す。図6において、室内機内に組み込まれた
多段曲げ室内熱交換器1は、前面下段部分2と前面上段
部分3と背面部分4とに熱的に分けられて折り曲げられ
ている。室内熱交換器1には複数枚のフィン5に貫通す
るように設けられた伝熱管6が空気の流れ方向に2列で
構成されており、各伝熱管6は端部で連結されている。
また、除湿制御弁7は全開状態と微開状態をもち、除湿
運転時に微開状態となり絞り作用を行う機能を有してい
る。
FIG. 6 is a side sectional view of an indoor unit of the conventional air conditioner. In FIG. 6, the multi-stage bending indoor heat exchanger 1 incorporated in the indoor unit is thermally divided into a front lower part 2, a front upper part 3, and a rear part 4 and bent. The heat exchanger tubes 6 provided in the indoor heat exchanger 1 so as to penetrate the plurality of fins 5 are arranged in two rows in the direction of air flow, and the heat exchanger tubes 6 are connected at ends.
Further, the dehumidification control valve 7 has a fully opened state and a slightly opened state, and has a function of being opened slightly during the dehumidifying operation to perform a throttling action.

【0004】貫流ファンタイプのファン10が回転する
ことにより、前面及び上面の吸い込みグリル11a,1
1bから空気が流入し、フィルタ8を介して、室内熱交
換器1で冷媒と熱交換されたあと、ファン10を通り、
吹き出し口12から室内に吹き出されるように配置して
ある。なお、9は背面ケーシングであり、室内熱交換器
1の背面部分4に対する露受皿9aが一体に形成されて
いる。12aは吹出口風向板、17は室内熱交換器1の
前面下段部分2及び前面上段部分3に対する露受皿であ
る。
When the once-through fan type fan 10 rotates, the suction grills 11a, 1a on the front and upper surfaces are formed.
1b, the air flows in from the indoor heat exchanger 1 via the filter 8 and heat exchange with the refrigerant.
It is arranged so as to be blown into the room from the outlet 12. Reference numeral 9 denotes a rear casing, and a dew tray 9a for the rear portion 4 of the indoor heat exchanger 1 is integrally formed. 12a is an air outlet wind direction plate, and 17 is a dew tray for the lower front part 2 and the upper front part 3 of the indoor heat exchanger 1.

【0005】図7は従来の空気調和機の全体の冷凍サイ
クルを示すものである。図7において、回転数制御が可
能な圧縮機13、運転状態を切り替える四方弁14、室
外熱交換器15、絞り作用のない全開状態が可能な電動
膨張弁16、さらに前述の室内熱交換器1と除湿制御弁
7を加えて、これらが連結されて冷凍サイクルを構成し
ている。なお、図7には室内熱交換器1の冷媒経路を模
式的に示してある。
FIG. 7 shows the entire refrigeration cycle of a conventional air conditioner. In FIG. 7, a compressor 13 capable of controlling the rotation speed, a four-way valve 14 for switching the operation state, an outdoor heat exchanger 15, an electric expansion valve 16 capable of being fully opened without a throttling effect, and the indoor heat exchanger 1 described above. And a dehumidification control valve 7, which are connected to form a refrigeration cycle. FIG. 7 schematically shows a refrigerant path of the indoor heat exchanger 1.

【0006】このように構成された従来の空気調和機の
各運転時の冷媒経路について説明する。
[0006] Refrigerant paths during each operation of the conventional air conditioner thus configured will be described.

【0007】まず、冷房運転時には、四方弁14を冷房
側に切り替え、除湿制御弁7を開き電動膨張弁16を適
当に絞ることにより、実線の矢印で示すように、圧縮機
13、四方弁14、室外熱交換器15、電動膨張弁1
6、室内熱交換器1の前面上段部分3、室内熱交換器1
の背面部分4、全開状態の除湿制御弁7、室内熱交換器
1の前面下段部分2、四方弁14、圧縮機13の順に冷
媒経路を構成し、室外熱交換器15を凝縮器、室内熱交
換器1全体を蒸発器として作用させる。
First, during the cooling operation, the four-way valve 14 is switched to the cooling side, the dehumidification control valve 7 is opened, and the electric expansion valve 16 is appropriately throttled, so that the compressor 13 and the four-way valve 14 , Outdoor heat exchanger 15, electric expansion valve 1
6. Upper front part 3 of indoor heat exchanger 1, indoor heat exchanger 1
A refrigerant path is formed in the order of the back part 4, the dehumidification control valve 7 in the fully opened state, the lower front part 2 of the indoor heat exchanger 1, the four-way valve 14, and the compressor 13, and the outdoor heat exchanger 15 is used as a condenser, indoor heat The entire exchanger 1 acts as an evaporator.

【0008】このとき、空気の流れ方向は白抜き矢印で
示すが、室内熱交換器1においては、冷媒入り口直後の
伝熱管6を前面上段部分3の風上側として、背面部分4
の風下側の伝熱管6から除湿制御弁7へ流出するように
冷媒経路を構成し、除湿制御弁7を通過した後も、前面
下段部分2の風上側の伝熱管6に流入して前面下段部分
2の風下側の伝熱管6から流出するように構成されてい
る。
At this time, the flow direction of the air is indicated by a white arrow, but in the indoor heat exchanger 1, the heat transfer tube 6 immediately after the refrigerant inlet is located on the windward side of the front upper section 3 and the rear section 4
The refrigerant path is configured so as to flow out of the heat transfer pipe 6 on the leeward side to the dehumidification control valve 7, and after flowing through the dehumidification control valve 7, the refrigerant flows into the heat transfer pipe 6 on the windward side of the lower part 2 on the front side. It is configured to flow out of the heat transfer tube 6 on the leeward side of the portion 2.

【0009】このように、全体として空気流と同じ方向
に冷媒が流れるように冷媒経路を構成することで、圧力
損失によって順次冷媒温度が低下する蒸発器において、
空気の流れ方向に対して、冷媒の温度勾配と空気の温度
勾配が常にある温度差をもって、効率的に冷却され、ま
た、2つの伝熱管経路が並列に経路構成されているた
め、冷媒の圧力損失が少なくなり、より効率的な冷房運
転が行われることとなる。
As described above, by forming the refrigerant path so that the refrigerant flows in the same direction as the air flow as a whole, in the evaporator in which the refrigerant temperature sequentially decreases due to the pressure loss,
Since the temperature gradient of the refrigerant and the temperature gradient of the air always have a certain temperature difference with respect to the flow direction of the air, the cooling is efficiently performed, and since the two heat transfer tube paths are configured in parallel, the pressure of the refrigerant increases. Loss is reduced, and more efficient cooling operation is performed.

【0010】次に、暖房運転時には、四方弁14を暖房
側に切り替え、除湿制御弁7を開き電動膨張弁16を適
当に絞ることにより、点線の矢印で示すように、圧縮機
13、四方弁14、室内熱交換器1の前面下段部分2、
全開状態の除湿制御弁7、室内熱交換器1の背面部分
4、室内熱交換器1の前面上段部分3、電動膨張弁1
6、室外熱交換器15、四方弁14、圧縮機13の順に
冷媒経路を構成し、室内熱交換器1全体を凝縮器、室外
熱交換器15を蒸発器として作用させる。
Next, during the heating operation, the four-way valve 14 is switched to the heating side, the dehumidification control valve 7 is opened, and the electric expansion valve 16 is appropriately throttled, so that the compressor 13, the four-way valve 14. lower front part 2 of indoor heat exchanger 1,
Dehumidification control valve 7, fully open, rear portion 4 of indoor heat exchanger 1, upper front portion 3 of indoor heat exchanger 1, electric expansion valve 1
6. A refrigerant path is formed in the order of the outdoor heat exchanger 15, the four-way valve 14, and the compressor 13, and the entire indoor heat exchanger 1 functions as a condenser and the outdoor heat exchanger 15 functions as an evaporator.

【0011】このとき、室内熱交換器1においては、冷
媒入り口直後の伝熱管6を前面下段部分2の風下側とし
て、前面下段部分2の風上側の伝熱管6から除湿制御弁
7へ流出するように冷媒経路を構成し、除湿制御弁7を
通過した後も、背面部分4の風下側の伝熱管6に流入し
て前面上段部分3の風上側の伝熱管6から流出するよう
に構成されている。
At this time, in the indoor heat exchanger 1, the heat transfer tube 6 immediately after the entrance of the refrigerant is taken as the leeward side of the front lower portion 2, and flows out of the heat transfer tube 6 on the windward side of the front lower portion 2 to the dehumidification control valve 7. Thus, after passing through the dehumidification control valve 7, the refrigerant path flows into the heat transfer pipe 6 on the leeward side of the rear part 4 and flows out of the heat transfer pipe 6 on the leeward side of the upper front part 3. ing.

【0012】このように、全体として空気流と対向する
方向に冷媒が流れるように冷媒経路を構成することで、
過熱ガスから過冷却液へ順次冷媒温度が低下する凝縮器
において、空気の流れ方向に対して、冷媒の温度勾配と
空気の温度勾配が常にある温度差をもって、効率的に加
熱され、より効率的な暖房運転が行われることとなる。
As described above, by forming the refrigerant path so that the refrigerant flows in the direction opposite to the air flow as a whole,
In a condenser in which the refrigerant temperature gradually decreases from superheated gas to supercooled liquid, the temperature gradient of the refrigerant and the temperature gradient of the air always have a certain temperature difference with respect to the flow direction of the air, so that they are efficiently heated and more efficient Heating operation will be performed.

【0013】また、除湿運転時には、四方弁14を冷房
運転と同じ方向に切り替え、除湿制御弁7を微開状態に
絞り電動膨張弁16を全開とすることにより、一点鎖線
の矢印で示すように、前述の冷房運転と同じ冷媒経路を
構成している。冷房運転時と異なるのは、電動膨張弁1
6を全開とし、除湿制御弁7を微開状態に絞ることによ
り、室外熱交換器15とともに室内熱交換器1の前面上
段部分3と背面部分4とを凝縮器とし、室内熱交換器1
の前面下段部分2を蒸発器として作用させていることで
ある。
During the dehumidification operation, the four-way valve 14 is switched in the same direction as the cooling operation, the dehumidification control valve 7 is slightly opened, and the electric expansion valve 16 is fully opened, as shown by the one-dot chain line arrow. And the same refrigerant path as in the cooling operation described above. The difference from the cooling operation is that the electric expansion valve 1
6 is fully opened, and the dehumidification control valve 7 is narrowed to a slightly open state, so that the outdoor heat exchanger 15 and the upper front part 3 and the rear part 4 of the indoor heat exchanger 1 are used as condensers, and the indoor heat exchanger 1 is used.
Is that the lower part 2 on the front side functions as an evaporator.

【0014】そして、室内空気をファン10により流す
と、室内空気は蒸発器として作用する室内熱交換器1の
前面下段部分2で冷却、除湿されると同時に、加熱器と
なる室内熱交換器1の前面上段部分3及び背面部分4で
加熱され、さらにこれらの空気が混合されて室内に吹き
出される。
When the indoor air is flown by the fan 10, the indoor air is cooled and dehumidified by the lower front portion 2 of the indoor heat exchanger 1 acting as an evaporator, and at the same time, the indoor heat exchanger 1 serving as a heater is provided. Are heated in the upper front portion 3 and the rear portion 4 of the airbag, and these airs are mixed and blown into the room.

【0015】このとき、凝縮器として機能する前面上段
部分3及び背面部分4と、蒸発器として機能する前面下
段部分2とは熱的に分けられているので、凝縮器として
機能する前面上段部分3及び背面部分4と、蒸発器とし
て機能する前面下段部分2との間で熱漏洩によるロスが
なく、除湿能力が低下しない。
At this time, the front upper section 3 and the rear section 4 functioning as a condenser and the front lower section 2 functioning as an evaporator are thermally separated, so that the front upper section 3 functioning as a condenser is provided. In addition, there is no loss due to heat leakage between the rear part 4 and the front lower part 2 functioning as an evaporator, and the dehumidifying ability does not decrease.

【0016】また、蒸発器として機能する前面下段部分
2で発生した凝縮水が、凝縮器として機能する前面上段
部分3及び背面部分4に伝わって再蒸発してしまうこと
がない。
Further, the condensed water generated in the lower front part 2 functioning as the evaporator is not transmitted to the upper front part 3 and the rear part 4 functioning as the condenser and re-evaporated.

【0017】この空気調和機は、室内側熱交換器におけ
る凝縮器として機能する熱交換部分と蒸発器として機能
する熱交換部分とが、空気の流れ方向に並んで配置され
ていないので、室内側熱交換器の空気の流れ方向の寸法
が大きくならず、室内側熱交換器における凝縮器として
機能する熱交換部分と蒸発器として機能する熱交換部分
とが、空気の流れ方向に並んで配置されているものに較
べ、空気調和機を小さく(薄く)することができる。
In this air conditioner, the heat exchange portion functioning as a condenser and the heat exchange portion functioning as an evaporator in the indoor heat exchanger are not arranged side by side in the air flow direction. The size of the heat exchanger in the direction of air flow does not increase, and the heat exchange part functioning as a condenser and the heat exchange part functioning as an evaporator in the indoor heat exchanger are arranged side by side in the air flow direction. The air conditioner can be made smaller (thinner) than those that are used.

【0018】[0018]

【発明が解決しようとする課題】しかしながら、上記従
来の空気調和機は、除湿運転時に、直前に背面部分4の
風下側の伝熱管6を通った冷媒が除湿制御弁7に流入す
る構成になっているため、除湿制御弁7に凝縮が完了し
ていない気液二相の冷媒が流入しやすく、液冷媒とガス
冷媒の圧力損失の差のために、冷媒流動音が発生する。
その対策として除湿制御弁7に振動吸収用の防振材を大
量に付加する必要があった。
However, the conventional air conditioner has a configuration in which the refrigerant that has just passed through the heat transfer pipe 6 on the leeward side of the rear part 4 flows into the dehumidification control valve 7 during the dehumidification operation. Therefore, a gas-liquid two-phase refrigerant that has not been completely condensed tends to flow into the dehumidification control valve 7, and refrigerant flow noise is generated due to a difference in pressure loss between the liquid refrigerant and the gas refrigerant.
As a countermeasure, it was necessary to add a large amount of vibration damping material to the dehumidification control valve 7 for absorbing vibration.

【0019】本発明は、上記課題に鑑み、冷媒絞り機構
を介して接続された二つの熱交換器が、共に、冷房運転
時に冷媒流と空気流が並行流となり、暖房運転時に冷媒
流と空気流が対向流となるよう構成されたフィンチュー
ブ形室内熱交換器を備えた従来の空気調和機と較べて、
冷房運転時と暖房運転時の基本性能の低下を少なくし
て、除湿運転時の冷媒流動音を安価で簡単な構成で低減
することを目的とする。
In view of the above-mentioned problems, the present invention provides two heat exchangers connected via a refrigerant throttle mechanism so that the refrigerant flow and the air flow become parallel during the cooling operation and the refrigerant flow and the air flow during the heating operation. Compared to a conventional air conditioner with a fin tube type indoor heat exchanger configured so that the flow is countercurrent,
It is an object of the present invention to reduce a decrease in basic performance during a cooling operation and a heating operation, and to reduce a refrigerant flow noise during a dehumidifying operation with an inexpensive and simple configuration.

【0020】[0020]

【課題を解決するための手段】この目的を達成するため
本発明の空気調和機は、多数平行に並べられた板状フィ
ンに直角に挿通され内部を冷媒が流動する伝熱管が空気
の流れ方向に複数列に構成されたフィンチューブ形の前
記室内熱交換器を、空気の流れ方向と略直角な段方向に
熱的に第1熱交換器と第2熱交換器とに分割するととも
に、前記第1熱交換器と前記第2熱交換器とを冷媒の流
路抵抗が大きい状態と冷媒の流路抵抗が小さい状態をも
つ冷媒絞り機構を介して接続して、冷房運転時と除湿運
転時に前記第1熱交換器から前記第2熱交換器へ冷媒が
流れ、暖房運転時に前記第2熱交換器から前記第1熱交
換器へ冷媒が流れるように冷凍サイクルを構成し、除湿
運転時に前記冷媒絞り機構を冷媒の流路抵抗が大きい状
態にして前記第1熱交換器で室内の空気を加熱しながら
前記第2熱交換器で室内の空気を除湿することができる
ようにした空気調和機において、除湿運転時における前
記第1熱交換器の冷媒の入り口直後の前記伝熱管と冷媒
の出口直前の伝熱管を空気の流れの上流側の列に配置
し、除湿運転時における前記第2熱交換器の冷媒の入り
口直後の前記伝熱管を空気の流れの上流側の列、冷媒の
出口直前の前記伝熱管を空気の流れの下流側の列にそれ
ぞれ配置したのである。
In order to achieve this object, an air conditioner according to the present invention is characterized in that a heat transfer tube through which a refrigerant flows through a plurality of plate-like fins arranged in parallel at right angles and through which a refrigerant flows is formed in a direction in which air flows. The fin tube type indoor heat exchanger configured in a plurality of rows is thermally divided into a first heat exchanger and a second heat exchanger in a step direction substantially perpendicular to the air flow direction, The first heat exchanger and the second heat exchanger are connected via a refrigerant throttle mechanism having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is small, so that the cooling operation and the dehumidifying operation are performed. The refrigerant flows from the first heat exchanger to the second heat exchanger, configures a refrigeration cycle so that the refrigerant flows from the second heat exchanger to the first heat exchanger during the heating operation, and the refrigerant flows during the dehumidification operation. When the refrigerant throttle mechanism is in a state where the flow path resistance of the refrigerant is large, the first In an air conditioner capable of dehumidifying indoor air with the second heat exchanger while heating indoor air with the exchanger, the air conditioner immediately after the refrigerant inlet of the first heat exchanger during the dehumidifying operation The heat transfer tubes and the heat transfer tubes immediately before the outlet of the refrigerant are arranged in a row on the upstream side of the air flow, and the heat transfer tubes immediately after the inlet of the refrigerant of the second heat exchanger during the dehumidifying operation are arranged on the upstream side of the air flow. , And the heat transfer tubes immediately before the outlet of the refrigerant were arranged in a row on the downstream side of the flow of air.

【0021】また、本発明の熱交換器ユニット多数平行
に並べられた板状フィンに直角に挿通され内部を冷媒が
流動する伝熱管が空気の流れ方向に複数列に構成され、
2つの冷媒の出入口に近接する前記伝熱管がともに空気
の流れの上流側となる列に配置されたフィンチューブ形
の第1熱交換器と、多数平行に並べられた板状フィンに
直角に挿通され内部を冷媒が流動する伝熱管が空気の流
れ方向に複数列に構成され、2つの冷媒の出入口のうち
一方の冷媒の出入口に近接する前記伝熱管が空気の流れ
の上流側となる列に配置され他方の冷媒の出入口に近接
する前記伝熱管が空気の流れの下流側となる列に配置さ
れたフィンチューブ形の第2熱交換器と、前記第1熱交
換器の2つの冷媒の出入口のうち一方の冷媒の出入口と
前記第2熱交換器の空気の流れの上流側となる列に配置
された冷媒の出入口とを接続する接続管の途中に設けら
れた冷媒の流路抵抗が大きい状態と冷媒の流路抵抗が小
さい状態をもつ冷媒絞り機構とにより構成され、前記第
1熱交換器と前記第2熱交換器とが空気の流れの方向で
重ならないように前記第1熱交換器と前記第2熱交換器
とを配置したのである。
The heat exchanger tubes of the present invention are provided with a plurality of heat transfer tubes which are inserted at right angles to the plate-like fins arranged in parallel and through which the refrigerant flows, in a plurality of rows in the direction of air flow.
The heat transfer tubes adjacent to the two refrigerant inlets and outlets are both inserted at right angles to a fin tube type first heat exchanger arranged in a row on the upstream side of the air flow, and a plurality of plate-like fins arranged in parallel. The heat transfer tubes through which the refrigerant flows are formed in a plurality of rows in the direction of air flow, and the heat transfer tubes near the one of the two refrigerant inlets and outlets are arranged on the upstream side of the air flow. A fin tube-shaped second heat exchanger arranged in a row in which the heat transfer tubes arranged and adjacent to the inlet and outlet of the other refrigerant are on the downstream side of the flow of air; and two inlets and outlets of two refrigerants of the first heat exchanger The flow path resistance of the refrigerant provided in the middle of the connecting pipe connecting the inlet / outlet of one of the refrigerants and the inlet / outlet of the refrigerant arranged in the upstream row of the air flow of the second heat exchanger is large. Cold with a state and a low flow path resistance of the refrigerant The first heat exchanger and the second heat exchanger are arranged such that the first heat exchanger and the second heat exchanger do not overlap in the direction of air flow. is there.

【0022】これにより、冷媒絞り機構を介して接続さ
れた二つの熱交換器が、共に、冷房運転時に冷媒流と空
気流が並行流となり、暖房運転時に冷媒流と空気流が対
向流となるよう構成されたフィンチューブ形室内熱交換
器を備えた従来の空気調和機と較べて、冷房運転時と暖
房運転時の基本性能の低下を少なくして、除湿運転時の
冷媒流動音を安価で簡単な構成で低減することができ
る。
Thus, the two heat exchangers connected via the refrigerant throttle mechanism both have the refrigerant flow and the air flow parallel during the cooling operation, and have the counterflow between the refrigerant flow and the air flow during the heating operation. Compared with a conventional air conditioner having a fin tube type indoor heat exchanger configured as described above, a decrease in basic performance during cooling operation and heating operation is reduced, and refrigerant flow noise during dehumidification operation is reduced. It can be reduced with a simple configuration.

【0023】[0023]

【発明の実施の形態】請求項1に記載の発明は、多数平
行に並べられた板状フィンに直角に挿通され内部を冷媒
が流動する伝熱管が空気の流れ方向に複数列に構成され
たフィンチューブ形室内熱交換器を、空気の流れ方向と
略直角な段方向に熱的に第1熱交換器と第2熱交換器と
に分割するとともに、前記第1熱交換器と前記第2熱交
換器とを冷媒の流路抵抗が大きい状態と冷媒の流路抵抗
が小さい状態をもつ冷媒絞り機構を介して接続して、冷
房運転時と除湿運転時に前記第1熱交換器から前記第2
熱交換器へ冷媒が流れ、暖房運転時に前記第2熱交換器
から前記第1熱交換器へ冷媒が流れるように冷凍サイク
ルを構成し、除湿運転時に前記冷媒絞り機構を冷媒の流
路抵抗が大きい状態にして前記第1熱交換器で室内の空
気を加熱しながら前記第2熱交換器で室内の空気を除湿
することができるようにした空気調和機において、除湿
運転時における前記第1熱交換器の冷媒の入り口直後の
前記伝熱管と冷媒の出口直前の伝熱管を空気の流れの上
流側の列に配置し、除湿運転時における前記第2熱交換
器の冷媒の入り口直後の前記伝熱管を空気の流れの上流
側の列、冷媒の出口直前の前記伝熱管を空気の流れの下
流側の列にそれぞれ配置したものである。
According to the first aspect of the present invention, a plurality of heat transfer tubes, which are inserted at right angles into a large number of plate-like fins arranged in parallel and through which a refrigerant flows, are formed in a plurality of rows in the direction of air flow. The fin tube type indoor heat exchanger is thermally divided into a first heat exchanger and a second heat exchanger in a step direction substantially perpendicular to the flow direction of the air, and the first heat exchanger and the second heat exchanger are separated from each other. The first heat exchanger is connected to the heat exchanger via a refrigerant throttle mechanism having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is low, and performs the cooling operation and the dehumidification operation from the first heat exchanger. 2
The refrigeration cycle is configured such that the refrigerant flows to the heat exchanger, and the refrigerant flows from the second heat exchanger to the first heat exchanger during the heating operation. In the air conditioner, which is configured to be large and capable of dehumidifying indoor air with the second heat exchanger while heating indoor air with the first heat exchanger, the first heat during the dehumidifying operation is provided. The heat transfer tubes immediately after the refrigerant inlet of the exchanger and the heat transfer tubes immediately before the refrigerant outlet are arranged in the upstream row of the air flow, and the heat transfer tubes immediately after the refrigerant inlet of the second heat exchanger during the dehumidifying operation. The heat pipes are arranged in a row on the upstream side of the air flow, and the heat transfer tubes immediately before the outlet of the refrigerant are arranged in a row on the downstream side of the air flow.

【0024】これにより、冷房運転時には、室内熱交換
器の冷媒の入り口直後の伝熱管は空気の流れの上流側と
なり、冷媒の出口直前の伝熱管は空気の流れの下流側と
なるために、全体として冷媒流と空気流が並行流とな
り、空気の流れ方向に対して、冷媒の温度勾配と空気の
温度勾配が常にある温度差をもって、効率的に空気を冷
却でき、従来の冷房運転時に冷媒流と空気流が並行流と
なる室内側熱交換器を有する空気調和機と基本性能はほ
とんど変わらない。
Thus, during the cooling operation, the heat transfer tube immediately after the refrigerant inlet of the indoor heat exchanger is on the upstream side of the air flow, and the heat transfer tube immediately before the refrigerant outlet is on the downstream side of the air flow. As a whole, the refrigerant flow and the air flow become parallel flows, and the temperature gradient of the refrigerant and the temperature gradient of the air always have a certain temperature difference with respect to the flow direction of the air. The basic performance is almost the same as that of an air conditioner having an indoor heat exchanger in which the flow and the air flow are parallel flows.

【0025】また、暖房運転時には、室内熱交換器の冷
媒の入り口直後の伝熱管は空気の流れの下流側となり、
冷媒の出口直前の伝熱管は空気の流れの上流側となるた
めに、全体として冷媒流と空気流が対向流となり、空気
の流れ方向に対して、冷媒の温度勾配と空気の温度勾配
が常にある温度差をもって、効率的に空気を加熱でき、
従来の暖房運転時に冷媒流と空気流が対向流となる室内
側熱交換器を有する空気調和機と基本性能はほとんど変
わらない。
In the heating operation, the heat transfer tube immediately after the refrigerant inlet of the indoor heat exchanger is on the downstream side of the flow of air.
Since the heat transfer tube immediately before the outlet of the refrigerant is on the upstream side of the air flow, the refrigerant flow and the air flow are countercurrent as a whole, and the temperature gradient of the refrigerant and the temperature gradient of the air are always constant in the air flow direction. With a certain temperature difference, air can be heated efficiently,
The basic performance is almost the same as that of the air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the conventional heating operation.

【0026】また、除湿運転時には、第1熱交換器の冷
媒の出口直前の伝熱管が空気の流れの上流側の列に配置
されているため、冷媒絞り機構に流入する直前の冷媒は
第1熱交換器で加熱される前の空気と熱交換をすること
となり、十分な過冷却液とすることが可能となる。これ
により、冷媒絞り機構に流入する冷媒は液冷媒となり、
安定した流動により減圧されるため、冷媒流動音が小さ
くなる。
In the dehumidifying operation, since the heat transfer tubes immediately before the refrigerant outlet of the first heat exchanger are arranged in the upstream row of the air flow, the refrigerant immediately before flowing into the refrigerant throttle mechanism is the first heat exchanger. Heat exchange is performed with air before being heated by the heat exchanger, and a sufficient supercooled liquid can be obtained. Thereby, the refrigerant flowing into the refrigerant throttle mechanism becomes a liquid refrigerant,
Since the pressure is reduced by the stable flow, the refrigerant flow noise is reduced.

【0027】また、十分な過冷却をとることにより、冷
凍サイクルの圧縮比を小さくしても十分な空気の加熱及
び除湿や冷却が可能となり、少ない消費電力で所定の冷
凍サイクルを構成することが可能となる。
Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be constituted with low power consumption. It becomes possible.

【0028】請求項2に記載の発明は、請求項1に記載
の発明の空気調和機において、第1熱交換器は、除湿運
転時に、冷媒が、除湿運転時の冷媒の入り口から流入
し、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて除湿運転時の冷媒の出口から流
出するように伝熱管経路が構成されているものである。
According to a second aspect of the present invention, in the air conditioner according to the first aspect of the present invention, the first heat exchanger is configured such that the refrigerant flows through the refrigerant inlet during the dehumidifying operation during the dehumidifying operation; The heat transfer tube path is configured such that after the refrigerant flows in the same direction as the air flow, the refrigerant flows in the direction facing the air flow and flows out of the refrigerant outlet during the dehumidifying operation.

【0029】これにより、冷房運転時と除湿運転時に、
第1熱交換器において、冷媒が、冷媒流と空気流が並行
流となる伝熱管経路(冷媒経路)を流れた後、冷媒流と
空気流が対向流となる伝熱管経路(冷媒経路)を流れ、
暖房運転時に、冷媒が、冷媒流と空気流が並行流となる
伝熱管経路(冷媒経路)を流れた後、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)を流れることにな
る。
Thus, during the cooling operation and the dehumidifying operation,
In the first heat exchanger, the refrigerant flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then passes through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in opposite directions. flow,
During the heating operation, the refrigerant flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows, and then flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are counter flows. Become.

【0030】したがって、冷房運転時には、第1熱交換
器の伝熱管経路(冷媒経路)の冷媒流の前半部分と第2
熱交換器が、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)となり、この部分では、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差を確保できる。なお、第1熱交換器の伝熱管経路
(冷媒経路)の冷媒流の後半部分が、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)となるが、この部
分は、第1熱交換器の冷媒流の前半部分で加熱されて気
液二相状態となった冷媒が流れ、冷媒の温度変化はほと
んどなく、冷媒流と空気流が対向流となっていることに
よる悪影響ははとんどない。したがって、従来の冷房運
転時に冷媒流と空気流が並行流となる室内側熱交換器を
有する空気調和機と基本性能はほとんど変わらない。
Therefore, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger and the second half
The heat exchanger serves as a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. In this portion, the temperature difference between the refrigerant and the air is always constant with respect to the air flow direction. Can be secured. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0031】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
Also, during the heating operation, the latter half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path where the refrigerant flow and the air flow are opposed. In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0032】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、空気の流れの上流側の列に配置された伝
熱管を複数本連続して通過した直後に、冷媒絞り機構に
流入するような伝熱管経路(冷媒経路)を構成すること
が容易となり、その場合に、冷媒絞り機構に流入する冷
媒を冷却液化する性能がさらに向上する。これにより、
請求項1に記載の発明よりも冷媒絞り機構に流入する冷
媒は液冷媒となり易く、さらに安定した流動により減圧
されるため、冷媒流動音が請求項1に記載の発明に較べ
さらに小さくなる。
In the dehumidifying operation, in the first heat exchanger, the refrigerant flows into the refrigerant throttle mechanism immediately after passing a plurality of heat transfer tubes arranged in the upstream row of the air flow continuously. It is easy to configure such a heat transfer tube path (refrigerant path), and in that case, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. This allows
The refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention of the first aspect, and is depressurized by a more stable flow, so that the refrigerant flow noise is further reduced as compared with the invention of the first aspect.

【0033】また、十分な過冷却をとることにより、請
求項1に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項1に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently cooling the air, even if the compression ratio of the refrigeration cycle is made smaller than that of the first embodiment, it is possible to sufficiently heat, dehumidify and cool the air. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0034】請求項3に記載の発明は、請求項1に記載
の発明の空気調和機において、第1熱交換器は、空気の
流れ方向に2列の伝熱管をもち、2つの伝熱管経路が並
列に経路構成され、除湿運転時に、冷媒が、除湿運転時
の冷媒の入り口から流入し2つの前記伝熱管経路へ分流
され、それぞれの前記伝熱管経路において、まず、空気
の流れの上流側の列の複数本の伝熱管を所定本数連続し
て通過し、次に空気の流れの下流側の列の複数本の伝熱
管を連続して通過した後、空気の流れの上流側の列の残
りの伝熱管を連続して通過して、合流し除湿運転時の冷
媒の出口から流出するように構成されているものであ
る。
According to a third aspect of the present invention, in the air conditioner of the first aspect of the present invention, the first heat exchanger has two rows of heat transfer tubes in a flow direction of the air, and two heat transfer tube paths. Are configured in parallel, during the dehumidifying operation, the refrigerant flows in from the inlet of the refrigerant during the dehumidifying operation and is divided into two heat transfer pipe paths. In each of the heat transfer pipe paths, first, the upstream side of the air flow After passing through a plurality of heat transfer tubes in a row in a row in succession, and then continuously passing through a plurality of heat transfer tubes in a row on the downstream side of the air flow, a row in the upstream row of the air flow is It is configured to continuously pass through the remaining heat transfer tubes, merge, and flow out of the refrigerant outlet during the dehumidifying operation.

【0035】これにより、冷房運転時と除湿運転時に、
第1熱交換器において、冷媒が、冷媒流と空気流が並行
流となる伝熱管経路(冷媒経路)を流れた後、冷媒流と
空気流が対向流となる伝熱管経路(冷媒経路)を流れ、
暖房運転時に、冷媒が、冷媒流と空気流が並行流となる
伝熱管経路(冷媒経路)を流れた後、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)を流れることにな
る。
Thus, during the cooling operation and the dehumidifying operation,
In the first heat exchanger, the refrigerant flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then passes through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in opposite directions. flow,
During the heating operation, the refrigerant flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows, and then flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are counter flows. Become.

【0036】冷房運転時には、第1熱交換器の伝熱管経
路(冷媒経路)の冷媒流の前半部分と第2熱交換器が、
冷媒流と空気流が並行流となる伝熱管経路(冷媒経路)
となり、この部分では、空気の流れ方向に対して、冷媒
の温度勾配と空気の温度勾配が常にある温度差を確保で
きる。なお、第1熱交換器の伝熱管経路(冷媒経路)の
冷媒流の後半部分が、冷媒流と空気流が対向流となる伝
熱管経路(冷媒経路)となるが、この部分は、第1熱交
換器の冷媒流の前半部分で加熱されて気液二相状態とな
った冷媒が流れ、冷媒の温度変化はほとんどなく、冷媒
流と空気流が対向流となっていることによる悪影響はは
とんどない。したがって、従来の冷房運転時に冷媒流と
空気流が並行流となる室内側熱交換器を有する空気調和
機と基本性能はほとんど変わらない。
During the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger and the second heat exchanger
Heat transfer tube path (refrigerant path) where refrigerant flow and air flow are parallel flow
In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0037】また、2つの伝熱管経路が並列に経路構成
されているので、冷房運転時の圧力損失が小さくなり、
性能低下を防ぐことができる。
Further, since the two heat transfer tube paths are configured in parallel, the pressure loss during the cooling operation is reduced,
Performance degradation can be prevented.

【0038】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
During the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer pipe path (the refrigerant flow and the air flow are opposed). In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0039】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、空気の流れの上流側の列に配置された伝
熱管を複数本連続して通過した直後に、冷媒絞り機構に
流入するような伝熱管経路(冷媒経路)を構成するた
め、冷媒絞り機構に流入する冷媒を冷却液化する性能が
さらに向上する。これにより、請求項1に記載の発明よ
りも冷媒絞り機構に流入する冷媒は液冷媒となり易く、
さらに安定した流動により減圧されるため、冷媒流動音
が請求項1に記載の発明に較べさらに小さくなる。
In the dehumidifying operation, in the first heat exchanger, the refrigerant flows into the refrigerant throttle mechanism immediately after passing a plurality of heat transfer tubes arranged in the upstream row of the air flow continuously. Since such a heat transfer tube path (refrigerant path) is configured, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. Thereby, the refrigerant flowing into the refrigerant throttle mechanism more easily becomes a liquid refrigerant than the invention described in claim 1,
Since the pressure is reduced by the more stable flow, the refrigerant flow noise is further reduced as compared with the first aspect.

【0040】また、十分な過冷却をとることにより、請
求項1に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項1に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently cooling the air, even if the compression ratio of the refrigeration cycle is made smaller than that of the first embodiment, it is possible to sufficiently heat, dehumidify and cool the air. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0041】請求項4に記載の発明は、請求項1に記載
の発明の空気調和機において、第1熱交換器は、空気の
流れ方向に2列の伝熱管をもち2つの伝熱管経路が並列
に経路構成される主第1熱交換器と、空気の流れ方向に
1列の伝熱管をもち前記主第1熱交換器よりも空気の流
れ方向と略直角な段方向の長さが短い補助第1熱交換器
とからなり、除湿運転時に、冷媒が、除湿運転時の冷媒
の入り口から前記補助第1熱交換器に流入して、前記補
助第1熱交換器の複数本の伝熱管を連続して通過した後
に前記補助第1熱交換器から流出し、2つの前記伝熱管
経路へ分流されて前記主第1熱交換器に流入し、それぞ
れの前記伝熱管経路において、まず、空気の流れの上流
側の列の複数本の伝熱管を所定本数連続して通過し、次
に空気の流れの下流側の列の複数本の伝熱管を連続して
通過した後、空気の流れの上流側の列の残りの伝熱管を
連続して通過して、合流し除湿運転時の冷媒の出口から
流出するように構成されており、前記補助第1熱交換器
が、前記主第1熱交換器の空気の流れの上流側で、かつ
前記主第1熱交換器の冷房運転時および除湿運転時にお
ける冷媒の出口直前の伝熱管の空気の流れの上流側に位
置しないように配置されているのである。
According to a fourth aspect of the present invention, in the air conditioner of the first aspect, the first heat exchanger has two rows of heat transfer tubes in a flow direction of the air and has two heat transfer tube paths. A main first heat exchanger configured in parallel with the main heat exchanger and a single row of heat transfer tubes in the air flow direction, the length of the step direction substantially perpendicular to the air flow direction being shorter than that of the main first heat exchanger; The auxiliary first heat exchanger, wherein during the dehumidifying operation, the refrigerant flows into the auxiliary first heat exchanger from the inlet of the refrigerant during the dehumidifying operation, and the plurality of heat transfer tubes of the auxiliary first heat exchanger Continuously flows through the auxiliary first heat exchanger, flows out into the two heat transfer tube paths, flows into the main first heat exchanger, and in each of the heat transfer tube paths, firstly, air A predetermined number of tubes continuously pass through the plurality of heat transfer tubes in the upstream row of After continuously passing through the plurality of heat transfer tubes in the side row, continuously passing through the remaining heat transfer tubes in the upstream row of the air flow, merging and flowing out of the refrigerant outlet during the dehumidifying operation. Wherein the auxiliary first heat exchanger is located on the upstream side of the air flow of the main first heat exchanger, and the refrigerant in the cooling operation and the dehumidifying operation of the main first heat exchanger. Is arranged so as not to be located on the upstream side of the air flow of the heat transfer tube immediately before the outlet of the heat transfer tube.

【0042】これにより、冷房運転時と除湿運転時に、
第1熱交換器において、冷媒が、冷媒流と空気流が並行
流となる伝熱管経路(冷媒経路)を流れた後、冷媒流と
空気流が対向流となる伝熱管経路(冷媒経路)を流れ、
暖房運転時に、冷媒が、冷媒流と空気流が並行流となる
伝熱管経路(冷媒経路)を流れた後、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)を流れることにな
る。
Thus, during the cooling operation and the dehumidifying operation,
In the first heat exchanger, the refrigerant flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then passes through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in opposite directions. flow,
During the heating operation, the refrigerant flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows, and then flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are counter flows. Become.

【0043】冷房運転時には、第1熱交換器の伝熱管経
路(冷媒経路)の冷媒流の前半部分と第2熱交換器が、
冷媒流と空気流が並行流となる伝熱管経路(冷媒経路)
となり、この部分では、空気の流れ方向に対して、冷媒
の温度勾配と空気の温度勾配が常にある温度差を確保で
きる。なお、第1熱交換器の伝熱管経路(冷媒経路)の
冷媒流の後半部分が、冷媒流と空気流が対向流となる伝
熱管経路(冷媒経路)となるが、この部分は、第1熱交
換器の冷媒流の前半部分で加熱されて気液二相状態とな
った冷媒が流れ、冷媒の温度変化はほとんどなく、冷媒
流と空気流が対向流となっていることによる悪影響はは
とんどない。したがって、従来の冷房運転時に冷媒流と
空気流が並行流となる室内側熱交換器を有する空気調和
機と基本性能はほとんど変わらない。
During the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger and the second heat exchanger
Heat transfer tube path (refrigerant path) where refrigerant flow and air flow are parallel flow
In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0044】また、冷房運転時には、補助第1熱交換器
の後に冷媒が流れる主第1熱交換器には2つの伝熱管経
路が並列に経路構成されているので、冷房運転時の圧力
損失が小さくなり、性能低下を防ぐことができる。な
お、補助第1熱交換器の伝熱管経路は1つであるが、冷
房運転時に補助第1熱交換器を流れる冷媒は、乾き度が
低いことから圧力損失がそれほど大きくならない。
In the cooling operation, the main first heat exchanger through which the refrigerant flows after the auxiliary first heat exchanger has two heat transfer tube paths arranged in parallel, so that the pressure loss during the cooling operation is reduced. The size can be reduced, and a decrease in performance can be prevented. Although the auxiliary first heat exchanger has one heat transfer tube path, the refrigerant flowing through the auxiliary first heat exchanger during the cooling operation has a low degree of dryness, so that the pressure loss does not increase so much.

【0045】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
During the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path (the refrigerant flow and the air flow are opposed). In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0046】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、主第1熱交換器の空気の流れの上流側の
列に配置された伝熱管を複数本連続して通過した直後
に、冷媒絞り機構に流入するような伝熱管経路(冷媒経
路)を構成し、補助第1熱交換器が、主第1熱交換器の
冷房運転時および除湿運転時における冷媒の出口直前の
伝熱管の空気の流れの上流側に位置しないように配置さ
れているため、冷媒絞り機構に流入する冷媒を冷却液化
する性能がさらに向上する。これにより、請求項1に記
載の発明よりも冷媒絞り機構に流入する冷媒は液冷媒と
なり易く、さらに安定した流動により減圧されるため、
冷媒流動音が請求項1に記載の発明に較べさらに小さく
なる。
In the dehumidifying operation, in the first heat exchanger, immediately after the refrigerant continuously passes through a plurality of heat transfer tubes arranged in a row on the upstream side of the air flow of the main first heat exchanger. And a heat transfer tube path (refrigerant path) that flows into the refrigerant throttle mechanism, and the auxiliary first heat exchanger is a heat transfer tube immediately before the refrigerant outlet during the cooling operation and the dehumidifying operation of the main first heat exchanger. Is arranged so as not to be located on the upstream side of the airflow of the air, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. Thereby, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention described in claim 1, and is further reduced in pressure by a stable flow.
The refrigerant flow noise is further reduced as compared with the first aspect.

【0047】また、十分な過冷却をとることにより、請
求項1に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項1に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is smaller than that of the first aspect, sufficient heating, dehumidification and cooling of air can be achieved. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0048】また、第1熱交換器において、冷房運転時
に最初に冷媒が流れ、暖房運転時に最後に冷媒が流れる
のが、1つの伝熱管経路をもつ補助第1熱交換器である
ため、補助第1熱交換器を流れる冷媒の流速が速くな
り、管内熱伝達率が高くなって伝熱性能が向上する。そ
のため、暖房運転時には十分に冷却された冷媒を第1熱
交換器から流出させることができる。
In the first heat exchanger, the refrigerant flows first during the cooling operation and finally flows during the heating operation because of the auxiliary first heat exchanger having one heat transfer tube path. The flow rate of the refrigerant flowing through the first heat exchanger is increased, the heat transfer coefficient in the pipe is increased, and the heat transfer performance is improved. Therefore, during the heating operation, the sufficiently cooled refrigerant can flow out of the first heat exchanger.

【0049】また、第1熱交換器を、主第1熱交換器と
補助第1熱交換器とを直列接続して構成したため、管内
を流れる冷媒温度の異なる主第1熱交換器の伝熱管と補
助第1熱交換器の伝熱管との間で板状フィンを伝った熱
伝導がなくなって、熱交換性能が向上する。
Further, since the first heat exchanger is constructed by connecting the main first heat exchanger and the auxiliary first heat exchanger in series, the heat transfer tubes of the main first heat exchanger having different refrigerant temperatures flowing in the tubes. There is no heat conduction through the plate fins between the heat transfer tubes of the auxiliary first heat exchanger and the heat transfer tubes of the auxiliary first heat exchanger, and the heat exchange performance is improved.

【0050】なお、主第1熱交換器の一部が補助第1熱
交換器の風下側に位置するが、主第1熱交換器において
補助第1熱交換器の風下側に位置する部分においても、
主第1熱交換器と補助第1熱交換器とで板状フィンが連
続していないため、主第1熱交換器の板状フィンの風上
側の縁に空気流が当たり、空気流が乱れ、主第1熱交換
器の板状フィンと空気流との間で熱交換が行われるた
め、また、補助第1熱交換器が空気の流れ方向に1列の
伝熱管をもつものであるため、主第1熱交換器の一部が
補助第1熱交換器の風下側に位置することによる第1熱
交換器の熱交換性能の低下は小さい。
A part of the main first heat exchanger is located on the leeward side of the auxiliary first heat exchanger, but the part of the main first heat exchanger located on the leeward side of the auxiliary first heat exchanger is Also,
Since the plate-like fins are not continuous between the main first heat exchanger and the auxiliary first heat exchanger, the airflow hits the leeward edge of the plate-like fins of the main first heat exchanger, and the airflow is disturbed. Since heat is exchanged between the plate-shaped fins of the main first heat exchanger and the air flow, and because the auxiliary first heat exchanger has a single row of heat transfer tubes in the air flow direction. In addition, a decrease in the heat exchange performance of the first heat exchanger due to the fact that a part of the main first heat exchanger is located on the leeward side of the auxiliary first heat exchanger is small.

【0051】請求項5に記載の発明は、請求項1から4
のいずれかに記載の発明の空気調和機において、第1熱
交換器の除湿運転時における冷媒の出口直前の空気の流
れの上流側列の伝熱管と空気の流れの下流側列の伝熱管
との列間に、伝熱管列間での熱伝導をなくすための切れ
目を板状フィンに設けたものである。
The invention described in claim 5 provides the invention according to claims 1 to 4
In the air conditioner according to any one of the above, in the dehumidifying operation of the first heat exchanger, the heat transfer tubes in the upstream row of the air flow and the heat transfer tubes in the downstream row of the air flow immediately before the outlet of the refrigerant. Are provided on the plate-like fin between the rows of the heat transfer tubes to eliminate heat conduction between the rows.

【0052】これにより、除湿運転時には、第1熱交換
器の冷媒の出口直前の伝熱管内の低温の過冷却液冷媒
が、その風下側の伝熱管内の比較的高温の過熱もしくは
気液二相冷媒に加熱されることなく低温の空気によって
十分に冷却されるため、低温の過冷却液冷媒になる。こ
れにより、請求項1から4に記載の発明よりも冷媒絞り
機構に流入する冷媒は液冷媒となり易く、さらに安定し
た流動により減圧されるため、冷媒流動音が請求項1か
ら4に記載の発明に較べさらに小さくなる。
Thus, during the dehumidifying operation, the low-temperature supercooled liquid refrigerant in the heat transfer tube immediately before the outlet of the refrigerant of the first heat exchanger is replaced by the relatively high-temperature superheated gas or gas-liquid mixture in the heat transfer tube on the leeward side. Since it is sufficiently cooled by low-temperature air without being heated by the phase refrigerant, it becomes a low-temperature supercooled liquid refrigerant. Accordingly, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the inventions described in the first to fourth aspects, and the pressure is reduced by the stable flow, so that the refrigerant flow noise is generated in the first to fourth aspects. It becomes even smaller than.

【0053】また、十分な過冷却をとることにより、請
求項1から4に記載の発明よりも冷凍サイクルの圧縮比
を小さくしても十分な空気の加熱及び除湿や冷却が可能
となり、請求項1から4に記載の発明よりも少ない消費
電力で所定の冷凍サイクルを構成することが可能とな
る。
Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is made smaller than that of the first to fourth aspects, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the inventions described in 1 to 4.

【0054】請求項6に記載の発明は、請求項1から5
のいずれかに記載の発明の空気調和機において、室内熱
交換器を収納する室内機は、貫流型のファンを内蔵し、
室内機本体の前面と上面に吸い込みグリルを有するもの
であり、前記室内熱交換器を構成する第1熱交換器は、
前面の前記吸い込みグリルと前記ファンとの間に位置し
て、前面の前記吸い込みグリルと上面の吸い込みグリル
の手前側部分を通過した空気と熱交換し、前記室内熱交
換器を構成する第2熱交換器は、上面の前記吸い込みグ
リルと前記ファンとの間に位置して、上面の吸い込みグ
リルの奥前側部分を通過した空気と熱交換する構成とな
っている。
The invention according to claim 6 is the invention according to claims 1 to 5
In the air conditioner according to any one of the above, the indoor unit that houses the indoor heat exchanger includes a once-through type fan,
The indoor unit has suction grills on the front and upper surfaces thereof, and the first heat exchanger constituting the indoor heat exchanger,
A second heat which is located between the suction grill on the front surface and the fan and exchanges heat with air passing through the front side of the suction grill on the front side and the front side of the suction grill on the upper surface to constitute the indoor heat exchanger The exchanger is located between the suction grill on the upper surface and the fan, and is configured to exchange heat with air that has passed through the rear part of the suction grill on the upper surface.

【0055】これにより、第1熱交換器を第2熱交換器
より大きくでき、第1熱交換器を通過する空気流の風速
は第2熱交換器を通過する空気流の風速より速いため、
除湿運転時に、第1熱交換器での加熱性能がよく、冷媒
が過冷却液となりやすい。また、第2熱交換器を通過す
る空気流の風速が遅いため、第2熱交換器を通過する空
気の除湿効率がよい。
As a result, the first heat exchanger can be made larger than the second heat exchanger, and the wind speed of the air flow passing through the first heat exchanger is faster than the wind speed of the air flow passing through the second heat exchanger.
During the dehumidifying operation, the heating performance of the first heat exchanger is good, and the refrigerant tends to be a supercooled liquid. In addition, since the wind speed of the airflow passing through the second heat exchanger is low, the dehumidifying efficiency of the air passing through the second heat exchanger is good.

【0056】請求項7に記載の発明は、請求項1から6
のいずれかに記載の発明の空気調和機において、第1熱
交換器の除湿運転時における冷媒の出口直前の空気の流
れの上流側列の伝熱管は、第1熱交換器における相対的
に空気の流れの速い箇所に配置されているものである。
The invention according to claim 7 is the invention according to claims 1 to 6
In the air conditioner according to any one of the above aspects, the heat transfer tubes in the upstream row of the air flow immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger are relatively air-cooled in the first heat exchanger. It is arranged in a place where the flow of the air is fast.

【0057】これにより、除湿運転時に、第1熱交換器
の冷媒の出口直前の伝熱管を通過する冷媒の冷却効率が
向上し、十分に冷却された低温の過冷却液冷媒を冷媒絞
り機構に流入させることができる。これにより、請求項
1から6に記載の発明よりも冷媒絞り機構に流入する冷
媒は液冷媒となり易く、さらに安定した流動により減圧
されるため、冷媒流動音が請求項1から6に記載の発明
に較べさらに小さくなる。
Thus, during the dehumidifying operation, the cooling efficiency of the refrigerant passing through the heat transfer tube immediately before the outlet of the refrigerant of the first heat exchanger is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant is supplied to the refrigerant throttle mechanism. Can flow in. Thereby, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the inventions of the first to sixth aspects, and the pressure is reduced by a more stable flow, so that the refrigerant flow noise is the invention of the first to sixth aspects. It becomes even smaller than.

【0058】また、十分な過冷却をとることにより、請
求項1から6に記載の発明よりも冷凍サイクルの圧縮比
を小さくしても十分な空気の加熱及び除湿や冷却が可能
となり、請求項1から6に記載の発明よりも少ない消費
電力で所定の冷凍サイクルを構成することが可能とな
る。
Further, by sufficiently subcooling, even if the compression ratio of the refrigeration cycle is made smaller than that of the first to sixth aspects, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the inventions described in 1 to 6.

【0059】請求項8に記載の発明は、多数平行に並べ
られた板状フィンに直角に挿通され内部を冷媒が流動す
る伝熱管が空気の流れ方向に複数列に構成され、2つの
冷媒の出入口に近接する前記伝熱管がともに空気の流れ
の上流側となる列に配置されたフィンチューブ形の第1
熱交換器と、多数平行に並べられた板状フィンに直角に
挿通され内部を冷媒が流動する伝熱管が空気の流れ方向
に複数列に構成され、2つの冷媒の出入口のうち一方の
冷媒の出入口に近接する前記伝熱管が空気の流れの上流
側となる列に配置され他方の冷媒の出入口に近接する前
記伝熱管が空気の流れの下流側となる列に配置されたフ
ィンチューブ形の第2熱交換器と、前記第1熱交換器の
2つの冷媒の出入口のうち一方の冷媒の出入口と前記第
2熱交換器の空気の流れの上流側となる列に配置された
冷媒の出入口とを接続する接続管の途中に設けられた冷
媒の流路抵抗が大きい状態と冷媒の流路抵抗が小さい状
態をもつ冷媒絞り機構とにより構成され、前記第1熱交
換器と前記第2熱交換器とが空気の流れの方向で重なら
ないように前記第1熱交換器と前記第2熱交換器とを配
置した熱交換器ユニットである。
According to an eighth aspect of the present invention, the heat transfer tubes through which the refrigerant flows at right angles to the plate-like fins arranged in parallel to each other and through which the refrigerant flows are formed in a plurality of rows in the flow direction of the air. A fin tube-shaped first heat transfer tube, which is arranged in a row on the upstream side of the air flow, wherein the heat transfer tubes adjacent to the entrance and exit are both provided;
Heat exchangers and heat transfer tubes through which the refrigerant flows at right angles to the plate-like fins arranged in a large number in parallel and in which the refrigerant flows are formed in a plurality of rows in the direction of air flow. The fin tube type second heat transfer tubes, which are arranged in a row on the upstream side of the flow of air, in which the heat transfer tubes near the entrance and exit are arranged in a row on the downstream side of the flow of air, and the other heat transfer tubes near the entrance and exit of the other refrigerant are arranged in the row, 2 heat exchangers, one of the two refrigerant inlets and outlets of the first heat exchanger, and one of the refrigerant inlets and outlets arranged in a row on the upstream side of the air flow of the second heat exchanger. And a refrigerant throttle mechanism provided in the middle of the connection pipe connecting the refrigerant and having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is small. The first heat exchanger and the second heat exchange So that they do not overlap in the direction of air flow. A heat exchanger unit disposed between the heat exchanger and the second heat exchanger.

【0060】これにより、請求項8に記載の発明による
熱交換器ユニットを空気調和機の室内側熱交換器に使用
し、冷媒が、圧縮機から、四方弁、室外側熱交換器、適
切に絞った状態の電動膨張弁、第1熱交換器、冷媒の流
路抵抗が小さい状態の冷媒絞り機構、第2熱交換器の順
に流れるよう冷凍サイクルを構成すると、第1熱交換器
と第2熱交換器が共に蒸発器として機能して、冷房運転
が可能になる。
Thus, the heat exchanger unit according to the present invention is used for the indoor heat exchanger of the air conditioner, and the refrigerant flows from the compressor to the four-way valve, the outdoor heat exchanger, When the refrigeration cycle is configured to flow in the order of the electric expansion valve in the throttled state, the first heat exchanger, the refrigerant throttle mechanism in the state in which the flow path resistance of the refrigerant is small, and the second heat exchanger, the first heat exchanger and the second heat exchanger The heat exchangers both function as evaporators, allowing cooling operation.

【0061】このとき、第1熱交換器の冷媒の入り口直
後の伝熱管と第2熱交換器の冷媒の入り口直後の伝熱管
は空気の流れの上流側となり、第2熱交換器の冷媒の出
口直前の伝熱管は空気の流れの下流側となるために、全
体として冷媒流と空気流が並行流となり、空気の流れ方
向に対して、冷媒の温度勾配と空気の温度勾配が常にあ
る温度差を確保でき、従来の冷房運転時に冷媒流と空気
流が並行流となる室内側熱交換器と基本性能はほとんど
変わらない。
At this time, the heat transfer tube immediately after the inlet of the refrigerant of the first heat exchanger and the heat transfer tube immediately after the inlet of the refrigerant of the second heat exchanger are on the upstream side of the air flow, and the heat transfer tube of the second heat exchanger Since the heat transfer tube immediately before the outlet is on the downstream side of the air flow, the refrigerant flow and the air flow are parallel as a whole, and the temperature gradient of the refrigerant and the temperature gradient of the air are always in the air flow direction. The difference can be secured, and the basic performance is almost the same as that of the indoor heat exchanger in which the refrigerant flow and the air flow are parallel flows during the conventional cooling operation.

【0062】また、冷媒が、圧縮機から、四方弁、第2
熱交換器、冷媒の流路抵抗が小さい状態の冷媒絞り機
構、第1熱交換器、適切に絞った状態の電動膨張弁、室
外側熱交換器の順に流れるよう冷凍サイクルを構成する
と、第1熱交換器と第2熱交換器が共に凝縮器として機
能して、暖房運転が可能になる。
The refrigerant is supplied from the compressor to the four-way valve, the second
When the refrigeration cycle is configured to flow in the order of the heat exchanger, the refrigerant throttle mechanism in which the flow path resistance of the refrigerant is small, the first heat exchanger, the electric expansion valve in an appropriately throttled state, and the outdoor heat exchanger, Both the heat exchanger and the second heat exchanger function as condensers, thereby enabling a heating operation.

【0063】このとき、第2熱交換器の冷媒の入り口直
後の伝熱管は空気の流れの下流側となり、第2熱交換器
の冷媒の出口直前の伝熱管と第1熱交換器の冷媒の出口
直前の伝熱管は空気の流れの上流側となるために、全体
として冷媒流と空気流が対向流となり、空気の流れ方向
に対して、冷媒の温度勾配と空気の温度勾配が常にある
温度差を確保でき、従来の暖房運転時に冷媒流と空気流
が対向流となる室内側熱交換器と基本性能はほとんど変
わらない。
At this time, the heat transfer tube immediately after the refrigerant inlet of the second heat exchanger is on the downstream side of the flow of air, and the heat transfer tube immediately before the refrigerant outlet of the second heat exchanger and the refrigerant of the first heat exchanger are connected. Since the heat transfer tube immediately before the outlet is on the upstream side of the air flow, the refrigerant flow and the air flow are opposed to each other as a whole, and the temperature gradient of the refrigerant and the temperature gradient of the air are always in the air flow direction. The difference can be secured, and the basic performance is almost the same as that of the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the conventional heating operation.

【0064】また、冷媒が、圧縮機から、四方弁、室外
側熱交換器、全開状態の電動膨張弁、第1熱交換器、冷
媒の流路抵抗が大きい状態の冷媒絞り機構、第2熱交換
器の順に流れるよう冷凍サイクルを構成すると、第1熱
交換器が凝縮器、第2熱交換器が蒸発器として機能し
て、室内温度を低下させない除湿運転が可能となる。
Further, the refrigerant flows from the compressor to the four-way valve, the outdoor heat exchanger, the fully-open electric expansion valve, the first heat exchanger, the refrigerant throttle mechanism having a large refrigerant flow resistance, and the second heat exchanger. When the refrigeration cycle is configured to flow in the order of the exchanger, the first heat exchanger functions as a condenser and the second heat exchanger functions as an evaporator, thereby enabling a dehumidifying operation without lowering the room temperature.

【0065】このとき、第1熱交換器の冷媒の出口直前
の伝熱管が空気の流れの上流側の列に配置されているた
め、冷媒絞り機構に流入する直前の冷媒は第1熱交換器
で加熱される前の空気と熱交換をすることとなり、十分
な過冷却液とすることが可能となる。これにより、冷媒
絞り機構に流入する冷媒は液冷媒となり、安定した流動
により減圧されるため、気液二相冷媒と比較して冷媒流
動音が極端に小さくなる。
At this time, since the heat transfer tubes immediately before the outlet of the refrigerant of the first heat exchanger are arranged in the row on the upstream side of the flow of the air, the refrigerant immediately before flowing into the refrigerant throttle mechanism is supplied to the first heat exchanger. And heat exchange with the air before being heated, and it is possible to obtain a sufficient supercooled liquid. As a result, the refrigerant flowing into the refrigerant throttle mechanism becomes a liquid refrigerant, and is decompressed by a stable flow, so that the refrigerant flow noise becomes extremely small as compared with the gas-liquid two-phase refrigerant.

【0066】また、十分な過冷却をとることにより、冷
凍サイクルの圧縮比を小さくしても十分な空気の加熱及
び除湿や冷却が可能となり、少ない消費電力で所定の冷
凍サイクルを構成することが可能となる。
Also, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with low power consumption. It becomes possible.

【0067】請求項9に記載の発明は、請求項8に記載
の発明の熱交換器ユニットにおいて、第1熱交換器は、
反冷媒絞り機構側の冷媒の出入口から冷媒絞り機構側の
冷媒の出入口へ冷媒を流した場合に、冷媒が、反冷媒絞
り機構側の冷媒の出入口から流入して、空気流と同じ方
向に冷媒が流れた後、空気流と対向する方向に冷媒が流
れて、冷媒絞り機構側の冷媒の出入口から流出するよう
に伝熱管経路が構成されているものである。
According to a ninth aspect of the present invention, in the heat exchanger unit according to the eighth aspect, the first heat exchanger comprises:
When the refrigerant flows from the inlet / outlet of the refrigerant on the anti-refrigerant throttle mechanism side to the inlet / outlet of the refrigerant on the refrigerant throttle mechanism side, the refrigerant flows in from the inlet / outlet of the refrigerant on the anti-refrigerant throttle mechanism side, and flows in the same direction as the air flow. After that, the refrigerant flows in a direction opposite to the air flow, and the heat transfer tube path is configured such that the refrigerant flows out of the refrigerant inlet / outlet on the refrigerant throttle mechanism side.

【0068】これにより、冷房運転時には、第1熱交換
器の伝熱管経路(冷媒経路)の冷媒流の前半部分と第2
熱交換器が、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)となり、この部分では、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差を確保できる。なお、第1熱交換器の伝熱管経路
(冷媒経路)の冷媒流の後半部分が、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)となるが、この部
分は、第1熱交換器の冷媒流の前半部分で加熱されて気
液二相状態となった冷媒が流れ、冷媒の温度変化はほと
んどなく、冷媒流と空気流が対向流となっていることに
よる悪影響ははとんどない。したがって、従来の冷房運
転時に冷媒流と空気流が並行流となる室内側熱交換器を
有する空気調和機と基本性能はほとんど変わらない。
Thus, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is
The heat exchanger serves as a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. In this portion, the temperature difference between the refrigerant and the air is always constant with respect to the air flow direction. Can be secured. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0069】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器と基本性能はほとんど変わらな
い。
During the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path (opposite flow) between the refrigerant flow and the air flow. In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the conventional heating operation.

【0070】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、空気の流れの上流側の列に配置された伝
熱管を複数本連続して通過した直後に、冷媒絞り機構に
流入するような伝熱管経路(冷媒経路)を構成すること
が容易となり、この場合に、冷媒絞り機構に流入する冷
媒を冷却液化する性能がさらに向上する。これにより、
請求項8に記載の発明よりも冷媒絞り機構に流入する冷
媒は液冷媒となり易く、さらに安定した流動により減圧
されるため、冷媒流動音が請求項8に記載の発明に較べ
さらに小さくなる。
In the dehumidifying operation, in the first heat exchanger, the refrigerant flows into the refrigerant throttle mechanism immediately after passing a plurality of heat transfer tubes arranged in the upstream row of the air flow continuously. It becomes easy to configure such a heat transfer tube path (refrigerant path), and in this case, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. This allows
The refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention described in claim 8, and the pressure is reduced by the stable flow, so that the refrigerant flow noise is further reduced as compared with the invention described in claim 8.

【0071】また、十分な過冷却をとることにより、請
求項8に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項8に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently subcooling, even if the compression ratio of the refrigeration cycle is made smaller than that of the invention described in claim 8, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0072】請求項10に記載の発明は、請求項8に記
載の発明の熱交換器ユニットにおいて、第1熱交換器
は、空気の流れ方向に2列の伝熱管をもち、2つの伝熱
管経路が並列に経路構成され、反冷媒絞り機構側の冷媒
の出入口から冷媒絞り機構側の冷媒の出入口へ冷媒を流
した場合に、冷媒が、反冷媒絞り機構側の冷媒の出入口
から流入して2つの前記伝熱管経路へ分流され、それぞ
れの前記伝熱管経路において、まず、空気の流れの上流
側となる列の複数本の伝熱管を所定本数連続して通過
し、次に空気の流れの下流側となる列の複数本の伝熱管
を連続して通過した後、空気の流れの上流側となる列の
残りの伝熱管を連続して通過して、合流し冷媒絞り機構
側の冷媒の出入口から流出するように構成されているも
のである。
According to a tenth aspect of the present invention, in the heat exchanger unit of the eighth aspect, the first heat exchanger has two rows of heat transfer tubes in the air flow direction. When the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism to the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism. The heat is divided into two heat transfer pipe paths, and in each of the heat transfer pipe paths, first, a predetermined number of the heat transfer pipes are continuously passed through a plurality of heat transfer pipes on the upstream side of the air flow, and then the air flow After successively passing through the plurality of heat transfer tubes in the downstream row, continuously passing through the remaining heat transfer tubes in the row on the upstream side of the air flow, and merging, the refrigerant of the refrigerant throttle mechanism side It is configured to flow out of the doorway.

【0073】これにより、冷房運転時には、第1熱交換
器の伝熱管経路(冷媒経路)の冷媒流の前半部分と第2
熱交換器が、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)となり、この部分では、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差を確保できる。なお、第1熱交換器の伝熱管経路
(冷媒経路)の冷媒流の後半部分が、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)となるが、この部
分は、第1熱交換器の冷媒流の前半部分で加熱されて気
液二相状態となった冷媒が流れ、冷媒の温度変化はほと
んどなく、冷媒流と空気流が対向流となっていることに
よる悪影響ははとんどない。したがって、従来の冷房運
転時に冷媒流と空気流が並行流となる室内側熱交換器を
有する空気調和機と基本性能はほとんど変わらない。
Thus, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is
The heat exchanger serves as a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. In this portion, the temperature difference between the refrigerant and the air is always constant with respect to the air flow direction. Can be secured. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0074】また、2つの伝熱管経路が並列に経路構成
されているので、冷房運転時の圧力損失が小さくなり、
性能低下を防ぐことができる。
Since the two heat transfer tube paths are configured in parallel, the pressure loss during the cooling operation is reduced,
Performance degradation can be prevented.

【0075】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
During the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path (the refrigerant flow and the air flow are opposed). In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0076】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、空気の流れの上流側の列に配置された伝
熱管を複数本連続して通過した直後に、冷媒絞り機構に
流入するような伝熱管経路(冷媒経路)を構成するた
め、冷媒絞り機構に流入する冷媒を冷却液化する性能が
さらに向上する。これにより、請求項8に記載の発明よ
りも冷媒絞り機構に流入する冷媒は液冷媒となり易く、
さらに安定した流動により減圧されるため、冷媒流動音
が請求項8に記載の発明に較べさらに小さくなる。
During the dehumidifying operation, in the first heat exchanger, the refrigerant flows into the refrigerant throttle mechanism immediately after passing a plurality of heat transfer tubes arranged in the upstream row of the air flow continuously. Since such a heat transfer tube path (refrigerant path) is configured, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. Thereby, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention described in claim 8,
Since the pressure is reduced by the stable flow, the refrigerant flow noise is further reduced as compared with the eighth aspect.

【0077】また、十分な過冷却をとることにより、請
求項8に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項8に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently cooling the air, even if the compression ratio of the refrigeration cycle is made smaller than that of the invention described in claim 8, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0078】請求項11に記載の発明は、請求項8に記
載の発明の熱交換器ユニットにおいて、第1熱交換器
は、空気の流れ方向に2列の伝熱管をもち、2つの伝熱
管経路が並列に経路構成され、冷媒絞り機構側の冷媒の
出入口に近接する伝熱管は反冷媒絞り機構側の冷媒の出
入口に近接する伝熱管より下の段に位置し、並列に経路
構成される2つの伝熱管経路の一方は、反冷媒絞り機構
側の冷媒の出入口から熱交換器上端に向かって形成し、
さらに熱交換器上端付近で空気の流れの下流側となる列
に移り熱交換器下端に向かって熱交換器中央付近まで形
成し、さらに熱交換器中央付近で空気の流れの上流側と
なる列に移り熱交換器下端に向かって冷媒絞り機構側の
冷媒の出入口まで形成し、並列に経路構成される2つの
伝熱管経路の他方は、反冷媒絞り機構側の冷媒の出入口
から熱交換器下端に向かって熱交換器中央付近まで形成
し、さらに熱交換器中央付近で空気の流れの下流側とな
る列に移り熱交換器下端に向かって形成し、さらに熱交
換器下端付近で空気の流れの上流側となる列に移り熱交
換器上端に向かって冷媒絞り機構側の冷媒の出入口まで
形成する構成としたものである。
According to an eleventh aspect of the present invention, in the heat exchanger unit of the eighth aspect, the first heat exchanger has two rows of heat transfer tubes in the air flow direction. The paths are configured in parallel, and the heat transfer tubes adjacent to the refrigerant inlet / outlet on the refrigerant throttle mechanism side are located in a lower stage than the heat transfer tubes adjacent to the refrigerant inlet / outlet on the anti-refrigerant throttle mechanism side, and are configured in parallel. One of the two heat transfer tube paths is formed from the inlet / outlet of the refrigerant on the anti-refrigerant throttle mechanism side to the upper end of the heat exchanger,
Further, the row moves to the row near the upper end of the heat exchanger, which is on the downstream side of the air flow, and is formed toward the center of the heat exchanger toward the lower end of the heat exchanger, and further, the row on the upstream side of the air flow near the center of the heat exchanger. And the other of the two heat transfer tube paths formed in parallel to the lower end of the heat exchanger toward the refrigerant inlet and outlet of the refrigerant throttle mechanism side, and the other end of the heat exchanger lower end from the refrigerant inlet and outlet of the anti-refrigerant throttle mechanism side To the center of the heat exchanger toward the center of the heat exchanger, and then move to a row on the downstream side of the air flow near the center of the heat exchanger and form toward the lower end of the heat exchanger. Then, the process moves to a row on the upstream side of the heat exchanger, and is formed up to the refrigerant inlet / outlet on the refrigerant throttle mechanism side toward the upper end of the heat exchanger.

【0079】これにより、冷房運転時には、第1熱交換
器の伝熱管経路(冷媒経路)の冷媒流の前半部分と第2
熱交換器が、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)となり、この部分では、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差を確保できる。なお、第1熱交換器の伝熱管経路
(冷媒経路)の冷媒流の後半部分が、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)となるが、この部
分は、第1熱交換器の冷媒流の前半部分で加熱されて気
液二相状態となった冷媒が流れ、冷媒の温度変化はほと
んどなく、冷媒流と空気流が対向流となっていることに
よる悪影響ははとんどない。したがって、従来の冷房運
転時に冷媒流と空気流が並行流となる室内側熱交換器を
有する空気調和機と基本性能はほとんど変わらない。
Thus, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is
The heat exchanger serves as a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. In this portion, the temperature difference between the refrigerant and the air is always constant with respect to the air flow direction. Can be secured. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0080】また、第1熱交換器において、2つの伝熱
管経路が並列に経路構成されているので、冷房運転時の
圧力損失が小さくなり、性能低下を防ぐことができる。
In the first heat exchanger, since two heat transfer tube paths are formed in parallel, the pressure loss during the cooling operation is reduced, and a decrease in performance can be prevented.

【0081】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
During the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path (the refrigerant flow and the air flow are opposed). In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0082】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、空気の流れの上流側の列に配置された伝
熱管を複数本連続して通過した直後に、冷媒絞り機構に
流入するような伝熱管経路(冷媒経路)を構成するた
め、冷媒絞り機構に流入する冷媒を冷却液化する性能が
さらに向上する。これにより、請求項8に記載の発明よ
りも冷媒絞り機構に流入する冷媒は液冷媒となり易く、
さらに安定した流動により減圧されるため、冷媒流動音
が請求項8に記載の発明に較べさらに小さくなる。
During the dehumidifying operation, in the first heat exchanger, the refrigerant flows into the refrigerant throttle mechanism immediately after passing continuously through a plurality of heat transfer tubes arranged in the upstream row of the air flow. Since such a heat transfer tube path (refrigerant path) is configured, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. Thereby, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention described in claim 8,
Since the pressure is reduced by the stable flow, the refrigerant flow noise is further reduced as compared with the eighth aspect.

【0083】また、十分な過冷却をとることにより、請
求項8に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項8に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently subcooling, even if the compression ratio of the refrigeration cycle is made smaller than that of the invention described in claim 8, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0084】また、本体の前面と上面に吸い込みグリ
ル、前面下部に吹き出し口をそれぞれ有し、貫流型のフ
ァンを内蔵する壁面設置型の空気調和機における、前面
の吸い込みグリルとファンとの間に第1熱交換器を配置
して、前面の吸い込みグリルと上面の吸い込みグリルの
手前側部分を通過した空気と第1熱交換器内の冷媒とを
熱交換させ、上面の吸い込みグリルとファンとの間に第
2熱交換器を配置して、上面の吸い込みグリルの奥前側
部分を通過した空気と第2熱交換器内の冷媒とを熱交換
させた場合は、第1熱交換器の冷媒絞り機構側の冷媒の
出入口に近接する伝熱管、すなわち、第1熱交換器の除
湿運転時における冷媒の出口直前の伝熱管が、第1熱交
換器における相対的に空気の流れの速い箇所の空気の流
れの上流側に位置することになるため、除湿運転時に第
1熱交換器の冷媒の出口直前の伝熱管を通過する冷媒の
冷却効率が向上し、十分に冷却された低温の過冷却液冷
媒を冷媒絞り機構に流入させることができる。
Further, in a wall-mounted type air conditioner having a suction grill on the front and upper surfaces of the main body and an outlet on the lower part of the front, and having a built-in once-through fan, between the suction grill on the front and the fan. The first heat exchanger is arranged to exchange heat between the air passing through the front side suction grille and the front side of the upper side suction grille and the refrigerant in the first heat exchanger. In the case where the second heat exchanger is disposed between the first heat exchanger and the air passing through the rear part of the suction grill on the upper surface and heat exchanges the refrigerant in the second heat exchanger, the refrigerant throttle of the first heat exchanger is provided. The heat transfer tube close to the inlet / outlet of the refrigerant on the mechanism side, that is, the heat transfer tube immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger is the air at the portion of the first heat exchanger where the flow of air is relatively fast. Located upstream of the stream Therefore, the cooling efficiency of the refrigerant passing through the heat transfer tube immediately before the outlet of the refrigerant of the first heat exchanger during the dehumidifying operation is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant flows into the refrigerant throttle mechanism. be able to.

【0085】また、このとき、第1熱交換器を通過する
空気流の方向は、第1熱交換器の空気の流れの上流側と
なる列から空気の流れの下流側となる列へ向かう第1熱
交換器の列方向成分の他に、第1熱交換器の上部から下
部に向かう第1熱交換器の段方向成分があるが、除湿運
転時と冷房運転時には、全体的に見れば、第1熱交換器
の上部から下部に冷媒が流れる伝熱管経路となり、暖房
運転時には、全体的に見れば、第1熱交換器の下部から
上部に冷媒が流れる伝熱管経路となる。
At this time, the direction of the air flow passing through the first heat exchanger is the same as that from the upstream row of the air flow of the first heat exchanger to the downstream row of the air flow. In addition to the row direction component of the first heat exchanger, there is a stepwise component of the first heat exchanger that goes from the upper portion to the lower portion of the first heat exchanger. It becomes a heat transfer tube path through which the refrigerant flows from the upper part to the lower part of the first heat exchanger. During the heating operation, it becomes a heat transfer pipe path through which the refrigerant flows from the lower part to the upper part of the first heat exchanger as a whole.

【0086】したがって、第1熱交換器において、冷房
運転時に冷媒流と空気流が並行流となり暖房運転時に冷
媒流と空気流が対向流となる伝熱管経路の割合が増加
し、第1熱交換器の熱交換性能が向上する。
Therefore, in the first heat exchanger, the ratio of the heat transfer tube path in which the refrigerant flow and the air flow become parallel flow during the cooling operation and the refrigerant flow and the air flow become counter flow during the heating operation increases, and the first heat exchange The heat exchange performance of the vessel is improved.

【0087】請求項12に記載の発明は、請求項8に記
載の発明の熱交換器ユニットにおいて、第1熱交換器
は、空気の流れ方向に2列の伝熱管をもち2つの伝熱管
経路が並列に経路構成される主第1熱交換器と、空気の
流れ方向に1列の伝熱管をもち前記主第1熱交換器より
も空気の流れ方向と略直角な段方向の長さが短い補助第
1熱交換器とからなり、反冷媒絞り機構側の冷媒の出入
口から冷媒絞り機構側の冷媒の出入口へ冷媒を流した場
合に、冷媒が、反冷媒絞り機構側の冷媒の出入口から前
記補助第1熱交換器に流入して、前記補助第1熱交換器
の複数本の伝熱管を連続して通過した後に前記補助第1
熱交換器から流出し、2つの前記伝熱管経路へ分流され
て前記主第1熱交換器に流入し、それぞれの前記伝熱管
経路において、まず、空気の流れの上流側となる列の複
数本の伝熱管を所定本数連続して通過し、次に空気の流
れの下流側となる列の複数本の伝熱管を連続して通過し
た後、空気の流れの上流側となる列の残りの伝熱管を連
続して通過して、合流し冷媒絞り機構側の冷媒の出入口
から流出するように構成されており、前記補助第1熱交
換器が、前記主第1熱交換器の空気の流れの上流側で、
かつ冷媒絞り機構側の冷媒の出入口に近接する前記主第
1熱交換器の伝熱管の空気の流れの上流側に位置しない
ように配置されているものである。
According to a twelfth aspect of the present invention, in the heat exchanger unit according to the eighth aspect, the first heat exchanger has two rows of heat transfer tubes in a flow direction of air and has two heat transfer tube paths. Have a main first heat exchanger configured in parallel with the main heat exchanger and a row of heat transfer tubes in the air flow direction, and have a length in a step direction substantially perpendicular to the air flow direction than the main first heat exchanger. When the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism to the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism. After flowing into the auxiliary first heat exchanger and continuously passing through a plurality of heat transfer tubes of the auxiliary first heat exchanger, the auxiliary first heat exchanger
It flows out of the heat exchanger, is diverted to the two heat transfer tube paths, flows into the main first heat exchanger, and in each of the heat transfer tube paths, first, a plurality of rows in the upstream side of the air flow. After passing through a predetermined number of heat transfer tubes continuously, and then successively passing through a plurality of heat transfer tubes in a row on the downstream side of the air flow, and then remaining in the row on the upstream side of the air flow. The auxiliary first heat exchanger is configured to continuously pass through the heat pipe, merge and flow out of the refrigerant inlet / outlet on the side of the refrigerant throttle mechanism, and the auxiliary first heat exchanger is configured to control the flow of air of the main first heat exchanger. On the upstream side,
In addition, it is arranged so as not to be located on the upstream side of the air flow of the heat transfer tube of the main first heat exchanger which is close to the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism.

【0088】これにより、冷房運転時には、第1熱交換
器の伝熱管経路(冷媒経路)の冷媒流の前半部分と第2
熱交換器が、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)となり、この部分では、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差を確保できる。なお、第1熱交換器の伝熱管経路
(冷媒経路)の冷媒流の後半部分が、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)となるが、この部
分は、第1熱交換器の冷媒流の前半部分で加熱されて気
液二相状態となった冷媒が流れ、冷媒の温度変化はほと
んどなく、冷媒流と空気流が対向流となっていることに
よる悪影響ははとんどない。したがって、従来の冷房運
転時に冷媒流と空気流が並行流となる室内側熱交換器を
有する空気調和機と基本性能はほとんど変わらない。
Thus, during cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger and the second
The heat exchanger serves as a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. In this portion, the temperature difference between the refrigerant and the air is always constant with respect to the air flow direction. Can be secured. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0089】また、冷房運転時には、補助第1熱交換器
の後に冷媒が流れる主第1熱交換器には2つの伝熱管経
路が並列に経路構成されているので、冷房運転時の圧力
損失が小さくなり、性能低下を防ぐことができる。な
お、補助第1熱交換器の伝熱管経路は1つであるが、冷
房運転時に補助第1熱交換器を流れる冷媒は、乾き度が
低いことから圧力損失がそれほど大きくならない。
In the cooling operation, the main first heat exchanger through which the refrigerant flows after the auxiliary first heat exchanger has two heat transfer tube paths arranged in parallel, so that the pressure loss during the cooling operation is reduced. The size can be reduced, and a decrease in performance can be prevented. Although the auxiliary first heat exchanger has one heat transfer tube path, the refrigerant flowing through the auxiliary first heat exchanger during the cooling operation has a low degree of dryness, so that the pressure loss does not increase so much.

【0090】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
During the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path (the refrigerant flow and the air flow are opposed). In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0091】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、主第1熱交換器の空気の流れの上流側の
列に配置された伝熱管を複数本連続して通過した直後
に、冷媒絞り機構に流入するような伝熱管経路(冷媒経
路)を構成し、補助第1熱交換器が、主第1熱交換器の
冷房運転時および除湿運転時における冷媒の出口直前の
伝熱管の空気の流れの上流側に位置しないように配置さ
れているため、冷媒絞り機構に流入する冷媒を冷却液化
する性能がさらに向上する。これにより、請求項8に記
載の発明よりも冷媒絞り機構に流入する冷媒は液冷媒と
なり易く、さらに安定した流動により減圧されるため、
冷媒流動音が請求項8に記載の発明に較べさらに小さく
なる。
In the dehumidifying operation, in the first heat exchanger, immediately after the refrigerant continuously passes through a plurality of heat transfer tubes arranged in the upstream row of the air flow in the main first heat exchanger. And a heat transfer tube path (refrigerant path) that flows into the refrigerant throttle mechanism, and the auxiliary first heat exchanger is a heat transfer tube immediately before the refrigerant outlet during the cooling operation and the dehumidifying operation of the main first heat exchanger. Is arranged so as not to be located on the upstream side of the airflow of the air, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. Accordingly, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention described in claim 8, and the pressure is reduced by a more stable flow.
Refrigerant flow noise is further reduced as compared with the eighth aspect.

【0092】また、十分な過冷却をとることにより、請
求項8に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項8に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is made smaller than that of the invention described in claim 8, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0093】また、第1熱交換器において、冷房運転時
に最初に冷媒が流れ、暖房運転時に最後に冷媒が流れる
のが、1つの伝熱管経路をもつ補助第1熱交換器である
ため、補助第1熱交換器を流れる冷媒の流速が速くな
り、管内熱伝達率が高くなって伝熱性能が向上する。そ
のため、暖房運転時には十分に冷却された冷媒を第1熱
交換器から流出させることができる。
In the first heat exchanger, the refrigerant flows first during the cooling operation and finally flows during the heating operation because of the auxiliary first heat exchanger having one heat transfer tube path. The flow rate of the refrigerant flowing through the first heat exchanger is increased, the heat transfer coefficient in the pipe is increased, and the heat transfer performance is improved. Therefore, during the heating operation, the sufficiently cooled refrigerant can flow out of the first heat exchanger.

【0094】また、第1熱交換器を、主第1熱交換器と
補助第1熱交換器とを直列接続して構成したため、管内
を流れる冷媒温度の異なる主第1熱交換器の伝熱管と補
助第1熱交換器の伝熱管との間で板状フィンを伝った熱
伝導がなくなって、熱交換性能が向上する。
Further, since the first heat exchanger is constructed by connecting the main first heat exchanger and the auxiliary first heat exchanger in series, the heat transfer tubes of the main first heat exchanger having different refrigerant temperatures flowing in the tubes. There is no heat conduction through the plate fins between the heat transfer tubes of the auxiliary first heat exchanger and the heat transfer tubes of the auxiliary first heat exchanger, and the heat exchange performance is improved.

【0095】なお、主第1熱交換器の一部が補助第1熱
交換器の風下側に位置するが、主第1熱交換器において
補助第1熱交換器の風下側に位置する部分においても、
主第1熱交換器と補助第1熱交換器とで板状フィンが連
続していないため、主第1熱交換器の板状フィンの風上
側の縁に空気流が当たり、空気流が乱れ、主第1熱交換
器の板状フィンと空気流との間で熱交換が行われるた
め、また、補助第1熱交換器が空気の流れ方向に1列の
伝熱管をもつものであるため、主第1熱交換器の一部が
補助第1熱交換器の風下側に位置することによる第1熱
交換器の熱交換性能の低下は小さい。
A part of the main first heat exchanger is located on the leeward side of the auxiliary first heat exchanger, but a part of the main first heat exchanger located on the leeward side of the auxiliary first heat exchanger is located. Also,
Since the plate-like fins are not continuous between the main first heat exchanger and the auxiliary first heat exchanger, the airflow hits the leeward edge of the plate-like fins of the main first heat exchanger, and the airflow is disturbed. Since heat is exchanged between the plate-shaped fins of the main first heat exchanger and the air flow, and because the auxiliary first heat exchanger has a single row of heat transfer tubes in the air flow direction. In addition, a decrease in the heat exchange performance of the first heat exchanger due to the fact that a part of the main first heat exchanger is located on the leeward side of the auxiliary first heat exchanger is small.

【0096】請求項13に記載の発明は、請求項8に記
載の発明の熱交換器ユニットにおいて、第1熱交換器
は、空気の流れ方向に2列の伝熱管をもち2つの伝熱管
経路が並列に経路構成される主第1熱交換器と、空気の
流れ方向に1列の伝熱管をもち前記主第1熱交換器より
も空気の流れ方向と略直角な段方向の長さが短い補助第
1熱交換器とからなり、冷媒絞り機構側の冷媒の出入口
に近接する前記主第1熱交換器の伝熱管は、反冷媒絞り
機構側の冷媒の出入口に近接する前記補助第1熱交換器
の伝熱管より下の段に位置し、前記補助第1熱交換器の
伝熱管経路は、前記補助第1熱交換器の下端付近に配置
された反冷媒絞り機構側の冷媒の出入口からから熱交換
器上端に向かって熱交換器上端付近の伝熱管まで形成
し、前記主第1熱交換器の並列に経路構成される2つの
伝熱管経路の一方は、前記補助第1熱交換器の熱交換器
上端付近の伝熱管と接続される分流部から熱交換器上端
に向かって形成し、さらに熱交換器上端付近で空気の流
れの下流側となる列に移り熱交換器下端に向かって熱交
換器中央付近まで形成し、さらに熱交換器中央付近で空
気の流れの上流側となる列に移り熱交換器下端に向かっ
て冷媒絞り機構側の冷媒の出入口まで形成し、前記主第
1熱交換器の並列に経路構成される2つの伝熱管経路の
他方は、前記補助第1熱交換器の熱交換器上端付近の伝
熱管と接続される分流部から熱交換器下端に向かって熱
交換器中央付近まで形成し、さらに熱交換器中央付近で
空気の流れの下流側となる列に移り熱交換器下端に向か
って形成し、さらに熱交換器下端付近で空気の流れの上
流側となる列に移り熱交換器上端に向かって冷媒絞り機
構側の冷媒の出入口まで形成する構成としたものであ
る。
According to a thirteenth aspect of the present invention, in the heat exchanger unit of the eighth aspect, the first heat exchanger has two rows of heat transfer tubes in the direction of air flow and has two heat transfer tube paths. Have a main first heat exchanger configured in parallel with the main heat exchanger and a row of heat transfer tubes in the air flow direction, and have a length in a step direction substantially perpendicular to the air flow direction than the main first heat exchanger. The heat transfer tube of the main first heat exchanger, which comprises a short auxiliary first heat exchanger and is close to the inlet and outlet of the refrigerant on the side of the refrigerant throttle mechanism, has the auxiliary first heat exchanger which is close to the inlet and outlet of the refrigerant on the side opposite to the refrigerant throttle mechanism. A heat transfer tube path of the auxiliary first heat exchanger is located at a lower stage than a heat transfer tube of the heat exchanger, and a refrigerant inlet / outlet port on a side opposite to the refrigerant throttle mechanism disposed near a lower end of the auxiliary first heat exchanger. From the top to the heat exchanger upper end to the heat transfer tube near the upper end of the heat exchanger, the main first heat exchange One of the two heat transfer tube paths configured in parallel with each other is formed from a branch portion connected to a heat transfer tube near the heat exchanger upper end of the auxiliary first heat exchanger toward the heat exchanger upper end, and Move to the row on the downstream side of the air flow near the upper end of the heat exchanger, form to the center of the heat exchanger toward the lower end of the heat exchanger, and further form the row on the upstream side of the air flow near the center of the heat exchanger. The other of the two heat transfer tube paths which are formed toward the lower end of the transfer heat exchanger to the refrigerant inlet / outlet on the side of the refrigerant throttle mechanism and are arranged in parallel with the main first heat exchanger are the auxiliary first heat exchangers. From the diversion section connected to the heat transfer tubes near the upper end of the heat exchanger to the center of the heat exchanger toward the lower end of the heat exchanger, and then to the row near the center of the heat exchanger, which is on the downstream side of the air flow. Formed toward the lower end of the heat exchanger, and further near the lower end of the heat exchanger It is obtained by the configuration toward the upstream side to become transfer heat exchanger upper column of air flow forms to entrance of refrigerant in the refrigerant throttle mechanism side.

【0097】これにより、冷房運転時には、第1熱交換
器の伝熱管経路(冷媒経路)の冷媒流の前半部分と第2
熱交換器が、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)となり、この部分では、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差を確保できる。なお、第1熱交換器の伝熱管経路
(冷媒経路)の冷媒流の後半部分が、冷媒流と空気流が
対向流となる伝熱管経路(冷媒経路)となるが、この部
分は、第1熱交換器の冷媒流の前半部分で加熱されて気
液二相状態となった冷媒が流れ、冷媒の温度変化はほと
んどなく、冷媒流と空気流が対向流となっていることに
よる悪影響ははとんどない。したがって、従来の冷房運
転時に冷媒流と空気流が並行流となる室内側熱交換器を
有する空気調和機と基本性能はほとんど変わらない。
Thus, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is connected to the second part.
The heat exchanger serves as a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. In this portion, the temperature difference between the refrigerant and the air is always constant with respect to the air flow direction. Can be secured. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are in opposing flows. The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and the adverse effect due to the refrigerant flow and the air flow being opposed flows is as follows. I don't know. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0098】また、冷房運転時には、補助第1熱交換器
の後に冷媒が流れる主第1熱交換器には2つの伝熱管経
路が並列に経路構成されているので、冷房運転時の圧力
損失が小さくなり、性能低下を防ぐことができる。な
お、補助第1熱交換器の伝熱管経路は1つであるが、冷
房運転時に補助第1熱交換器を流れる冷媒は、乾き度が
低いことから圧力損失がそれほど大きくならない。
In the cooling operation, the main first heat exchanger, through which the refrigerant flows after the auxiliary first heat exchanger, has two heat transfer tube paths arranged in parallel, so that the pressure loss during the cooling operation is reduced. The size can be reduced, and a decrease in performance can be prevented. Although the auxiliary first heat exchanger has one heat transfer tube path, the refrigerant flowing through the auxiliary first heat exchanger during the cooling operation has a low degree of dryness, so that the pressure loss does not increase so much.

【0099】また、暖房運転時には、第2熱交換器と第
1熱交換器の伝熱管経路(冷媒経路)の冷媒流の後半部
分が、冷媒流と空気流が対向流となる伝熱管経路(冷媒
経路)となり、この部分では、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
を確保でき、また、第1熱交換器の伝熱管経路(冷媒経
路)の冷媒流の後半部分が対向流となるため、十分に冷
却された冷媒を第1熱交換器から流出させることができ
る。なお、第1熱交換器の伝熱管経路(冷媒経路)の冷
媒流の前半部分が、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)となるが、この部分は、暖房運転時
に冷媒流と空気流が対向流となる伝熱管経路をもつ第2
熱交換器で冷却されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
並行流となっていることによる悪影響ははとんどない。
したがって、従来の暖房運転時に冷媒流と空気流が対向
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
In the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger and the first heat exchanger is connected to the heat transfer tube path (the refrigerant flow and the air flow are opposed). In this portion, a temperature difference between the temperature gradient of the refrigerant and the temperature gradient of the air can always be ensured with respect to the flow direction of the air, and the heat transfer tube path of the first heat exchanger (the refrigerant path) Since the latter half of the refrigerant flow becomes the counterflow, the sufficiently cooled refrigerant can flow out of the first heat exchanger. The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. A heat transfer tube path in which the refrigerant flow and the air flow sometimes flow in opposite directions
The refrigerant which has been cooled by the heat exchanger and is in a gas-liquid two-phase state flows, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0100】また、除湿運転時には、第1熱交換器にお
いて、冷媒が、主第1熱交換器の空気の流れの上流側の
列に配置された伝熱管を複数本連続して通過した直後
に、冷媒絞り機構に流入するような伝熱管経路(冷媒経
路)を構成し、補助第1熱交換器が、主第1熱交換器の
冷房運転時および除湿運転時における冷媒の出口直前の
伝熱管の空気の流れの上流側に位置しないように配置さ
れているため、冷媒絞り機構に流入する冷媒を冷却液化
する性能がさらに向上する。これにより、請求項8に記
載の発明よりも冷媒絞り機構に流入する冷媒は液冷媒と
なり易く、さらに安定した流動により減圧されるため、
冷媒流動音が請求項8に記載の発明に較べさらに小さく
なる。
In the dehumidifying operation, in the first heat exchanger, immediately after the refrigerant continuously passes through a plurality of heat transfer tubes arranged in the upstream row of the air flow of the main first heat exchanger. And a heat transfer tube path (refrigerant path) that flows into the refrigerant throttle mechanism, and the auxiliary first heat exchanger is a heat transfer tube immediately before the refrigerant outlet during the cooling operation and the dehumidifying operation of the main first heat exchanger. Is arranged so as not to be located on the upstream side of the airflow of the air, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism is further improved. Accordingly, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the invention described in claim 8, and the pressure is reduced by a more stable flow.
Refrigerant flow noise is further reduced as compared with the eighth aspect.

【0101】また、十分な過冷却をとることにより、請
求項8に記載の発明よりも冷凍サイクルの圧縮比を小さ
くしても十分な空気の加熱及び除湿や冷却が可能とな
り、請求項8に記載の発明よりも少ない消費電力で所定
の冷凍サイクルを構成することが可能となる。
Further, by sufficiently subcooling, even if the compression ratio of the refrigeration cycle is smaller than that of the invention described in claim 8, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the described invention.

【0102】また、第1熱交換器において、冷房運転時
に最初に冷媒が流れ、暖房運転時に最後に冷媒が流れる
のが、1つの伝熱管経路をもつ補助第1熱交換器である
ため、補助第1熱交換器を流れる冷媒の流速が速くな
り、管内熱伝達率が高くなって伝熱性能が向上する。そ
のため、暖房運転時には十分に冷却された冷媒を第1熱
交換器から流出させることができる。
Further, in the first heat exchanger, the refrigerant flows first during the cooling operation and finally flows during the heating operation because of the auxiliary first heat exchanger having one heat transfer tube path. The flow rate of the refrigerant flowing through the first heat exchanger is increased, the heat transfer coefficient in the pipe is increased, and the heat transfer performance is improved. Therefore, during the heating operation, the sufficiently cooled refrigerant can flow out of the first heat exchanger.

【0103】また、第1熱交換器を、主第1熱交換器と
補助第1熱交換器とを直列接続して構成したため、管内
を流れる冷媒温度の異なる主第1熱交換器の伝熱管と補
助第1熱交換器の伝熱管との間で板状フィンを伝った熱
伝導がなくなって、熱交換性能が向上する。
Further, since the first heat exchanger is constructed by connecting the main first heat exchanger and the auxiliary first heat exchanger in series, the heat transfer tubes of the main first heat exchanger having different refrigerant temperatures flowing through the tubes are provided. There is no heat conduction through the plate fins between the heat transfer tubes of the auxiliary first heat exchanger and the heat transfer tubes of the auxiliary first heat exchanger, and the heat exchange performance is improved.

【0104】なお、主第1熱交換器の一部が補助第1熱
交換器の風下側に位置するが、主第1熱交換器において
補助第1熱交換器の風下側に位置する部分においても、
主第1熱交換器と補助第1熱交換器とで板状フィンが連
続していないため、主第1熱交換器の板状フィンの風上
側の縁に空気流が当たり、空気流が乱れ、主第1熱交換
器の板状フィンと空気流との間で熱交換が行われるた
め、また、補助第1熱交換器が空気の流れ方向に1列の
伝熱管をもつものであるため、主第1熱交換器の一部が
補助第1熱交換器の風下側に位置することによる第1熱
交換器の熱交換性能の低下は小さい。
Note that a part of the main first heat exchanger is located on the leeward side of the auxiliary first heat exchanger, but a part of the main first heat exchanger which is located on the leeward side of the auxiliary first heat exchanger. Also,
Since the plate-like fins are not continuous between the main first heat exchanger and the auxiliary first heat exchanger, the airflow hits the leeward edge of the plate-like fins of the main first heat exchanger, and the airflow is disturbed. Since heat is exchanged between the plate-shaped fins of the main first heat exchanger and the air flow, and because the auxiliary first heat exchanger has a single row of heat transfer tubes in the air flow direction. In addition, a decrease in the heat exchange performance of the first heat exchanger due to the fact that a part of the main first heat exchanger is located on the leeward side of the auxiliary first heat exchanger is small.

【0105】また、本体の前面と上面に吸い込みグリ
ル、前面下部に吹き出し口をそれぞれ有し、貫流型のフ
ァンを内蔵する壁面設置型の空気調和機における、前面
の吸い込みグリルとファンとの間に第1熱交換器を配置
して、前面の吸い込みグリルと上面の吸い込みグリルの
手前側部分を通過した空気と第1熱交換器内の冷媒とを
熱交換させ、上面の吸い込みグリルとファンとの間に第
2熱交換器を配置して、上面の吸い込みグリルの奥前側
部分を通過した空気と第2熱交換器内の冷媒とを熱交換
させた場合は、第1熱交換器の冷媒絞り機構側の冷媒の
出入口に近接する伝熱管、すなわち、第1熱交換器の除
湿運転時における冷媒の出口直前の伝熱管が、第1熱交
換器における相対的に空気の流れの速い箇所の空気の流
れの上流側に位置することになるため、除湿運転時に第
1熱交換器の冷媒の出口直前の伝熱管を通過する冷媒の
冷却効率が向上し、十分に冷却された低温の過冷却液冷
媒を冷媒絞り機構に流入させることができる。
Further, in a wall-mounted type air conditioner having a suction grill on the front and upper surfaces of the main body and a blowout port on the lower front, and having a built-in once-through fan, a space between the front suction grill and the fan. The first heat exchanger is arranged to exchange heat between the air passing through the front side suction grille and the front side of the upper side suction grille and the refrigerant in the first heat exchanger. In the case where the second heat exchanger is disposed between the first heat exchanger and the air passing through the rear part of the suction grill on the upper surface and heat exchanges the refrigerant in the second heat exchanger, the refrigerant throttle of the first heat exchanger is provided. The heat transfer tube close to the inlet / outlet of the refrigerant on the mechanism side, that is, the heat transfer tube immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger is the air at the portion of the first heat exchanger where the flow of air is relatively fast. Located upstream of the stream Therefore, during the dehumidifying operation, the cooling efficiency of the refrigerant passing through the heat transfer pipe immediately before the outlet of the refrigerant of the first heat exchanger is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant flows into the refrigerant throttle mechanism. be able to.

【0106】また、このとき、第1熱交換器の主第1熱
交換器を通過する空気流の方向は、主第1熱交換器の空
気の流れの上流側となる列から空気の流れの下流側とな
る列へ向かう主第1熱交換器の列方向成分の他に、主第
1熱交換器の上部から下部に向かう主第1熱交換器の段
方向成分があるが、除湿運転時と冷房運転時には、全体
的に見れば、主第1熱交換器の上部から下部に冷媒が流
れる伝熱管経路となり、暖房運転時には、全体的に見れ
ば、主第1熱交換器の下部から上部に冷媒が流れる伝熱
管経路となる。
At this time, the direction of the air flow passing through the main first heat exchanger of the first heat exchanger depends on the direction of the air flow from the upstream row of the main first heat exchanger. In addition to the row direction component of the main first heat exchanger going to the downstream row, there is a stepwise component of the main first heat exchanger going from the upper part to the lower part of the main first heat exchanger. When the cooling operation is performed, the refrigerant flows from the upper part to the lower part of the main first heat exchanger when viewed as a whole. When the heating operation is performed as a whole, the refrigerant flows from the lower part to the upper part of the main first heat exchanger. A heat transfer tube path through which the refrigerant flows.

【0107】したがって、第1熱交換器の主第1熱交換
器において、冷房運転時に冷媒流と空気流が並行流とな
り暖房運転時に冷媒流と空気流が対向流となる伝熱管経
路の割合が増加し、第1熱交換器の熱交換性能が向上す
る。
Therefore, in the main first heat exchanger of the first heat exchanger, the ratio of the heat transfer tube path in which the refrigerant flow and the air flow become parallel flow during the cooling operation and the refrigerant flow and the air flow become counter flow during the heating operation is reduced. And the heat exchange performance of the first heat exchanger is improved.

【0108】また、このとき、補助第1熱交換器は、前
面及び上面の吸い込みグリルと主第1熱交換器との間の
余剰空間に配置されることになるので、空気調和機を大
型化することなく、補助第1熱交換器を付加して、第1
熱交換器の熱交換性能を向上させることができる。
At this time, the auxiliary first heat exchanger is disposed in an extra space between the suction grills on the front and upper surfaces and the main first heat exchanger, so that the air conditioner is enlarged. Without adding an auxiliary first heat exchanger,
The heat exchange performance of the heat exchanger can be improved.

【0109】請求項14に記載の発明は、請求項8から
13のいずれかに記載の発明の熱交換器ユニットにおい
て、第1熱交換器の冷媒絞り機構側の冷媒の出入口に近
接する空気の流れの上流側となる列の伝熱管と空気の流
れの下流側となる列の伝熱管との列間に、伝熱管列間で
の熱伝導をなくすための切れ目を板状フィンに設けたも
のである。
According to a fourteenth aspect of the present invention, in the heat exchanger unit according to any one of the eighth to thirteenth aspects, there is provided a heat exchanger unit comprising: a first heat exchanger; Between the row of heat transfer tubes on the upstream side of the flow and the row of heat transfer tubes on the downstream side of the flow of air, cuts are provided on the plate-like fins to eliminate heat conduction between the rows of heat transfer tubes It is.

【0110】これにより、除湿運転時には、第1熱交換
器の冷媒の出口直前の伝熱管内の低温の過冷却液冷媒
が、その風下側の伝熱管内の比較的高温の過熱もしくは
気液二相冷媒に加熱されることなく低温の空気によって
十分に冷却されるため、低温の過冷却液冷媒になる。こ
れにより、請求項8から13に記載の発明よりも冷媒絞
り機構に流入する冷媒は液冷媒となり易く、さらに安定
した流動により減圧されるため、冷媒流動音が請求項8
から13に記載の発明に較べさらに小さくなる。
Thus, during the dehumidifying operation, the low-temperature supercooled liquid refrigerant in the heat transfer tube immediately before the outlet of the refrigerant of the first heat exchanger is replaced by the relatively high-temperature superheated gas or gas-liquid mixture in the leeward heat transfer tube. Since it is sufficiently cooled by low-temperature air without being heated by the phase refrigerant, it becomes a low-temperature supercooled liquid refrigerant. Accordingly, the refrigerant flowing into the refrigerant throttle mechanism is more likely to be a liquid refrigerant than the inventions described in claims 8 to 13, and the pressure is reduced by a more stable flow.
To 13 are smaller than those of the inventions described in (13) to (13).

【0111】また、十分な過冷却をとることにより、請
求項8から13に記載の発明よりも冷凍サイクルの圧縮
比を小さくしても十分な空気の加熱及び除湿や冷却が可
能となり、請求項8から13に記載の発明よりも少ない
消費電力で所定の冷凍サイクルを構成することが可能と
なる。
Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is made smaller than that of the inventions described in claims 8 to 13, sufficient heating, dehumidification and cooling of air can be performed. A predetermined refrigeration cycle can be configured with less power consumption than the inventions described in 8 to 13.

【0112】請求項15に記載の発明は、請求項8から
14のいずれかに記載の発明の熱交換器ユニットにおい
て、冷媒絞り機構は、全開状態と微開状態をもつ制御弁
により構成されるものである。
According to a fifteenth aspect of the present invention, in the heat exchanger unit according to any one of the eighth to fourteenth aspects, the refrigerant throttle mechanism is constituted by a control valve having a fully open state and a slightly open state. Things.

【0113】これにより、冷媒の流路抵抗が大きい状態
と冷媒の流路抵抗が小さい状態をもつ冷媒絞り機構を、
1つの制御弁で構成することができる。また、除湿運転
時に流路抵抗を任意に設定できるので、空気の除湿量や
吹出温度を細かく制御できる。
Thus, the refrigerant throttle mechanism having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is small is provided.
It can be constituted by one control valve. In addition, since the flow path resistance can be arbitrarily set during the dehumidifying operation, the amount of dehumidified air and the blowing temperature can be finely controlled.

【0114】請求項16に記載の発明は、請求項8から
14のいずれかに記載の発明の熱交換器ユニットにおい
て、冷媒絞り機構は、キャピラリチューブと、前記キャ
ピラリチューブをバイパスするバイパス路に設けられた
二方弁により構成されるものである。
According to a sixteenth aspect of the present invention, in the heat exchanger unit according to any one of the eighth to fourteenth aspects, the refrigerant throttle mechanism is provided in a capillary tube and a bypass which bypasses the capillary tube. It is constituted by the two-way valve provided.

【0115】これにより、冷媒の流路抵抗が大きい状態
と冷媒の流路抵抗が小さい状態をもつ冷媒絞り機構を、
キャピラリチューブと二方弁により、安価に構成でき
る。
Thus, a refrigerant throttle mechanism having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is low is provided.
Inexpensive configuration is possible with a capillary tube and a two-way valve.

【0116】[0116]

【実施例】以下、本発明による空気調和機とそれに用い
る熱交換器ユニットの一実施例について、図面を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an air conditioner according to the present invention and a heat exchanger unit used for the same will be described below with reference to the drawings.

【0117】(実施例1)図1は、本発明による空気調
和機の実施例1による室内機の側断面図を示す。
(Embodiment 1) FIG. 1 is a side sectional view of an indoor unit according to Embodiment 1 of the air conditioner according to the present invention.

【0118】図1において、室内機内に組み込まれた多
段曲げ室内熱交換器21は、前面下段部分22と前面上
段部分23と背面部分24とに熱的に分けられて折り曲
げられている。室内熱交換器21には複数枚の板状フィ
ン25に貫通するように設けられた伝熱管26が空気の
流れ方向に2列で構成されており、各伝熱管26は端部
で連結されている。
In FIG. 1, a multi-stage bending indoor heat exchanger 21 incorporated in an indoor unit is thermally divided into a lower front portion 22, a front upper portion 23 and a rear portion 24 and bent. In the indoor heat exchanger 21, heat transfer tubes 26 provided to penetrate a plurality of plate-like fins 25 are formed in two rows in the direction of air flow, and each heat transfer tube 26 is connected at an end. I have.

【0119】また、前面上段部分23と背面部分24と
で第1熱交換器33を構成し、前面下段部分22を第2
熱交換器34とし、第1熱交換器33と第2熱交換器3
4とを、冷媒の流路抵抗が大きい状態と冷媒の流路抵抗
が小さい状態をもつ冷媒絞り機構27を介して接続して
いる。本実施例では、冷媒絞り機構27として、全開状
態と微開状態をもち、除湿運転時に微開状態となり絞り
作用を行う機能を有する除湿制御弁27を用いている。
The first heat exchanger 33 is constituted by the upper front part 23 and the rear part 24, and the lower front part 22 is formed by the second heat exchanger 33.
A first heat exchanger 33 and a second heat exchanger 3
4 are connected via a refrigerant throttle mechanism 27 having a state where the flow path resistance of the refrigerant is large and a state where the flow path resistance of the refrigerant is small. In this embodiment, as the refrigerant throttle mechanism 27, a dehumidification control valve 27 having a fully opened state and a slightly opened state, and being in a slightly opened state during the dehumidifying operation and having a function of performing a throttling operation is used.

【0120】貫流ファンタイプのファン30が回転する
ことにより、前面及び上面の吸い込みグリル31a,3
1bから空気が流入し、フィルタ28を介して、室内熱
交換器21で冷媒と熱交換されたあと、ファン30を通
り、吹き出し口32から室内に吹き出されるように配置
してある。
When the once-through fan type fan 30 is rotated, the suction grills 31a, 3a on the front and upper surfaces are formed.
Air is introduced from 1b, is exchanged with the refrigerant in the indoor heat exchanger 21 through the filter 28, passes through the fan 30, and is blown out from the outlet 32 into the room.

【0121】なお、29は背面ケーシングであり、室内
熱交換器21の背面部分24に対する露受皿29aが一
体に形成されている。32aは吹出口風向板、39は室
内熱交換器21の前面下段部分22及び前面上段部分2
3に対する露受皿である。
Reference numeral 29 denotes a rear casing, and a dew tray 29a for the rear portion 24 of the indoor heat exchanger 21 is integrally formed. 32a is an air outlet wind direction plate, 39 is a front lower part 22 and a front upper part 2 of the indoor heat exchanger 21.
3 is a dew saucer.

【0122】実施例1の空気調和機は、多数平行に並べ
られた板状フィン25に直角に挿通され内部を冷媒が流
動する伝熱管26が空気の流れ方向に2列に構成された
フィンチューブ形室内熱交換器21を、空気の流れ方向
と略直角な段方向に熱的に第1熱交換器33と第2熱交
換器34とに分割するとともに、第1熱交換器33と第
2熱交換器34とを冷媒の流路抵抗が大きい状態と冷媒
の流路抵抗が小さい状態をもつ冷媒絞り機構27(全開
状態と微開状態をもち、除湿運転時に微開状態となり絞
り作用を行う機能を有する除湿制御弁27)を介して接
続して、冷房運転時と除湿運転時に第1熱交換器33か
ら第2熱交換器34へ冷媒が流れ、暖房運転時に第2熱
交換器34から第1熱交換器33へ冷媒が流れるように
冷凍サイクルを構成し、除湿運転時に冷媒絞り機構27
を冷媒の流路抵抗が大きい状態にして第1熱交換器33
で室内の空気を加熱しながら第2熱交換器34で室内の
空気を除湿することができるようにした空気調和機にお
いて、除湿運転時における第1熱交換器33の冷媒の入
り口33a直後の伝熱管26と冷媒の出口33b直前の
伝熱管26を空気の流れの上流側の列に配置し、除湿運
転時における第2熱交換器34の冷媒の入り口34a直
後の伝熱管26を空気の流れの上流側の列、冷媒の出口
34b直前の伝熱管26を空気の流れの下流側の列にそ
れぞれ配置したものである。
The air conditioner of the first embodiment has a fin tube in which a plurality of heat transfer tubes 26 which are inserted at right angles to a plurality of plate-like fins 25 arranged in parallel and through which a refrigerant flows are formed in two rows in the direction of air flow. The indoor heat exchanger 21 is thermally divided into a first heat exchanger 33 and a second heat exchanger 34 in a step direction substantially perpendicular to the direction of air flow, and the first heat exchanger 33 and the second heat exchanger The heat exchanger 34 is connected to the refrigerant throttle mechanism 27 having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is low (the state is fully opened and slightly opened, and becomes slightly opened during the dehumidifying operation to perform the throttle action. The refrigerant flows from the first heat exchanger 33 to the second heat exchanger 34 during the cooling operation and the dehumidifying operation, and from the second heat exchanger 34 during the heating operation. The refrigeration cycle is configured so that the refrigerant flows to the first heat exchanger 33. And, the refrigerant throttle mechanism 27 during the dehumidifying operation
In the state where the flow path resistance of the refrigerant is large, the first heat exchanger 33
In the air conditioner in which the indoor air can be dehumidified by the second heat exchanger 34 while the indoor air is heated by the heat transfer, the transfer immediately after the refrigerant inlet 33a of the first heat exchanger 33 during the dehumidifying operation is performed. The heat pipe 26 and the heat transfer pipe 26 immediately before the refrigerant outlet 33b are arranged in a row on the upstream side of the air flow, and the heat transfer pipe 26 immediately after the refrigerant inlet 34a of the second heat exchanger 34 during the dehumidifying operation is connected to the air flow. The heat transfer tubes 26 in the upstream row and immediately before the refrigerant outlet 34b are arranged in the downstream row of the air flow.

【0123】なお、第1熱交換器33は、除湿運転時
に、冷媒が、除湿運転時の冷媒の入り口33aから流入
し、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて除湿運転時の冷媒の出口33b
から流出するように伝熱管経路が構成されている。
In the first heat exchanger 33, during the dehumidifying operation, the refrigerant flows through the inlet 33a of the refrigerant during the dehumidifying operation, flows in the same direction as the air flow, and then flows in the direction opposite to the air flow. The refrigerant flows into the outlet 33b of the refrigerant during the dehumidifying operation.
The heat transfer tube path is configured to flow out of the heat transfer tube.

【0124】詳細に説明すると、第1熱交換器33は、
空気の流れ方向に2列の伝熱管26をもち、2つの伝熱
管経路が並列に経路構成され、除湿運転時に、冷媒が、
除湿運転時の冷媒の入り口33aから流入し2つの伝熱
管経路へ分流され、それぞれの伝熱管経路において、ま
ず、空気の流れの上流側の列の複数本の伝熱管26を所
定本数(2,3本)連続して通過し、次に空気の流れの
下流側の列の複数本の伝熱管26を4本連続して通過し
た後、空気の流れの上流側の列の残りの伝熱管26を
(2,3本)連続して通過して、合流し除湿運転時の冷
媒の出口33bから流出するように構成されている。
More specifically, the first heat exchanger 33 includes:
It has two rows of heat transfer tubes 26 in the direction of air flow, two heat transfer tube paths are configured in parallel, and during the dehumidifying operation, the refrigerant is
At the time of the dehumidifying operation, the refrigerant flows in through the inlet 33a and is divided into two heat transfer pipe paths. In each heat transfer pipe path, first, a predetermined number (2,2) of a plurality of heat transfer pipes 26 in the upstream row of the air flow is provided. 3) after passing continuously, and then four consecutively through the plurality of heat transfer tubes 26 in the downstream row of the air flow, and then passing the remaining heat transfer tubes 26 in the upstream row of the air flow. (Two or three) continuously, and merged to flow out of the refrigerant outlet 33b during the dehumidifying operation.

【0125】また、第1熱交換器33の除湿運転時にお
ける冷媒の入り口33a直後の空気の流れの上流側列の
伝熱管26と空気の流れの下流側列の伝熱管26との列
間と、第1熱交換器33の除湿運転時における冷媒の出
口33b直前の空気の流れの上流側列の伝熱管26と空
気の流れの下流側列の伝熱管26との列間とに、伝熱管
26列間での熱伝導をなくすための切れ目25aを板状
フィン25に設けている。
In addition, during the dehumidifying operation of the first heat exchanger 33, the space between the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately after the inlet 33a of the refrigerant. In the dehumidifying operation of the first heat exchanger 33, the heat transfer tubes are provided between the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately before the outlet 33b of the refrigerant. Cuts 25 a for eliminating heat conduction between 26 rows are provided in the plate-like fin 25.

【0126】また、実施例1の熱交換器ユニットは、多
数平行に並べられた板状フィン25に直角に挿通され内
部を冷媒が流動する伝熱管26が空気の流れ方向に2列
に構成され、2つの冷媒の出入口33a,33bに近接
する伝熱管26がともに空気の流れの上流側となる列に
配置されたフィンチューブ形の第1熱交換器33と、多
数平行に並べられた板状フィン25に直角に挿通され内
部を冷媒が流動する伝熱管26が空気の流れ方向に複数
列に構成され、2つの冷媒の出入口34a,34bのう
ち一方の冷媒の出入口34aに近接する伝熱管26が空
気の流れの上流側となる列に配置され他方の冷媒の出入
口34bに近接する伝熱管26が空気の流れの下流側と
なる列に配置されたフィンチューブ形の第2熱交換器3
4と、第1熱交換器33の2つの冷媒の出入口33a,
33bのうち一方の冷媒の出入口33bと第2熱交換器
34の空気の流れの上流側となる列に配置された冷媒の
出入口34aとを接続する接続管の途中に設けられた冷
媒の流路抵抗が大きい状態と冷媒の流路抵抗が小さい状
態をもつ冷媒絞り機構27により構成され、第1熱交換
器33と第2熱交換器34とが空気の流れの方向で重な
らないように第1熱交換器33と第2熱交換器34とを
配置している。
In the heat exchanger unit of the first embodiment, the heat transfer tubes 26 which are inserted at right angles to the plate-like fins 25 arranged in parallel and through which the refrigerant flows are formed in two rows in the direction of air flow. A first heat exchanger 33 in the form of a fin tube in which the heat transfer tubes 26 adjacent to the two refrigerant inlets / outlets 33a, 33b are both arranged in a row on the upstream side of the air flow; The heat transfer tubes 26 which are inserted at right angles to the fins 25 and through which the refrigerant flows are formed in a plurality of rows in the air flow direction, and the heat transfer tubes 26 which are close to one of the two refrigerant inlets / outlets 34a and 34b. Are arranged in a row on the upstream side of the air flow, and the heat transfer tubes 26 adjacent to the other refrigerant inlet / outlet 34b are arranged in a row on the downstream side of the air flow.
4 and the two refrigerant inlets / outlets 33a of the first heat exchanger 33,
A refrigerant flow path provided in the middle of a connection pipe connecting one of the refrigerant inlets / outlets 33b among the refrigerants 33b and the refrigerant inlet / outlets 34a arranged in a row on the upstream side of the air flow of the second heat exchanger 34. The refrigerant throttle mechanism 27 has a state in which the resistance is large and a state in which the flow path resistance of the refrigerant is small. The first heat exchanger 33 and the second heat exchanger 34 are arranged in the first heat exchanger 34 so that they do not overlap in the direction of air flow. The heat exchanger 33 and the second heat exchanger 34 are arranged.

【0127】なお、第1熱交換器33は、反冷媒絞り機
構27側の冷媒の出入口33aから冷媒絞り機構27側
の冷媒の出入口33bへ冷媒を流した場合に、冷媒が、
反冷媒絞り機構27側の冷媒の出入口33aから流入し
て、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて、冷媒絞り機構27側の冷媒の
出入口33bから流出するように伝熱管経路が構成され
ている。
When the refrigerant flows from the inlet / outlet 33a of the refrigerant on the side of the refrigerant restricting mechanism 27 to the inlet / outlet 33b of the refrigerant on the side of the refrigerant restricting mechanism 27, the first heat exchanger 33
After flowing in from the refrigerant inlet / outlet 33a on the side of the anti-refrigerant throttle mechanism 27 and flowing in the same direction as the air flow, the refrigerant flows in the direction opposite to the air flow and the refrigerant inlet / outlet 33b on the refrigerant throttle mechanism 27 side. The heat transfer tube path is configured to flow out of the heat transfer tube.

【0128】詳細に説明すると、第1熱交換器33は、
空気の流れ方向に2列の伝熱管26をもち、2つの伝熱
管経路が並列に経路構成され、反冷媒絞り機構27側の
冷媒の出入口33aから冷媒絞り機構27側の冷媒の出
入口33bへ冷媒を流した場合に、冷媒が、反冷媒絞り
機構27側の冷媒の出入口33aから流入して2つの伝
熱管経路へ分流され、それぞれの伝熱管経路において、
まず、空気の流れの上流側となる列の複数本の伝熱管2
6を所定本数連続して通過し、次に空気の流れの下流側
となる列の複数本の伝熱管26を連続して通過した後、
空気の流れの上流側となる列の残りの伝熱管26を連続
して通過して、合流し冷媒絞り機構27側の冷媒の出入
口33bから流出するように構成されている。
More specifically, the first heat exchanger 33 includes:
It has two rows of heat transfer tubes 26 in the direction of air flow, two heat transfer tube paths are configured in parallel, and the refrigerant flows from the inlet / outlet 33a of the refrigerant on the anti-refrigerant throttle mechanism 27 side to the inlet / outlet 33b of the refrigerant on the refrigerant throttle mechanism 27 side. Flows, the refrigerant flows in from the refrigerant inlet / outlet 33a on the side of the anti-refrigerant throttle mechanism 27 and is divided into two heat transfer tube paths. In each of the heat transfer tube paths,
First, a plurality of heat transfer tubes 2 in a row on the upstream side of the air flow.
6 continuously through a predetermined number of tubes, and then continuously through a plurality of heat transfer tubes 26 in a row on the downstream side of the air flow.
It is configured to continuously pass through the remaining heat transfer tubes 26 in the row on the upstream side of the air flow, to merge, and to flow out of the refrigerant inlet / outlet 33b on the refrigerant throttle mechanism 27 side.

【0129】また、第1熱交換器33の反冷媒絞り機構
27側の冷媒の出入口33aに近接する空気の流れの上
流側となる列の伝熱管26と空気の流れの下流側となる
列の伝熱管26との列間と、第1熱交換器33の冷媒絞
り機構27側の冷媒の出入口33bに近接する空気の流
れの上流側となる列の伝熱管26と空気の流れの下流側
となる列の伝熱管26との列間に、伝熱管26列間での
熱伝導をなくすための切れ目25aを板状フィン25に
設けている。
The heat transfer tubes 26 in the row on the upstream side of the air flow adjacent to the refrigerant inlet / outlet 33a of the first heat exchanger 33 on the side opposite to the refrigerant throttling mechanism 27, and the heat transfer tubes 26 in the row on the downstream side of the air flow. Between the rows with the heat transfer tubes 26, and the heat transfer tubes 26 in the row on the upstream side of the air flow near the refrigerant inlet / outlet 33b on the refrigerant throttle mechanism 27 side of the first heat exchanger 33 and the downstream side of the air flow. A cut 25 a for eliminating heat conduction between the rows of the heat transfer tubes 26 is provided in the plate-like fin 25 between the rows of the heat transfer tubes 26.

【0130】図2は本実施例の空気調和機の全体の冷凍
サイクルを示すものである。図2において、回転数制御
が可能な圧縮機35、運転状態を切り替える四方弁3
6、室外熱交換器37、絞り作用のない全開状態が可能
な電動膨張弁38、さらに前述の室内熱交換器21と除
湿制御弁27を加えて、これらが連結されて冷凍サイク
ルを構成している。
FIG. 2 shows the entire refrigeration cycle of the air conditioner of this embodiment. In FIG. 2, a compressor 35 capable of controlling the rotation speed, a four-way valve 3 for switching the operation state
6. The outdoor heat exchanger 37, the electric expansion valve 38 capable of being fully opened without a throttling effect, and the indoor heat exchanger 21 and the dehumidification control valve 27 described above, which are connected to form a refrigeration cycle. I have.

【0131】まず、冷房運転時には、四方弁36を冷房
側に切り替え、除湿制御弁27を開き電動膨張弁38を
適当に絞ることにより、実線の矢印で示すように、圧縮
機35、四方弁36、室外熱交換器37、電動膨張弁3
8、室内熱交換器21の第1熱交換器33(室内熱交換
器21の前面上段部分23、室内熱交換器21の背面部
分24)、全開状態の除湿制御弁27、室内熱交換器2
1の第2熱交換器34(室内熱交換器21の前面下段部
分22)、四方弁36、圧縮機35の順に冷媒経路を構
成し、室外熱交換器37を凝縮器、室内熱交換器21全
体を蒸発器として作用させる。
First, during the cooling operation, the four-way valve 36 is switched to the cooling side, the dehumidification control valve 27 is opened, and the electric expansion valve 38 is appropriately squeezed. , Outdoor heat exchanger 37, electric expansion valve 3
8, the first heat exchanger 33 of the indoor heat exchanger 21 (the upper part 23 on the front side of the indoor heat exchanger 21 and the rear part 24 of the indoor heat exchanger 21), the dehumidification control valve 27 in the fully open state, and the indoor heat exchanger 2
The first heat exchanger 34 (the lower front part 22 of the indoor heat exchanger 21), the four-way valve 36, and the compressor 35 constitute a refrigerant path in this order, and the outdoor heat exchanger 37 is a condenser and the indoor heat exchanger 21 The whole acts as an evaporator.

【0132】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器21を通過する。そして、室内熱交換器21で冷却
され、ファン30を通り、吹き出し口32から室内に吹
き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a, 31a on the front and upper surfaces.
b, and passes through the indoor heat exchanger 21 after being removed by the filter 28. Then, the air is cooled by the indoor heat exchanger 21, passes through the fan 30, and is blown into the room from the outlet 32.

【0133】このとき、冷房運転時の室内熱交換器21
の冷媒の入り口33aは、第1熱交換器33の反冷媒絞
り機構27側の冷媒の出入口33aであり、その直後の
伝熱管26は空気の流れの上流側となる。また、冷房運
転時の室内熱交換器21の冷媒の出口34bは、第2熱
交換器34の反冷媒絞り機構27側の冷媒の出入口34
bであり、その直前の伝熱管26は空気の流れの下流側
となる。また、冷房運転時の第2熱交換器34の冷媒の
入り口34aは、第2熱交換器34の冷媒絞り機構27
側の冷媒の出入口34aであり、その直後の伝熱管26
は空気の流れの上流側となる。
At this time, the indoor heat exchanger 21 during the cooling operation is
The refrigerant inlet 33a is the refrigerant inlet / outlet 33a of the first heat exchanger 33 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately behind the refrigerant inlet 33a is on the upstream side of the flow of air. The refrigerant outlet 34b of the indoor heat exchanger 21 during the cooling operation is connected to the refrigerant inlet / outlet 34 of the second heat exchanger 34 on the side opposite to the refrigerant throttle mechanism 27.
b, and the heat transfer tube 26 immediately before that is downstream of the flow of air. The refrigerant inlet 34a of the second heat exchanger 34 during the cooling operation is connected to the refrigerant throttle mechanism 27 of the second heat exchanger 34.
Side refrigerant inlet / outlet 34a, and the heat transfer tube 26
Is upstream of the air flow.

【0134】また、室内熱交換器21において、第1熱
交換器33の冷媒の入り口33aから第1熱交換器33
内へ流入した冷媒は、冷媒流と空気流が並行流となる伝
熱管経路(冷媒経路)を流れた後、冷媒流と空気流が対
向流となる伝熱管経路(冷媒経路)を流れて、冷媒の出
口33bから第1熱交換器33外へ流出する。その後、
全開状態の除湿制御弁27を経て、第2熱交換器34の
冷媒の入り口34aから第2熱交換器34内へ流入した
冷媒は、冷媒流と空気流が並行流となる伝熱管経路(冷
媒経路)を流れて、冷媒の出口34bから第2熱交換器
34外へ流出する。
Further, in the indoor heat exchanger 21, the first heat exchanger 33 is connected to the refrigerant inlet 33a of the first heat exchanger 33.
The refrigerant flowing into the heat exchanger flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in opposite directions. The refrigerant flows out of the first heat exchanger 33 from the refrigerant outlet 33b. afterwards,
The refrigerant that has flowed into the second heat exchanger 34 from the refrigerant inlet 34a of the second heat exchanger 34 via the dehumidification control valve 27 in the fully opened state is a heat transfer tube path (refrigerant) in which the refrigerant flow and the air flow are parallel. And flows out of the second heat exchanger 34 from the refrigerant outlet 34b.

【0135】したがって、冷房運転時には、第1熱交換
器33の伝熱管経路(冷媒経路)の冷媒流の前半部分と
第2熱交換器34が、冷媒流と空気流が並行流となる伝
熱管経路(冷媒経路)となり、全体として冷媒流と空気
流が並行流となり、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)では、圧力損失によって順次冷媒温
度が低下する蒸発器において、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
をもって、効率的に空気を冷却できる。なお、第1熱交
換器33の伝熱管経路(冷媒経路)の冷媒流の後半部分
が、冷媒流と空気流が対向流となる伝熱管経路(冷媒経
路)となるが、この部分は、第1熱交換器33の冷媒流
の前半部分で加熱されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
対向流となっていることによる悪影響ははとんどない。
したがって、従来の冷房運転時に冷媒流と空気流が並行
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
Therefore, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger 33 and the second heat exchanger 34 form a heat transfer tube in which the refrigerant flow and the air flow are parallel. In the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow become parallel flows as a whole, and the refrigerant flow and the air flow become parallel flows, in the evaporator where the refrigerant temperature sequentially decreases due to pressure loss The air can be cooled efficiently with a constant temperature difference between the refrigerant temperature gradient and the air temperature gradient with respect to the air flow direction. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger 33 is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other. The refrigerant which has been heated in the first half of the refrigerant flow of the first heat exchanger 33 and has been in a gas-liquid two-phase state flows, has almost no change in the temperature of the refrigerant, and has an adverse effect due to the refrigerant flow and the air flow being opposed to each other. There is no end.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0136】また、2つの伝熱管経路が並列に経路構成
されているので、冷房運転時の圧力損失が小さくなり、
性能低下を防ぐことができる。
Further, since the two heat transfer tube paths are formed in parallel, the pressure loss during the cooling operation is reduced,
Performance degradation can be prevented.

【0137】次に、暖房運転時には、四方弁36を暖房
側に切り替え、除湿制御弁27を開き電動膨張弁38を
適当に絞ることにより、破線の矢印で示すように、圧縮
機35、四方弁36、室内熱交換器21の第2熱交換器
34(室内熱交換器21の前面下段部分22)、全開状
態の除湿制御弁27、室内熱交換器21の第1熱交換器
33(室内熱交換器21の背面部分24、室内熱交換器
21の前面上段部分23)、電動膨張弁38、室外熱交
換器37、四方弁36、圧縮機35の順に冷媒経路を構
成し、室外熱交換器37を蒸発器、室内熱交換器21全
体を凝縮器として作用させる。
Next, during the heating operation, the four-way valve 36 is switched to the heating side, the dehumidification control valve 27 is opened, and the electric expansion valve 38 is appropriately squeezed. 36, the second heat exchanger 34 of the indoor heat exchanger 21 (the lower part 22 on the front surface of the indoor heat exchanger 21), the dehumidification control valve 27 in the fully opened state, the first heat exchanger 33 of the indoor heat exchanger 21 (the indoor heat exchanger 33) A refrigerant path is formed in the order of the rear part 24 of the exchanger 21, the upper front part 23 of the indoor heat exchanger 21), the electric expansion valve 38, the outdoor heat exchanger 37, the four-way valve 36, and the compressor 35 in this order. 37 serves as an evaporator, and the entire indoor heat exchanger 21 serves as a condenser.

【0138】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器21を通過する。そして、室内熱交換器21で加熱
され、ファン30を通り、吹き出し口32から室内に吹
き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a and 31a on the front and upper surfaces.
b, and passes through the indoor heat exchanger 21 after being removed by the filter 28. Then, the air is heated by the indoor heat exchanger 21, passes through the fan 30, and is blown into the room through the outlet 32.

【0139】このとき、暖房運転時の室内熱交換器21
の冷媒の入り口34bは、第2熱交換器34の反冷媒絞
り機構27側の冷媒の出入口34bであり、その直後の
伝熱管26は空気の流れの下流側となる。また、暖房運
転時の室内熱交換器21の冷媒の出口33aは、第1熱
交換器33の反冷媒絞り機構27側の冷媒の出入口33
aであり、その直前の伝熱管26は空気の流れの上流側
となる。また、暖房運転時の第2熱交換器34の冷媒の
出口34aは、第2熱交換器34の冷媒絞り機構27側
の冷媒の出入口34aであり、その直前の伝熱管26は
空気の流れの上流側となる。
At this time, the indoor heat exchanger 21 during the heating operation is
The refrigerant inlet 34b is the refrigerant inlet / outlet 34b of the second heat exchanger 34 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately behind the refrigerant inlet 34b is downstream of the flow of air. The refrigerant outlet 33a of the indoor heat exchanger 21 during the heating operation is connected to the refrigerant inlet / outlet 33 of the first heat exchanger 33 on the side opposite to the refrigerant throttle mechanism 27.
a, and the heat transfer tube 26 immediately before that is upstream of the flow of air. The outlet 34a of the refrigerant of the second heat exchanger 34 during the heating operation is the inlet / outlet 34a of the refrigerant on the refrigerant throttle mechanism 27 side of the second heat exchanger 34. It is on the upstream side.

【0140】また、室内熱交換器21において、第2熱
交換器34の冷媒の入り口34bから第2熱交換器34
内へ流入した冷媒は、冷媒流と空気流が対向流となる伝
熱管経路(冷媒経路)を流れて、冷媒の出口34aから
第2熱交換器34外へ流出する。その後、全開状態の除
湿制御弁27を経て、第1熱交換器33の冷媒の入り口
33bから第1熱交換器33内へ流入した冷媒は、冷媒
流と空気流が並行流となる伝熱管経路(冷媒経路)を流
れた後、冷媒流と空気流が対向流となる伝熱管経路(冷
媒経路)を流れて、冷媒の出口33aから第1熱交換器
33外へ流出する。
Further, in the indoor heat exchanger 21, the second heat exchanger 34 is connected to the refrigerant inlet 34b of the second heat exchanger 34.
The refrigerant that has flowed in flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are countercurrent, and flows out of the second heat exchanger 34 from the refrigerant outlet 34a. Thereafter, the refrigerant flowing into the first heat exchanger 33 from the refrigerant inlet 33b of the first heat exchanger 33 via the dehumidification control valve 27 in the fully opened state is a heat transfer tube path in which the refrigerant flow and the air flow are parallel. After flowing through the (refrigerant path), the refrigerant flow and the air flow flow through a heat transfer tube path (refrigerant path) in which the refrigerant flows in opposite directions, and flow out of the first heat exchanger 33 from the refrigerant outlet 33a.

【0141】したがって、暖房運転時には、第2熱交換
器34と第1熱交換器33の伝熱管経路(冷媒経路)の
冷媒流の後半部分が、冷媒流と空気流が対向流となる伝
熱管経路(冷媒経路)となり、全体として冷媒流と空気
流が対向流となり、冷媒流と空気流が対向流となる伝熱
管経路(冷媒経路)では、過熱ガスから過冷却液へ順次
冷媒温度が低下する凝縮器において、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差をもって、効率的に空気を加熱できる。また、第1
熱交換器33の伝熱管経路(冷媒経路)の冷媒流の後半
部分が対向流となるため、十分に冷却された冷媒を第1
熱交換器33から流出させることができる。なお、第1
熱交換器33の伝熱管経路(冷媒経路)の冷媒流の前半
部分が、冷媒流と空気流が並行流となる伝熱管経路(冷
媒経路)となるが、この部分は、暖房運転時に冷媒流と
空気流が対向流となる伝熱管経路をもつ第2熱交換器3
4で冷却されて気液二相状態となった冷媒が流れ、冷媒
の温度変化はほとんどなく、冷媒流と空気流が並行流と
なっていることによる悪影響ははとんどない。したがっ
て、従来の暖房運転時に冷媒流と空気流が対向流となる
室内側熱交換器を有する空気調和機と基本性能はほとん
ど変わらない。
Therefore, during the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger 34 and the first heat exchanger 33 is formed by the heat transfer tube in which the refrigerant flow and the air flow are opposed to each other. In the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other, and the refrigerant flow and the air flow are opposed to each other, the refrigerant temperature sequentially decreases from the superheated gas to the supercooled liquid. In such a condenser, air can be efficiently heated with a constant temperature difference between the refrigerant temperature gradient and the air temperature gradient in the air flow direction. Also, the first
Since the latter half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the heat exchanger 33 is a counterflow, the sufficiently cooled refrigerant is transferred to the first flow path.
It can be discharged from the heat exchanger 33. The first
The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the heat exchanger 33 is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. Heat exchanger 3 having a heat transfer tube path in which air flows in opposite directions
The refrigerant cooled in 4 flows into a gas-liquid two-phase state, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0142】また、室内熱交換器21の暖房運転時にお
ける冷媒の出口33a直前の空気の流れの上流側列の伝
熱管26と空気の流れの下流側列の伝熱管26との列間
に、伝熱管26列間での熱伝導をなくすための切れ目2
5aを板状フィン25に設けているため、暖房運転時に
は、室内熱交換器21の暖房運転時における冷媒の出口
33a直前(第1熱交換器33の冷媒の出口33a直
前)の伝熱管26内の低温の過冷却液冷媒が、その風下
側の伝熱管26内の比較的高温の過熱もしくは気液二相
冷媒に加熱されることなく低温の空気によって十分に冷
却されるため、低温の過冷却液冷媒になる。これによ
り、このような切れ目25aを板状フィン25に設けて
いないものよりも十分に冷却された冷媒を第1熱交換器
33から流出させることができる。
Further, during the heating operation of the indoor heat exchanger 21, between the rows of the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer pipes 26 in the downstream row of the air flow immediately before the refrigerant outlet 33a. Cut 2 for eliminating heat conduction between 26 rows of heat transfer tubes
Since the 5 a is provided on the plate-like fin 25, during the heating operation, the inside of the heat transfer tube 26 immediately before the refrigerant outlet 33 a during the heating operation of the indoor heat exchanger 21 (immediately before the refrigerant outlet 33 a of the first heat exchanger 33). Is cooled sufficiently by the low-temperature air without being heated by the relatively high-temperature superheat or the gas-liquid two-phase refrigerant in the heat transfer tube 26 on the leeward side of the low-temperature supercooled liquid refrigerant. It becomes a liquid refrigerant. Thereby, the refrigerant cooled more sufficiently than the one in which such a cut 25 a is not provided in the plate-like fin 25 can flow out of the first heat exchanger 33.

【0143】次に、除湿運転時には、四方弁36を冷房
運転と同じ側に切り替え、除湿制御弁27を微開状態に
絞り電動膨張弁16を全開とすることにより、一点鎖線
の矢印で示すように、圧縮機35、四方弁36、室外熱
交換器37、全開状態の電動膨張弁38、室内熱交換器
21の第1熱交換器33(室内熱交換器21の前面上段
部分23、室内熱交換器21の背面部分24)、微開状
態の除湿制御弁27、室内熱交換器21の第2熱交換器
34(室内熱交換器21の前面下段部分22)、四方弁
36、圧縮機35の順に冷媒経路を構成し、室外熱交換
器15とともに室内熱交換器21の第1熱交換器33
(前面上段部分23と背面部分24)とを凝縮器とし、
室内熱交換器21の第2熱交換器34(前面下段部分2
2)を蒸発器として作用させている。
Next, during the dehumidification operation, the four-way valve 36 is switched to the same side as the cooling operation, the dehumidification control valve 27 is slightly opened, and the electric expansion valve 16 is fully opened. The compressor 35, the four-way valve 36, the outdoor heat exchanger 37, the electric expansion valve 38 in the fully open state, the first heat exchanger 33 of the indoor heat exchanger 21 (the upper front portion 23 of the indoor heat exchanger 21, the indoor heat exchanger 23, The rear part 24 of the exchanger 21), the dehumidification control valve 27 in the slightly opened state, the second heat exchanger 34 of the indoor heat exchanger 21 (the lower part 22 on the front side of the indoor heat exchanger 21), the four-way valve 36, the compressor 35 And the first heat exchanger 33 of the indoor heat exchanger 21 together with the outdoor heat exchanger 15.
(The upper front part 23 and the rear part 24) are used as a condenser,
The second heat exchanger 34 of the indoor heat exchanger 21 (front lower part 2
2) acts as an evaporator.

【0144】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器21を通過する。このとき、凝縮器として機能する
室内熱交換器21の前面上段部分23または背面部分2
4(第1熱交換器33)を通過した空気は加熱され、蒸
発器として機能する室内熱交換器21の前面下段部分2
2(第2熱交換器34)を通過した空気は冷却(除湿)
される。その後、ファン30を通り、これらの空気が混
合されて吹き出し口32から室内に吹き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a, 31a on the front and upper surfaces.
b, and passes through the indoor heat exchanger 21 after being removed by the filter 28. At this time, the front upper part 23 or the rear part 2 of the indoor heat exchanger 21 functioning as a condenser
4 (first heat exchanger 33), the air is heated, and the lower front part 2 of the indoor heat exchanger 21 functioning as an evaporator
2 (second heat exchanger 34) is cooled (dehumidified)
Is done. Thereafter, the air passes through the fan 30 and is mixed, and is blown into the room from the blowout port 32.

【0145】このとき、凝縮器として機能する室内熱交
換器21の前面上段部分23及び背面部分24(第1熱
交換器33)と、蒸発器として機能する室内熱交換器2
1の前面下段部分22(第2熱交換器34)とは熱的に
分けられているので、凝縮器として機能する前面上段部
分23及び背面部分24(第1熱交換器33)と、蒸発
器として機能する前面下段部分22(第2熱交換器3
4)との間で熱漏洩によるロスがなく、除湿能力が低下
しない。
At this time, the upper front part 23 and the rear part 24 (first heat exchanger 33) of the indoor heat exchanger 21 functioning as a condenser, and the indoor heat exchanger 2 functioning as an evaporator
1 is thermally separated from the front lower part 22 (second heat exchanger 34), and the front upper part 23 and rear part 24 (first heat exchanger 33) functioning as a condenser, and the evaporator Lower part 22 (second heat exchanger 3)
4) There is no loss due to heat leakage, and the dehumidifying ability does not decrease.

【0146】また、前面上段部分23及び背面部分24
(第1熱交換器33)を凝縮器として機能させ、前面下
段部分22(第2熱交換器34)を蒸発器として機能さ
せるため、蒸発器として機能する前面下段部分22(第
2熱交換器34)で発生した凝縮水が、凝縮器として機
能する前面上段部分23及び背面部分24(第1熱交換
器33)に伝わって再蒸発してしまうことがない。
Further, the front upper portion 23 and the rear portion 24
In order to make the (first heat exchanger 33) function as a condenser and make the front lower part 22 (second heat exchanger 34) function as an evaporator, the front lower part 22 (second heat exchanger) that functions as an evaporator The condensed water generated in 34) is not transmitted to the front upper section 23 and the rear section 24 (first heat exchanger 33) functioning as a condenser and re-evaporated.

【0147】また、この空気調和機は、室内側熱交換器
21における凝縮器として機能する熱交換部分(前面上
段部分23及び背面部分24)と蒸発器として機能する
熱交換部分(前面下段部分22)とが、空気の流れ方向
に並んで配置されていないので、室内側熱交換器21の
空気の流れ方向の寸法が大きくならず、室内側熱交換器
における凝縮器として機能する熱交換部分と蒸発器とし
て機能する熱交換部分とが、空気の流れ方向に並んで配
置されているものに較べ、空気調和機を小さく(薄く)
することができる。
This air conditioner has a heat exchange part (front upper part 23 and rear part 24) functioning as a condenser and a heat exchange part (front lower part 22) serving as an evaporator in the indoor heat exchanger 21. ) Are not arranged side by side in the air flow direction, so that the size of the indoor heat exchanger 21 in the air flow direction does not increase, and the heat exchange portion functioning as a condenser in the indoor heat exchanger. The air conditioner is smaller (thinner) than the heat exchanger that functions as an evaporator and is arranged side by side in the air flow direction.
can do.

【0148】本実施例では、除湿運転時の室内熱交換器
21の冷媒の入り口33aは、第1熱交換器33の反冷
媒絞り機構27側の冷媒の出入口33aであり、その直
後の伝熱管26は空気の流れの上流側となる。また、除
湿運転時の室内熱交換器21の冷媒の出口34bは、第
2熱交換器34の反冷媒絞り機構27側の冷媒の出入口
34bであり、その直前の伝熱管26は空気の流れの下
流側となる。また、除湿運転時の第2熱交換器34の冷
媒の入り口34aは、第2熱交換器34の冷媒絞り機構
27側の冷媒の出入口34aであり、その直後の伝熱管
26は空気の流れの上流側となる。
In this embodiment, the refrigerant inlet 33a of the indoor heat exchanger 21 during the dehumidifying operation is the refrigerant inlet / outlet 33a of the first heat exchanger 33 on the side opposite to the refrigerant restricting mechanism 27, and the heat transfer tube immediately after that. Reference numeral 26 denotes an upstream side of the air flow. Further, the refrigerant outlet 34b of the indoor heat exchanger 21 during the dehumidifying operation is the refrigerant inlet / outlet 34b of the second heat exchanger 34 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately before the outlet 34b. Downstream. Further, the refrigerant inlet 34a of the second heat exchanger 34 during the dehumidifying operation is the refrigerant inlet / outlet 34a of the second heat exchanger 34 on the side of the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately after the refrigerant inlet / outlet 34a serves as a flow passage for the air. It is on the upstream side.

【0149】また、室内熱交換器21において、第1熱
交換器33の冷媒の入り口33aから第1熱交換器33
内へ流入した冷媒は、冷媒流と空気流が並行流となる伝
熱管経路(冷媒経路)を流れた後、冷媒流と空気流が対
向流となる伝熱管経路(冷媒経路)を流れて、冷媒の出
口33bから第1熱交換器33外へ流出する。その後、
微開状態の除湿制御弁27を経て、第2熱交換器34の
冷媒の入り口34aから第2熱交換器34内へ流入した
冷媒は、冷媒流と空気流が並行流となる伝熱管経路(冷
媒経路)を流れて、冷媒の出口34bから第2熱交換器
34外へ流出する。
In the indoor heat exchanger 21, the first heat exchanger 33 is connected to the refrigerant inlet 33a of the first heat exchanger 33.
The refrigerant flowing into the heat exchanger flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in opposite directions. The refrigerant flows out of the first heat exchanger 33 from the refrigerant outlet 33b. afterwards,
The refrigerant that has flowed into the second heat exchanger 34 from the refrigerant inlet 34a of the second heat exchanger 34 via the dehumidification control valve 27 in the slightly open state is a heat transfer tube path in which the refrigerant flow and the air flow are parallel. (Refrigerant path) and flows out of the second heat exchanger 34 from the refrigerant outlet 34b.

【0150】除湿運転時には、第1熱交換器33の冷媒
の出口33b直前の伝熱管26が空気の流れの上流側の
列に配置されているため、冷媒絞り機構(除湿制御弁2
7)に流入する直前の冷媒は第1熱交換器33で加熱さ
れる前の空気と熱交換をすることとなり、十分な過冷却
液とすることが可能となる。これにより、冷媒絞り機構
(除湿制御弁27)に流入する冷媒は液冷媒となり、安
定した流動により減圧されるため、冷媒流動音が小さく
なる。また、十分な過冷却をとることにより、冷凍サイ
クルの圧縮比を小さくしても十分な空気の加熱及び除湿
や冷却が可能となり、少ない消費電力で所定の冷凍サイ
クルを構成することが可能となる。
In the dehumidifying operation, since the heat transfer tubes 26 immediately before the refrigerant outlet 33b of the first heat exchanger 33 are arranged in a row on the upstream side of the air flow, the refrigerant throttle mechanism (the dehumidifying control valve 2) is used.
The refrigerant immediately before flowing into 7) exchanges heat with the air before being heated by the first heat exchanger 33, so that a sufficient supercooled liquid can be obtained. As a result, the refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) becomes a liquid refrigerant and is depressurized by stable flow, so that the refrigerant flow noise is reduced. Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with low power consumption. .

【0151】また、除湿運転時には、第1熱交換器33
において、冷媒が、空気の流れの上流側の列に配置され
た伝熱管26を複数本連続して通過した直後に、冷媒絞
り機構(除湿制御弁27)に流入するような伝熱管経路
(冷媒経路)を構成するため、冷媒絞り機構(除湿制御
弁27)に流入する冷媒を冷却液化する性能がさらに向
上する。これにより、冷媒絞り機構に流入する冷媒は液
冷媒となり易く、さらに安定した流動により減圧される
ため、冷媒流動音がさらに小さくなる。また、十分な過
冷却をとることにより、冷凍サイクルの圧縮比をより小
さくしても十分な空気の加熱及び除湿や冷却が可能とな
り、より少ない消費電力で所定の冷凍サイクルを構成す
ることが可能となる。
During the dehumidifying operation, the first heat exchanger 33
In the heat transfer tube path (refrigerant), the refrigerant flows into the refrigerant throttle mechanism (dehumidification control valve 27) immediately after passing a plurality of heat transfer tubes 26 arranged in a row on the upstream side of the air flow. Since the path is configured, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) is further improved. Thus, the refrigerant flowing into the refrigerant throttle mechanism easily becomes a liquid refrigerant, and is depressurized by a more stable flow, so that the refrigerant flow noise is further reduced. In addition, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with less power consumption. Becomes

【0152】また、本実施例では、第1熱交換器33の
除湿運転時における冷媒の出口33b直前の空気の流れ
の上流側列の伝熱管26と空気の流れの下流側列の伝熱
管26との列間とに、伝熱管26列間での熱伝導をなく
すための切れ目25aを板状フィン25に設けており、
除湿運転時には、第1熱交換器33の冷媒の出口33b
直前の伝熱管26内の低温の過冷却液冷媒が、その風下
側の伝熱管26内の比較的高温の過熱もしくは気液二相
冷媒に加熱されることなく低温の空気によって十分に冷
却されるため、低温の過冷却液冷媒になる。これによ
り、このような切れ目25aを板状フィン25に設けて
いないものよりも冷媒絞り機構(除湿制御弁27)に流
入する冷媒は液冷媒となり易く、さらに安定した流動に
より減圧されるため、切れ目25aがないものよりも冷
媒流動音がさらに小さくなる。また、十分な過冷却をと
ることにより、切れ目25aがないものよりも冷凍サイ
クルの圧縮比を小さくしても十分な空気の加熱及び除湿
や冷却が可能となり、切れ目25aがないものよりもよ
りも少ない消費電力で所定の冷凍サイクルを構成するこ
とが可能となる。
In the present embodiment, the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately before the refrigerant outlet 33b during the dehumidifying operation of the first heat exchanger 33. A gap 25a for eliminating heat conduction between the 26 rows of heat transfer tubes is provided in the plate-like fin 25 between
During the dehumidifying operation, the refrigerant outlet 33b of the first heat exchanger 33
The low-temperature supercooled liquid refrigerant in the heat transfer tube 26 immediately before is sufficiently cooled by the low-temperature air without being heated by the relatively high-temperature superheat or the gas-liquid two-phase refrigerant in the heat transfer tube 26 on the leeward side. Therefore, it becomes a low-temperature supercooled liquid refrigerant. As a result, the refrigerant flowing into the refrigerant throttle mechanism (dehumidification control valve 27) is more likely to be a liquid refrigerant than the one in which such a cut 25a is not provided in the plate-like fin 25, and the pressure is reduced by a more stable flow. The refrigerant flow noise is even smaller than that without 25a. In addition, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is smaller than that having no cut 25a, sufficient heating, dehumidification and cooling of air can be performed, and the air can be cooled more than that without the cut 25a. A predetermined refrigeration cycle can be configured with low power consumption.

【0153】また、本実施例では、冷媒絞り機構を、全
開状態と微開状態をもつ除湿制御弁27により構成して
いるので、冷媒の流路抵抗が大きい状態と冷媒の流路抵
抗が小さい状態をもつ冷媒絞り機構を、1つの除湿制御
弁27で構成することができる。また、除湿運転時に流
路抵抗を任意に設定できるので、空気の除湿量や吹出温
度を細かく制御できる。
Further, in this embodiment, since the refrigerant throttle mechanism is constituted by the dehumidification control valve 27 having the fully open state and the slightly open state, the state in which the flow resistance of the refrigerant is large and the flow resistance of the refrigerant are small. The refrigerant throttle mechanism having the state can be constituted by one dehumidification control valve 27. In addition, since the flow path resistance can be arbitrarily set during the dehumidifying operation, the amount of dehumidified air and the blowing temperature can be finely controlled.

【0154】(実施例2)図3は、本発明による空気調
和機の実施例2による室内機の側断面図を示す。
(Embodiment 2) FIG. 3 is a sectional side view of an indoor unit according to Embodiment 2 of the air conditioner of the present invention.

【0155】図3において、室内機内に組み込まれた多
段曲げ室内熱交換器41は、前面下段部分42と前面上
段部分43と背面部分44とに熱的に分けられて折り曲
げられている。室内熱交換器41には複数枚の板状フィ
ン45に貫通するように設けられた伝熱管26が空気の
流れ方向に2列で構成されており、各伝熱管26は端部
で連結されている。
In FIG. 3, a multi-stage bending indoor heat exchanger 41 incorporated in an indoor unit is thermally divided into a lower front portion 42, a front upper portion 43, and a rear portion 44 and bent. In the indoor heat exchanger 41, the heat transfer tubes 26 provided so as to penetrate the plurality of plate-like fins 45 are arranged in two rows in the direction of air flow, and the heat transfer tubes 26 are connected at ends. I have.

【0156】また、前面下段部分42と前面上段部分4
3とで第1熱交換器53を構成し、背面部分44を第2
熱交換器54とし、第1熱交換器53と第2熱交換器5
4とを、冷媒の流路抵抗が大きい状態と冷媒の流路抵抗
が小さい状態をもつ冷媒絞り機構27を介して接続して
いる。本実施例では、冷媒絞り機構27として、全開状
態と微開状態をもち、除湿運転時に微開状態となり絞り
作用を行う機能を有する除湿制御弁27を用いている。
Further, the front lower part 42 and the front upper part 4
3 together with the first heat exchanger 53,
The first heat exchanger 53 and the second heat exchanger 5
4 are connected via a refrigerant throttle mechanism 27 having a state where the flow path resistance of the refrigerant is large and a state where the flow path resistance of the refrigerant is small. In this embodiment, as the refrigerant throttle mechanism 27, a dehumidification control valve 27 having a fully opened state and a slightly opened state, and being in a slightly opened state during the dehumidifying operation and having a function of performing a throttling operation is used.

【0157】貫流ファンタイプのファン30が回転する
ことにより、前面及び上面の吸い込みグリル31a,3
1bから空気が流入し、フィルタ28を介して、室内熱
交換器41で冷媒と熱交換されたあと、ファン30を通
り、吹き出し口32から室内に吹き出されるように配置
してある。
When the once-through fan type fan 30 rotates, the suction grills 31a, 3a on the front and upper surfaces are formed.
Air is introduced from 1b, is exchanged with the refrigerant in the indoor heat exchanger 41 via the filter 28, and then passes through the fan 30 and is blown into the room through the outlet 32.

【0158】なお、29は背面ケーシングであり、室内
熱交換器41の背面部分44(第2熱交換器54)に対
する露受皿29aが一体に形成されている。32aは吹
出口風向板、39は室内熱交換器41の前面下段部分4
2及び前面上段部分43(第1熱交換器53)に対する
露受皿である。
Reference numeral 29 denotes a rear casing, in which a dew tray 29a for the rear portion 44 (second heat exchanger 54) of the indoor heat exchanger 41 is integrally formed. 32a is an air outlet wind direction plate, 39 is a lower front part 4 of the indoor heat exchanger 41.
2 is a dew tray for the front upper portion 43 (first heat exchanger 53).

【0159】実施例2の空気調和機は、多数平行に並べ
られた板状フィン45に直角に挿通され内部を冷媒が流
動する伝熱管26が空気の流れ方向に2列に構成された
フィンチューブ形室内熱交換器41を、空気の流れ方向
と略直角な段方向に熱的に第1熱交換器53と第2熱交
換器54とに分割するとともに、第1熱交換器53と第
2熱交換器54とを冷媒の流路抵抗が大きい状態と冷媒
の流路抵抗が小さい状態をもつ冷媒絞り機構27(全開
状態と微開状態をもち、除湿運転時に微開状態となり絞
り作用を行う機能を有する除湿制御弁27)を介して接
続して、冷房運転時と除湿運転時に第1熱交換器53か
ら第2熱交換器54へ冷媒が流れ、暖房運転時に第2熱
交換器54から第1熱交換器53へ冷媒が流れるように
冷凍サイクルを構成し、除湿運転時に冷媒絞り機構27
を冷媒の流路抵抗が大きい状態にして第1熱交換器53
で室内の空気を加熱しながら第2熱交換器54で室内の
空気を除湿することができるようにした空気調和機にお
いて、除湿運転時における第1熱交換器53の冷媒の入
り口53a直後の伝熱管26と冷媒の出口53b直前の
伝熱管26を空気の流れの上流側の列に配置し、除湿運
転時における第2熱交換器54の冷媒の入り口54a直
後の伝熱管26を空気の流れの上流側の列、冷媒の出口
54b直前の伝熱管26を空気の流れの下流側の列にそ
れぞれ配置したものである。
The air conditioner of the second embodiment has a fin tube in which a plurality of heat transfer tubes 26, which are inserted at right angles through a plurality of plate-like fins 45 arranged in parallel and through which a refrigerant flows, are arranged in two rows in the direction of air flow. The indoor heat exchanger 41 is thermally divided into a first heat exchanger 53 and a second heat exchanger 54 in a step direction substantially perpendicular to the flow direction of air, and the first heat exchanger 53 and the second heat exchanger The heat exchanger 54 is connected to the refrigerant throttle mechanism 27 having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is low. The refrigerant flows from the first heat exchanger 53 to the second heat exchanger 54 during the cooling operation and the dehumidifying operation, and flows from the second heat exchanger 54 during the heating operation. The refrigeration cycle is configured so that the refrigerant flows to the first heat exchanger 53. And, the refrigerant throttle mechanism 27 during the dehumidifying operation
In a state where the flow path resistance of the refrigerant is large, and the first heat exchanger 53
In the air conditioner in which the indoor air can be dehumidified by the second heat exchanger 54 while the indoor air is heated by the air conditioner, the transfer immediately after the refrigerant inlet 53a of the first heat exchanger 53 during the dehumidifying operation is performed. The heat pipe 26 and the heat transfer pipe 26 immediately before the refrigerant outlet 53b are arranged in a row on the upstream side of the air flow, and the heat transfer pipe 26 immediately after the refrigerant inlet 54a of the second heat exchanger 54 during the dehumidifying operation is connected to the air flow. The heat transfer tubes 26 in the upstream row and immediately before the refrigerant outlet 54b are arranged in the downstream row of the air flow.

【0160】なお、第1熱交換器53は、除湿運転時
に、冷媒が、除湿運転時の冷媒の入り口53aから流入
し、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて除湿運転時の冷媒の出口53b
から流出するように伝熱管経路が構成されている。
In the first heat exchanger 53, during the dehumidifying operation, the refrigerant flows from the inlet 53a of the refrigerant during the dehumidifying operation, flows in the same direction as the air flow, and then flows in the direction opposite to the air flow. Refrigerant outlet 53b at the time of dehumidifying operation
The heat transfer tube path is configured to flow out of the heat transfer tube.

【0161】詳細に説明すると、第1熱交換器53は、
空気の流れ方向に2列の伝熱管26をもち、2つの伝熱
管経路が並列に経路構成され、除湿運転時に、冷媒が、
除湿運転時の冷媒の入り口53aから流入し2つの伝熱
管経路へ分流され、それぞれの伝熱管経路において、ま
ず、空気の流れの上流側の列の複数本の伝熱管26を所
定本数(3,4本)連続して通過し、次に空気の流れの
下流側の列の複数本の伝熱管26を5本連続して通過し
た後、空気の流れの上流側の列の残りの伝熱管26を
(2,3本)連続して通過して、合流し除湿運転時の冷
媒の出口53bから流出するように構成されている。
More specifically, the first heat exchanger 53 includes:
It has two rows of heat transfer tubes 26 in the direction of air flow, two heat transfer tube paths are configured in parallel, and during the dehumidifying operation, the refrigerant is
At the time of the dehumidifying operation, the refrigerant flows in through the inlet 53a and is divided into two heat transfer tube paths. In each heat transfer tube path, first, a predetermined number (3, 4) continuously, and then five successively through the plurality of heat transfer tubes 26 in the downstream row of the air flow, and then the remaining heat transfer tubes 26 in the upstream row of the air flow. (Two or three) continuously, and are merged and flow out from the outlet 53b of the refrigerant in the dehumidifying operation.

【0162】また、第1熱交換器53の除湿運転時にお
ける冷媒の入り口53a直後の空気の流れの上流側列の
伝熱管26と空気の流れの下流側列の伝熱管26との列
間と、第1熱交換器53の除湿運転時における冷媒の出
口53b直前の空気の流れの上流側列の伝熱管26と空
気の流れの下流側列の伝熱管26との列間とに、伝熱管
26列間での熱伝導をなくすための切れ目45aを板状
フィン45に設けている。
In addition, during the dehumidifying operation of the first heat exchanger 53, the space between the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately after the inlet 53a of the refrigerant. In the dehumidifying operation of the first heat exchanger 53, the heat transfer pipes are provided between the heat transfer pipes 26 in the upstream row of the air flow immediately before the refrigerant outlet 53b and the heat transfer pipes 26 in the downstream row of the air flow. Cuts 45a for eliminating heat conduction between the 26 rows are provided in the plate-like fin 45.

【0163】また、室内熱交換器41を収納する室内機
は、貫流型のファン30を内蔵し、室内機本体の前面と
上面に吸い込みグリル31a,31bを有するものであ
り、室内熱交換器41を構成する第1熱交換器53は、
前面の吸い込みグリル31aとファン30との間に位置
して、前面の吸い込みグリル31aと上面の吸い込みグ
リル31bの手前側部分を通過した空気と熱交換し、室
内熱交換器41を構成する第2熱交換器54は、上面の
吸い込みグリル31bとファン30との間に位置して、
上面の吸い込みグリル31bの奥前側部分を通過した空
気と熱交換する構成となっている。
The indoor unit accommodating the indoor heat exchanger 41 has a built-in flow-through fan 30, and has suction grills 31a, 31b on the front and upper surfaces of the indoor unit main body. The first heat exchanger 53 constituting
A second heat exchanger, which is located between the front suction grill 31a and the fan 30, exchanges heat with the air passing through the front suction grill 31a and the front side of the upper suction grill 31b, thereby forming the indoor heat exchanger 41. The heat exchanger 54 is located between the suction grill 31b on the upper surface and the fan 30,
The heat exchange is performed with the air that has passed through the back side of the suction grill 31b on the upper surface.

【0164】また、第1熱交換器53の除湿運転時にお
ける冷媒の出口53b直前の空気の流れの上流側列の伝
熱管26は、第1熱交換器53における相対的に空気の
流れの速い箇所に配置されている。
In the dehumidifying operation of the first heat exchanger 53, the heat transfer tubes 26 in the upstream row of the air flow immediately before the refrigerant outlet 53b have a relatively high air flow in the first heat exchanger 53. It is located at the place.

【0165】また、実施例2の熱交換器ユニットは、多
数平行に並べられた板状フィン45に直角に挿通され内
部を冷媒が流動する伝熱管26が空気の流れ方向に2列
に構成され、2つの冷媒の出入口53a,53bに近接
する伝熱管26がともに空気の流れの上流側となる列に
配置されたフィンチューブ形の第1熱交換器53と、多
数平行に並べられた板状フィン45に直角に挿通され内
部を冷媒が流動する伝熱管26が空気の流れ方向に複数
列に構成され、2つの冷媒の出入口54a,54bのう
ち一方の冷媒の出入口54aに近接する伝熱管26が空
気の流れの上流側となる列に配置され他方の冷媒の出入
口54bに近接する伝熱管26が空気の流れの下流側と
なる列に配置されたフィンチューブ形の第2熱交換器5
4と、第1熱交換器53の2つの冷媒の出入口53a,
53bのうち一方の冷媒の出入口53bと第2熱交換器
54の空気の流れの上流側となる列に配置された冷媒の
出入口54aとを接続する接続管の途中に設けられた冷
媒の流路抵抗が大きい状態と冷媒の流路抵抗が小さい状
態をもつ冷媒絞り機構27とにより構成され、第1熱交
換器53と第2熱交換器54とが空気の流れの方向で重
ならないように第1熱交換器53と第2熱交換器54と
を配置している。
In the heat exchanger unit of the second embodiment, the heat transfer tubes 26 which are inserted at right angles into the plate-like fins 45 arranged in parallel and through which the refrigerant flows are formed in two rows in the air flow direction. A fin tube-shaped first heat exchanger 53 in which the heat transfer tubes 26 adjacent to the two refrigerant inlets / outlets 53a, 53b are both arranged in a row on the upstream side of the air flow; The heat transfer tubes 26 that are inserted at right angles to the fins 45 and through which the refrigerant flows inside are arranged in a plurality of rows in the direction of air flow, and the heat transfer tubes 26 that are close to the one of the two refrigerant outlets 54a and 54b. Are arranged in a row on the upstream side of the air flow, and the heat transfer tubes 26 adjacent to the other refrigerant inlet / outlet 54b are arranged in a row on the downstream side of the air flow.
4 and two refrigerant inlets / outlets 53a of the first heat exchanger 53,
A refrigerant flow path provided in the middle of a connection pipe connecting one of the refrigerant inlets / outlets 53b of the refrigerants 53b and the refrigerant inlets / outlets 54a arranged in a row on the upstream side of the air flow of the second heat exchanger 54. The refrigerant throttle mechanism 27 has a state in which the resistance is high and a state in which the flow path resistance of the refrigerant is low. The first heat exchanger 53 and the second heat exchanger 54 are arranged so that they do not overlap in the direction of air flow. The first heat exchanger 53 and the second heat exchanger 54 are arranged.

【0166】なお、第1熱交換器53は、反冷媒絞り機
構27側の冷媒の出入口53aから冷媒絞り機構27側
の冷媒の出入口53bへ冷媒を流した場合に、冷媒が、
反冷媒絞り機構27側の冷媒の出入口53aから流入し
て、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて、冷媒絞り機構27側の冷媒の
出入口53bから流出するように伝熱管経路が構成され
ている。
When the refrigerant flows from the refrigerant inlet / outlet 53a on the anti-refrigerant throttling mechanism 27 side to the refrigerant inlet / outlet 53b on the refrigerant throttling mechanism 27 side, the first heat exchanger 53
After flowing in from the refrigerant inlet / outlet 53a on the side of the anti-refrigerant throttle mechanism 27 and flowing in the same direction as the air flow, the refrigerant flows in the direction opposite to the air flow and the refrigerant inlet / outlet 53b on the refrigerant throttle mechanism 27 side. A heat transfer tube path is configured to flow out of the tube.

【0167】詳細に説明すると、第1熱交換器53は、
空気の流れ方向に2列の伝熱管26をもち、2つの伝熱
管経路が並列に経路構成され、反冷媒絞り機構27側の
冷媒の出入口53aから冷媒絞り機構27側の冷媒の出
入口53bへ冷媒を流した場合に、冷媒が、反冷媒絞り
機構27側の冷媒の出入口53aから流入して2つの伝
熱管経路へ分流され、それぞれの伝熱管経路において、
まず、空気の流れの上流側となる列の複数本の伝熱管2
6を所定本数(3,4本)連続して通過し、次に空気の
流れの下流側となる列の複数本の伝熱管26を5本連続
して通過した後、空気の流れの上流側となる列の残りの
伝熱管26を(2,3本)連続して通過して、合流し冷
媒絞り機構27側の冷媒の出入口53bから流出するよ
うに構成されている。
More specifically, the first heat exchanger 53 includes:
It has two rows of heat transfer tubes 26 in the direction of air flow, and two heat transfer tube paths are configured in parallel. Flows, the refrigerant flows in from the refrigerant inlet / outlet 53a on the side of the anti-refrigerant throttle mechanism 27 and is divided into two heat transfer tube paths. In each heat transfer tube path,
First, a plurality of heat transfer tubes 2 in a row on the upstream side of the air flow.
6 continuously passes through a predetermined number (3, 4), and then passes through a plurality of heat transfer tubes 26 in a row on the downstream side of the air flow in succession, and then upstream of the air flow. (2, 3) continuously pass through the remaining heat transfer pipes 26, merge, and flow out of the refrigerant inlet / outlet 53b on the refrigerant throttle mechanism 27 side.

【0168】また、第1熱交換器53は、空気の流れ方
向に2列の伝熱管26をもち、2つの伝熱管経路が並列
に経路構成され、冷媒絞り機構27側の冷媒の出入口5
3bに近接する伝熱管26は反冷媒絞り機構27側の冷
媒の出入口53aに近接する伝熱管26より下の段に位
置し、並列に経路構成される2つの伝熱管経路の一方
は、反冷媒絞り機構27側の冷媒の出入口53aから熱
交換器上端に向かって形成し、さらに熱交換器上端付近
で空気の流れの下流側となる列に移り熱交換器下端に向
かって熱交換器中央付近まで形成し、さらに熱交換器中
央付近で空気の流れの上流側となる列に移り熱交換器下
端に向かって冷媒絞り機構27側の冷媒の出入口53b
まで形成し、並列に経路構成される2つの伝熱管経路の
他方は、反冷媒絞り機構27側の冷媒の出入口53aか
ら熱交換器下端に向かって熱交換器中央付近まで形成
し、さらに熱交換器中央付近で空気の流れの下流側とな
る列に移り熱交換器下端に向かって形成し、さらに熱交
換器下端付近で空気の流れの上流側となる列に移り熱交
換器上端に向かって冷媒絞り機構27側の冷媒の出入口
53bまで形成する構成としたものである。
The first heat exchanger 53 has two rows of heat transfer tubes 26 in the direction of air flow, two heat transfer tube paths are configured in parallel, and the refrigerant inlet / outlet port 5 on the refrigerant throttle mechanism 27 side.
3b is located at a lower stage than the heat transfer tube 26 adjacent to the inlet / outlet 53a of the refrigerant on the side of the anti-refrigerant throttle mechanism 27, and one of the two heat transfer tube paths configured in parallel has the anti-refrigerant It is formed from the refrigerant inlet / outlet 53a on the throttle mechanism 27 side toward the upper end of the heat exchanger, and further moves to a row downstream of the air flow near the upper end of the heat exchanger and near the center of the heat exchanger toward the lower end of the heat exchanger. To the row on the upstream side of the air flow near the center of the heat exchanger, and toward the lower end of the heat exchanger, the refrigerant inlet / outlet 53b on the refrigerant throttle mechanism 27 side.
The other of the two heat transfer tube paths formed in parallel with each other is formed from the refrigerant inlet / outlet 53a on the side of the anti-refrigerant throttle mechanism 27 toward the heat exchanger lower end and near the center of the heat exchanger, and further heat exchange. In the vicinity of the center of the heat exchanger, it moves to the row on the downstream side of the air flow and is formed toward the lower end of the heat exchanger. The structure is formed up to the refrigerant inlet / outlet 53b on the refrigerant throttle mechanism 27 side.

【0169】また、第1熱交換器53の反冷媒絞り機構
27側の冷媒の出入口53aに近接する空気の流れの上
流側となる列の伝熱管26と空気の流れの下流側となる
列の伝熱管26との列間と、第1熱交換器53の冷媒絞
り機構27側の冷媒の出入口53bに近接する空気の流
れの上流側となる列の伝熱管26と空気の流れの下流側
となる列の伝熱管26との列間に、伝熱管26列間での
熱伝導をなくすための切れ目45aを板状フィン45に
設けている。
The heat transfer tubes 26 in the row on the upstream side of the air flow adjacent to the refrigerant inlet / outlet 53a on the side opposite to the refrigerant throttle mechanism 27 of the first heat exchanger 53 and the heat transfer tubes 26 in the row on the downstream side of the air flow. Between the rows with the heat transfer tubes 26, and the rows of the heat transfer tubes 26 on the upstream side of the flow of air adjacent to the refrigerant inlet / outlet 53b on the refrigerant throttle mechanism 27 side of the first heat exchanger 53 and the downstream side of the flow of air. A cut 45a for eliminating heat conduction between the rows of the heat transfer tubes 26 is provided in the plate-like fin 45 between the rows of the heat transfer tubes 26.

【0170】実施例2の空気調和機の全体の冷凍サイク
ルは、図2に示された実施例1の空気調和機の全体の冷
凍サイクルにおいて、第1熱交換器33の代わりに第1
熱交換器53を設け、第2熱交換器34の代わりに第2
熱交換器54を設けたものに相当する。
The entire refrigeration cycle of the air conditioner of the second embodiment is the same as that of the entire refrigeration cycle of the air conditioner of the first embodiment shown in FIG.
A heat exchanger 53 is provided, and instead of the second heat exchanger 34, a second
This is equivalent to the one provided with the heat exchanger 54.

【0171】まず、冷房運転時には、四方弁36を冷房
側に切り替え、除湿制御弁27を開き電動膨張弁38を
適当に絞ることにより、圧縮機35、四方弁36、室外
熱交換器37、電動膨張弁38、室内熱交換器41の第
1熱交換器53(室内熱交換器41の前面上段部分4
3、室内熱交換器41の前面下段部分42)、全開状態
の除湿制御弁27、室内熱交換器41の第2熱交換器5
4(室内熱交換器41の背面部分44)、四方弁36、
圧縮機35の順に冷媒経路を構成し、室外熱交換器37
を凝縮器、室内熱交換器41全体を蒸発器として作用さ
せる。
First, at the time of the cooling operation, the four-way valve 36 is switched to the cooling side, the dehumidification control valve 27 is opened, and the electric expansion valve 38 is appropriately throttled, so that the compressor 35, the four-way valve 36, the outdoor heat exchanger 37 The expansion valve 38, the first heat exchanger 53 of the indoor heat exchanger 41 (the upper part 4 of the front surface of the indoor heat exchanger 41)
3, the lower front part 42 of the indoor heat exchanger 41), the dehumidification control valve 27 in the fully open state, and the second heat exchanger 5 of the indoor heat exchanger 41.
4 (the rear part 44 of the indoor heat exchanger 41), the four-way valve 36,
A refrigerant path is formed in the order of the compressor 35 and the outdoor heat exchanger 37
To act as a condenser and the entire indoor heat exchanger 41 as an evaporator.

【0172】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器41を通過する。そして、室内熱交換器41で冷却
され、ファン30を通り、吹き出し口32から室内に吹
き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a and 31a on the front and upper surfaces.
b, and after passing through the indoor heat exchanger 41 after being removed by the filter 28. Then, the air is cooled by the indoor heat exchanger 41, passes through the fan 30, and is blown into the room from the blowout port 32.

【0173】このとき、冷房運転時の室内熱交換器41
の冷媒の入り口53aは、第1熱交換器53の反冷媒絞
り機構27側の冷媒の出入口53aであり、その直後の
伝熱管26は空気の流れの上流側となる。また、冷房運
転時の室内熱交換器41の冷媒の出口54bは、第2熱
交換器54の反冷媒絞り機構27側の冷媒の出入口54
bであり、その直前の伝熱管26は空気の流れの下流側
となる。また、冷房運転時の第2熱交換器54の冷媒の
入り口54aは、第2熱交換器54の冷媒絞り機構27
側の冷媒の出入口54aであり、その直後の伝熱管26
は空気の流れの上流側となる。
At this time, the indoor heat exchanger 41 during the cooling operation
Is the refrigerant inlet / outlet 53a of the first heat exchanger 53 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately after the inlet 53a is on the upstream side of the flow of air. The refrigerant outlet 54b of the indoor heat exchanger 41 during the cooling operation is connected to the refrigerant inlet / outlet 54 of the second heat exchanger 54 on the side opposite to the refrigerant throttle mechanism 27.
b, and the heat transfer tube 26 immediately before that is downstream of the flow of air. The refrigerant inlet 54a of the second heat exchanger 54 during the cooling operation is connected to the refrigerant throttle mechanism 27 of the second heat exchanger 54.
Side of the refrigerant inlet / outlet 54a, and the heat transfer tube 26
Is upstream of the air flow.

【0174】このとき、室内熱交換器41において、冷
媒が、冷房運転時の第1熱交換器53の冷媒の入り口5
3a(反冷媒絞り機構27側の冷媒の出入口53a)か
ら第1熱交換器53内に流入して2つの伝熱管経路へ分
流され、それぞれの伝熱管経路において、まず、空気の
流れの上流側となる列の複数本の伝熱管26を所定本数
(3,4本)連続して通過し、次に空気の流れの下流側
となる列の複数本の伝熱管26を5本連続して通過した
後、空気の流れの上流側となる列の残りの伝熱管26を
(2,3本)連続して通過して、合流し、冷房運転時の
第1熱交換器53の冷媒の出口53b(冷媒絞り機構2
7側の冷媒の出入口53b)から第1熱交換器53外へ
流出する。すなわち、第1熱交換器53内に流入した冷
媒は、冷媒流と空気流が並行流となる伝熱管経路(冷媒
経路)を流れた後、冷媒流と空気流が対向流となる伝熱
管経路(冷媒経路)を流れて第1熱交換器53外へ流出
する。その後、全開状態の除湿制御弁27を経て、冷房
運転時の第2熱交換器54の冷媒の入り口54a(冷媒
絞り機構27側の冷媒の出入口54a)から第2熱交換
器54内へ流入した冷媒は、2つの伝熱管経路へ分流さ
れ、それぞれの伝熱管経路において、まず、空気の流れ
の上流側となる列の複数本の伝熱管26を2本連続して
通過し、次に空気の流れの下流側となる列の複数本の伝
熱管26を2本連続して通過して、合流し、冷房運転時
の第2熱交換器54の冷媒の出口54b(反冷媒絞り機
構27側の冷媒の出入口54b)から第2熱交換器54
外へ流出する。すなわち、第2熱交換器54内に流入し
た冷媒は、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)を流れて、第2熱交換器54外へ流出す
る。
At this time, in the indoor heat exchanger 41, the refrigerant is supplied to the refrigerant inlet 5 of the first heat exchanger 53 during the cooling operation.
3a (the refrigerant inlet / outlet 53a on the side of the anti-refrigerant throttle mechanism 27) flows into the first heat exchanger 53 and is divided into two heat transfer tube paths. In each heat transfer tube path, first, the upstream side of the air flow A predetermined number (3, 4) of the plurality of heat transfer tubes 26 are continuously passed through a plurality of rows, and then a plurality of the heat transfer tubes 26 are continuously passed through a plurality of rows of the downstream rows of the air flow. After that, the remaining heat transfer tubes 26 in the row on the upstream side of the air flow continuously pass (two or three tubes) and merge to form a refrigerant outlet 53b of the first heat exchanger 53 during the cooling operation. (Refrigerant throttle mechanism 2
The refrigerant flows out of the first heat exchanger 53 from the inlet / outlet 53b) of the refrigerant on the seventh side. That is, the refrigerant that has flowed into the first heat exchanger 53 flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through the heat transfer tube path in which the refrigerant flow and the air flow flow in opposite directions. (Refrigerant path) and flows out of the first heat exchanger 53. After that, the refrigerant flowed into the second heat exchanger 54 from the refrigerant inlet 54a of the second heat exchanger 54 (the refrigerant inlet / outlet 54a on the refrigerant throttle mechanism 27 side) during the cooling operation via the dehumidification control valve 27 in the fully opened state. The refrigerant is divided into two heat transfer pipe paths, and in each heat transfer pipe path, first, two consecutive heat transfer pipes 26 in a row on the upstream side of the air flow continuously pass through the heat transfer pipes. Two of the heat transfer tubes 26 in a row on the downstream side of the flow continuously pass through the two heat transfer tubes 26 and merge, and the refrigerant outlet 54b of the second heat exchanger 54 during the cooling operation (on the side of the anti-refrigerant throttle mechanism 27 side). The second heat exchanger 54 is connected to the refrigerant port 54b).
Spills out. That is, the refrigerant that has flowed into the second heat exchanger 54 flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and flows out of the second heat exchanger 54.

【0175】したがって、冷房運転時には、第1熱交換
器53の伝熱管経路(冷媒経路)の冷媒流の前半部分と
第2熱交換器54が、冷媒流と空気流が並行流となる伝
熱管経路(冷媒経路)となり、全体として冷媒流と空気
流が並行流となり、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)では、圧力損失によって順次冷媒温
度が低下する蒸発器において、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
をもって、効率的に空気を冷却できる。なお、第1熱交
換器53の伝熱管経路(冷媒経路)の冷媒流の後半部分
が、冷媒流と空気流が対向流となる伝熱管経路(冷媒経
路)となるが、この部分は、第1熱交換器53の冷媒流
の前半部分で加熱されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
対向流となっていることによる悪影響ははとんどない。
したがって、従来の冷房運転時に冷媒流と空気流が並行
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
Therefore, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger 53 and the second heat exchanger 54 form a heat transfer tube in which the refrigerant flow and the air flow are parallel. In the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow become parallel flows as a whole, and the refrigerant flow and the air flow become parallel flows, in the evaporator where the refrigerant temperature sequentially decreases due to pressure loss In addition, the air can be efficiently cooled with a constant temperature difference between the refrigerant temperature gradient and the air temperature gradient with respect to the air flow direction. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger 53 is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other. (1) The refrigerant which is heated in the first half of the refrigerant flow of the heat exchanger 53 and is in a gas-liquid two-phase state flows, and there is almost no change in the temperature of the refrigerant, and the refrigerant flow and the air flow are countercurrent to each other. There is no end.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0176】また、2つの伝熱管経路が並列に経路構成
されているので、冷房運転時の圧力損失が小さくなり、
性能低下を防ぐことができる。
Further, since the two heat transfer tube paths are formed in parallel, the pressure loss during the cooling operation is reduced,
Performance degradation can be prevented.

【0177】次に、暖房運転時には、四方弁36を暖房
側に切り替え、除湿制御弁27を開き電動膨張弁38を
適当に絞ることにより、圧縮機35、四方弁36、室内
熱交換器41の第2熱交換器54(室内熱交換器41の
背面部分44)、全開状態の除湿制御弁27、室内熱交
換器41の第1熱交換器53(室内熱交換器41の前面
下段部分42、室内熱交換器41の前面上段部分4
3)、電動膨張弁38、室外熱交換器37、四方弁3
6、圧縮機35の順に冷媒経路を構成し、室外熱交換器
37を蒸発器、室内熱交換器41全体を凝縮器として作
用させる。
Next, during the heating operation, the four-way valve 36 is switched to the heating side, the dehumidification control valve 27 is opened, and the electric expansion valve 38 is appropriately throttled, so that the compressor 35, the four-way valve 36, and the indoor heat exchanger 41 are controlled. The second heat exchanger 54 (the rear portion 44 of the indoor heat exchanger 41), the dehumidification control valve 27 in the fully opened state, the first heat exchanger 53 of the indoor heat exchanger 41 (the lower front portion 42 of the indoor heat exchanger 41, Upper part 4 at the front of indoor heat exchanger 41
3), electric expansion valve 38, outdoor heat exchanger 37, four-way valve 3
6, a refrigerant path is formed in the order of the compressor 35, the outdoor heat exchanger 37 acts as an evaporator, and the entire indoor heat exchanger 41 acts as a condenser.

【0178】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器41を通過する。そして、室内熱交換器41で加熱
され、ファン30を通り、吹き出し口32から室内に吹
き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a and 31a on the front and upper surfaces.
b, and after passing through the indoor heat exchanger 41 after being removed by the filter 28. Then, the air is heated by the indoor heat exchanger 41, passes through the fan 30, and is blown into the room through the blowout port 32.

【0179】このとき、暖房運転時の室内熱交換器41
の冷媒の入り口54bは、第2熱交換器54の反冷媒絞
り機構27側の冷媒の出入口54bであり、その直後の
伝熱管26は空気の流れの下流側となる。また、暖房運
転時の室内熱交換器41の冷媒の出口53aは、第1熱
交換器53の反冷媒絞り機構27側の冷媒の出入口53
aであり、その直前の伝熱管26は空気の流れの上流側
となる。また、暖房運転時の第2熱交換器54の冷媒の
出口54aは、第2熱交換器54の冷媒絞り機構27側
の冷媒の出入口54aであり、その直前の伝熱管26は
空気の流れの上流側となる。
At this time, the indoor heat exchanger 41 during the heating operation
The refrigerant inlet 54b is the refrigerant inlet / outlet 54b of the second heat exchanger 54 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately behind the refrigerant inlet 54b is on the downstream side of the flow of air. Further, the refrigerant outlet 53a of the indoor heat exchanger 41 during the heating operation is connected to the refrigerant inlet / outlet 53 of the first heat exchanger 53 on the side opposite to the refrigerant throttle mechanism 27.
a, and the heat transfer tube 26 immediately before that is upstream of the flow of air. The outlet 54a of the refrigerant of the second heat exchanger 54 during the heating operation is the inlet / outlet 54a of the refrigerant on the side of the refrigerant throttle mechanism 27 of the second heat exchanger 54, and the heat transfer tube 26 immediately before the outlet 54a It is on the upstream side.

【0180】このとき、室内熱交換器41において、冷
媒が、暖房運転時の第2熱交換器54の冷媒の入り口5
4b(反冷媒絞り機構27側の冷媒の出入口54b)か
ら第2熱交換器54内に流入して2つの伝熱管経路へ分
流され、それぞれの伝熱管経路において、まず、空気の
流れの下流側となる列の複数本の伝熱管26を2本連続
して通過し、次に空気の流れの上流側となる列の複数本
の伝熱管26を2本連続して通過して、合流し、暖房運
転時の第2熱交換器54の冷媒の出口54a(冷媒絞り
機構27側の冷媒の出入口54a)から第2熱交換器5
4外へ流出する。すなわち、第2熱交換器54内に流入
した冷媒は、冷媒流と空気流が対向流となる伝熱管経路
(冷媒経路)を流れて、第2熱交換器54外へ流出す
る。その後、全開状態の除湿制御弁27を経て、暖房運
転時の第1熱交換器53の冷媒の入り口53b(冷媒絞
り機構27側の冷媒の出入口53b)から第1熱交換器
53内へ流入した冷媒は、まず、空気の流れの上流側と
なる列の複数本の伝熱管26を(2,3本)連続して通
過し、次に空気の流れの下流側となる列の複数本の伝熱
管26を5本連続して通過した後、空気の流れの上流側
となる列の残りの伝熱管26を(3,4本)連続して通
過して、合流し、暖房運転時の第1熱交換器53の冷媒
の出口53a(反冷媒絞り機構27側の冷媒の出入口5
3a)から第1熱交換器53外へ流出する。すなわち、
第1熱交換器53内に流入した冷媒は、冷媒流と空気流
が並行流となる伝熱管経路(冷媒経路)を流れた後、冷
媒流と空気流が対向流となる伝熱管経路(冷媒経路)を
流れて、第1熱交換器53外へ流出する。
At this time, in the indoor heat exchanger 41, the refrigerant flows into the refrigerant inlet 5 of the second heat exchanger 54 during the heating operation.
4b (the refrigerant inlet / outlet 54b on the side of the anti-refrigerant throttle mechanism 27) flows into the second heat exchanger 54 and is divided into two heat transfer tube paths. In each heat transfer tube path, first, the downstream side of the air flow Two successively pass through the plurality of heat transfer tubes 26 in the row, and then successively pass through the plurality of heat transfer tubes 26 in the row on the upstream side of the air flow, and merge. During the heating operation, the second heat exchanger 5 is connected to the refrigerant outlet 54a of the second heat exchanger 54 (the refrigerant inlet / outlet 54a on the refrigerant throttle mechanism 27 side).
4 Outflow. That is, the refrigerant that has flowed into the second heat exchanger 54 flows out of the second heat exchanger 54 through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in opposite directions. Thereafter, the refrigerant flowed into the first heat exchanger 53 from the refrigerant inlet 53b (the refrigerant inlet / outlet 53b of the refrigerant throttle mechanism 27 side) of the first heat exchanger 53 during the heating operation via the fully opened dehumidification control valve 27. First, the refrigerant continuously (two or three) continuously passes through the plurality of heat transfer tubes 26 in the row on the upstream side of the air flow, and then passes through the plurality of heat transfer tubes in the row on the downstream side of the air flow. After passing five heat pipes 26 continuously, the remaining heat transfer pipes 26 in the row on the upstream side of the air flow (3, 4) are continuously passed and merged, and the first heat transfer pipes during the heating operation are combined. The refrigerant outlet 53a of the heat exchanger 53 (the refrigerant inlet / outlet 5 on the side opposite to the refrigerant throttle mechanism 27).
3a) flows out of the first heat exchanger 53. That is,
The refrigerant flowing into the first heat exchanger 53 flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows into a heat transfer tube path (refrigerant) in which the refrigerant flow and the air flow flow in opposite directions. And flows out of the first heat exchanger 53.

【0181】したがって、暖房運転時には、第2熱交換
器54と第1熱交換器53の伝熱管経路(冷媒経路)の
冷媒流の後半部分が、冷媒流と空気流が対向流となる伝
熱管経路(冷媒経路)となり、全体として冷媒流と空気
流が対向流となり、冷媒流と空気流が対向流となる伝熱
管経路(冷媒経路)では、過熱ガスから過冷却液へ順次
冷媒温度が低下する凝縮器において、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差をもって、効率的に空気を加熱できる。また、第1
熱交換器53の伝熱管経路(冷媒経路)の冷媒流の後半
部分が対向流となるため、十分に冷却された冷媒を第1
熱交換器53から流出させることができる。なお、第1
熱交換器53の伝熱管経路(冷媒経路)の冷媒流の前半
部分が、冷媒流と空気流が並行流となる伝熱管経路(冷
媒経路)となるが、この部分は、暖房運転時に冷媒流と
空気流が対向流となる伝熱管経路をもつ第2熱交換器5
4で冷却されて気液二相状態となった冷媒が流れ、冷媒
の温度変化はほとんどなく、冷媒流と空気流が並行流と
なっていることによる悪影響ははとんどない。したがっ
て、従来の暖房運転時に冷媒流と空気流が対向流となる
室内側熱交換器を有する空気調和機と基本性能はほとん
ど変わらない。
Therefore, during the heating operation, the second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger 54 and the first heat exchanger 53 is formed by the heat transfer tube in which the refrigerant flow and the air flow are opposed to each other. In the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other, and the refrigerant flow and the air flow are opposed to each other, the refrigerant temperature sequentially decreases from the superheated gas to the supercooled liquid. In such a condenser, air can be efficiently heated with a constant temperature difference between the refrigerant temperature gradient and the air temperature gradient in the air flow direction. Also, the first
Since the latter half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the heat exchanger 53 is a counterflow, the sufficiently cooled refrigerant is transferred to the first flow path.
It can be discharged from the heat exchanger 53. The first
The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the heat exchanger 53 becomes a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. Heat exchanger 5 having a heat transfer tube path in which air flows in opposite directions
The refrigerant cooled in 4 flows into a gas-liquid two-phase state, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0182】また、室内熱交換器41の暖房運転時にお
ける冷媒の出口53a直前の空気の流れの上流側列の伝
熱管26と空気の流れの下流側列の伝熱管26との列間
に、伝熱管26列間での熱伝導をなくすための切れ目4
5aを板状フィン45に設けているため、暖房運転時に
は、室内熱交換器41の暖房運転時における冷媒の出口
53a直前(第1熱交換器53の冷媒の出口53a直
前)の伝熱管26内の低温の過冷却液冷媒が、その風下
側の伝熱管26内の比較的高温の過熱もしくは気液二相
冷媒に加熱されることなく低温の空気によって十分に冷
却されるため、低温の過冷却液冷媒になる。これによ
り、このような切れ目45aを板状フィン45に設けて
いないものよりも十分に冷却された冷媒を第1熱交換器
53から流出させることができる。
Further, during the heating operation of the indoor heat exchanger 41, the space between the heat transfer pipes 26 in the upstream row of the air flow and the heat transfer pipes 26 in the downstream row of the air flow immediately before the refrigerant outlet 53a. Cut 4 to eliminate heat conduction between 26 rows of heat transfer tubes
Since 5 a is provided on the plate-like fin 45, during the heating operation, the heat transfer tube 26 immediately before the refrigerant outlet 53 a during the heating operation of the indoor heat exchanger 41 (immediately before the refrigerant outlet 53 a of the first heat exchanger 53). Is cooled sufficiently by the low-temperature air without being heated by the relatively high-temperature superheat or the gas-liquid two-phase refrigerant in the heat transfer tube 26 on the leeward side of the low-temperature supercooled liquid refrigerant. It becomes a liquid refrigerant. Thereby, the refrigerant that is more sufficiently cooled than that in which the cut 45 a is not provided in the plate-like fin 45 can flow out of the first heat exchanger 53.

【0183】次に、除湿運転時には、四方弁36を冷房
運転と同じ側に切り替え、除湿制御弁27を微開状態に
絞り電動膨張弁16を全開とすることにより、圧縮機3
5、四方弁36、室外熱交換器37、全開状態の電動膨
張弁38、室内熱交換器41の第1熱交換器53(室内
熱交換器41の前面上段部分43、室内熱交換器41の
前面下段部分42)、微開状態の除湿制御弁27、室内
熱交換器41の第2熱交換器54(室内熱交換器41の
背面部分44)、四方弁36、圧縮機35の順に冷媒経
路を構成し、室外熱交換器15とともに室内熱交換器4
1の第1熱交換器53(前面上段部分43と前面下段部
分42)とを凝縮器とし、室内熱交換器41の第2熱交
換器54(背面部分44)を蒸発器として作用させてい
る。
Next, at the time of the dehumidifying operation, the four-way valve 36 is switched to the same side as the cooling operation, the dehumidifying control valve 27 is slightly opened, and the electric expansion valve 16 is fully opened.
5, the four-way valve 36, the outdoor heat exchanger 37, the fully-open electric expansion valve 38, the first heat exchanger 53 of the indoor heat exchanger 41 (the upper front portion 43 of the indoor heat exchanger 41, The refrigerant path in the order of the lower front part 42), the dehumidification control valve 27 in the slightly opened state, the second heat exchanger 54 of the indoor heat exchanger 41 (the rear part 44 of the indoor heat exchanger 41), the four-way valve 36, and the compressor 35. And the indoor heat exchanger 4 together with the outdoor heat exchanger 15
The first heat exchanger 53 (the upper front part 43 and the lower front part 42) functions as a condenser, and the second heat exchanger 54 (the rear part 44) of the indoor heat exchanger 41 functions as an evaporator. .

【0184】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器41を通過する。このとき、凝縮器として機能する
室内熱交換器41の前面上段部分43または前面下段部
分42(第1熱交換器53)を通過した空気は加熱さ
れ、蒸発器として機能する室内熱交換器41の背面部分
44(第2熱交換器54)を通過した空気は冷却(除
湿)される。その後、ファン30を通り、これらの空気
が混合されて吹き出し口32から室内に吹き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a, 31a on the front and upper surfaces.
b, and after passing through the indoor heat exchanger 41 after being removed by the filter 28. At this time, the air that has passed through the front upper section 43 or the front lower section 42 (first heat exchanger 53) of the indoor heat exchanger 41 functioning as a condenser is heated, and the air of the indoor heat exchanger 41 functioning as an evaporator is heated. The air that has passed through the rear portion 44 (second heat exchanger 54) is cooled (dehumidified). Thereafter, the air passes through the fan 30 and is mixed, and is blown into the room from the blowout port 32.

【0185】このとき、凝縮器として機能する室内熱交
換器41の前面上段部分43及び前面下段部分42(第
1熱交換器53)と、蒸発器として機能する室内熱交換
器41の背面部分44(第2熱交換器54)とは熱的に
分けられているので、凝縮器として機能する前面上段部
分43及び前面下段部分42(第1熱交換器53)と、
蒸発器として機能する背面部分44(第2熱交換器5
4)との間で熱漏洩によるロスがなく、除湿能力が低下
しない。
At this time, the upper front portion 43 and the lower front portion 42 (first heat exchanger 53) of the indoor heat exchanger 41 functioning as a condenser, and the rear portion 44 of the indoor heat exchanger 41 functioning as an evaporator. (Second heat exchanger 54) is thermally separated from upper front part 43 and front lower part 42 (first heat exchanger 53) that function as condensers.
The back part 44 (second heat exchanger 5) functioning as an evaporator
4) There is no loss due to heat leakage, and the dehumidifying ability does not decrease.

【0186】また、前面上段部分43及び前面下段部分
42(第1熱交換器53)を凝縮器として機能させ、背
面部分44(第2熱交換器54)を蒸発器として機能さ
せるため、蒸発器として機能する背面部分44(第2熱
交換器54)で発生した凝縮水が、凝縮器として機能す
る前面上段部分43及び前面下段部分42(第1熱交換
器53)に伝わって再蒸発してしまうことがない。
The upper front portion 43 and the lower front portion 42 (first heat exchanger 53) function as a condenser, and the rear portion 44 (second heat exchanger 54) functions as an evaporator. The condensed water generated in the back part 44 (second heat exchanger 54) functioning as a propeller is transmitted to the front upper part 43 and the front lower part 42 (first heat exchanger 53) functioning as a condenser and re-evaporated. There is no end.

【0187】また、この空気調和機は、室内側熱交換器
41における凝縮器として機能する熱交換部分(前面上
段部分43及び前面下段部分42)と蒸発器として機能
する熱交換部分(背面部分44)とが、空気の流れ方向
に並んで配置されていないので、室内側熱交換器41の
空気の流れ方向の寸法が大きくならず、室内側熱交換器
における凝縮器として機能する熱交換部分と蒸発器とし
て機能する熱交換部分とが、空気の流れ方向に並んで配
置されているものに較べ、空気調和機を小さく(薄く)
することができる。
This air conditioner has a heat exchange portion (front upper portion 43 and front lower portion 42) functioning as a condenser and a heat exchange portion (rear portion 44) functioning as an evaporator in the indoor heat exchanger 41. ) Are not arranged side by side in the air flow direction, so that the size of the indoor heat exchanger 41 in the air flow direction does not increase, and the heat exchange portion functioning as a condenser in the indoor heat exchanger. The air conditioner is smaller (thinner) than the heat exchanger that functions as an evaporator and is arranged side by side in the direction of air flow.
can do.

【0188】本実施例では、除湿運転時の室内熱交換器
41の冷媒の入り口53aは、第1熱交換器53の反冷
媒絞り機構27側の冷媒の出入口53aであり、その直
後の伝熱管26は空気の流れの上流側となる。また、除
湿運転時の室内熱交換器41の冷媒の出口54bは、第
2熱交換器44の反冷媒絞り機構27側の冷媒の出入口
54bであり、その直前の伝熱管26は空気の流れの下
流側となる。また、除湿運転時の第2熱交換器54の冷
媒の入り口54aは、第2熱交換器54の冷媒絞り機構
27側の冷媒の出入口54aであり、その直後の伝熱管
26は空気の流れの上流側となる。
In the present embodiment, the refrigerant inlet 53a of the indoor heat exchanger 41 during the dehumidifying operation is the refrigerant inlet / outlet 53a of the first heat exchanger 53 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube immediately after that. Reference numeral 26 denotes an upstream side of the air flow. Further, the refrigerant outlet 54b of the indoor heat exchanger 41 during the dehumidifying operation is the refrigerant inlet / outlet 54b of the second heat exchanger 44 on the side opposite to the refrigerant throttle mechanism 27. Downstream. Further, the refrigerant inlet 54a of the second heat exchanger 54 during the dehumidifying operation is the refrigerant inlet / outlet 54a of the second heat exchanger 54 on the side of the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately behind the refrigerant inlet / outlet 54a serves as an air flow passage. It is on the upstream side.

【0189】このとき、室内熱交換器41において、冷
媒が、冷房運転時の第1熱交換器53の冷媒の入り口5
3a(反冷媒絞り機構27側の冷媒の出入口53a)か
ら第1熱交換器53内に流入して2つの伝熱管経路へ分
流され、それぞれの伝熱管経路において、まず、空気の
流れの上流側となる列の複数本の伝熱管26を所定本数
(3,4本)連続して通過し、次に空気の流れの下流側
となる列の複数本の伝熱管26を5本連続して通過した
後、空気の流れの上流側となる列の残りの伝熱管26を
(2,3本)連続して通過して、合流し、冷房運転時の
第1熱交換器53の冷媒の出口53b(冷媒絞り機構2
7側の冷媒の出入口53b)から第1熱交換器53外へ
流出する。すなわち、第1熱交換器53内に流入した冷
媒は、冷媒流と空気流が並行流となる伝熱管経路(冷媒
経路)を流れた後、冷媒流と空気流が対向流となる伝熱
管経路(冷媒経路)を流れて第1熱交換器53外へ流出
する。その後、微開状態の除湿制御弁27を経て、冷房
運転時の第2熱交換器54の冷媒の入り口54a(冷媒
絞り機構27側の冷媒の出入口54a)から第2熱交換
器54内へ流入した冷媒は、2つの伝熱管経路へ分流さ
れ、それぞれの伝熱管経路において、まず、空気の流れ
の上流側となる列の複数本の伝熱管26を2本連続して
通過し、次に空気の流れの下流側となる列の複数本の伝
熱管26を2本連続して通過して、合流し、冷房運転時
の第2熱交換器54の冷媒の出口54b(反冷媒絞り機
構27側の冷媒の出入口54b)から第2熱交換器54
外へ流出する。すなわち、第2熱交換器54内に流入し
た冷媒は、冷媒流と空気流が並行流となる伝熱管経路
(冷媒経路)を流れて、第2熱交換器54外へ流出す
る。
At this time, in the indoor heat exchanger 41, the refrigerant is supplied to the refrigerant inlet 5 of the first heat exchanger 53 during the cooling operation.
3a (the refrigerant inlet / outlet 53a on the side of the anti-refrigerant throttle mechanism 27) flows into the first heat exchanger 53 and is divided into two heat transfer tube paths. In each heat transfer tube path, first, the upstream side of the air flow A predetermined number (3, 4) of the plurality of heat transfer tubes 26 are continuously passed through a plurality of rows, and then a plurality of the heat transfer tubes 26 are continuously passed through a plurality of rows of the downstream rows of the air flow. After that, the remaining heat transfer tubes 26 in the row on the upstream side of the air flow continuously pass (two or three tubes) and merge to form a refrigerant outlet 53b of the first heat exchanger 53 during the cooling operation. (Refrigerant throttle mechanism 2
The refrigerant flows out of the first heat exchanger 53 from the inlet / outlet 53b) of the refrigerant on the seventh side. That is, the refrigerant that has flowed into the first heat exchanger 53 flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through the heat transfer tube path in which the refrigerant flow and the air flow flow in opposite directions. (Refrigerant path) and flows out of the first heat exchanger 53. Thereafter, the refrigerant flows into the second heat exchanger 54 from the refrigerant inlet 54a (the refrigerant inlet / outlet 54a of the refrigerant throttle mechanism 27) of the second heat exchanger 54 during the cooling operation via the slightly opened dehumidification control valve 27. The cooled refrigerant is divided into two heat transfer tube paths. In each of the heat transfer tube paths, first, two consecutive heat transfer tubes 26 in a row on the upstream side of the air flow continuously pass through the heat transfer tube paths. After passing through two heat transfer tubes 26 in a row on the downstream side of the flow of heat, the two heat transfer tubes 26 merge and merge, and the refrigerant outlet 54b of the second heat exchanger 54 during cooling operation (the side opposite to the refrigerant throttle mechanism 27) From the inlet / outlet 54b) of the refrigerant to the second heat exchanger 54
Spills out. That is, the refrigerant that has flowed into the second heat exchanger 54 flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and flows out of the second heat exchanger 54.

【0190】除湿運転時には、第1熱交換器53の冷媒
の出口53b直前の伝熱管26が空気の流れの上流側の
列に配置されているため、冷媒絞り機構(除湿制御弁2
7)に流入する直前の冷媒は第1熱交換器53で加熱さ
れる前の空気と熱交換をすることとなり、十分な過冷却
液とすることが可能となる。これにより、冷媒絞り機構
(除湿制御弁27)に流入する冷媒は液冷媒となり、安
定した流動により減圧されるため、冷媒流動音が小さく
なる。また、十分な過冷却をとることにより、冷凍サイ
クルの圧縮比を小さくしても十分な空気の加熱及び除湿
や冷却が可能となり、少ない消費電力で所定の冷凍サイ
クルを構成することが可能となる。
In the dehumidifying operation, since the heat transfer tubes 26 immediately before the refrigerant outlet 53b of the first heat exchanger 53 are arranged in a row on the upstream side of the air flow, the refrigerant throttle mechanism (the dehumidifying control valve 2) is used.
The refrigerant immediately before flowing into 7) exchanges heat with the air before being heated in the first heat exchanger 53, so that a sufficient supercooled liquid can be obtained. As a result, the refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) becomes a liquid refrigerant and is depressurized by stable flow, so that the refrigerant flow noise is reduced. Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with low power consumption. .

【0191】また、除湿運転時には、第1熱交換器53
において、冷媒が、空気の流れの上流側の列に配置され
た伝熱管26を複数本連続して通過した直後に、冷媒絞
り機構(除湿制御弁27)に流入するような伝熱管経路
(冷媒経路)を構成するため、冷媒絞り機構(除湿制御
弁27)に流入する冷媒を冷却液化する性能がさらに向
上する。これにより、冷媒絞り機構に流入する冷媒は液
冷媒となり易く、さらに安定した流動により減圧される
ため、冷媒流動音がさらに小さくなる。また、十分な過
冷却をとることにより、冷凍サイクルの圧縮比をより小
さくしても十分な空気の加熱及び除湿や冷却が可能とな
り、より少ない消費電力で所定の冷凍サイクルを構成す
ることが可能となる。
During the dehumidifying operation, the first heat exchanger 53
In the heat transfer tube path (refrigerant), the refrigerant flows into the refrigerant throttle mechanism (dehumidification control valve 27) immediately after passing a plurality of heat transfer tubes 26 arranged in a row on the upstream side of the air flow. Since the path is configured, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) is further improved. Thus, the refrigerant flowing into the refrigerant throttle mechanism easily becomes a liquid refrigerant, and is depressurized by a more stable flow, so that the refrigerant flow noise is further reduced. In addition, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with less power consumption. Becomes

【0192】また、本実施例では、第1熱交換器53の
除湿運転時における冷媒の出口53b直前の空気の流れ
の上流側列の伝熱管26と空気の流れの下流側列の伝熱
管26との列間とに、伝熱管26列間での熱伝導をなく
すための切れ目45aを板状フィン45に設けており、
除湿運転時には、第1熱交換器53の冷媒の出口53b
直前の伝熱管26内の低温の過冷却液冷媒が、その風下
側の伝熱管26内の比較的高温の過熱もしくは気液二相
冷媒に加熱されることなく低温の空気によって十分に冷
却されるため、低温の過冷却液冷媒になる。これによ
り、このような切れ目45aを板状フィン45に設けて
いないものよりも冷媒絞り機構(除湿制御弁27)に流
入する冷媒は液冷媒となり易く、さらに安定した流動に
より減圧されるため、切れ目45aがないものよりも冷
媒流動音がさらに小さくなる。また、十分な過冷却をと
ることにより、切れ目45aがないものよりも冷凍サイ
クルの圧縮比を小さくしても十分な空気の加熱及び除湿
や冷却が可能となり、切れ目45aがないものよりもよ
りも少ない消費電力で所定の冷凍サイクルを構成するこ
とが可能となる。
In this embodiment, the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately before the refrigerant outlet 53b during the dehumidifying operation of the first heat exchanger 53 are provided. A gap 45a for eliminating heat conduction between the 26 rows of the heat transfer tubes is provided in the plate-like fin 45 between the rows.
During the dehumidifying operation, the refrigerant outlet 53b of the first heat exchanger 53
The low-temperature supercooled liquid refrigerant in the heat transfer tube 26 immediately before is sufficiently cooled by the low-temperature air without being heated by the relatively high-temperature superheat or the gas-liquid two-phase refrigerant in the heat transfer tube 26 on the leeward side. Therefore, it becomes a low-temperature supercooled liquid refrigerant. As a result, the refrigerant flowing into the refrigerant throttle mechanism (dehumidification control valve 27) is more likely to be a liquid refrigerant than the one in which such a cut 45a is not provided in the plate-like fin 45, and the pressure is reduced by a more stable flow. The refrigerant flow noise is even smaller than that without 45a. In addition, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is smaller than that having no cut 45a, sufficient heating, dehumidification and cooling of air can be performed, and the air can be cooled more than that without the cut 45a. A predetermined refrigeration cycle can be configured with low power consumption.

【0193】本実施例では、室内熱交換器41の前面上
段部分43及び前面下段部分42を第1熱交換器53と
し、除湿運転時に凝縮器として機能させ、室内熱交換器
41の背面部分44を第2熱交換器54とし、除湿運転
時に蒸発器として機能させるため、第1熱交換器53を
第2熱交換器54より大きくでき、第1熱交換器53を
通過する空気流の風速は第2熱交換器54を通過する空
気流の風速より速いため、除湿運転時に、第1熱交換器
53での加熱性能がよく、冷媒が過冷却液となりやす
い。また、第2熱交換器54を通過する空気流の風速が
遅いため、第2熱交換器54を通過する空気の除湿効率
がよい。
In the present embodiment, the upper front part 43 and the lower front part 42 of the indoor heat exchanger 41 are used as the first heat exchanger 53, function as a condenser during the dehumidifying operation, and the rear part 44 of the indoor heat exchanger 41 is used. Is used as a second heat exchanger 54 and functions as an evaporator during the dehumidifying operation. Therefore, the first heat exchanger 53 can be made larger than the second heat exchanger 54, and the wind speed of the airflow passing through the first heat exchanger 53 is Since the speed of the air flow passing through the second heat exchanger 54 is higher than the wind speed, the heating performance in the first heat exchanger 53 is good during the dehumidifying operation, and the refrigerant is liable to become a supercooled liquid. In addition, since the velocity of the airflow passing through the second heat exchanger 54 is low, the dehumidifying efficiency of the air passing through the second heat exchanger 54 is good.

【0194】また、本実施例において、第1熱交換器5
3は、空気の流れ方向に2列の伝熱管26をもち、2つ
の伝熱管経路が並列に経路構成され、冷媒絞り機構27
側の冷媒の出入口53bに近接する伝熱管26は反冷媒
絞り機構27側の冷媒の出入口53aに近接する伝熱管
26より下の段に位置し、並列に経路構成される2つの
伝熱管経路の一方は、反冷媒絞り機構27側の冷媒の出
入口53aから熱交換器上端に向かって形成し、さらに
熱交換器上端付近で空気の流れの下流側となる列に移り
熱交換器下端に向かって熱交換器中央付近まで形成し、
さらに熱交換器中央付近で空気の流れの上流側となる列
に移り熱交換器下端に向かって冷媒絞り機構27側の冷
媒の出入口53bまで形成し、並列に経路構成される2
つの伝熱管経路の他方は、反冷媒絞り機構27側の冷媒
の出入口53aから熱交換器下端に向かって熱交換器中
央付近まで形成し、さらに熱交換器中央付近で空気の流
れの下流側となる列に移り熱交換器下端に向かって形成
し、さらに熱交換器下端付近で空気の流れの上流側とな
る列に移り熱交換器上端に向かって冷媒絞り機構27側
の冷媒の出入口53bまで形成する構成としている。
In this embodiment, the first heat exchanger 5
3 has two rows of heat transfer tubes 26 in the air flow direction, two heat transfer tube paths are configured in parallel, and a refrigerant throttle mechanism 27 is provided.
Transfer tube 26 adjacent to the inlet / outlet 53b of the refrigerant on the side is located at a lower stage than the heat transfer tube 26 adjacent to the inlet / outlet 53a of the refrigerant on the side of the anti-refrigerant throttle mechanism 27, and the two heat transfer tube paths configured in parallel One is formed from the inlet / outlet 53a of the refrigerant on the side of the anti-refrigerant throttle mechanism 27 toward the upper end of the heat exchanger, and further moves to a row on the downstream side of the air flow near the upper end of the heat exchanger toward the lower end of the heat exchanger. Formed near the center of the heat exchanger,
Further, the flow shifts to a row on the upstream side of the air flow near the center of the heat exchanger, and is formed toward the lower end of the heat exchanger to the refrigerant inlet / outlet 53b on the side of the refrigerant throttle mechanism 27, and is configured in a parallel path.
The other of the two heat transfer tube paths is formed from the refrigerant inlet / outlet 53a on the side of the anti-refrigerant throttle mechanism 27 toward the heat exchanger lower end to near the center of the heat exchanger, and further near the heat exchanger center to the downstream side of the air flow. To a row that is formed toward the lower end of the heat exchanger, and further to a row that is on the upstream side of the flow of air near the lower end of the heat exchanger, and reaches the upper end of the heat exchanger to the refrigerant inlet / outlet 53b on the refrigerant throttle mechanism 27 side. It is configured to be formed.

【0195】そして、本体の前面と上面に吸い込みグリ
ル31a,31b、前面下部に吹き出し口32をそれぞ
れ有し、貫流型のファン30を内蔵する壁面設置型の空
気調和機における、前面の吸い込みグリル31aとファ
ン30との間に第1熱交換器53を配置して、前面の吸
い込みグリル31aと上面の吸い込みグリル31bの手
前側部分を通過した空気と第1熱交換器53内の冷媒と
を熱交換させ、上面の吸い込みグリル31bとファン3
0との間に第2熱交換器54を配置して、上面の吸い込
みグリル31bの奥前側部分を通過した空気と第2熱交
換器54内の冷媒とを熱交換させる。
The suction grills 31a and 31b are provided on the front and upper surfaces of the main body, and the outlet 32 is provided at the lower part of the front surface. The first heat exchanger 53 is disposed between the first heat exchanger 53 and the fan 30 to heat air passing through the front grille 31a and the front grille 31b on the upper side and the refrigerant in the first heat exchanger 53. Replace the suction grill 31b and fan 3 on the top.
The second heat exchanger 54 is arranged between the first heat exchanger 0 and the refrigerant in the second heat exchanger 54 to exchange heat with the air that has passed through the upper front portion of the suction grille 31b on the far side.

【0196】そのため、第1熱交換器53の冷媒絞り機
構27側の冷媒の出入口53bに近接する伝熱管26、
すなわち、第1熱交換器53の除湿運転時における冷媒
の出口53b直前の伝熱管26が、第1熱交換器53に
おける相対的に空気の流れの速い箇所の空気の流れの上
流側に位置することになるため、除湿運転時に第1熱交
換器53の冷媒の出口53b直前の伝熱管26を通過す
る冷媒の冷却効率が向上し、十分に冷却された低温の過
冷却液冷媒を冷媒絞り機構27に流入させることができ
る。
For this reason, the heat transfer tubes 26 in the vicinity of the refrigerant inlet / outlet 53b of the first heat exchanger 53 on the side of the refrigerant throttle mechanism 27,
That is, the heat transfer tube 26 immediately before the refrigerant outlet 53b during the dehumidifying operation of the first heat exchanger 53 is located on the upstream side of the air flow in the first heat exchanger 53 where the air flow is relatively fast. Therefore, during the dehumidifying operation, the cooling efficiency of the refrigerant passing through the heat transfer tube 26 immediately before the refrigerant outlet 53b of the first heat exchanger 53 is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant is cooled by the refrigerant throttle mechanism. 27.

【0197】また、このとき、第1熱交換器53を通過
する空気流の方向は、第1熱交換器53の空気の流れの
上流側となる列から空気の流れの下流側となる列へ向か
う第1熱交換器53の列方向成分の他に、第1熱交換器
53の上部から下部に向かう第1熱交換器53の段方向
成分があるが、除湿運転時と冷房運転時には、全体的に
見れば、第1熱交換器53の上部から下部に冷媒が流れ
る伝熱管経路となり、暖房運転時には、全体的に見れ
ば、第1熱交換器53の下部から上部に冷媒が流れる伝
熱管経路となる。したがって、第1熱交換器53におい
て、冷房運転時に冷媒流と空気流が並行流となり暖房運
転時に冷媒流と空気流が対向流となる伝熱管経路の割合
が増加し、第1熱交換器53の熱交換性能が向上する。
At this time, the direction of the air flow passing through the first heat exchanger 53 is changed from the row on the upstream side of the air flow of the first heat exchanger 53 to the row on the downstream side of the air flow. There is a stepwise component of the first heat exchanger 53 going from the upper part to the lower part of the first heat exchanger 53 in addition to the row direction component of the first heat exchanger 53 going. Viewed from a perspective, a heat transfer tube path through which the refrigerant flows from the upper portion to the lower portion of the first heat exchanger 53 is provided. Become a route. Therefore, in the first heat exchanger 53, the ratio of the heat transfer tube path in which the refrigerant flow and the air flow become parallel flow during the cooling operation and the refrigerant flow and the air flow become counter flow during the heating operation increases, and the first heat exchanger 53 The heat exchange performance is improved.

【0198】また、本実施例では、冷媒絞り機構を、全
開状態と微開状態をもつ除湿制御弁27により構成して
いるので、冷媒の流路抵抗が大きい状態と冷媒の流路抵
抗が小さい状態をもつ冷媒絞り機構を、1つの除湿制御
弁27で構成することができる。また、除湿運転時に流
路抵抗を任意に設定できるので、空気の除湿量や吹出温
度を細かく制御できる。
Further, in this embodiment, the refrigerant throttle mechanism is constituted by the dehumidification control valve 27 having the fully opened state and the slightly opened state. The refrigerant throttle mechanism having the state can be constituted by one dehumidification control valve 27. In addition, since the flow path resistance can be arbitrarily set during the dehumidifying operation, the amount of dehumidified air and the blowing temperature can be finely controlled.

【0199】(実施例3)図4は、本発明による空気調
和機の実施例3による室内機の側断面図を示す。
(Embodiment 3) FIG. 4 is a side sectional view of an indoor unit according to Embodiment 3 of the air conditioner according to the present invention.

【0200】図4において、室内機内に組み込まれた室
内熱交換器61は、くの字型に折り曲げられ前面に配置
される主第1熱交換器62と、主第1熱交換器62の前
面上部側に配置される補助第1熱交換器63と、背面に
配置され第2熱交換器74となる背面熱交換器64とに
熱的に分けられている。なお、主第1熱交換器62と補
助第1熱交換器63とで第1熱交換器73を構成してい
る。
[0200] In Fig. 4, an indoor heat exchanger 61 incorporated in an indoor unit includes a main first heat exchanger 62 which is bent in a dogleg shape and disposed on the front surface, and a front surface of the main first heat exchanger 62. It is thermally divided into an auxiliary first heat exchanger 63 disposed on the upper side and a rear heat exchanger 64 disposed on the rear side and serving as a second heat exchanger 74. The main first heat exchanger 62 and the auxiliary first heat exchanger 63 constitute a first heat exchanger 73.

【0201】また、室内熱交換器61には複数枚の板状
フィン65に貫通するように設けられた伝熱管26が、
補助第1熱交換器63では空気の流れ方向に1列で、主
第1熱交換器62と第2熱交換器74では空気の流れ方
向に2列で構成されており、各伝熱管26は端部で連結
されている。
The indoor heat exchanger 61 is provided with a heat transfer tube 26 provided to penetrate a plurality of plate-like fins 65.
The auxiliary first heat exchanger 63 has one row in the air flow direction, and the main first heat exchanger 62 and the second heat exchanger 74 have two rows in the air flow direction. Connected at the ends.

【0202】また、第1熱交換器73と第2熱交換器7
4とを、冷媒の流路抵抗が大きい状態と冷媒の流路抵抗
が小さい状態をもつ冷媒絞り機構27を介して接続して
いる。本実施例では、冷媒絞り機構27として、全開状
態と微開状態をもち、除湿運転時に微開状態となり絞り
作用を行う機能を有する除湿制御弁27を用いている。
The first heat exchanger 73 and the second heat exchanger 7
4 are connected via a refrigerant throttle mechanism 27 having a state where the flow path resistance of the refrigerant is large and a state where the flow path resistance of the refrigerant is small. In this embodiment, as the refrigerant throttle mechanism 27, a dehumidification control valve 27 having a fully opened state and a slightly opened state, and being in a slightly opened state during the dehumidifying operation and having a function of performing a throttling operation is used.

【0203】貫流ファンタイプのファン30が回転する
ことにより、前面及び上面の吸い込みグリル31a,3
1bから空気が流入し、フィルタ28を介して、室内熱
交換器61で冷媒と熱交換されたあと、ファン30を通
り、吹き出し口32から室内に吹き出されるように配置
してある。
The rotation of the once-through fan type fan 30 causes the suction grills 31a, 3a on the front and top surfaces.
Air is introduced from 1b, is exchanged with the refrigerant in the indoor heat exchanger 61 via the filter 28, and then passes through the fan 30 and is blown into the room from the outlet 32.

【0204】なお、29は背面ケーシングであり、室内
熱交換器61の背面熱交換器64(第2熱交換器74)
に対する露受皿29aが一体に形成されている。32a
は吹出口風向板、39は室内熱交換器61の主第1熱交
換器62及び補助第1熱交換器63(第1熱交換器7
3)に対する露受皿である。
Reference numeral 29 denotes a rear casing, which is a rear heat exchanger 64 of the indoor heat exchanger 61 (second heat exchanger 74).
Are integrally formed. 32a
Is an outlet wind direction plate, and 39 is a main first heat exchanger 62 and an auxiliary first heat exchanger 63 of the indoor heat exchanger 61 (first heat exchanger 7).
It is a dew saucer for 3).

【0205】実施例3の空気調和機は、多数平行に並べ
られた板状フィン65に直角に挿通され内部を冷媒が流
動する伝熱管26が空気の流れ方向に2列(一部3列)
に構成されたフィンチューブ形室内熱交換器61を、空
気の流れ方向と略直角な段方向に熱的に第1熱交換器7
3と第2熱交換器74とに分割するとともに、第1熱交
換器73と第2熱交換器74とを冷媒の流路抵抗が大き
い状態と冷媒の流路抵抗が小さい状態をもつ冷媒絞り機
構27(全開状態と微開状態をもち、除湿運転時に微開
状態となり絞り作用を行う機能を有する除湿制御弁2
7)を介して接続して、冷房運転時と除湿運転時に第1
熱交換器73から第2熱交換器74へ冷媒が流れ、暖房
運転時に第2熱交換器74から第1熱交換器73へ冷媒
が流れるように冷凍サイクルを構成し、除湿運転時に冷
媒絞り機構27を冷媒の流路抵抗が大きい状態にして第
1熱交換器73で室内の空気を加熱しながら第2熱交換
器74で室内の空気を除湿することができるようにした
空気調和機において、除湿運転時における第1熱交換器
73の冷媒の入り口73a直後の伝熱管26と冷媒の出
口73b直前の伝熱管26を空気の流れの上流側の列に
配置し、除湿運転時における第2熱交換器74の冷媒の
入り口74a直後の伝熱管26を空気の流れの上流側の
列、冷媒の出口74b直前の伝熱管26を空気の流れの
下流側の列にそれぞれ配置したものである。
In the air conditioner of the third embodiment, the heat transfer tubes 26, which are inserted at right angles through the plate-like fins 65 arranged in parallel and through which the refrigerant flows, are arranged in two rows (partly three rows) in the air flow direction.
The fin tube type indoor heat exchanger 61 constructed as described above is thermally transferred to the first heat exchanger 7 in a step direction substantially perpendicular to the air flow direction.
3 and a second heat exchanger 74, and the first heat exchanger 73 and the second heat exchanger 74 are refrigerant throttles having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is small. Mechanism 27 (dehumidification control valve 2 having a fully opened state and a slightly opened state, which is slightly opened during the dehumidifying operation and has a function of performing a throttling operation.
7) during cooling operation and dehumidifying operation.
The refrigeration cycle is configured such that the refrigerant flows from the heat exchanger 73 to the second heat exchanger 74, and the refrigerant flows from the second heat exchanger 74 to the first heat exchanger 73 during the heating operation, and the refrigerant throttle mechanism during the dehumidifying operation. In the air conditioner in which the indoor air is dehumidified by the second heat exchanger 74 while the indoor air is heated by the first heat exchanger 73 while the flow path resistance of the refrigerant is set to be large, The heat transfer tubes 26 immediately before the refrigerant inlet 73a and the heat transfer tubes 26 immediately before the refrigerant outlet 73b of the first heat exchanger 73 in the dehumidifying operation are arranged in a row on the upstream side of the air flow, and the second heat The heat transfer tubes 26 immediately after the refrigerant inlet 74a of the exchanger 74 are arranged in a row on the upstream side of the air flow, and the heat transfer tubes 26 immediately before the refrigerant outlet 74b are arranged in a row on the downstream side of the air flow.

【0206】なお、第1熱交換器73は、除湿運転時
に、冷媒が、除湿運転時の冷媒の入り口73aから流入
し、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて除湿運転時の冷媒の出口73b
から流出するように伝熱管経路が構成されている。
In the first heat exchanger 73, during the dehumidifying operation, the refrigerant flows through the refrigerant inlet 73a during the dehumidifying operation, flows in the same direction as the air flow, and then faces the air flow. 73b of refrigerant at the time of the dehumidifying operation
The heat transfer tube path is configured to flow out of the heat transfer tube.

【0207】詳細に説明すると、第1熱交換器73は、
空気の流れ方向に2列の伝熱管26をもち2つの伝熱管
経路が並列に経路構成される主第1熱交換器62と、空
気の流れ方向に1列の伝熱管26をもち主第1熱交換器
62よりも空気の流れ方向と略直角な段方向の長さが短
い補助第1熱交換器63とからなり、除湿運転時に、冷
媒が、除湿運転時の冷媒の入り口73aから補助第1熱
交換器63に流入して、補助第1熱交換器63の複数本
(4本)の伝熱管26を連続して通過した後に補助第1
熱交換器63から流出し、2つの伝熱管経路へ分流され
て主第1熱交換器62に流入し、それぞれの伝熱管経路
において、まず、空気の流れの上流側の列の複数本の伝
熱管26を所定本数(2,3本)連続して通過し、次に
空気の流れの下流側の列の複数本の伝熱管26を(4,
5本)連続して通過した後、空気の流れの上流側の列の
残りの伝熱管を(3本)連続して通過して、合流し除湿
運転時の冷媒の出口73bから流出するように構成され
ており、補助第1熱交換器63が、主第1熱交換器62
の空気の流れの上流側で、かつ主第1熱交換器62の冷
房運転時および除湿運転時における冷媒の出口73b直
前の伝熱管26の空気の流れの上流側に位置しないよう
に配置されている。
More specifically, the first heat exchanger 73 includes:
A main first heat exchanger 62 having two rows of heat transfer tubes 26 in the air flow direction and two heat transfer tube paths arranged in parallel, and a main first heat exchanger 62 having one row of heat transfer tubes 26 in the air flow direction. An auxiliary first heat exchanger 63 having a shorter length in a step direction substantially perpendicular to the direction of air flow than the heat exchanger 62. In the dehumidifying operation, the refrigerant flows from the inlet 73a of the refrigerant in the dehumidifying operation to the auxiliary first heat exchanger 63. After flowing into the first heat exchanger 63 and continuously passing through a plurality of (four) heat transfer tubes 26 of the auxiliary first heat exchanger 63, the auxiliary first
It flows out of the heat exchanger 63, is divided into two heat transfer tube paths, and flows into the main first heat exchanger 62. In each heat transfer tube path, first, a plurality of transfer lines in an upstream row of the air flow. A predetermined number (two or three) of the heat pipes 26 are continuously passed through the heat pipes 26, and then a plurality of the heat transfer pipes 26 in the row on the downstream side of the air flow (4, 4).
5) After passing continuously, the remaining three heat transfer tubes in the row on the upstream side of the air flow pass continuously (3 tubes), merge, and flow out of the refrigerant outlet 73b during the dehumidifying operation. The auxiliary first heat exchanger 63 is configured so that the main first heat exchanger 62
Is arranged so as not to be located on the upstream side of the air flow of the first heat exchanger 62 and on the upstream side of the air flow of the heat transfer tube 26 immediately before the refrigerant outlet 73b during the cooling operation and the dehumidifying operation of the main first heat exchanger 62. I have.

【0208】また、第1熱交換器73(主第1熱交換器
62)の除湿運転時における冷媒の出口73b直前の空
気の流れの上流側列の伝熱管26と空気の流れの下流側
列の伝熱管26との列間に、伝熱管26列間での熱伝導
をなくすための切れ目65aを板状フィン65に設けて
いる。
Further, during the dehumidifying operation of the first heat exchanger 73 (main first heat exchanger 62), the heat transfer tubes 26 in the upstream row of the air flow and the downstream row of the air flow immediately before the outlet 73b of the refrigerant. A cut 65 a for eliminating heat conduction between the rows of the heat transfer tubes 26 is provided in the plate-like fin 65 between the rows of the heat transfer tubes 26.

【0209】また、第1熱交換器73の除湿運転時にお
ける冷媒の入り口73a直後の空気の流れの上流側列の
伝熱管26と空気の流れの下流側列の伝熱管26との列
間(主第1熱交換器62と補助第1熱交換器63との
間)に、伝熱管26列間(主第1熱交換器62と補助第
1熱交換器63との間)での熱伝導をなくすための切れ
目65bを板状フィン65に設けて、板状フィン65を
主第1熱交換器62用と補助第1熱交換器63用とに2
分割している。
In addition, during the dehumidifying operation of the first heat exchanger 73, the space between the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately after the inlet 73a of the refrigerant. Heat conduction between the 26 rows of heat transfer tubes (between the main first heat exchanger 62 and the auxiliary first heat exchanger 63) between the main first heat exchanger 62 and the auxiliary first heat exchanger 63). The plate fins 65 are provided with cuts 65b for eliminating the fins, and the plate fins 65 are provided for the main first heat exchanger 62 and the auxiliary first heat exchanger 63.
Divided.

【0210】また、室内熱交換器61を収納する室内機
は、貫流型のファン30を内蔵し、室内機本体の前面と
上面に吸い込みグリル31a,31bを有するものであ
り、室内熱交換器61を構成する第1熱交換器73は、
前面の吸い込みグリル31aとファン30との間に位置
して、前面の吸い込みグリル31aと上面の吸い込みグ
リル31bの手前側部分を通過した空気と熱交換し、室
内熱交換器61を構成する第2熱交換器74は、上面の
吸い込みグリル31bとファン30との間に位置して、
上面の吸い込みグリル31bの奥前側部分を通過した空
気と熱交換する構成となっている。
[0210] The indoor unit accommodating the indoor heat exchanger 61 incorporates the once-through fan 30, and has suction grills 31a and 31b on the front and upper surfaces of the indoor unit main body. The first heat exchanger 73 constituting
A second heat exchanger, which is located between the front suction grill 31a and the fan 30, exchanges heat with air passing through the front suction grill 31a and the front side of the upper suction grill 31b and constitutes the indoor heat exchanger 61. The heat exchanger 74 is located between the suction grill 31b on the upper surface and the fan 30,
The heat exchange is performed with the air that has passed through the back side of the suction grill 31b on the upper surface.

【0211】また、第1熱交換器73の除湿運転時にお
ける冷媒の出口73b直前の空気の流れの上流側列の伝
熱管26は、第1熱交換器73における相対的に空気の
流れの速い箇所に配置されている。
Further, during the dehumidifying operation of the first heat exchanger 73, the heat transfer tubes 26 in the upstream row of the air flow immediately before the outlet 73b of the refrigerant have a relatively high air flow in the first heat exchanger 73. It is located at the place.

【0212】また、実施例3の熱交換器ユニットは、多
数平行に並べられた板状フィン65に直角に挿通され内
部を冷媒が流動する伝熱管26が空気の流れ方向に2列
(一部3列)に構成され、2つの冷媒の出入口73a,
73bに近接する伝熱管26がともに空気の流れの上流
側となる列に配置されたフィンチューブ形の第1熱交換
器73と、多数平行に並べられた板状フィン65に直角
に挿通され内部を冷媒が流動する伝熱管26が空気の流
れ方向に複数列に構成され、2つの冷媒の出入口74
a,74bのうち一方の冷媒の出入口74aに近接する
伝熱管26が空気の流れの上流側となる列に配置され他
方の冷媒の出入口74bに近接する伝熱管26が空気の
流れの下流側となる列に配置されたフィンチューブ形の
第2熱交換器74と、第1熱交換器73の2つの冷媒の
出入口73a,73bのうち一方の冷媒の出入口73b
と第2熱交換器74の空気の流れの上流側となる列に配
置された冷媒の出入口74aとを接続する接続管の途中
に設けられた冷媒の流路抵抗が大きい状態と冷媒の流路
抵抗が小さい状態をもつ冷媒絞り機構27とにより構成
され、第1熱交換器73と第2熱交換器74とが空気の
流れの方向で重ならないように第1熱交換器73と第2
熱交換器74とを配置している。
In the heat exchanger unit according to the third embodiment, the heat transfer tubes 26 which are inserted at right angles through the plate-like fins 65 arranged in parallel and through which the refrigerant flows are arranged in two rows (partly) in the air flow direction. 3), and two refrigerant inlets / outlets 73a,
The heat transfer tubes 26 adjacent to 73b are inserted through the fin tube-shaped first heat exchangers 73 arranged in a row on the upstream side of the air flow, and the plate-like fins 65 arranged in parallel at right angles. The heat transfer tubes 26 through which the refrigerant flows are formed in a plurality of rows in the air flow direction, and the two refrigerant inlets / outlets 74.
a, 74b, the heat transfer tubes 26 adjacent to the inlet / outlet 74a of the refrigerant are arranged in a row on the upstream side of the air flow, and the heat transfer tubes 26 adjacent to the inlet / outlet 74b of the other refrigerant are connected to the downstream side of the air flow. And a second heat exchanger 74 of a fin tube type arranged in a row, and one of the two refrigerant outlets 73a, 73b of the first heat exchanger 73.
A state in which the flow path resistance of the refrigerant provided in the middle of the connection pipe connecting the refrigerant to the inlet / outlet 74a of the refrigerant arranged in the row on the upstream side of the air flow of the second heat exchanger 74 is large. The first heat exchanger 73 and the second heat exchanger 74 are configured so as not to overlap in the direction of air flow so that the first heat exchanger 73 and the second heat exchanger 74 do not overlap in the direction of air flow.
A heat exchanger 74 is provided.

【0213】なお、第1熱交換器73は、反冷媒絞り機
構27側の冷媒の出入口73aから冷媒絞り機構27側
の冷媒の出入口73bへ冷媒を流した場合に、冷媒が、
反冷媒絞り機構27側の冷媒の出入口73aから流入し
て、空気流と同じ方向に冷媒が流れた後、空気流と対向
する方向に冷媒が流れて、冷媒絞り機構27側の冷媒の
出入口73bから流出するように伝熱管経路が構成され
ている。
When the refrigerant flows from the refrigerant inlet / outlet 73a on the anti-refrigerant throttle mechanism 27 side to the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side, the first heat exchanger 73
After flowing in from the refrigerant inlet / outlet 73a on the side of the anti-refrigerant throttle mechanism 27 and flowing in the same direction as the air flow, the refrigerant flows in the direction opposite to the air flow and the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side. The heat transfer tube path is configured to flow out of the heat transfer tube.

【0214】詳細に説明すると、第1熱交換器73は、
空気の流れ方向に2列の伝熱管26をもち2つの伝熱管
経路が並列に経路構成される主第1熱交換器62と、空
気の流れ方向に1列の伝熱管26をもち主第1熱交換器
62よりも空気の流れ方向と略直角な段方向の長さが短
い補助第1熱交換器63とからなり、反冷媒絞り機構2
7側の冷媒の出入口73aから冷媒絞り機構27側の冷
媒の出入口73bへ冷媒を流した場合に、冷媒が、反冷
媒絞り機構27側の冷媒の出入口73aから補助第1熱
交換器63に流入して、補助第1熱交換器63の複数本
(4本)の伝熱管26を連続して通過した後に補助第1
熱交換器63から流出し、2つの伝熱管経路へ分流され
て主第1熱交換器62に流入し、それぞれの伝熱管経路
において、まず、空気の流れの上流側となる列の複数本
の伝熱管を所定本数(2,3本)連続して通過し、次に
空気の流れの下流側となる列の複数本の伝熱管を(4,
5本)連続して通過した後、空気の流れの上流側となる
列の残りの伝熱管を(3本)連続して通過して、合流し
冷媒絞り機構27側の冷媒の出入口73bから流出する
ように構成されており、補助第1熱交換器63が、主第
1熱交換器62の空気の流れの上流側で、かつ冷媒絞り
機構27側の冷媒の出入口73bに近接する主第1熱交
換器62の伝熱管26の空気の流れの上流側に位置しな
いように配置されているものである。
More specifically, the first heat exchanger 73 includes:
A main first heat exchanger 62 having two rows of heat transfer tubes 26 in the air flow direction and two heat transfer tube paths arranged in parallel, and a main first heat exchanger 62 having one row of heat transfer tubes 26 in the air flow direction. An auxiliary first heat exchanger 63 having a shorter length in a step direction substantially perpendicular to the air flow direction than the heat exchanger 62;
When the refrigerant flows from the inlet / outlet 73a of the refrigerant on the 7th side to the inlet / outlet 73b of the refrigerant on the refrigerant throttle mechanism 27 side, the refrigerant flows into the auxiliary first heat exchanger 63 from the inlet / outlet 73a of the refrigerant on the anti-refrigerant throttle mechanism 27 side. Then, after successively passing through a plurality of (four) heat transfer tubes 26 of the auxiliary first heat exchanger 63, the auxiliary first heat exchanger 63
After flowing out of the heat exchanger 63, it is divided into two heat transfer tube paths and flows into the main first heat exchanger 62. In each of the heat transfer tube paths, first, a plurality of rows in an upstream row of the air flow are provided. A predetermined number (2,3) of the heat transfer tubes are continuously passed through the heat transfer tubes, and then a plurality of the heat transfer tubes in the row on the downstream side of the air flow are passed through the heat transfer tubes (4, 4).
5) After passing continuously, the remaining three heat transfer tubes in the row on the upstream side of the air flow continuously pass (three), and merge and flow out of the refrigerant inlet / outlet 73b of the refrigerant throttle mechanism 27 side. The auxiliary first heat exchanger 63 is configured such that the main first heat exchanger 63 is located on the upstream side of the air flow of the main first heat exchanger 62 and close to the refrigerant inlet / outlet 73 b on the refrigerant throttle mechanism 27 side. The heat exchanger 62 is arranged so as not to be located on the upstream side of the flow of air in the heat transfer tube 26 of the heat exchanger 62.

【0215】また、第1熱交換器73は、空気の流れ方
向に2列の伝熱管26をもち2つの伝熱管経路が並列に
経路構成される主第1熱交換器62と、空気の流れ方向
に1列の伝熱管26をもち主第1熱交換器62よりも空
気の流れ方向と略直角な段方向の長さが短い補助第1熱
交換器63とからなり、冷媒絞り機構27側の冷媒の出
入口73bに近接する主第1熱交換器62の伝熱管26
は、反冷媒絞り機構27側の冷媒の出入口73aに近接
する補助第1熱交換器63の伝熱管26より下の段に位
置し、補助第1熱交換器63の伝熱管経路は、補助第1
熱交換器63の下端付近に配置された反冷媒絞り機構2
7側の冷媒の出入口73aからから熱交換器上端に向か
って熱交換器上端付近の伝熱管26まで形成し、主第1
熱交換器62の並列に経路構成される2つの伝熱管経路
の一方は、補助第1熱交換器63の熱交換器上端付近の
伝熱管26と接続される分流部26aから熱交換器上端
に向かって形成し、さらに熱交換器上端付近で空気の流
れの下流側となる列に移り熱交換器下端に向かって熱交
換器中央付近まで形成し、さらに熱交換器中央付近で空
気の流れの上流側となる列に移り熱交換器下端に向かっ
て冷媒絞り機構27側の冷媒の出入口73bまで形成
し、主第1熱交換器62の並列に経路構成される2つの
伝熱管経路の他方は、補助第1熱交換器63の熱交換器
上端付近の伝熱管26と接続される分流部26aから熱
交換器下端に向かって熱交換器中央付近まで形成し、さ
らに熱交換器中央付近で空気の流れの下流側となる列に
移り熱交換器下端に向かって形成し、さらに熱交換器下
端付近で空気の流れの上流側となる列に移り熱交換器上
端に向かって冷媒絞り機構27側の冷媒の出入口73b
まで形成する構成としたものである。
The first heat exchanger 73 has a main first heat exchanger 62 having two rows of heat transfer tubes 26 in the air flow direction and two heat transfer tube paths arranged in parallel with each other. Auxiliary first heat exchanger 63 having one row of heat transfer tubes 26 in the direction and having a shorter step length substantially perpendicular to the air flow direction than main first heat exchanger 62, Transfer tube 26 of the main first heat exchanger 62 near the inlet / outlet 73b of the refrigerant
Is located at a lower stage than the heat transfer tube 26 of the auxiliary first heat exchanger 63 near the refrigerant inlet / outlet 73a on the side of the anti-refrigerant throttle mechanism 27, and the heat transfer tube path of the auxiliary first heat exchanger 63 is 1
Anti-refrigerant throttle mechanism 2 arranged near the lower end of heat exchanger 63
The heat transfer tube 26 near the heat exchanger upper end is formed from the refrigerant inlet / outlet 73a on the seventh side toward the heat exchanger upper end.
One of the two heat transfer tube paths configured in parallel with the heat exchanger 62 is connected from the branch portion 26a connected to the heat transfer tube 26 near the upper end of the heat exchanger of the auxiliary first heat exchanger 63 to the upper end of the heat exchanger. To the row near the upper end of the heat exchanger to the downstream side of the air flow, and then to the lower end of the heat exchanger to the vicinity of the center of the heat exchanger. The other of the two heat transfer tube paths which are formed in parallel to the main first heat exchanger 62 are formed by moving to the row on the upstream side and extending toward the lower end of the heat exchanger to the inlet / outlet 73b of the refrigerant on the refrigerant throttle mechanism 27 side. The auxiliary first heat exchanger 63 is formed from the branch part 26a connected to the heat transfer tube 26 near the upper end of the heat exchanger to the lower end of the heat exchanger to the center of the heat exchanger, and further to the air near the center of the heat exchanger. To the row downstream of the heat flow to the bottom of the heat exchanger Selfish formed, further the heat exchanger bottom end vicinity in toward the upstream side to become transfer heat exchanger upper column of air flow the refrigerant throttle mechanism 27 side of the refrigerant entrance 73b
It is configured to be formed up to.

【0216】また、第1熱交換器73(主第1熱交換器
62)の冷媒絞り機構27側の冷媒の出入口73bに近
接する空気の流れの上流側となる列の伝熱管26と空気
の流れの下流側となる列の伝熱管26との列間に、伝熱
管26列間での熱伝導をなくすための切れ目65aを板
状フィン65に設けている。
Further, the heat transfer tubes 26 in the row on the upstream side of the flow of air near the refrigerant inlet / outlet 73b on the side of the refrigerant throttle mechanism 27 of the first heat exchanger 73 (main first heat exchanger 62) are connected to the air. A cut 65 a for eliminating heat conduction between the rows of the heat transfer tubes 26 is provided in the plate-like fin 65 between the rows on the downstream side of the flow and the rows of the heat transfer tubes 26.

【0217】また、第1熱交換器73(主第1熱交換器
62)の反冷媒絞り機構27側の冷媒の出入口73aに
近接する空気の流れの上流側となる列の伝熱管26と空
気の流れの下流側となる列の伝熱管26との列間(主第
1熱交換器62と補助第1熱交換器63との間)に、伝
熱管26列間(主第1熱交換器62と補助第1熱交換器
63との間)での熱伝導をなくすための切れ目65bを
板状フィン65に設けて、板状フィン65を主第1熱交
換器62用と補助第1熱交換器63用とに2分割してい
る。
The heat transfer tubes 26 in the row on the upstream side of the flow of air near the refrigerant inlet / outlet 73a of the first heat exchanger 73 (main first heat exchanger 62) on the side opposite to the refrigerant throttle mechanism 27 are connected. Between the rows of the heat transfer tubes 26 (between the main first heat exchanger 62 and the auxiliary first heat exchanger 63) between the rows of the heat transfer tubes 26 on the downstream side of the flow of heat (the main first heat exchanger). A cut 65b for eliminating heat conduction between the first heat exchanger 62 and the auxiliary first heat exchanger 63 is provided on the plate-like fin 65, and the plate-like fin 65 is used for the main first heat exchanger 62 and the auxiliary first heat exchanger 63. It is divided into two parts for the exchanger 63.

【0218】実施例3の空気調和機の全体の冷凍サイク
ルは、図2に示された実施例1の空気調和機の全体の冷
凍サイクルにおいて、第1熱交換器33の代わりに第1
熱交換器73を設け、第2熱交換器34の代わりに第2
熱交換器74を設けたものに相当する。
The entire refrigeration cycle of the air conditioner of the third embodiment is the same as that of the entire refrigeration cycle of the air conditioner of the first embodiment shown in FIG.
A heat exchanger 73 is provided, and a second heat exchanger 34 is provided instead of the second heat exchanger 34.
This is equivalent to the one provided with the heat exchanger 74.

【0219】まず、冷房運転時には、四方弁36を冷房
側に切り替え、除湿制御弁27を開き電動膨張弁38を
適当に絞ることにより、圧縮機35、四方弁36、室外
熱交換器37、電動膨張弁38、室内熱交換器61の第
1熱交換器73(補助第1熱交換器63、主第1熱交換
器62)、全開状態の除湿制御弁27、室内熱交換器6
1の第2熱交換器74(背面熱交換器64)、四方弁3
6、圧縮機35の順に冷媒経路を構成し、室外熱交換器
37を凝縮器、室内熱交換器61全体を蒸発器として作
用させる。
First, during the cooling operation, the four-way valve 36 is switched to the cooling side, the dehumidification control valve 27 is opened, and the electric expansion valve 38 is appropriately throttled, so that the compressor 35, the four-way valve 36, the outdoor heat exchanger 37 Expansion valve 38, first heat exchanger 73 of indoor heat exchanger 61 (auxiliary first heat exchanger 63, main first heat exchanger 62), fully open dehumidification control valve 27, indoor heat exchanger 6
1 second heat exchanger 74 (back heat exchanger 64), four-way valve 3
6, a refrigerant path is formed in the order of the compressor 35, the outdoor heat exchanger 37 acts as a condenser, and the entire indoor heat exchanger 61 acts as an evaporator.

【0220】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器61を通過する。そして、室内熱交換器61で冷却
され、ファン30を通り、吹き出し口32から室内に吹
き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a, 31a on the front and upper surfaces.
b, and passes through the indoor heat exchanger 61 after being removed by the filter 28. Then, the air is cooled by the indoor heat exchanger 61, passes through the fan 30, and is blown into the room from the outlet 32.

【0221】このとき、冷房運転時の室内熱交換器61
の冷媒の入り口73aは、第1熱交換器73の反冷媒絞
り機構27側の冷媒の出入口73aであり、その直後の
伝熱管26は空気の流れの上流側となる。また、冷房運
転時の室内熱交換器61の冷媒の出口74bは、第2熱
交換器74の反冷媒絞り機構27側の冷媒の出入口74
bであり、その直前の伝熱管26は空気の流れの下流側
となる。また、冷房運転時の第2熱交換器74の冷媒の
入り口74aは、第2熱交換器74の冷媒絞り機構27
側の冷媒の出入口74aであり、その直後の伝熱管26
は空気の流れの上流側となる。
At this time, the indoor heat exchanger 61 during the cooling operation
Is the refrigerant inlet / outlet 73a of the first heat exchanger 73 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately after the inlet 73a is on the upstream side of the flow of air. The refrigerant outlet 74b of the indoor heat exchanger 61 during the cooling operation is connected to the refrigerant inlet / outlet 74 of the second heat exchanger 74 on the side opposite to the refrigerant throttle mechanism 27.
b, and the heat transfer tube 26 immediately before that is downstream of the flow of air. The refrigerant inlet 74a of the second heat exchanger 74 during the cooling operation is connected to the refrigerant throttle mechanism 27 of the second heat exchanger 74.
Side refrigerant inlet / outlet 74a, and the heat transfer tube 26
Is upstream of the air flow.

【0222】このとき、室内熱交換器61において、冷
媒が、冷房運転時の第1熱交換器73の冷媒の入り口7
3a(反冷媒絞り機構27側の冷媒の出入口73a)か
ら第1熱交換器73を構成する2つの熱交換器62,6
3の内、空気の流れの上流側に位置する補助第1熱交換
器63内に流入して、補助第1熱交換器63の複数本
(4本)の伝熱管26を連続して通過した後に補助第1
熱交換器63から流出し、分流部26aで2つの伝熱管
経路へ分流されて主第1熱交換器62に流入し、主第1
熱交換器62のそれぞれの伝熱管経路において、まず、
空気の流れの上流側となる列の複数本の伝熱管26を所
定本数(2,3本)連続して通過し、次に空気の流れの
下流側となる列の複数本の伝熱管26を(4,5本)連
続して通過した後、空気の流れの上流側となる列の残り
の伝熱管26を(3本)連続して通過して、合流し、冷
房運転時の第1熱交換器73の冷媒の出口73b(冷媒
絞り機構27側の冷媒の出入口73b)から第1熱交換
器73外(主第1熱交換器62外)へ流出する。すなわ
ち、第1熱交換器73内に流入した冷媒は、冷媒流と空
気流が並行流となる伝熱管経路(冷媒経路)を流れた
後、冷媒流と空気流が対向流となる伝熱管経路(冷媒経
路)を流れて第1熱交換器73外へ流出する。その後、
全開状態の除湿制御弁27を経て、冷房運転時の第2熱
交換器74の冷媒の入り口74a(冷媒絞り機構27側
の冷媒の出入口74a)から第2熱交換器74内へ流入
した冷媒は、2つの伝熱管経路へ分流され、それぞれの
伝熱管経路において、まず、空気の流れの上流側となる
列の複数本の伝熱管26を3本連続して通過し、次に空
気の流れの下流側となる列の複数本の伝熱管26を3本
連続して通過して、合流し、冷房運転時の第2熱交換器
74の冷媒の出口74b(反冷媒絞り機構27側の冷媒
の出入口74b)から第2熱交換器74外へ流出する。
すなわち、第2熱交換器74内に流入した冷媒は、冷媒
流と空気流が並行流となる伝熱管経路(冷媒経路)を流
れて、第2熱交換器74外へ流出する。
At this time, in the indoor heat exchanger 61, the refrigerant flows into the refrigerant inlet 7 of the first heat exchanger 73 during the cooling operation.
The two heat exchangers 62 and 6 constituting the first heat exchanger 73 from 3a (the refrigerant inlet / outlet 73a on the anti-refrigerant throttle mechanism 27 side).
3, the air flows into the auxiliary first heat exchanger 63 located on the upstream side of the air flow, and continuously passes through a plurality of (four) heat transfer tubes 26 of the auxiliary first heat exchanger 63. Later assist 1
It flows out of the heat exchanger 63, is divided into two heat transfer pipe paths at the branch part 26a, flows into the main first heat exchanger 62, and
In each heat transfer tube path of the heat exchanger 62, first,
A predetermined number (two or three) of the plurality of heat transfer tubes continuously pass through the plurality of rows of the heat transfer tubes 26 on the upstream side of the air flow, and then the plurality of heat transfer tubes 26 of the row on the downstream side of the air flow pass through the plurality of heat transfer tubes 26. After passing continuously (4, 5), the remaining heat transfer tubes 26 in the row on the upstream side of the air flow (3) continuously pass and merge to form the first heat during cooling operation. The refrigerant flows out of the first heat exchanger 73 (outside the main first heat exchanger 62) from the refrigerant outlet 73b of the exchanger 73 (the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side). That is, the refrigerant that has flowed into the first heat exchanger 73 flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through the heat transfer tube path in which the refrigerant flow and the air flow flow in opposite directions. (Refrigerant path) and flows out of the first heat exchanger 73. afterwards,
The refrigerant flowing into the second heat exchanger 74 from the refrigerant inlet 74a of the second heat exchanger 74 (the refrigerant inlet / outlet 74a on the refrigerant throttle mechanism 27 side) during the cooling operation via the dehumidification control valve 27 in the fully open state is The flow is divided into two heat transfer pipe paths, and in each heat transfer pipe path, first, three successive heat transfer pipes 26 in a row on the upstream side of the air flow are successively passed. After passing three heat transfer tubes 26 in a row on the downstream side in a row, the three heat transfer tubes 26 merge and merge, and the refrigerant outlet 74b of the second heat exchanger 74 during the cooling operation (the refrigerant outlet 74b of the anti-refrigerant throttle mechanism 27 side). It flows out of the second heat exchanger 74 through the entrance 74b).
That is, the refrigerant that has flowed into the second heat exchanger 74 flows out of the second heat exchanger 74 through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel.

【0223】したがって、冷房運転時には、第1熱交換
器73の伝熱管経路(冷媒経路)の冷媒流の前半部分と
第2熱交換器74が、冷媒流と空気流が並行流となる伝
熱管経路(冷媒経路)となり、全体として冷媒流と空気
流が並行流となり、冷媒流と空気流が並行流となる伝熱
管経路(冷媒経路)では、圧力損失によって順次冷媒温
度が低下する蒸発器において、空気の流れ方向に対し
て、冷媒の温度勾配と空気の温度勾配が常にある温度差
をもって、効率的に空気を冷却できる。なお、第1熱交
換器73の伝熱管経路(冷媒経路)の冷媒流の後半部分
が、冷媒流と空気流が対向流となる伝熱管経路(冷媒経
路)となるが、この部分は、第1熱交換器73の冷媒流
の前半部分で加熱されて気液二相状態となった冷媒が流
れ、冷媒の温度変化はほとんどなく、冷媒流と空気流が
対向流となっていることによる悪影響ははとんどない。
したがって、従来の冷房運転時に冷媒流と空気流が並行
流となる室内側熱交換器を有する空気調和機と基本性能
はほとんど変わらない。
Therefore, during the cooling operation, the first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger 73 and the second heat exchanger 74 form a heat transfer tube in which the refrigerant flow and the air flow are parallel. In the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow become parallel flows as a whole, and the refrigerant flow and the air flow become parallel flows, in the evaporator where the refrigerant temperature sequentially decreases due to pressure loss The air can be cooled efficiently with a constant temperature difference between the refrigerant temperature gradient and the air temperature gradient with respect to the air flow direction. The second half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the first heat exchanger 73 is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other. (1) The refrigerant that has been heated in the first half of the refrigerant flow of the heat exchanger 73 and is in a gas-liquid two-phase state flows, and there is almost no change in the temperature of the refrigerant. There is no end.
Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in a parallel flow during the cooling operation.

【0224】また、冷房運転時には、補助第1熱交換器
63の後に冷媒が流れる主第1熱交換器62には2つの
伝熱管経路が並列に経路構成されているので、冷房運転
時の圧力損失が小さくなり、性能低下を防ぐことができ
る。なお、補助第1熱交換器63の伝熱管経路は1つで
あるが、冷房運転時に補助第1熱交換器63を流れる冷
媒は、乾き度が低いことから圧力損失がそれほど大きく
ならない。
In the cooling operation, the main first heat exchanger 62 through which the refrigerant flows after the auxiliary first heat exchanger 63 has two heat transfer tube paths arranged in parallel. Loss is reduced, and performance degradation can be prevented. Although the auxiliary first heat exchanger 63 has one heat transfer tube path, the pressure loss of the refrigerant flowing through the auxiliary first heat exchanger 63 during the cooling operation is not so large because the dryness is low.

【0225】次に、暖房運転時には、四方弁36を暖房
側に切り替え、除湿制御弁27を開き電動膨張弁38を
適当に絞ることにより、圧縮機35、四方弁36、室内
熱交換器61の第2熱交換器74(背面熱交換器6
4)、全開状態の除湿制御弁27、室内熱交換器61の
第1熱交換器73(主第1熱交換器62、補助第1熱交
換器63)、電動膨張弁38、室外熱交換器37、四方
弁36、圧縮機35の順に冷媒経路を構成し、室外熱交
換器37を蒸発器、室内熱交換器61全体を凝縮器とし
て作用させる。
Next, during the heating operation, the four-way valve 36 is switched to the heating side, the dehumidification control valve 27 is opened, and the electric expansion valve 38 is appropriately throttled, so that the compressor 35, the four-way valve 36, and the indoor heat exchanger 61 are controlled. The second heat exchanger 74 (the rear heat exchanger 6)
4), the dehumidification control valve 27 in the fully open state, the first heat exchanger 73 of the indoor heat exchanger 61 (main first heat exchanger 62, auxiliary first heat exchanger 63), the electric expansion valve 38, the outdoor heat exchanger A refrigerant path is formed in the order of 37, the four-way valve 36, and the compressor 35, and the outdoor heat exchanger 37 functions as an evaporator, and the entire indoor heat exchanger 61 functions as a condenser.

【0226】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器61を通過する。そして、室内熱交換器61で加熱
され、ファン30を通り、吹き出し口32から室内に吹
き出される。
When the fan 30 is rotated, the indoor air is drawn into the suction grills 31a, 31a on the front and upper surfaces.
b, and passes through the indoor heat exchanger 61 after being removed by the filter 28. Then, the air is heated by the indoor heat exchanger 61, passes through the fan 30, and is blown into the room through the blowout port 32.

【0227】このとき、暖房運転時の室内熱交換器61
の冷媒の入り口74bは、第2熱交換器74の反冷媒絞
り機構27側の冷媒の出入口74bであり、その直後の
伝熱管26は空気の流れの下流側となる。また、暖房運
転時の室内熱交換器61の冷媒の出口73aは、第1熱
交換器73の反冷媒絞り機構27側の冷媒の出入口73
aであり、その直前の伝熱管26は空気の流れの上流側
となる。また、暖房運転時の第2熱交換器74の冷媒の
出口74aは、第2熱交換器74の冷媒絞り機構27側
の冷媒の出入口74aであり、その直前の伝熱管26は
空気の流れの上流側となる。
At this time, the indoor heat exchanger 61 during the heating operation
The refrigerant inlet 74b is the refrigerant inlet / outlet 74b of the second heat exchanger 74 on the side opposite to the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately behind the refrigerant inlet 74b is downstream of the flow of air. Further, the refrigerant outlet 73a of the indoor heat exchanger 61 during the heating operation is connected to the refrigerant inlet / outlet 73 of the first heat exchanger 73 on the side opposite to the refrigerant throttle mechanism 27.
a, and the heat transfer tube 26 immediately before that is upstream of the flow of air. The outlet 74a of the refrigerant of the second heat exchanger 74 during the heating operation is the inlet / outlet 74a of the refrigerant on the side of the refrigerant throttle mechanism 27 of the second heat exchanger 74, and the heat transfer tube 26 immediately before the outlet 74a serves as a flow passage for the air. It is on the upstream side.

【0228】このとき、室内熱交換器61において、冷
媒が、暖房運転時の第2熱交換器74の冷媒の入り口7
4b(反冷媒絞り機構27側の冷媒の出入口74b)か
ら第2熱交換器74内に流入して、2つの伝熱管経路へ
分流され、それぞれの伝熱管経路において、まず、空気
の流れの下流側となる列の複数本の伝熱管26を3本連
続して通過し、次に空気の流れの上流側となる列の複数
本の伝熱管26を3本連続して通過して、合流し、暖房
運転時の第2熱交換器74の冷媒の出口74a(冷媒絞
り機構27側の冷媒の出入口74a)から第2熱交換器
74外へ流出する。すなわち、第2熱交換器74内に流
入した冷媒は、冷媒流と空気流が対向流となる伝熱管経
路(冷媒経路)を流れて、第2熱交換器74外へ流出す
る。その後、全開状態の除湿制御弁27を経て、暖房運
転時の第1熱交換器73の冷媒の入り口73b(冷媒絞
り機構27側の冷媒の出入口73b)から第1熱交換器
73を構成する2つの熱交換器62,63の内、空気の
流れの下流側に位置する主第1熱交換器62内に流入し
て、2つの伝熱管経路へ分流され、それぞれの伝熱管経
路において、まず、空気の流れの上流側となる列の複数
本の伝熱管26を(3本)連続して通過し、次に空気の
流れの下流側となる列の複数本の伝熱管26を(4,5
本)連続して通過した後、空気の流れの上流側となる列
の残りの伝熱管26を(2,3本)連続して通過して、
主第1熱交換器62から流出すると共に分流部26aで
合流し、空気の流れの上流側に位置する補助第1熱交換
器63内に流入して、補助第1熱交換器63の複数本
(4本)の伝熱管26を連続して通過した後に、暖房運
転時の第1熱交換器73の冷媒の出口73a(反冷媒絞
り機構27側の冷媒の出入口73a)から第1熱交換器
73外(補助第1熱交換器63外)へ流出する。すなわ
ち、第1熱交換器73内に流入した冷媒は、冷媒流と空
気流が並行流となる伝熱管経路(冷媒経路)を流れた
後、冷媒流と空気流が対向流となる伝熱管経路(冷媒経
路)を流れて第1熱交換器73外へ流出する。
At this time, in the indoor heat exchanger 61, the refrigerant flows into the refrigerant inlet 7 of the second heat exchanger 74 during the heating operation.
4b (refrigerant inlet / outlet 74b on the side of the anti-refrigerant throttle mechanism 27) flows into the second heat exchanger 74 and is divided into two heat transfer tube paths. Three consecutively pass through the plurality of heat transfer tubes 26 in the row on the side, and then successively pass through three heat transfer tubes 26 in the row on the upstream side of the air flow, and merge. Then, the refrigerant flows out of the second heat exchanger 74 from the refrigerant outlet 74a of the second heat exchanger 74 during the heating operation (the refrigerant inlet / outlet 74a on the side of the refrigerant throttle mechanism 27). That is, the refrigerant that has flowed into the second heat exchanger 74 flows through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other, and flows out of the second heat exchanger 74. Thereafter, through the dehumidification control valve 27 in the fully open state, the first heat exchanger 73 is configured from the refrigerant inlet 73b of the first heat exchanger 73 (the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side) during the heating operation 2 Of the two heat exchangers 62 and 63, the heat flows into the main first heat exchanger 62 located downstream of the air flow, is divided into two heat transfer tube paths, and in each heat transfer tube path, (3) continuously pass through the plurality of heat transfer tubes 26 in the row on the upstream side of the air flow, and then pass the plurality of heat transfer tubes 26 in the row on the downstream side of the air flow (4, 5).
After passing continuously, the remaining heat transfer tubes 26 in the row on the upstream side of the air flow continuously pass (two or three),
It flows out of the main first heat exchanger 62 and merges at the branching section 26a, flows into the auxiliary first heat exchanger 63 located on the upstream side of the air flow, and has a plurality of auxiliary first heat exchangers 63. After successively passing through the (four) heat transfer tubes 26, the first heat exchanger 73 passes through the refrigerant outlet 73a of the first heat exchanger 73 during heating operation (the refrigerant inlet / outlet 73a on the anti-refrigerant throttle mechanism 27 side). Outflow to outside 73 (outside auxiliary first heat exchanger 63). That is, the refrigerant that has flowed into the first heat exchanger 73 flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through the heat transfer tube path in which the refrigerant flow and the air flow flow in opposite directions. (Refrigerant path) and flows out of the first heat exchanger 73.

【0229】したがって、暖房運転時には、第2熱交換
器74と第1熱交換器73の伝熱管経路(冷媒経路)の
冷媒流の後半部分が、冷媒流と空気流が対向流となる伝
熱管経路(冷媒経路)となり、全体として冷媒流と空気
流が対向流となり、冷媒流と空気流が対向流となる伝熱
管経路(冷媒経路)では、過熱ガスから過冷却液へ順次
冷媒温度が低下する凝縮器において、空気の流れ方向に
対して、冷媒の温度勾配と空気の温度勾配が常にある温
度差をもって、効率的に空気を加熱できる。また、第1
熱交換器73の伝熱管経路(冷媒経路)の冷媒流の後半
部分が対向流となるため、十分に冷却された冷媒を第1
熱交換器73から流出させることができる。なお、第1
熱交換器73の伝熱管経路(冷媒経路)の冷媒流の前半
部分が、冷媒流と空気流が並行流となる伝熱管経路(冷
媒経路)となるが、この部分は、暖房運転時に冷媒流と
空気流が対向流となる伝熱管経路をもつ第2熱交換器7
4で冷却されて気液二相状態となった冷媒が流れ、冷媒
の温度変化はほとんどなく、冷媒流と空気流が並行流と
なっていることによる悪影響ははとんどない。したがっ
て、従来の暖房運転時に冷媒流と空気流が対向流となる
室内側熱交換器を有する空気調和機と基本性能はほとん
ど変わらない。
Therefore, during the heating operation, the latter half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the second heat exchanger 74 and the first heat exchanger 73 is formed by the heat transfer tube in which the refrigerant flow and the air flow are opposed. In the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are opposed to each other, and the refrigerant flow and the air flow are opposed to each other, the refrigerant temperature sequentially decreases from the superheated gas to the supercooled liquid. In such a condenser, air can be efficiently heated with a constant temperature difference between the refrigerant temperature gradient and the air temperature gradient in the air flow direction. Also, the first
Since the latter half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the heat exchanger 73 is a counterflow, the sufficiently cooled refrigerant is transferred to the first flow path.
It can be discharged from the heat exchanger 73. The first
The first half of the refrigerant flow in the heat transfer tube path (refrigerant path) of the heat exchanger 73 is a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow are parallel flows. Heat exchanger 7 having a heat transfer tube path in which air flows in opposite directions
The refrigerant cooled in 4 flows into a gas-liquid two-phase state, there is almost no change in the temperature of the refrigerant, and there is almost no adverse effect due to the parallel flow of the refrigerant flow and the air flow. Therefore, the basic performance is almost the same as that of the conventional air conditioner having the indoor heat exchanger in which the refrigerant flow and the air flow are in the opposite flow during the heating operation.

【0230】また、室内熱交換器61の暖房運転時にお
ける冷媒の出口73a直前の空気の流れの上流側列の伝
熱管26と空気の流れの下流側列の伝熱管26との列間
(主第1熱交換器62と補助第1熱交換器63との間)
に、伝熱管26列間(主第1熱交換器62と補助第1熱
交換器63との間)での熱伝導をなくすための切れ目6
5bを板状フィン65に設けて、板状フィン65を主第
1熱交換器62用と補助第1熱交換器63用とに2分割
しているため、暖房運転時には、室内熱交換器61の暖
房運転時における冷媒の出口73a直前の伝熱管26
(補助第1熱交換器63の伝熱管26)内の低温の過冷
却液冷媒が、その風下側の伝熱管26(主第1熱交換器
62の伝熱管26)内の比較的高温の過熱もしくは気液
二相冷媒に加熱されることなく低温の空気によって十分
に冷却されるため、低温の過冷却液冷媒になる。これに
より、このような切れ目65bを板状フィン65に設け
ていないものよりも十分に冷却された冷媒を第1熱交換
器73から流出させることができる。
Further, during the heating operation of the indoor heat exchanger 61, the space between the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately before the outlet 73a of the refrigerant (mainly) (Between the first heat exchanger 62 and the auxiliary first heat exchanger 63)
A gap 6 for eliminating heat conduction between the 26 rows of heat transfer tubes (between the main first heat exchanger 62 and the auxiliary first heat exchanger 63).
5b is provided on the plate-like fin 65, and the plate-like fin 65 is divided into two for the main first heat exchanger 62 and for the auxiliary first heat exchanger 63. Transfer tube 26 immediately before refrigerant outlet 73a during heating operation of
The low-temperature supercooled liquid refrigerant in the (heat transfer tube 26 of the auxiliary first heat exchanger 63) is heated to a relatively high temperature in the heat transfer tube 26 (heat transfer tube 26 of the main first heat exchanger 62) on the leeward side. Alternatively, since it is sufficiently cooled by low-temperature air without being heated by the gas-liquid two-phase refrigerant, it becomes a low-temperature supercooled liquid refrigerant. Thereby, the refrigerant that is more sufficiently cooled than that in which the cut 65 b is not provided in the plate-like fin 65 can flow out of the first heat exchanger 73.

【0231】また、第1熱交換器73において、暖房運
転時に最後に冷媒が流れるのが、1つの伝熱管経路をも
つ補助第1熱交換器63であるため、補助第1熱交換器
63を流れる冷媒の流速が速くなり、管内熱伝達率が高
くなって伝熱性能が向上する。そのため、暖房運転時に
は十分に冷却された冷媒を第1熱交換器73から流出さ
せることができる。
In the first heat exchanger 73, the refrigerant flows last during the heating operation in the auxiliary first heat exchanger 63 having one heat transfer tube path. The flow velocity of the flowing refrigerant is increased, and the heat transfer coefficient in the pipe is increased, so that the heat transfer performance is improved. Therefore, the sufficiently cooled refrigerant can flow out of the first heat exchanger 73 during the heating operation.

【0232】次に、除湿運転時には、四方弁36を冷房
運転と同じ側に切り替え、除湿制御弁27を微開状態に
絞り電動膨張弁16を全開とすることにより、圧縮機3
5、四方弁36、室外熱交換器37、全開状態の電動膨
張弁38、室内熱交換器61の第1熱交換器73(補助
第1熱交換器63、主第1熱交換器62)、微開状態の
除湿制御弁27、室内熱交換器61の第2熱交換器74
(背面熱交換器64)、四方弁36、圧縮機35の順に
冷媒経路を構成し、室外熱交換器15とともに室内熱交
換器61の第1熱交換器73(補助第1熱交換器63、
主第1熱交換器62)を凝縮器とし、室内熱交換器61
の第2熱交換器74(背面熱交換器64)を蒸発器とし
て作用させている。
Next, at the time of the dehumidifying operation, the four-way valve 36 is switched to the same side as the cooling operation, the dehumidifying control valve 27 is slightly opened, and the electric expansion valve 16 is fully opened.
5, a four-way valve 36, an outdoor heat exchanger 37, a fully opened electric expansion valve 38, a first heat exchanger 73 of an indoor heat exchanger 61 (an auxiliary first heat exchanger 63, a main first heat exchanger 62), Dehumidification control valve 27 in the slightly opened state, second heat exchanger 74 of indoor heat exchanger 61
(Back heat exchanger 64), a four-way valve 36, and a compressor 35 constitute a refrigerant path in this order, and together with the outdoor heat exchanger 15, the first heat exchanger 73 of the indoor heat exchanger 61 (the auxiliary first heat exchanger 63,
The main first heat exchanger 62) is a condenser, and the indoor heat exchanger 61
The second heat exchanger 74 (the backside heat exchanger 64) functions as an evaporator.

【0233】そして、ファン30を回転させると、室内
の空気は、前面及び上面の吸い込みグリル31a,31
bから流入し、フィルタ28で除塵された後、室内熱交
換器61を通過する。このとき、凝縮器として機能する
前面側に配置された室内熱交換器61の第1熱交換器7
3を通過した空気は加熱され、蒸発器として機能する背
面側に配置された室内熱交換器61の第2熱交換器74
を通過した空気は冷却(除湿)される。その後、ファン
30を通り、これらの空気が混合されて吹き出し口32
から室内に吹き出される。
Then, when the fan 30 is rotated, the indoor air is drawn into the suction grills 31a, 31a on the front and upper surfaces.
b, and passes through the indoor heat exchanger 61 after being removed by the filter 28. At this time, the first heat exchanger 7 of the indoor heat exchanger 61 disposed on the front side functioning as a condenser
3 is heated, and the second heat exchanger 74 of the indoor heat exchanger 61 disposed on the rear side, which functions as an evaporator, is heated.
Is cooled (dehumidified). Thereafter, the air passes through the fan 30 and is mixed with the air, and
From the room.

【0234】このとき、凝縮器として機能する室内熱交
換器61の第1熱交換器73と、蒸発器として機能する
室内熱交換器61の第2熱交換器74とは熱的に分けら
れているので、凝縮器として機能する第1熱交換器73
と、蒸発器として機能する第2熱交換器74との間で熱
漏洩によるロスがなく、除湿能力が低下しない。
At this time, the first heat exchanger 73 of the indoor heat exchanger 61 functioning as a condenser and the second heat exchanger 74 of the indoor heat exchanger 61 functioning as an evaporator are thermally separated. The first heat exchanger 73 functioning as a condenser
And the second heat exchanger 74 functioning as an evaporator, there is no loss due to heat leakage, and the dehumidifying ability does not decrease.

【0235】また、前面側に配置された室内熱交換器6
1の第1熱交換器73を凝縮器として機能させ、背面側
に配置された室内熱交換器61の第2熱交換器74を蒸
発器として機能させるため、蒸発器として機能する第2
熱交換器74で発生した凝縮水が、凝縮器として機能す
る第1熱交換器73に伝わって再蒸発してしまうことが
ない。
The indoor heat exchanger 6 arranged on the front side
The first heat exchanger 73 functions as a condenser, and the second heat exchanger 74 of the indoor heat exchanger 61 disposed on the rear side functions as an evaporator.
The condensed water generated in the heat exchanger 74 is not transmitted to the first heat exchanger 73 functioning as a condenser and re-evaporated.

【0236】また、この空気調和機は、室内側熱交換器
61における凝縮器として機能する第1熱交換器73と
蒸発器として機能する第2熱交換器74とが、空気の流
れ方向に並んで配置されていないので、室内側熱交換器
61の空気の流れ方向の寸法が大きくならず、室内側熱
交換器における凝縮器として機能する熱交換部分と蒸発
器として機能する熱交換部分とが、空気の流れ方向に並
んで配置されているものに較べ、空気調和機を小さく
(薄く)することができる。
In this air conditioner, the first heat exchanger 73 functioning as a condenser and the second heat exchanger 74 functioning as an evaporator in the indoor heat exchanger 61 are arranged in the direction of air flow. Therefore, the size of the indoor heat exchanger 61 in the direction of air flow does not increase, and the heat exchange portion functioning as a condenser and the heat exchange portion functioning as an evaporator in the indoor heat exchanger 61 are not provided. The air conditioner can be made smaller (thinner) than those arranged side by side in the air flow direction.

【0237】本実施例では、除湿運転時の室内熱交換器
61の冷媒の入り口73aは、第1熱交換器73の反冷
媒絞り機構27側の冷媒の出入口73aであり、その直
後の伝熱管26は空気の流れの上流側となる。また、除
湿運転時の室内熱交換器61の冷媒の出口74bは、第
2熱交換器74の反冷媒絞り機構27側の冷媒の出入口
74bであり、その直前の伝熱管26は空気の流れの下
流側となる。また、除湿運転時の第2熱交換器74の冷
媒の入り口74aは、第2熱交換器74の冷媒絞り機構
27側の冷媒の出入口74aであり、その直後の伝熱管
26は空気の流れの上流側となる。
In the present embodiment, the refrigerant inlet 73a of the indoor heat exchanger 61 during the dehumidifying operation is the refrigerant inlet / outlet 73a of the first heat exchanger 73 on the side opposite to the refrigerant restricting mechanism 27, and the heat transfer tube immediately after that. Reference numeral 26 denotes an upstream side of the air flow. The refrigerant outlet 74b of the indoor heat exchanger 61 during the dehumidifying operation is the refrigerant inlet / outlet 74b of the second heat exchanger 74 on the side opposite to the refrigerant throttle mechanism 27. Downstream. Further, the refrigerant inlet 74a of the second heat exchanger 74 during the dehumidifying operation is the refrigerant inlet / outlet 74a of the second heat exchanger 74 on the side of the refrigerant throttle mechanism 27, and the heat transfer tube 26 immediately behind the inlet / outlet 74a of the refrigerant. It is on the upstream side.

【0238】除湿運転時、室内熱交換器61において、
冷媒が、除湿運転時の第1熱交換器73の冷媒の入り口
73a(反冷媒絞り機構27側の冷媒の出入口73a)
から第1熱交換器73を構成する2つの熱交換器62,
63の内、空気の流れの上流側に位置する補助第1熱交
換器63内に流入して、補助第1熱交換器63の複数本
(4本)の伝熱管26を連続して通過した後に補助第1
熱交換器63から流出し、分流部26aで2つの伝熱管
経路へ分流されて主第1熱交換器62に流入し、主第1
熱交換器62のそれぞれの伝熱管経路において、まず、
空気の流れの上流側となる列の複数本の伝熱管26を所
定本数(2,3本)連続して通過し、次に空気の流れの
下流側となる列の複数本の伝熱管26を(4,5本)連
続して通過した後、空気の流れの上流側となる列の残り
の伝熱管26を(3本)連続して通過して、合流し、除
湿運転時の第1熱交換器73の冷媒の出口73b(冷媒
絞り機構27側の冷媒の出入口73b)から第1熱交換
器73外(主第1熱交換器62外)へ流出する。すなわ
ち、第1熱交換器73内に流入した冷媒は、冷媒流と空
気流が並行流となる伝熱管経路(冷媒経路)を流れた
後、冷媒流と空気流が対向流となる伝熱管経路(冷媒経
路)を流れて第1熱交換器73外へ流出する。その後、
微開状態の除湿制御弁27を経て、除湿運転時の第2熱
交換器74の冷媒の入り口74a(冷媒絞り機構27側
の冷媒の出入口74a)から第2熱交換器74内へ流入
した冷媒は、2つの伝熱管経路へ分流され、それぞれの
伝熱管経路において、まず、空気の流れの上流側となる
列の複数本の伝熱管26を3本連続して通過し、次に空
気の流れの下流側となる列の複数本の伝熱管26を3本
連続して通過して、合流し、除湿運転時の第2熱交換器
74の冷媒の出口74b(反冷媒絞り機構27側の冷媒
の出入口74b)から第2熱交換器74外へ流出する。
すなわち、第2熱交換器74内に流入した冷媒は、冷媒
流と空気流が並行流となる伝熱管経路(冷媒経路)を流
れて、第2熱交換器74外へ流出する。
During the dehumidifying operation, the indoor heat exchanger 61
The refrigerant enters the refrigerant inlet 73a of the first heat exchanger 73 during the dehumidifying operation (the refrigerant inlet / outlet 73a on the side opposite to the refrigerant throttle mechanism 27).
From the two heat exchangers 62 constituting the first heat exchanger 73,
Among the auxiliary heat exchangers 63, the air flows into the auxiliary first heat exchanger 63 located on the upstream side of the air flow, and continuously passes through a plurality of (four) heat transfer tubes 26 of the auxiliary first heat exchanger 63. Subsequent first
It flows out of the heat exchanger 63, is divided into two heat transfer pipe paths at the branch part 26a, flows into the main first heat exchanger 62, and
In each heat transfer tube path of the heat exchanger 62, first,
A predetermined number (two or three) of the plurality of heat transfer tubes continuously pass through the plurality of rows of the heat transfer tubes 26 on the upstream side of the air flow, and then the plurality of heat transfer tubes 26 of the row on the downstream side of the air flow pass through the plurality of heat transfer tubes 26. After passing continuously (4, 5 tubes), the remaining heat transfer tubes 26 in the row on the upstream side of the air flow (3 tubes) are continuously passed and merged to form the first heat in the dehumidifying operation. The refrigerant flows out of the first heat exchanger 73 (outside the main first heat exchanger 62) from the refrigerant outlet 73b of the exchanger 73 (the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side). That is, the refrigerant that has flowed into the first heat exchanger 73 flows through a heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel, and then flows through the heat transfer tube path in which the refrigerant flow and the air flow flow in opposite directions. (Refrigerant path) and flows out of the first heat exchanger 73. afterwards,
The refrigerant that has flowed into the second heat exchanger 74 from the refrigerant inlet 74a (the refrigerant inlet / outlet 74a of the refrigerant throttle mechanism 27 side) of the second heat exchanger 74 during the dehumidification operation via the slightly opened dehumidification control valve 27. Is divided into two heat transfer pipe paths, and in each heat transfer pipe path, first, three successive heat transfer pipes 26 in a row on the upstream side of the air flow continuously pass, and then the air flow After passing three consecutive heat transfer tubes 26 in a row on the downstream side of the pipe, they merge, and the refrigerant outlet 74b of the second heat exchanger 74 during the dehumidifying operation (the refrigerant outlet of the anti-refrigerant throttle mechanism 27 side) Flows out of the second heat exchanger 74 through the entrance 74b).
That is, the refrigerant that has flowed into the second heat exchanger 74 flows out of the second heat exchanger 74 through the heat transfer tube path (refrigerant path) in which the refrigerant flow and the air flow flow in parallel.

【0239】除湿運転時には、第1熱交換器73の冷媒
の出口73b直前の伝熱管26が空気の流れの上流側の
列に配置されているため、冷媒絞り機構(除湿制御弁2
7)に流入する直前の冷媒は第1熱交換器73で加熱さ
れる前の空気と熱交換をすることとなり、十分な過冷却
液とすることが可能となる。これにより、冷媒絞り機構
(除湿制御弁27)に流入する冷媒は液冷媒となり、安
定した流動により減圧されるため、冷媒流動音が小さく
なる。また、十分な過冷却をとることにより、冷凍サイ
クルの圧縮比を小さくしても十分な空気の加熱及び除湿
や冷却が可能となり、少ない消費電力で所定の冷凍サイ
クルを構成することが可能となる。
In the dehumidifying operation, since the heat transfer tubes 26 immediately before the refrigerant outlet 73b of the first heat exchanger 73 are arranged in a row on the upstream side of the air flow, the refrigerant throttle mechanism (the dehumidifying control valve 2) is used.
The refrigerant immediately before flowing into 7) exchanges heat with the air before being heated by the first heat exchanger 73, so that a sufficient supercooled liquid can be obtained. As a result, the refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) becomes a liquid refrigerant and is depressurized by stable flow, so that the refrigerant flow noise is reduced. Further, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with low power consumption. .

【0240】また、除湿運転時には、第1熱交換器73
において、冷媒が、空気の流れの上流側の列に配置され
た伝熱管26を複数本連続して通過した直後に、冷媒絞
り機構(除湿制御弁27)に流入するような伝熱管経路
(冷媒経路)を構成するため、冷媒絞り機構(除湿制御
弁27)に流入する冷媒を冷却液化する性能がさらに向
上する。これにより、冷媒絞り機構に流入する冷媒は液
冷媒となり易く、さらに安定した流動により減圧される
ため、冷媒流動音がさらに小さくなる。また、十分な過
冷却をとることにより、冷凍サイクルの圧縮比をより小
さくしても十分な空気の加熱及び除湿や冷却が可能とな
り、より少ない消費電力で所定の冷凍サイクルを構成す
ることが可能となる。
At the time of the dehumidifying operation, the first heat exchanger 73
In the heat transfer tube path (refrigerant), the refrigerant flows into the refrigerant throttle mechanism (dehumidification control valve 27) immediately after passing a plurality of heat transfer tubes 26 arranged in a row on the upstream side of the air flow. Since the path is configured, the performance of cooling and liquefying the refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) is further improved. Thus, the refrigerant flowing into the refrigerant throttle mechanism easily becomes a liquid refrigerant, and is depressurized by a more stable flow, so that the refrigerant flow noise is further reduced. In addition, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is reduced, sufficient heating, dehumidification and cooling of air can be performed, and a predetermined refrigeration cycle can be configured with less power consumption. Becomes

【0241】また、本実施例では、第1熱交換器73の
除湿運転時における冷媒の出口73b直前の空気の流れ
の上流側列の伝熱管26と空気の流れの下流側列の伝熱
管26との列間とに、伝熱管26列間での熱伝導なくす
ための切れ目65aを板状フィン65に設けており、除
湿運転時には、第1熱交換器73の冷媒の出口73b直
前の伝熱管26内の低温の過冷却液冷媒が、その風下側
の伝熱管26内の比較的高温の過熱もしくは気液二相冷
媒に加熱されることなく低温の空気によって十分に冷却
されるため、低温の過冷却液冷媒になる。これにより、
このような切れ目65aを板状フィン65に設けていな
いものよりも冷媒絞り機構(除湿制御弁27)に流入す
る冷媒は液冷媒となり易く、さらに安定した流動により
減圧されるため、切れ目65aがないものよりも冷媒流
動音がさらに小さくなる。また、十分な過冷却をとるこ
とにより、切れ目65aがないものよりも冷凍サイクル
の圧縮比を小さくしても十分な空気の加熱及び除湿や冷
却が可能となり、切れ目65aがないものよりもよりも
少ない消費電力で所定の冷凍サイクルを構成することが
可能となる。
In this embodiment, the heat transfer tubes 26 in the upstream row of the air flow and the heat transfer tubes 26 in the downstream row of the air flow immediately before the refrigerant outlet 73b during the dehumidifying operation of the first heat exchanger 73 are used. A gap 65a for eliminating heat conduction between the 26 rows of heat transfer tubes is provided in the plate-like fin 65 between the rows of the first heat exchanger 73 and the heat transfer pipe immediately before the refrigerant outlet 73b of the first heat exchanger 73 during the dehumidifying operation. The low-temperature supercooled liquid refrigerant in the heat transfer tube 26 is sufficiently cooled by the low-temperature air without being heated by the relatively high-temperature superheat or the gas-liquid two-phase refrigerant in the heat transfer tube 26 on the leeward side thereof. It becomes a supercooled liquid refrigerant. This allows
The refrigerant flowing into the refrigerant throttle mechanism (the dehumidification control valve 27) is more likely to be a liquid refrigerant than the one in which such a cut 65a is not provided in the plate-like fin 65, and is further reduced in pressure by a stable flow, so that there is no cut 65a. The refrigerant flow noise is smaller than that of the refrigerant. In addition, by sufficiently cooling, even if the compression ratio of the refrigeration cycle is smaller than that having no cut 65a, sufficient heating, dehumidification and cooling of air can be performed, and the air can be cooled more than that without the cut 65a. A predetermined refrigeration cycle can be configured with low power consumption.

【0242】本実施例では、室内熱交換器61の前面側
の熱交換器(主第1熱交換器62と補助第1熱交換器6
3)を第1熱交換器73とし、除湿運転時に凝縮器とし
て機能させ、室内熱交換器61の背面熱交換器64を第
2熱交換器74とし、除湿運転時に蒸発器として機能さ
せるため、第1熱交換器73を第2熱交換器74より大
きくでき、第1熱交換器73を通過する空気流の風速は
第2熱交換器74を通過する空気流の風速より速いた
め、除湿運転時に、第1熱交換器73での加熱性能がよ
く、冷媒が過冷却液となりやすい。また、第2熱交換器
74を通過する空気流の風速が遅いため、第2熱交換器
74を通過する空気の除湿効率がよい。
In this embodiment, the heat exchangers on the front side of the indoor heat exchanger 61 (the main first heat exchanger 62 and the auxiliary first heat exchanger 6
3) is used as the first heat exchanger 73 and functions as a condenser during the dehumidifying operation, and the rear heat exchanger 64 of the indoor heat exchanger 61 is used as the second heat exchanger 74 and functions as the evaporator during the dehumidifying operation. The first heat exchanger 73 can be made larger than the second heat exchanger 74, and the wind speed of the airflow passing through the first heat exchanger 73 is faster than the wind speed of the airflow passing through the second heat exchanger 74. Occasionally, the heating performance of the first heat exchanger 73 is good, and the refrigerant tends to be a supercooled liquid. In addition, since the wind speed of the airflow passing through the second heat exchanger 74 is low, the dehumidifying efficiency of the air passing through the second heat exchanger 74 is good.

【0243】また、本実施例において、第1熱交換器7
3は、空気の流れ方向に2列の伝熱管26をもち2つの
伝熱管経路が並列に経路構成される主第1熱交換器62
と、空気の流れ方向に1列の伝熱管26をもち主第1熱
交換器62よりも空気の流れ方向と略直角な段方向の長
さが短い補助第1熱交換器63とからなり、冷媒絞り機
構27側の冷媒の出入口73bに近接する主第1熱交換
器62の伝熱管26は、反冷媒絞り機構27側の冷媒の
出入口73aに近接する補助第1熱交換器63の伝熱管
26より下の段に位置し、補助第1熱交換器63の伝熱
管経路は、補助第1熱交換器63の下端付近に配置され
た反冷媒絞り機構27側の冷媒の出入口73aからから
熱交換器上端に向かって熱交換器上端付近の伝熱管26
まで形成し、主第1熱交換器62の並列に経路構成され
る2つの伝熱管経路の一方は、補助第1熱交換器63の
熱交換器上端付近の伝熱管26と接続される分流部26
aから熱交換器上端に向かって形成し、さらに熱交換器
上端付近で空気の流れの下流側となる列に移り熱交換器
下端に向かって熱交換器中央付近まで形成し、さらに熱
交換器中央付近で空気の流れの上流側となる列に移り熱
交換器下端に向かって冷媒絞り機構27側の冷媒の出入
口73bまで形成し、主第1熱交換器62の並列に経路
構成される2つの伝熱管経路の他方は、補助第1熱交換
器63の熱交換器上端付近の伝熱管26と接続される分
流部26aから熱交換器下端に向かって熱交換器中央付
近まで形成し、さらに熱交換器中央付近で空気の流れの
下流側となる列に移り熱交換器下端に向かって形成し、
さらに熱交換器下端付近で空気の流れの上流側となる列
に移り熱交換器上端に向かって冷媒絞り機構27側の冷
媒の出入口73bまで形成する構成としている。
In this embodiment, the first heat exchanger 7
Reference numeral 3 denotes a main first heat exchanger 62 having two rows of heat transfer tubes 26 in the air flow direction and having two heat transfer tube paths arranged in parallel.
And an auxiliary first heat exchanger 63 having one row of heat transfer tubes 26 in the direction of air flow and having a shorter step length than the main first heat exchanger 62 in a direction substantially perpendicular to the direction of air flow, The heat transfer tube 26 of the main first heat exchanger 62 near the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side is a heat transfer tube of the auxiliary first heat exchanger 63 near the refrigerant inlet / outlet 73a on the anti-refrigerant throttle mechanism 27 side. 26, the heat transfer tube path of the auxiliary first heat exchanger 63 is supplied with heat from the refrigerant inlet / outlet 73a of the anti-refrigerant throttle mechanism 27 disposed near the lower end of the auxiliary first heat exchanger 63. Heat transfer tubes 26 near the top of the heat exchanger toward the top of the exchanger
One of the two heat transfer tube paths formed in parallel with the main first heat exchanger 62 is connected to the heat transfer tube 26 near the upper end of the heat exchanger of the auxiliary first heat exchanger 63. 26
a from the upper part of the heat exchanger to the upper end of the heat exchanger, and then to a row on the downstream side of the air flow near the upper end of the heat exchanger, and to the lower end of the heat exchanger to the vicinity of the center of the heat exchanger. In the vicinity of the center, the flow shifts to a row on the upstream side of the air flow, and is formed toward the lower end of the heat exchanger to the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side. The other of the two heat transfer tube paths is formed from the branch portion 26a connected to the heat transfer tube 26 near the upper end of the heat exchanger of the auxiliary first heat exchanger 63 to the heat exchanger lower end and near the center of the heat exchanger. Moved to the row on the downstream side of the air flow near the center of the heat exchanger and formed toward the lower end of the heat exchanger,
Further, the structure moves to a row on the upstream side of the air flow near the lower end of the heat exchanger, and is formed up to the refrigerant inlet / outlet 73b on the refrigerant throttle mechanism 27 side toward the upper end of the heat exchanger.

【0244】そして、本体の前面と上面に吸い込みグリ
ル31a,31b、前面下部に吹き出し口32をそれぞ
れ有し、貫流型のファン30を内蔵する壁面設置型の空
気調和機における、前面の吸い込みグリル31aとファ
ン30との間に第1熱交換器73を配置して、前面の吸
い込みグリル31aと上面の吸い込みグリル31bの手
前側部分を通過した空気と第1熱交換器73内の冷媒と
を熱交換させ、上面の吸い込みグリル31bとファン3
0との間に第2熱交換器74を配置して、上面の吸い込
みグリル31bの奥前側部分を通過した空気と第2熱交
換器74内の冷媒とを熱交換させる。
The air inlet grills 31a and 31b are provided on the front and upper surfaces of the main body, and the outlet 32 is provided on the lower front surface. The first heat exchanger 73 is disposed between the first heat exchanger 73 and the fan 30 to heat air passing through the front grille 31a and the front grille 31b on the upper side and the refrigerant in the first heat exchanger 73. Replace the suction grill 31b and fan 3 on the top.
The second heat exchanger 74 is disposed between the first heat exchanger 74 and the air in the second heat exchanger 74 and the air that has passed through the upper part of the suction grill 31b at the back side is exchanged.

【0245】そのため、第1熱交換器73の冷媒絞り機
構27側の冷媒の出入口73bに近接する伝熱管26、
すなわち、第1熱交換器73の除湿運転時における冷媒
の出口73b直前の伝熱管26が、第1熱交換器73に
おける相対的に空気の流れの速い箇所の空気の流れの上
流側に位置することになるため、除湿運転時に第1熱交
換器73の冷媒の出口73b直前の伝熱管26を通過す
る冷媒の冷却効率が向上し、十分に冷却された低温の過
冷却液冷媒を冷媒絞り機構27に流入させることができ
る。
For this reason, the heat transfer tubes 26 in the vicinity of the refrigerant inlet / outlet 73b of the first heat exchanger 73 on the side of the refrigerant throttle mechanism 27,
That is, the heat transfer tube 26 immediately before the refrigerant outlet 73 b during the dehumidifying operation of the first heat exchanger 73 is located on the upstream side of the air flow at a location where the air flow is relatively fast in the first heat exchanger 73. Therefore, during the dehumidifying operation, the cooling efficiency of the refrigerant passing through the heat transfer tube 26 immediately before the refrigerant outlet 73b of the first heat exchanger 73 is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant is cooled. 27.

【0246】また、このとき、第1熱交換器73の主第
1熱交換器62を通過する空気流の方向は、主第1熱交
換器62の空気の流れの上流側となる列から空気の流れ
の下流側となる列へ向かう主第1熱交換器62の列方向
成分の他に、主第1熱交換器62の上部から下部に向か
う主第1熱交換器62の段方向成分があるが、除湿運転
時と冷房運転時には、全体的に見れば、主第1熱交換器
62の上部から下部に冷媒が流れる伝熱管経路となり、
暖房運転時には、全体的に見れば、主第1熱交換器62
の下部から上部に冷媒が流れる伝熱管経路となる。した
がって、第1熱交換器73の主第1熱交換器62におい
て、冷房運転時に冷媒流と空気流が並行流となり暖房運
転時に冷媒流と空気流が対向流となる伝熱管経路の割合
が増加し、第1熱交換器73の熱交換性能が向上する。
At this time, the direction of the airflow passing through the main first heat exchanger 62 of the first heat exchanger 73 is changed from the row of the main first heat exchanger 62 which is on the upstream side of the air flow. In addition to the row direction component of the main first heat exchanger 62 heading toward the row on the downstream side of the flow, the stepwise component of the main first heat exchanger 62 heading from the top to the bottom of the main first heat exchanger 62 is However, at the time of the dehumidifying operation and the cooling operation, as a whole, the main first heat exchanger 62 becomes a heat transfer tube path through which the refrigerant flows from the upper part to the lower part,
At the time of the heating operation, as a whole, the main first heat exchanger 62
Is a heat transfer tube path through which the refrigerant flows from the lower part to the upper part. Therefore, in the main first heat exchanger 62 of the first heat exchanger 73, the ratio of the heat transfer tube path in which the refrigerant flow and the air flow become parallel flow during the cooling operation and the refrigerant flow and the air flow become counter flow during the heating operation increases. However, the heat exchange performance of the first heat exchanger 73 is improved.

【0247】また、このとき、補助第1熱交換器63
は、前面及び上面の吸い込みグリル31a,31bと主
第1熱交換器62との間の余剰空間に配置されることに
なるので、空気調和機を大型化することなく、補助第1
熱交換器63を付加して、第1熱交換器73の熱交換性
能を向上させることができる。
At this time, the auxiliary first heat exchanger 63
Is disposed in a surplus space between the suction grills 31a, 31b on the front and top surfaces and the main first heat exchanger 62, so that the auxiliary first heat exchanger can be used without increasing the size of the air conditioner.
By adding the heat exchanger 63, the heat exchange performance of the first heat exchanger 73 can be improved.

【0248】また、第1熱交換器73を、主第1熱交換
器62と補助第1熱交換器63とを直列接続して構成し
たため、管内を流れる冷媒温度の異なる主第1熱交換器
62の伝熱管26と補助第1熱交換器63の伝熱管26
との間で板状フィン65を伝った熱伝導がなくなって、
熱交換性能が向上する。
Further, since the first heat exchanger 73 is configured by connecting the main first heat exchanger 62 and the auxiliary first heat exchanger 63 in series, the main first heat exchanger 73 having different temperatures of the refrigerant flowing through the tubes. 62 and the heat transfer tube 26 of the auxiliary first heat exchanger 63
The heat conduction transmitted through the plate-like fins 65 disappears,
Heat exchange performance is improved.

【0249】なお、主第1熱交換器62の一部が補助第
1熱交換器63の風下側に位置するが、主第1熱交換器
62において補助第1熱交換器63の風下側に位置する
部分においても、主第1熱交換器62と補助第1熱交換
器63とで板状フィン65が連続していないため、主第
1熱交換器62の板状フィン65の風上側の縁に空気流
が当たり、空気流が乱れ、主第1熱交換器62の板状フ
ィン65と空気流との間で熱交換が行われるため、ま
た、補助第1熱交換器63が空気の流れ方向に1列の伝
熱管26をもつものであるため、主第1熱交換器62の
一部が補助第1熱交換器63の風下側に位置することに
よる第1熱交換器62の熱交換性能の低下は小さい。
Although a part of the main first heat exchanger 62 is located on the leeward side of the auxiliary first heat exchanger 63, the main first heat exchanger 62 is located on the leeward side of the auxiliary first heat exchanger 63. Also in the located portion, since the plate-like fins 65 are not continuous between the main first heat exchanger 62 and the auxiliary first heat exchanger 63, the windward side of the plate-like fins 65 of the main first heat exchanger 62. Since the air flow hits the edge, the air flow is disturbed, and heat exchange is performed between the plate-like fin 65 of the main first heat exchanger 62 and the air flow, and the auxiliary first heat exchanger 63 Since it has one row of heat transfer tubes 26 in the flow direction, the heat of the first heat exchanger 62 due to the part of the main first heat exchanger 62 being located on the leeward side of the auxiliary first heat exchanger 63 The drop in exchange performance is small.

【0250】また、本実施例では、冷媒絞り機構を、全
開状態と微開状態をもつ除湿制御弁27により構成して
いるので、冷媒の流路抵抗が大きい状態と冷媒の流路抵
抗が小さい状態をもつ冷媒絞り機構を、1つの除湿制御
弁27で構成することができる。また、除湿運転時に流
路抵抗を任意に設定できるので、空気の除湿量や吹出温
度を細かく制御できる。
Further, in this embodiment, the refrigerant throttle mechanism is constituted by the dehumidification control valve 27 having the fully open state and the slightly open state. The refrigerant throttle mechanism having a state can be constituted by one dehumidification control valve 27. In addition, since the flow path resistance can be arbitrarily set during the dehumidifying operation, the amount of dehumidified air and the blowing temperature can be finely controlled.

【0251】(実施例4)図5は、本発明による空気調
和機の実施例4による室内機の側断面図を示す。
(Embodiment 4) FIG. 5 is a sectional side view of an indoor unit according to Embodiment 4 of the air conditioner of the present invention.

【0252】実施例4の空気調和機は、図5に示すよう
に、第1熱交換器73と第2熱交換器74とを、キャピ
ラリチューブ27aとキャピラリチューブ27aをバイ
パスするバイパス路に設けられた二方弁27bにより構
成される冷媒絞り機構を介して接続している。
In the air conditioner of the fourth embodiment, as shown in FIG. 5, a first heat exchanger 73 and a second heat exchanger 74 are provided in a capillary tube 27a and a bypass path bypassing the capillary tube 27a. It is connected via a refrigerant throttle mechanism constituted by a two-way valve 27b.

【0253】実施例4の空気調和機は、図4に示された
実施例3の空気調和機において、冷媒絞り機構27とし
て、全開状態と微開状態をもち、除湿運転時に微開状態
となり絞り作用を行う機能を有する除湿制御弁27を用
いる代わりに、キャピラリチューブ27aとキャピラリ
チューブ27aをバイパスするバイパス路に設けられ冷
房運転時と暖房運転時に開き除湿運転時に閉じる二方弁
27bにより構成される冷媒絞り機構を用いたものであ
る。
The air conditioner of the fourth embodiment differs from the air conditioner of the third embodiment shown in FIG. 4 in that the refrigerant throttle mechanism 27 has a fully open state and a slightly open state. Instead of using the dehumidification control valve 27 having a function of performing an operation, the dehumidification control valve 27 is constituted by a capillary tube 27a and a two-way valve 27b provided in a bypass path bypassing the capillary tube 27a and opened during cooling operation and heating operation and closed during dehumidification operation. This uses a refrigerant throttle mechanism.

【0254】その他の構成は、実施例3の空気調和機と
同一であり、実施例3の空気調和機と同一構成について
は同一符号を付して、その詳細な説明は省略する。
The other configuration is the same as that of the air conditioner of the third embodiment. The same components as those of the air conditioner of the third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0255】まず、冷房運転時には、四方弁36を冷房
側に切り替え、二方弁27bを開き電動膨張弁38を適
当に絞ることにより、圧縮機35、四方弁36、室外熱
交換器37、電動膨張弁38、室内熱交換器61の第1
熱交換器73(補助第1熱交換器63、主第1熱交換器
62)、開状態の二方弁27b、室内熱交換器61の第
2熱交換器74(背面熱交換器64)、四方弁36、圧
縮機35の順に冷媒経路を構成し、室外熱交換器37を
凝縮器、室内熱交換器61全体を蒸発器として作用させ
る。
First, during the cooling operation, the four-way valve 36 is switched to the cooling side, the two-way valve 27b is opened, and the electric expansion valve 38 is appropriately throttled, so that the compressor 35, the four-way valve 36, the outdoor heat exchanger 37, Expansion valve 38, first heat exchanger 61
Heat exchanger 73 (auxiliary first heat exchanger 63, main first heat exchanger 62), open two-way valve 27b, second heat exchanger 74 of indoor heat exchanger 61 (backside heat exchanger 64), A refrigerant path is formed in the order of the four-way valve 36 and the compressor 35, and the outdoor heat exchanger 37 acts as a condenser and the entire indoor heat exchanger 61 acts as an evaporator.

【0256】次に、暖房運転時には、四方弁36を暖房
側に切り替え、二方弁27bを開き電動膨張弁38を適
当に絞ることにより、圧縮機35、四方弁36、室内熱
交換器61の第2熱交換器74(背面熱交換器64)、
開状態の二方弁27b、室内熱交換器61の第1熱交換
器73(主第1熱交換器62、補助第1熱交換器6
3)、電動膨張弁38、室外熱交換器37、四方弁3
6、圧縮機35の順に冷媒経路を構成し、室外熱交換器
37を蒸発器、室内熱交換器61全体を凝縮器として作
用させる。
Next, during the heating operation, the four-way valve 36 is switched to the heating side, the two-way valve 27b is opened, and the electric expansion valve 38 is appropriately throttled, so that the compressor 35, the four-way valve 36, and the indoor heat exchanger 61 A second heat exchanger 74 (back heat exchanger 64),
Open two-way valve 27b, first heat exchanger 73 of indoor heat exchanger 61 (main first heat exchanger 62, auxiliary first heat exchanger 6)
3), electric expansion valve 38, outdoor heat exchanger 37, four-way valve 3
6, a refrigerant path is formed in the order of the compressor 35, the outdoor heat exchanger 37 acts as an evaporator, and the entire indoor heat exchanger 61 acts as a condenser.

【0257】次に、除湿運転時には、四方弁36を冷房
運転と同じ側に切り替え、二方弁27bを閉じ電動膨張
弁16を全開とすることにより、圧縮機35、四方弁3
6、室外熱交換器37、全開状態の電動膨張弁38、室
内熱交換器61の第1熱交換器73(補助第1熱交換器
63、主第1熱交換器62)、キャピラリチューブ27
a、室内熱交換器61の第2熱交換器74(背面熱交換
器64)、四方弁36、圧縮機35の順に冷媒経路を構
成し、室外熱交換器15とともに室内熱交換器61の第
1熱交換器73(補助第1熱交換器63、主第1熱交換
器62)を凝縮器とし、室内熱交換器61の第2熱交換
器74(背面熱交換器64)を蒸発器として作用させ
る。
Next, during the dehumidifying operation, the four-way valve 36 is switched to the same side as the cooling operation, the two-way valve 27b is closed and the electric expansion valve 16 is fully opened, so that the compressor 35 and the four-way valve 3 are opened.
6, the outdoor heat exchanger 37, the fully-open electric expansion valve 38, the first heat exchanger 73 of the indoor heat exchanger 61 (the auxiliary first heat exchanger 63, the main first heat exchanger 62), and the capillary tube 27.
a, a refrigerant path is formed in the order of the second heat exchanger 74 (the rear heat exchanger 64) of the indoor heat exchanger 61, the four-way valve 36, and the compressor 35, and together with the outdoor heat exchanger 15, The first heat exchanger 73 (the auxiliary first heat exchanger 63, the main first heat exchanger 62) is used as a condenser, and the second heat exchanger 74 (the rear heat exchanger 64) of the indoor heat exchanger 61 is used as an evaporator. Let it work.

【0258】その他の冷房運転時、暖房運転時、除湿運
転時の各動作は、実施例3の空気調和機の冷房運転時、
暖房運転時、除湿運転時の各動作の説明部分で、除湿制
御弁27となっていた部分が、キャピラリチューブ27
aとキャピラリチューブ27aをバイパスするバイパス
路に設けられた二方弁27bに置き換わると共に、「除
湿制御弁27を開き(く)」が「二方弁27bを開き
(く)」に、「除湿制御弁27を微開状態に絞り
(る)」が「二方弁27bを閉じ(じる)」に、「全開
状態の除湿制御弁27」が「開状態の二方弁27b」
に、「微開状態の除湿制御弁27」が「キャピラリチュ
ーブ27a」に、それぞれ置き換わるだけであるので、
その詳細な説明は省略する。
The other operations during the cooling operation, the heating operation, and the dehumidifying operation are performed during the cooling operation of the air conditioner of the third embodiment.
In the description of each operation during the heating operation and the dehumidification operation, the portion that was the dehumidification control valve 27 is replaced by the capillary tube 27.
a and the two-way valve 27b provided in the bypass path that bypasses the capillary tube 27a, and the “open (dehumidify) the dehumidification control valve 27” changes to “open (ku) the dehumidification valve 27b” and the “dehumidification control”. “Valve the valve 27 to a slightly open state” is “close the two-way valve 27b”, and “Fully open dehumidification control valve 27” is “an open two-way valve 27b”.
In addition, since the “slightly opened dehumidification control valve 27” only replaces the “capillary tube 27a”,
Detailed description is omitted.

【0259】また、本実施例では、冷媒絞り機構を、キ
ャピラリチューブ27aとキャピラリチューブ27aを
バイパスするバイパス路に設けられた二方弁27bで構
成したので、2つの部品になり、除湿運転時に流路抵抗
を任意に設定できず、空気の除湿量や吹出温度を細かく
制御できないが、安価に構成できる。
Further, in the present embodiment, the refrigerant throttle mechanism is constituted by the capillary tube 27a and the two-way valve 27b provided in the bypass which bypasses the capillary tube 27a. Although the road resistance cannot be set arbitrarily and the amount of air dehumidification and the blowing temperature cannot be finely controlled, it can be configured at low cost.

【0260】なお、本実施例は、図4に示された実施例
3の空気調和機(熱交換器ユニット)において、冷媒絞
り機構27として、全開状態と微開状態をもち、除湿運
転時に微開状態となり絞り作用を行う機能を有する除湿
制御弁27を用いる代わりに、キャピラリチューブ27
aとキャピラリチューブ27aをバイパスするバイパス
路に設けられ冷房運転時と暖房運転時に開き除湿運転時
に閉じる二方弁27bにより構成される冷媒絞り機構を
用いたものであるが、図1に示された実施例1の空気調
和機(熱交換器ユニット)または、図3に示された実施
例2の空気調和機(熱交換器ユニット)において、冷媒
絞り機構27として、全開状態と微開状態をもち、除湿
運転時に微開状態となり絞り作用を行う機能を有する除
湿制御弁27を用いる代わりに、キャピラリチューブ2
7aとキャピラリチューブ27aをバイパスするバイパ
ス路に設けられ冷房運転時と暖房運転時に開き除湿運転
時に閉じる二方弁27bにより構成される冷媒絞り機構
を用いてもよいことは言うまでもない。
In this embodiment, in the air conditioner (heat exchanger unit) of the third embodiment shown in FIG. 4, the refrigerant throttle mechanism 27 has a fully opened state and a slightly opened state, and the refrigerant throttle mechanism 27 is slightly opened during the dehumidifying operation. Instead of using the dehumidification control valve 27 having the function of opening and performing the throttling action, the capillary tube 27
1 and a two-way valve 27b that is provided in a bypass path that bypasses the capillary tube 27a and that opens during cooling operation and heating operation and closes during dehumidification operation. In the air conditioner (heat exchanger unit) of the first embodiment or the air conditioner (heat exchanger unit) of the second embodiment shown in FIG. 3, the refrigerant throttle mechanism 27 has a fully open state and a slightly open state. Instead of using the dehumidification control valve 27 having a function of performing a throttling operation by being slightly opened during the dehumidification operation, the capillary tube 2
Needless to say, a refrigerant throttle mechanism provided with a two-way valve 27b provided in a bypass path bypassing the capillary tube 7a and the capillary tube 27a and opened during the cooling operation and the heating operation and closed during the dehumidifying operation may be used.

【0261】[0261]

【発明の効果】以上説明したように、請求項1に記載の
発明は、除湿運転時における前記第1熱交換器の冷媒の
入り口直後の前記伝熱管と冷媒の出口直前の伝熱管を空
気の流れの上流側の列に配置し、除湿運転時における前
記第2熱交換器の冷媒の入り口直後の前記伝熱管を空気
の流れの上流側の列、冷媒の出口直前の前記伝熱管を空
気の流れの下流側の列にそれぞれ配置したことにより、
冷媒絞り機構を介して接続された二つの熱交換器が、共
に、冷房運転時に冷媒流と空気流が並行流となり、暖房
運転時に冷媒流と空気流が対向流となるよう構成された
フィンチューブ形室内熱交換器を備えた従来の空気調和
機と較べて、冷房運転時と暖房運転時の基本性能の低下
を少なくし、除湿運転時には、十分な過冷却をとった液
冷媒を冷媒絞り機構に流入させるため、冷媒流動音が小
さくなり、また、少ない消費電力で所定の冷凍サイクル
を構成することが可能となる。
As described above, according to the first aspect of the present invention, during the dehumidifying operation, the heat transfer tube immediately after the refrigerant inlet of the first heat exchanger and the heat transfer tube immediately before the refrigerant outlet are connected to each other by the air. Arranged in the upstream row of the flow, the heat transfer tubes immediately after the inlet of the refrigerant of the second heat exchanger during the dehumidification operation, the upstream row of the flow of the air, By placing each in the downstream row of the flow,
The two heat exchangers connected via the refrigerant throttle mechanism are both fin tubes configured so that the refrigerant flow and the air flow become parallel flow during the cooling operation, and the refrigerant flow and the air flow become counter flow during the heating operation. Compared with a conventional air conditioner equipped with an indoor heat exchanger, the deterioration in basic performance during cooling operation and heating operation is reduced, and during dehumidification operation, the liquid refrigerant that has been sufficiently supercooled is a refrigerant throttle mechanism. Therefore, the refrigerant flow noise is reduced, and a predetermined refrigeration cycle can be configured with less power consumption.

【0262】また、請求項2に記載の発明では、請求項
1に記載の発明の空気調和機において、第1熱交換器の
伝熱管経路を、除湿運転時に、入り口から第1熱交換器
内に流入した冷媒が、空気流と同じ方向に冷媒が流れた
後、空気流と対向する方向に冷媒が流れて出口から第1
熱交換器外に流出するように構成することにより、冷房
運転時と暖房運転時の基本性能の低下をさらに少なく
し、かつ、冷媒流動音の低減化、省エネ化を促進でき
る。
According to a second aspect of the present invention, in the air conditioner of the first aspect, the heat transfer tube path of the first heat exchanger is connected to the inside of the first heat exchanger from the entrance during the dehumidifying operation. After the refrigerant flowing into the air flows in the same direction as the air flow, the refrigerant flows in the direction opposite to the air flow, and the first refrigerant flows through the outlet.
By arranging so as to flow out of the heat exchanger, it is possible to further reduce a decrease in basic performance during the cooling operation and the heating operation, and to promote a reduction in refrigerant flow noise and energy saving.

【0263】また、請求3項に記載の発明では、請求項
1に記載の発明の空気調和機において、空気の流れ方向
に2列の伝熱管をもち、2つの伝熱管経路が並列に経路
構成され、除湿運転時に、冷媒が、除湿運転時の冷媒の
入り口から流入し2つの前記伝熱管経路へ分流され、そ
れぞれの前記伝熱管経路において、まず、空気の流れの
上流側の列の複数本の伝熱管を所定本数連続して通過
し、次に空気の流れの下流側の列の複数本の伝熱管を連
続して通過した後、空気の流れの上流側の列の残りの伝
熱管を連続して通過して、合流し除湿運転時の冷媒の出
口から流出するように、第1熱交換器を構成することに
より、冷房運転時と暖房運転時の基本性能の低下をさら
に少なくし、かつ、冷媒流動音の低減化、省エネ化を促
進できる。
According to a third aspect of the present invention, in the air conditioner of the first aspect of the present invention, two rows of heat transfer tubes are provided in the air flow direction, and two heat transfer pipe paths are arranged in parallel. During the dehumidifying operation, the refrigerant flows in from the inlet of the refrigerant during the dehumidifying operation and is divided into the two heat transfer tube paths. In each of the heat transfer tube paths, first, a plurality of refrigerants in the upstream row of the air flow are arranged. After passing through a predetermined number of heat transfer tubes continuously, and then continuously passing through a plurality of heat transfer tubes in the downstream row of the air flow, the remaining heat transfer tubes in the upstream row of the air flow are passed through. The first heat exchanger is configured to continuously pass, merge, and flow out of the outlet of the refrigerant during the dehumidifying operation, thereby further reducing a decrease in basic performance during the cooling operation and the heating operation, In addition, it is possible to promote a reduction in refrigerant flow noise and an energy saving.

【0264】また、第1熱交換器において、2つの伝熱
管経路が並列に経路構成されているので、冷房運転時の
圧力損失が小さくなり、性能低下を防ぐことができる。
In the first heat exchanger, since two heat transfer tube paths are formed in parallel, the pressure loss during the cooling operation is reduced, and the performance can be prevented from deteriorating.

【0265】また、請求4項に記載の発明では、請求項
1に記載の発明の空気調和機において、第1熱交換器
を、空気の流れ方向に2列の伝熱管をもち2つの伝熱管
経路が並列に経路構成される主第1熱交換器と、空気の
流れ方向に1列の伝熱管をもち前記主第1熱交換器より
も空気の流れ方向と略直角な段方向の長さが短い補助第
1熱交換器とで構成し、除湿運転時に、冷媒が、除湿運
転時の冷媒の入り口から前記補助第1熱交換器に流入し
て、前記補助第1熱交換器の複数本の伝熱管を連続して
通過した後に前記補助第1熱交換器から流出し、2つの
前記伝熱管経路へ分流されて前記主第1熱交換器に流入
し、それぞれの前記伝熱管経路において、まず、空気の
流れの上流側の列の複数本の伝熱管を所定本数連続して
通過し、次に空気の流れの下流側の列の複数本の伝熱管
を連続して通過した後、空気の流れの上流側の列の残り
の伝熱管を連続して通過して、合流し除湿運転時の冷媒
の出口から流出するように構成し、前記補助第1熱交換
器が、前記主第1熱交換器の空気の流れの上流側で、か
つ前記主第1熱交換器の冷房運転時および除湿運転時に
おける冷媒の出口直前の伝熱管の空気の流れの上流側に
位置しないように配置することにより、冷房運転時と暖
房運転時の基本性能の低下をさらに少なくし、かつ、冷
媒流動音の低減化、省エネ化を促進できる。
According to a fourth aspect of the present invention, in the air conditioner of the first aspect, the first heat exchanger is provided with two rows of heat transfer tubes in the direction of air flow and two heat transfer tubes. A main first heat exchanger in which the paths are configured in parallel, and a length of a stepped direction having one row of heat transfer tubes in the air flow direction and substantially perpendicular to the air flow direction than the main first heat exchanger. And a short first auxiliary heat exchanger. During the dehumidifying operation, the refrigerant flows into the auxiliary first heat exchanger from the inlet of the refrigerant during the dehumidifying operation, and the plurality of auxiliary first heat exchangers After successively passing through the heat transfer tubes, flows out of the auxiliary first heat exchanger, is divided into two heat transfer tube paths, flows into the main first heat exchanger, and in each of the heat transfer tube paths, First, a predetermined number of tubes are continuously passed through a plurality of heat transfer tubes in the upstream row of the air flow, and then the air is After successively passing through the plurality of heat transfer tubes in the downstream row, the remaining heat transfer tubes in the upstream row of air flow are continuously passed, and merged and the refrigerant outlet during the dehumidifying operation And the auxiliary first heat exchanger is located upstream of the air flow of the main first heat exchanger, and during the cooling operation and the dehumidifying operation of the main first heat exchanger. By arranging the heat transfer tube immediately before the outlet of the refrigerant so as not to be located on the upstream side of the air flow, the deterioration of the basic performance during the cooling operation and the heating operation is further reduced, and the refrigerant flow noise is reduced, Energy saving can be promoted.

【0266】また、冷房運転時には、補助第1熱交換器
の後に冷媒が流れる主第1熱交換器には2つの伝熱管経
路が並列に経路構成されているので、冷房運転時の圧力
損失が小さくなり、性能低下を防ぐことができる。
In the cooling operation, the main first heat exchanger through which the refrigerant flows after the auxiliary first heat exchanger has two heat transfer tube paths arranged in parallel, so that the pressure loss during the cooling operation is reduced. The size can be reduced, and a decrease in performance can be prevented.

【0267】また、第1熱交換器において、補助第1熱
交換器を流れる冷媒の流速が速くなり、管内熱伝達率が
高くなって伝熱性能が向上する。そのため、暖房運転時
には十分に冷却された冷媒を第1熱交換器から流出させ
ることができ、暖房性能が向上する。
Further, in the first heat exchanger, the flow rate of the refrigerant flowing through the auxiliary first heat exchanger is increased, the heat transfer coefficient in the pipe is increased, and the heat transfer performance is improved. Therefore, during the heating operation, the sufficiently cooled refrigerant can flow out of the first heat exchanger, and the heating performance is improved.

【0268】また、第1熱交換器を、主第1熱交換器と
補助第1熱交換器とを直列接続して構成したため、管内
を流れる冷媒温度の異なる主第1熱交換器の伝熱管と補
助第1熱交換器の伝熱管との間で板状フィンを伝った熱
伝導がなくなって、熱交換性能が向上する。
Further, since the first heat exchanger is constructed by connecting the main first heat exchanger and the auxiliary first heat exchanger in series, the heat transfer tubes of the main first heat exchanger having different refrigerant temperatures flowing through the tubes are provided. There is no heat conduction through the plate fins between the heat transfer tubes of the auxiliary first heat exchanger and the heat transfer tubes of the auxiliary first heat exchanger, and the heat exchange performance is improved.

【0269】また、請求項5に記載の発明では、請求項
1から4のいずれかに記載の発明の空気調和機におい
て、第1熱交換器の除湿運転時における冷媒の出口直前
の空気の流れの上流側列の伝熱管と空気の流れの下流側
列の伝熱管との列間に、伝熱管列間での熱伝導をなくす
ための切れ目を板状フィンに設けたことにより、除湿運
転時には、第1熱交換器の冷媒の出口直前の伝熱管内の
低温の過冷却液冷媒が、その風下側の伝熱管内の比較的
高温の過熱もしくは気液二相冷媒に加熱されることなく
低温の空気によって十分に冷却されるため、冷媒流動音
の低減化、省エネ化を促進できる。
According to a fifth aspect of the present invention, in the air conditioner according to any one of the first to fourth aspects, the air flow immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger. By providing cuts in the plate-like fins between the heat transfer tubes in the upstream row and the heat transfer tubes in the downstream row of the air flow to eliminate heat conduction between the heat transfer pipe rows, during dehumidification operation The low-temperature supercooled liquid refrigerant in the heat transfer tube immediately before the outlet of the refrigerant of the first heat exchanger has a low temperature without being heated by the relatively high-temperature superheat or the gas-liquid two-phase refrigerant in the heat transfer tube on the leeward side. Since the air is sufficiently cooled by the air, it is possible to promote a reduction in refrigerant flow noise and an energy saving.

【0270】また、請求項6に記載の発明では、請求項
1から5のいずれかに記載の発明の空気調和機におい
て、室内熱交換器を構成する第1熱交換器を、前面の吸
い込みグリルと貫流型のファンとの間に位置させて、前
面の前記吸い込みグリルと上面の吸い込みグリルの手前
側部分を通過した空気と熱交換させ、前記室内熱交換器
を構成する第2熱交換器を、上面の前記吸い込みグリル
と前記ファンとの間に位置して、上面の吸い込みグリル
の奥前側部分を通過した空気と熱交換する構成とするこ
とにより、第1熱交換器を第2熱交換器より大きくで
き、第1熱交換器を通過する空気流の風速は第2熱交換
器を通過する空気流の風速より速いため、除湿運転時
に、第1熱交換器での加熱性能がよく、冷媒が過冷却液
となりやすい。また、第2熱交換器を通過する空気流の
風速が遅いため、第2熱交換器を通過する空気の除湿効
率がよい。
According to a sixth aspect of the present invention, in the air conditioner according to any one of the first to fifth aspects, the first heat exchanger constituting the indoor heat exchanger is provided with a suction grill on a front surface. A second heat exchanger that constitutes the indoor heat exchanger by exchanging heat with air that has passed through the suction grille on the front surface and the front side of the suction grille on the upper surface between the suction grille and the once-through fan. The first heat exchanger is located between the suction grille on the upper surface and the fan and exchanges heat with the air passing through the rear part of the suction grille on the upper surface. Since the wind speed of the airflow passing through the first heat exchanger is faster than the wind speed of the airflow passing through the second heat exchanger, the heating performance in the first heat exchanger during the dehumidifying operation is good, But easily becomes a supercooled liquid. In addition, since the wind speed of the airflow passing through the second heat exchanger is low, the dehumidifying efficiency of the air passing through the second heat exchanger is good.

【0271】また、請求項7に記載の発明では、請求項
1から6のいずれかに記載の発明の空気調和機におい
て、第1熱交換器の除湿運転時における冷媒の出口直前
の空気の流れの上流側列の伝熱管を、第1熱交換器にお
ける相対的に空気の流れの速い箇所に配置することによ
り、除湿運転時に、第1熱交換器の冷媒の出口直前の伝
熱管を通過する冷媒の冷却効率が向上し、冷媒流動音の
低減化、省エネ化を促進できる。
According to a seventh aspect of the present invention, in the air conditioner according to any one of the first to sixth aspects, the air flow immediately before the refrigerant outlet during the dehumidifying operation of the first heat exchanger. By arranging the heat transfer tubes in the upstream row of the first heat exchanger at a relatively high air flow rate in the first heat exchanger, the heat transfer tubes pass through the heat transfer tubes immediately before the refrigerant outlet of the first heat exchanger during the dehumidifying operation. The cooling efficiency of the refrigerant is improved, and the flow noise of the refrigerant can be reduced and the energy saving can be promoted.

【0272】また、請求項8に記載の発明は、多数平行
に並べられた板状フィンに直角に挿通され内部を冷媒が
流動する伝熱管が空気の流れ方向に複数列に構成され、
2つの冷媒の出入口に近接する前記伝熱管がともに空気
の流れの上流側となる列に配置されたフィンチューブ形
の第1熱交換器と、多数平行に並べられた板状フィンに
直角に挿通され内部を冷媒が流動する伝熱管が空気の流
れ方向に複数列に構成され、2つの冷媒の出入口のうち
一方の冷媒の出入口に近接する前記伝熱管が空気の流れ
の上流側となる列に配置され他方の冷媒の出入口に近接
する前記伝熱管が空気の流れの下流側となる列に配置さ
れたフィンチューブ形の第2熱交換器と、前記第1熱交
換器の2つの冷媒の出入口のうち一方の冷媒の出入口と
前記第2熱交換器の空気の流れの上流側となる列に配置
された冷媒の出入口とを接続する接続管の途中に設けら
れた冷媒の流路抵抗が大きい状態と冷媒の流路抵抗が小
さい状態をもつ冷媒絞り機構とにより構成され、前記第
1熱交換器と前記第2熱交換器とが空気の流れの方向で
重ならないように前記第1熱交換器と前記第2熱交換器
とを配置した熱交換器ユニットである。
In the invention according to claim 8, the heat transfer tubes through which a plurality of plate-like fins are inserted at right angles and through which the refrigerant flows are formed in a plurality of rows in the direction of air flow.
The heat transfer tubes adjacent to the two refrigerant inlets and outlets are both inserted at right angles to a fin tube type first heat exchanger arranged in a row on the upstream side of the air flow, and a plurality of plate-like fins arranged in parallel. The heat transfer tubes through which the refrigerant flows are formed in a plurality of rows in the direction of air flow, and the heat transfer tubes near the one of the two refrigerant inlets and outlets are arranged on the upstream side of the air flow. A fin tube-shaped second heat exchanger arranged in a row in which the heat transfer tubes arranged and adjacent to the inlet and outlet of the other refrigerant are on the downstream side of the flow of air; and two inlets and outlets of two refrigerants of the first heat exchanger The flow path resistance of the refrigerant provided in the middle of the connecting pipe connecting the inlet / outlet of one of the refrigerants and the inlet / outlet of the refrigerant arranged in the upstream row of the air flow of the second heat exchanger is large. Cold with a state and a low flow path resistance of the refrigerant A heat exchanger in which the first heat exchanger and the second heat exchanger are arranged such that the first heat exchanger and the second heat exchanger do not overlap in the direction of air flow. It is an exchange unit.

【0273】この熱交換器ユニットを空気調和機の室内
側熱交換器に使用し、冷房運転時に、冷媒が、第1熱交
換器、冷媒の流路抵抗が小さい状態の冷媒絞り機構、第
2熱交換器の順に流れ、暖房運転時に、冷媒が、第2熱
交換器、冷媒の流路抵抗が小さい状態の冷媒絞り機構、
第1熱交換器の順に流れ、除湿運転時に、冷媒が、第1
熱交換器、冷媒の流路抵抗が大きい状態の冷媒絞り機
構、第2熱交換器の順に流れるように冷凍サイクルを構
成する場合は、冷媒絞り機構を介して接続された二つの
熱交換器が、共に、冷房運転時に冷媒流と空気流が並行
流となり、暖房運転時に冷媒流と空気流が対向流となる
よう構成されたフィンチューブ形の熱交換器ユニットを
使用する場合と較べて、冷房運転時と暖房運転時の基本
性能の低下を少なくし、除湿運転時には、十分な過冷却
をとった液冷媒を冷媒絞り機構に流入させるため、冷媒
流動音が小さくなり、また、少ない消費電力で所定の冷
凍サイクルを構成することが可能となる。
This heat exchanger unit is used for an indoor heat exchanger of an air conditioner. During the cooling operation, the refrigerant flows through the first heat exchanger, the refrigerant throttle mechanism having a small flow path resistance of the refrigerant, and the second heat exchanger. The refrigerant flows in the order of the heat exchanger, and during the heating operation, the refrigerant is the second heat exchanger, a refrigerant throttle mechanism in a state where the flow path resistance of the refrigerant is small,
The refrigerant flows in the order of the first heat exchanger, and during the dehumidifying operation, the refrigerant flows into the first heat exchanger.
In the case where the refrigeration cycle is configured to flow in the order of the heat exchanger, the refrigerant throttle mechanism having a large flow path resistance of the refrigerant, and the second heat exchanger, two heat exchangers connected via the refrigerant throttle mechanism are provided. In both cases, compared with the case of using a fin tube type heat exchanger unit configured so that the refrigerant flow and the air flow become parallel flows during the cooling operation, and the refrigerant flow and the air flow become counter flow during the heating operation, In the dehumidifying operation, the liquid refrigerant that has been sufficiently supercooled flows into the refrigerant throttle mechanism to reduce the deterioration of the basic performance during the operation and the heating operation. A predetermined refrigeration cycle can be configured.

【0274】また、請求項9に記載の発明では、請求項
8に記載の発明の熱交換器ユニットにおいて、第1熱交
換器の反冷媒絞り機構側の冷媒の出入口から流入した冷
媒が、空気流と同じ方向に冷媒が流れた後、空気流と対
向する方向に冷媒が流れて、冷媒絞り機構側の冷媒の出
入口から流出するように第1熱交換器の伝熱管経路を構
成することにより、冷房運転時と暖房運転時の基本性能
の低下をさらに少なくし、かつ、冷媒流動音の低減化、
省エネ化を促進できる。
According to the ninth aspect of the present invention, in the heat exchanger unit of the eighth aspect, the refrigerant flowing from the inlet / outlet of the refrigerant on the side opposite to the refrigerant restricting mechanism of the first heat exchanger is air. After the refrigerant flows in the same direction as the flow, the refrigerant flows in the direction opposite to the air flow, and the heat transfer tube path of the first heat exchanger is configured to flow out of the refrigerant inlet / outlet on the refrigerant throttle mechanism side. , Further reduce the decrease in basic performance during cooling operation and heating operation, and reduce refrigerant flow noise,
Energy saving can be promoted.

【0275】また、請求項10に記載の発明では、請求
項8に記載の発明の熱交換器ユニットにおいて、空気の
流れ方向に2列の伝熱管をもち、2つの伝熱管経路が並
列に経路構成され、反冷媒絞り機構側の冷媒の出入口か
ら冷媒絞り機構側の冷媒の出入口へ冷媒を流した場合
に、冷媒が、反冷媒絞り機構側の冷媒の出入口から流入
して2つの前記伝熱管経路へ分流され、それぞれの前記
伝熱管経路において、まず、空気の流れの上流側となる
列の複数本の伝熱管を所定本数連続して通過し、次に空
気の流れの下流側となる列の複数本の伝熱管を連続して
通過した後、空気の流れの上流側となる列の残りの伝熱
管を連続して通過して、合流し冷媒絞り機構側の冷媒の
出入口から流出するように、第1熱交換器を構成するこ
とにより、冷房運転時と暖房運転時の基本性能の低下を
さらに少なくし、かつ、冷媒流動音の低減化、省エネ化
を促進できる。
According to a tenth aspect of the present invention, in the heat exchanger unit of the eighth aspect, the heat exchanger unit has two rows of heat transfer tubes in the air flow direction, and the two heat transfer tube paths are arranged in parallel. When the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism to the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, the refrigerant flows in from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism and the two heat transfer tubes. In each of the heat transfer tube paths, first, a predetermined number of heat transfer tubes continuously pass through a row on the upstream side of the air flow, and then a row on the downstream side of the air flow. After continuously passing through the plurality of heat transfer tubes, the air continuously passes through the remaining heat transfer tubes in the row on the upstream side of the air flow, merges and flows out from the refrigerant inlet / outlet on the refrigerant throttle mechanism side. In addition, by configuring the first heat exchanger, the cooling operation And further reducing the deterioration of basic performance of the heating operation, and, reduction of the refrigerant flow noise, can promote energy saving.

【0276】また、第1熱交換器において、2つの伝熱
管経路が並列に経路構成されているので、冷房運転時の
圧力損失が小さくなり、性能低下を防ぐことができる。
In the first heat exchanger, since two heat transfer tube paths are formed in parallel, the pressure loss during the cooling operation is reduced, and the performance can be prevented from deteriorating.

【0277】また、請求項11に記載の発明では、請求
項10に記載の発明の熱交換器ユニットにおいて、並列
に経路構成される2つの伝熱管経路の一方を、反冷媒絞
り機構側の冷媒の出入口から熱交換器上端に向かって形
成し、さらに熱交換器上端付近で空気の流れの下流側と
なる列に移り熱交換器下端に向かって熱交換器中央付近
まで形成し、さらに熱交換器中央付近で空気の流れの上
流側となる列に移り熱交換器下端に向かって冷媒絞り機
構側の冷媒の出入口まで形成し、並列に経路構成される
2つの伝熱管経路の他方を、反冷媒絞り機構側の冷媒の
出入口から熱交換器下端に向かって熱交換器中央付近ま
で形成し、さらに熱交換器中央付近で空気の流れの下流
側となる列に移り熱交換器下端に向かって形成し、さら
に熱交換器下端付近で空気の流れの上流側となる列に移
り熱交換器上端に向かって冷媒絞り機構側の冷媒の出入
口まで形成する構成とすることにより、請求項10に記
載の発明の効果の他に、次のような効果が得られる。
According to the eleventh aspect of the present invention, in the heat exchanger unit of the tenth aspect, one of the two heat transfer tube paths arranged in parallel is connected to the refrigerant on the side opposite to the refrigerant throttle mechanism. From the entrance and exit of the heat exchanger to the upper end of the heat exchanger. In the vicinity of the center of the heat exchanger, the heat exchanger moves to a row on the upstream side of the air flow and is formed toward the lower end of the heat exchanger to the refrigerant inlet / outlet on the refrigerant throttle mechanism side. Formed from the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism to the heat exchanger lower end near the center of the heat exchanger, and further moved to a row near the center of the heat exchanger on the downstream side of the flow of air toward the lower end of the heat exchanger. Formed and with heat exchanger bottom end In addition to the effect of the invention according to claim 10, by moving to a row on the upstream side of the flow of air and forming up to the inlet and outlet of the refrigerant on the refrigerant throttle mechanism side toward the upper end of the heat exchanger, The following effects can be obtained.

【0278】すなわち、本体の前面と上面に吸い込みグ
リル、前面下部に吹き出し口をそれぞれ有し、貫流型の
ファンを内蔵する壁面設置型の空気調和機における、前
面の吸い込みグリルとファンとの間に第1熱交換器を配
置して、前面の吸い込みグリルと上面の吸い込みグリル
の手前側部分を通過した空気と第1熱交換器内の冷媒と
を熱交換させ、上面の吸い込みグリルとファンとの間に
第2熱交換器を配置して、上面の吸い込みグリルの奥前
側部分を通過した空気と第2熱交換器内の冷媒とを熱交
換させた場合は、第1熱交換器の冷媒絞り機構側の冷媒
の出入口に近接する伝熱管、すなわち、第1熱交換器の
除湿運転時における冷媒の出口直前の伝熱管が、第1熱
交換器における相対的に空気の流れの速い箇所の空気の
流れの上流側に位置することになるため、除湿運転時に
第1熱交換器の冷媒の出口直前の伝熱管を通過する冷媒
の冷却効率が向上し、十分に冷却された低温の過冷却液
冷媒を冷媒絞り機構に流入させることができ、さらに、
冷媒流動音の低減化、省エネ化を促進できる。また、第
1熱交換器において、冷房運転時に冷媒流と空気流が並
行流となり暖房運転時に冷媒流と空気流が対向流となる
伝熱管経路の割合が増加し、第1熱交換器の熱交換性能
が向上する。
That is, in a wall-mounted type air conditioner having a suction grill at the front and top surfaces of the main body and a blow-out opening at the lower front portion, and having a built-in once-through fan, a space between the front suction grill and the fan. The first heat exchanger is arranged to exchange heat between the air passing through the front side suction grille and the front side of the upper side suction grille and the refrigerant in the first heat exchanger. In the case where the second heat exchanger is disposed between the first heat exchanger and the air passing through the rear part of the suction grill on the upper surface and heat exchanges the refrigerant in the second heat exchanger, the refrigerant throttle of the first heat exchanger is provided. The heat transfer tube close to the inlet / outlet of the refrigerant on the mechanism side, that is, the heat transfer tube immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger is the air at the portion of the first heat exchanger where the flow of air is relatively fast. Upstream of the stream Therefore, the cooling efficiency of the refrigerant passing through the heat transfer tube immediately before the outlet of the refrigerant in the first heat exchanger during the dehumidifying operation is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant flows into the refrigerant throttle mechanism. Can be
Reducing the flow noise of the refrigerant and saving energy can be promoted. Further, in the first heat exchanger, the ratio of the heat transfer tube path in which the refrigerant flow and the air flow become parallel flow during the cooling operation and the refrigerant flow and the air flow become counter flow during the heating operation increases, and the heat of the first heat exchanger increases. Exchange performance is improved.

【0279】また、請求項12に記載の発明では、請求
項8に記載の発明の熱交換器ユニットにおいて、第1熱
交換器を、空気の流れ方向に2列の伝熱管をもち2つの
伝熱管経路が並列に経路構成される主第1熱交換器と、
空気の流れ方向に1列の伝熱管をもち前記主第1熱交換
器よりも空気の流れ方向と略直角な段方向の長さが短い
補助第1熱交換器とで構成し、反冷媒絞り機構側の冷媒
の出入口から冷媒絞り機構側の冷媒の出入口へ冷媒を流
した場合に、冷媒が、反冷媒絞り機構側の冷媒の出入口
から前記補助第1熱交換器に流入して、前記補助第1熱
交換器の複数本の伝熱管を連続して通過した後に前記補
助第1熱交換器から流出し、2つの前記伝熱管経路へ分
流されて前記主第1熱交換器に流入し、それぞれの前記
伝熱管経路において、まず、空気の流れの上流側となる
列の複数本の伝熱管を所定本数連続して通過し、次に空
気の流れの下流側となる列の複数本の伝熱管を連続して
通過した後、空気の流れの上流側となる列の残りの伝熱
管を連続して通過して、合流し冷媒絞り機構側の冷媒の
出入口から流出するように構し、前記補助第1熱交換器
が、前記主第1熱交換器の空気の流れの上流側で、かつ
冷媒絞り機構側の冷媒の出入口に近接する前記主第1熱
交換器の伝熱管の空気の流れの上流側に位置しないよう
に配置することにより、冷房運転時と暖房運転時の基本
性能の低下をさらに少なくし、かつ、冷媒流動音の低減
化、省エネ化を促進できる。
[0279] In the twelfth aspect of the present invention, in the heat exchanger unit of the eighth aspect, the first heat exchanger is provided with two rows of heat transfer tubes in the direction of air flow and two transfer pipes. A main first heat exchanger in which heat pipe paths are configured in parallel;
An auxiliary first heat exchanger having a single row of heat transfer tubes in the direction of air flow and having a shorter stepwise length substantially perpendicular to the direction of air flow than the main first heat exchanger; When the refrigerant flows from the inlet / outlet of the refrigerant on the mechanism side to the inlet / outlet of the refrigerant on the refrigerant throttle mechanism side, the refrigerant flows into the auxiliary first heat exchanger from the inlet / outlet of the refrigerant on the anti-refrigerant throttle mechanism side, and After successively passing through a plurality of heat transfer tubes of the first heat exchanger, it flows out of the auxiliary first heat exchanger, is divided into two heat transfer tube paths, flows into the main first heat exchanger, In each of the heat transfer pipe paths, first, a predetermined number of heat transfer pipes continuously pass through a plurality of heat transfer pipes in the row on the upstream side of the air flow, and then a plurality of heat transfer pipes in the row on the downstream side of the air flow. After successively passing through the heat tubes, it continuously passes through the remaining heat transfer tubes in the row that is upstream of the air flow The auxiliary first heat exchanger is arranged so as to flow out of an inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, and the auxiliary first heat exchanger is on the upstream side of the air flow of the main first heat exchanger and on the side of the refrigerant throttle mechanism. By further arranging the main first heat exchanger so as not to be located on the upstream side of the flow of air in the heat transfer tube close to the inlet / outlet of the refrigerant, the deterioration of the basic performance during the cooling operation and the heating operation is further reduced. In addition, the refrigerant flow noise can be reduced and energy saving can be promoted.

【0280】また、冷房運転時には、補助第1熱交換器
の後に冷媒が流れる主第1熱交換器には2つの伝熱管経
路が並列に経路構成されているので、冷房運転時の圧力
損失が小さくなり、性能低下を防ぐことができる。
In the cooling operation, the main first heat exchanger through which the refrigerant flows after the auxiliary first heat exchanger has two heat transfer tube paths arranged in parallel, so that the pressure loss during the cooling operation is reduced. The size can be reduced, and a decrease in performance can be prevented.

【0281】また、第1熱交換器において、補助第1熱
交換器を流れる冷媒の流速が速くなり、管内熱伝達率が
高くなって伝熱性能が向上する。そのため、暖房運転時
には十分に冷却された冷媒を第1熱交換器から流出させ
ることができ、暖房性能が向上する。
In the first heat exchanger, the flow rate of the refrigerant flowing through the auxiliary first heat exchanger is increased, the heat transfer coefficient in the pipe is increased, and the heat transfer performance is improved. Therefore, during the heating operation, the sufficiently cooled refrigerant can flow out of the first heat exchanger, and the heating performance is improved.

【0282】また、第1熱交換器を、主第1熱交換器と
補助第1熱交換器とを直列接続して構成したため、管内
を流れる冷媒温度の異なる主第1熱交換器の伝熱管と補
助第1熱交換器の伝熱管との間で板状フィンを伝った熱
伝導がなくなって、熱交換性能が向上する。
Further, since the first heat exchanger is constituted by connecting the main first heat exchanger and the auxiliary first heat exchanger in series, the heat transfer tubes of the main first heat exchanger having different refrigerant temperatures flowing through the tubes are provided. There is no heat conduction through the plate fins between the heat transfer tubes of the auxiliary first heat exchanger and the heat transfer tubes of the auxiliary first heat exchanger, and the heat exchange performance is improved.

【0283】また、請求項13に記載の発明では、請求
項12に記載の発明の熱交換器ユニットにおいて、補助
第1熱交換器の伝熱管経路を、前記補助第1熱交換器の
下端付近に配置された反冷媒絞り機構側の冷媒の出入口
からから熱交換器上端に向かって熱交換器上端付近の伝
熱管まで形成し、前記主第1熱交換器の並列に経路構成
される2つの伝熱管経路の一方を、前記補助第1熱交換
器の熱交換器上端付近の伝熱管と接続される分流部から
熱交換器上端に向かって形成し、さらに熱交換器上端付
近で空気の流れの下流側となる列に移り熱交換器下端に
向かって熱交換器中央付近まで形成し、さらに熱交換器
中央付近で空気の流れの上流側となる列に移り熱交換器
下端に向かって冷媒絞り機構側の冷媒の出入口まで形成
し、前記主第1熱交換器の並列に経路構成される2つの
伝熱管経路の他方を、前記補助第1熱交換器の熱交換器
上端付近の伝熱管と接続される分流部から熱交換器下端
に向かって熱交換器中央付近まで形成し、さらに熱交換
器中央付近で空気の流れの下流側となる列に移り熱交換
器下端に向かって形成し、さらに熱交換器下端付近で空
気の流れの上流側となる列に移り熱交換器上端に向かっ
て冷媒絞り機構側の冷媒の出入口まで形成する構成とす
ることにより、請求項12に記載の発明の効果の他に、
次のような効果が得られる。
According to the thirteenth aspect of the present invention, in the heat exchanger unit of the twelfth aspect, the heat transfer tube path of the auxiliary first heat exchanger is provided near the lower end of the auxiliary first heat exchanger. Formed from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism disposed toward the upper end of the heat exchanger to the heat transfer tube near the upper end of the heat exchanger, and two paths configured in parallel with the main first heat exchanger. One of the heat transfer tube paths is formed from a branch portion connected to the heat transfer tube near the upper end of the heat exchanger of the auxiliary first heat exchanger toward the upper end of the heat exchanger. To the lower row of the heat exchanger to the lower end of the heat exchanger and to the vicinity of the center of the heat exchanger, and further to the upper row of the air flow near the center of the heat exchanger and to the lower stream of the heat exchanger toward the lower end of the heat exchanger. The main first heat is formed up to the refrigerant inlet / outlet on the throttle mechanism side. The other of the two heat transfer tube paths configured in parallel with the heat exchanger is heat-exchanged from the branching portion connected to the heat transfer tube near the heat exchanger upper end of the auxiliary first heat exchanger toward the heat exchanger lower end. Formed near the center of the heat exchanger, and then moved to a row downstream of the air flow near the center of the heat exchanger and formed toward the lower end of the heat exchanger, and further upstream of the air flow near the lower end of the heat exchanger In addition to the effect of the invention according to claim 12, by moving to the row and forming a structure up to the inlet and outlet of the refrigerant on the refrigerant throttle mechanism side toward the upper end of the heat exchanger,
The following effects can be obtained.

【0284】すなわち、本体の前面と上面に吸い込みグ
リル、前面下部に吹き出し口をそれぞれ有し、貫流型の
ファンを内蔵する壁面設置型の空気調和機における、前
面の吸い込みグリルとファンとの間に第1熱交換器を配
置して、前面の吸い込みグリルと上面の吸い込みグリル
の手前側部分を通過した空気と第1熱交換器内の冷媒と
を熱交換させ、上面の吸い込みグリルとファンとの間に
第2熱交換器を配置して、上面の吸い込みグリルの奥前
側部分を通過した空気と第2熱交換器内の冷媒とを熱交
換させた場合は、第1熱交換器の冷媒絞り機構側の冷媒
の出入口に近接する伝熱管、すなわち、第1熱交換器の
除湿運転時における冷媒の出口直前の伝熱管が、第1熱
交換器における相対的に空気の流れの速い箇所の空気の
流れの上流側に位置することになるため、除湿運転時に
第1熱交換器の冷媒の出口直前の伝熱管を通過する冷媒
の冷却効率が向上し、十分に冷却された低温の過冷却液
冷媒を冷媒絞り機構に流入させることができ、さらに、
冷媒流動音の低減化、省エネ化を促進できる。また、第
1熱交換器において、冷房運転時に冷媒流と空気流が並
行流となり暖房運転時に冷媒流と空気流が対向流となる
伝熱管経路の割合が増加し、第1熱交換器の熱交換性能
が向上する。また、このとき、補助第1熱交換器は、前
面及び上面の吸い込みグリルと主第1熱交換器との間の
余剰空間に配置されることになるので、空気調和機を大
型化することなく、補助第1熱交換器を付加して、第1
熱交換器の熱交換性能を向上させることができる。
That is, in a wall-mounted type air conditioner having a suction grill at the front and upper surfaces of the main body and a blow-out port at the lower front, and having a built-in once-through fan, a space between the front suction grill and the fan. The first heat exchanger is arranged to exchange heat between the air passing through the front side suction grille and the front side of the upper side suction grille and the refrigerant in the first heat exchanger. In the case where the second heat exchanger is disposed between the first heat exchanger and the air passing through the rear part of the suction grill on the upper surface and heat exchanges the refrigerant in the second heat exchanger, the refrigerant throttle of the first heat exchanger is provided. The heat transfer tube close to the inlet / outlet of the refrigerant on the mechanism side, that is, the heat transfer tube immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger is the air at the portion of the first heat exchanger where the flow of air is relatively fast. Upstream of the stream Therefore, the cooling efficiency of the refrigerant passing through the heat transfer tube immediately before the outlet of the refrigerant in the first heat exchanger during the dehumidifying operation is improved, and the sufficiently cooled low-temperature supercooled liquid refrigerant flows into the refrigerant throttle mechanism. Can be
Reducing the flow noise of the refrigerant and saving energy can be promoted. Further, in the first heat exchanger, the ratio of the heat transfer tube path in which the refrigerant flow and the air flow become parallel flow during the cooling operation and the refrigerant flow and the air flow become counter flow during the heating operation increases, and the heat of the first heat exchanger increases. Exchange performance is improved. Also, at this time, the auxiliary first heat exchanger is disposed in a surplus space between the suction grilles on the front and upper surfaces and the main first heat exchanger, so that the air conditioner is not enlarged. , By adding an auxiliary first heat exchanger,
The heat exchange performance of the heat exchanger can be improved.

【0285】また、請求項14に記載の発明では、請求
項8から13のいずれかに記載の発明の熱交換器ユニッ
トにおいて、第1熱交換器の冷媒絞り機構側の冷媒の出
入口に近接する空気の流れの上流側となる列の伝熱管と
空気の流れの下流側となる列の伝熱管との列間に、伝熱
管列間での熱伝導をなくすための切れ目を板状フィンに
設けたことにより、除湿運転時には、第1熱交換器の冷
媒の出口直前の伝熱管内の低温の過冷却液冷媒が、その
風下側の伝熱管内の比較的高温の過熱もしくは気液二相
冷媒に加熱されることなく低温の空気によって十分に冷
却されるため、冷媒流動音の低減化、省エネ化を促進で
きる。
According to a fourteenth aspect of the present invention, in the heat exchanger unit according to any one of the eighth to thirteenth aspects, the heat exchanger unit is located near the refrigerant inlet / outlet of the first heat exchanger on the side of the refrigerant throttle mechanism. A cut is provided in the plate-like fin between the row of heat transfer tubes on the upstream side of the air flow and the row of heat transfer tubes on the downstream side of the air flow to eliminate heat conduction between the rows of heat transfer tubes. As a result, during the dehumidifying operation, the low-temperature supercooled liquid refrigerant in the heat transfer tube immediately before the refrigerant outlet of the first heat exchanger is replaced with the relatively high-temperature superheated or gas-liquid two-phase refrigerant in the leeward heat transfer tube. Since the cooling air is sufficiently cooled by the low-temperature air without being heated, the noise of the refrigerant flowing can be reduced and the energy saving can be promoted.

【0286】また、請求項15に記載の発明では、請求
項8から14のいずれかに記載の発明の熱交換器ユニッ
トにおいて、冷媒絞り機構を、全開状態と微開状態をも
つ制御弁により構成することにより、冷媒の流路抵抗が
大きい状態と冷媒の流路抵抗が小さい状態をもつ冷媒絞
り機構を、1つの制御弁で構成することができる。ま
た、除湿運転時に流路抵抗を任意に設定できるので、空
気の除湿量や吹出温度を細かく制御できる。
According to a fifteenth aspect of the present invention, in the heat exchanger unit according to any one of the eighth to fourteenth aspects, the refrigerant throttle mechanism is constituted by a control valve having a fully opened state and a slightly opened state. By doing so, a refrigerant throttle mechanism having a state in which the flow path resistance of the refrigerant is large and a state in which the flow path resistance of the refrigerant is small can be configured with one control valve. In addition, since the flow path resistance can be arbitrarily set during the dehumidifying operation, the amount of dehumidified air and the blowing temperature can be finely controlled.

【0287】また、請求項16に記載の発明では、請求
項8から14のいずれかに記載の発明の熱交換器ユニッ
トにおいて、冷媒絞り機構を、キャピラリチューブと、
前記キャピラリチューブをバイパスするバイパス路に設
けられた二方弁により構成することにより、冷媒の流路
抵抗が大きい状態と冷媒の流路抵抗が小さい状態をもつ
冷媒絞り機構を、キャピラリチューブと二方弁により、
安価に構成できる。
According to a sixteenth aspect of the present invention, in the heat exchanger unit according to any one of the eighth to fourteenth aspects, the refrigerant throttle mechanism includes a capillary tube,
The refrigerant throttle mechanism having a state in which the flow resistance of the refrigerant is large and a state in which the flow resistance of the refrigerant is small is configured by a two-way valve provided in a bypass path that bypasses the capillary tube. By valve
Inexpensive configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気調和機の実施例1による室内
機の側断面図
FIG. 1 is a side sectional view of an indoor unit according to Embodiment 1 of an air conditioner according to the present invention.

【図2】同実施例の空気調和機の冷凍サイクル図FIG. 2 is a refrigeration cycle diagram of the air conditioner of the embodiment.

【図3】本発明による空気調和機の実施例2による室内
機の側断面図
FIG. 3 is a side sectional view of an indoor unit according to Embodiment 2 of the air conditioner according to the present invention.

【図4】本発明による空気調和機の実施例3による室内
機の側断面図
FIG. 4 is a side sectional view of an indoor unit according to Embodiment 3 of the air conditioner of the present invention.

【図5】本発明による空気調和機の実施例4による室内
機の側断面図
FIG. 5 is a side sectional view of an indoor unit according to Embodiment 4 of the air conditioner of the present invention.

【図6】従来の空気調和機の室内機の側断面図FIG. 6 is a side sectional view of an indoor unit of a conventional air conditioner.

【図7】従来の空気調和機の冷凍サイクル図FIG. 7 is a refrigeration cycle diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

21,41,61 フィンチューブ形室内熱交換器 25,45,65 板状フィン 25a,45a,65a 切れ目 26 伝熱管 27 冷媒絞り機構(除湿制御弁) 27a キャピラリチューブ 27b 二方弁 30 ファン 31a,31b 吸い込みグリル 33,53,73 第1熱交換器 33a,53a,73a 冷媒の入り口(冷媒の出入
口) 33b,53b,73b 冷媒の出口(冷媒の出入口) 34,54,74 第2熱交換器 34a,54a,74a 冷媒の入り口(冷媒の出入
口) 34b,54b,74b 冷媒の出口(冷媒の出入口) 62 主第1熱交換器 63 補助第1熱交換器
21, 41, 61 Fin tube type indoor heat exchanger 25, 45, 65 Plate fin 25a, 45a, 65a Break 26 Heat transfer tube 27 Refrigerant throttle mechanism (dehumidification control valve) 27a Capillary tube 27b Two-way valve 30 Fan 31a, 31b Suction grille 33, 53, 73 First heat exchanger 33a, 53a, 73a Refrigerant inlet (refrigerant inlet / outlet) 33b, 53b, 73b Refrigerant outlet (refrigerant inlet / outlet) 34, 54, 74 Second heat exchanger 34a, 54a, 74a Refrigerant inlet (refrigerant inlet / outlet) 34b, 54b, 74b Refrigerant outlet (refrigerant inlet / outlet) 62 Main first heat exchanger 63 Auxiliary first heat exchanger

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 多数平行に並べられた板状フィンに直角
に挿通され内部を冷媒が流動する伝熱管が空気の流れ方
向に複数列に構成されたフィンチューブ形室内熱交換器
を、空気の流れ方向と略直角な段方向に熱的に第1熱交
換器と第2熱交換器とに分割するとともに、前記第1熱
交換器と前記第2熱交換器とを冷媒の流路抵抗が大きい
状態と冷媒の流路抵抗が小さい状態をもつ冷媒絞り機構
を介して接続して、冷房運転時と除湿運転時に前記第1
熱交換器から前記第2熱交換器へ冷媒が流れ、暖房運転
時に前記第2熱交換器から前記第1熱交換器へ冷媒が流
れるように冷凍サイクルを構成し、除湿運転時に前記冷
媒絞り機構を冷媒の流路抵抗が大きい状態にして前記第
1熱交換器で室内の空気を加熱しながら前記第2熱交換
器で室内の空気を除湿することができるようにした空気
調和機において、 除湿運転時における前記第1熱交換器の冷媒の入り口直
後の前記伝熱管と冷媒の出口直前の伝熱管を空気の流れ
の上流側の列に配置し、除湿運転時における前記第2熱
交換器の冷媒の入り口直後の前記伝熱管を空気の流れの
上流側の列、冷媒の出口直前の前記伝熱管を空気の流れ
の下流側の列にそれぞれ配置したことを特徴とする空気
調和機。
1. A fin tube type indoor heat exchanger in which a plurality of heat transfer tubes which are inserted at right angles through a plurality of parallelly arranged plate-like fins and through which a refrigerant flows is formed in a plurality of rows in the direction of air flow. While thermally dividing into a first heat exchanger and a second heat exchanger in a stage direction substantially perpendicular to the flow direction, the flow resistance of the refrigerant between the first heat exchanger and the second heat exchanger is reduced. Connected via a refrigerant throttle mechanism having a large state and a state in which the flow path resistance of the refrigerant is small, the first state is used during the cooling operation and the dehumidifying operation.
A refrigeration cycle is configured such that the refrigerant flows from the heat exchanger to the second heat exchanger, and the refrigerant flows from the second heat exchanger to the first heat exchanger during a heating operation, and the refrigerant throttle mechanism during a dehumidifying operation. An air conditioner that is capable of dehumidifying indoor air with the second heat exchanger while heating the indoor air with the first heat exchanger while setting the flow path resistance of the refrigerant to be large. The heat transfer tubes immediately after the inlet of the refrigerant of the first heat exchanger and the heat transfer tubes immediately before the outlet of the refrigerant in the first heat exchanger are arranged in a row on the upstream side of the flow of air during the operation, and the second heat exchanger during the dehumidification operation is An air conditioner wherein the heat transfer tubes immediately after the inlet of the refrigerant are arranged in a row on the upstream side of the air flow, and the heat transfer tubes immediately before the outlet of the refrigerant are arranged in a row on the downstream side of the air flow.
【請求項2】 第1熱交換器は、除湿運転時に、冷媒
が、除湿運転時の冷媒の入り口から流入し、空気流と同
じ方向に冷媒が流れた後、空気流と対向する方向に冷媒
が流れて除湿運転時の冷媒の出口から流出するように伝
熱管経路が構成されていることを特徴とする請求項1記
載の空気調和機。
2. The first heat exchanger is configured such that during the dehumidifying operation, the refrigerant flows in from the inlet of the refrigerant during the dehumidifying operation, flows in the same direction as the air flow, and then flows in the direction opposite to the air flow. The air conditioner according to claim 1, wherein the heat transfer tube path is configured such that the refrigerant flows through the outlet of the refrigerant during the dehumidifying operation.
【請求項3】 第1熱交換器は、空気の流れ方向に2列
の伝熱管をもち、2つの伝熱管経路が並列に経路構成さ
れ、除湿運転時に、冷媒が、除湿運転時の冷媒の入り口
から流入し2つの前記伝熱管経路へ分流され、それぞれ
の前記伝熱管経路において、まず、空気の流れの上流側
の列の複数本の伝熱管を所定本数連続して通過し、次に
空気の流れの下流側の列の複数本の伝熱管を連続して通
過した後、空気の流れの上流側の列の残りの伝熱管を連
続して通過して、合流し除湿運転時の冷媒の出口から流
出するように構成されていることを特徴とする請求項1
記載の空気調和機。
3. The first heat exchanger has two rows of heat transfer tubes in a flow direction of air, and two heat transfer tube paths are configured in parallel. It flows in from the inlet and is divided into two of the heat transfer tube paths. In each of the heat transfer tube paths, first, a predetermined number of the heat transfer tubes continuously pass through a plurality of heat transfer tubes in an upstream row of the air flow, and then the air After successively passing through the plurality of heat transfer tubes in the downstream row of the flow of air, the refrigerant continuously passes through the remaining heat transfer tubes in the upstream row of the air flow, and merges to form a refrigerant in the dehumidifying operation. 2. The method according to claim 1, wherein the outlet is configured to flow out of the outlet.
The air conditioner as described.
【請求項4】 第1熱交換器は、空気の流れ方向に2列
の伝熱管をもち2つの伝熱管経路が並列に経路構成され
る主第1熱交換器と、空気の流れ方向に1列の伝熱管を
もち前記主第1熱交換器よりも空気の流れ方向と略直角
な段方向の長さが短い補助第1熱交換器とからなり、 除湿運転時に、冷媒が、除湿運転時の冷媒の入り口から
前記補助第1熱交換器に流入して、前記補助第1熱交換
器の複数本の伝熱管を連続して通過した後に前記補助第
1熱交換器から流出し、2つの前記伝熱管経路へ分流さ
れて前記主第1熱交換器に流入し、それぞれの前記伝熱
管経路において、まず、空気の流れの上流側の列の複数
本の伝熱管を所定本数連続して通過し、次に空気の流れ
の下流側の列の複数本の伝熱管を連続して通過した後、
空気の流れの上流側の列の残りの伝熱管を連続して通過
して、合流し除湿運転時の冷媒の出口から流出するよう
に構成されており、 前記補助第1熱交換器が、前記主第1熱交換器の空気の
流れの上流側で、かつ前記主第1熱交換器の冷房運転時
および除湿運転時における冷媒の出口直前の伝熱管の空
気の流れの上流側に位置しないように配置されているこ
とを特徴とする請求項1記載の空気調和機。
4. The first heat exchanger includes a main first heat exchanger having two rows of heat transfer tubes in the air flow direction and two heat transfer tube paths arranged in parallel, and a first heat exchanger in the air flow direction. An auxiliary first heat exchanger having a row of heat transfer tubes and a shorter length in a step direction substantially perpendicular to the air flow direction than the main first heat exchanger; Flows into the auxiliary first heat exchanger from the inlet of the refrigerant, passes through the plurality of heat transfer tubes of the auxiliary first heat exchanger continuously, and then flows out of the auxiliary first heat exchanger. The heat is diverted to the heat transfer tube path and flows into the main first heat exchanger. In each of the heat transfer tube paths, first, a predetermined number of heat transfer tubes continuously pass through a plurality of heat transfer tubes in an upstream row of air flow. Then, after successively passing through a plurality of heat transfer tubes in a row on the downstream side of the air flow,
It is configured to continuously pass through the remaining heat transfer tubes in the row on the upstream side of the air flow, to merge and to flow out from the outlet of the refrigerant at the time of the dehumidifying operation, and the auxiliary first heat exchanger is The main first heat exchanger should not be located upstream of the air flow and upstream of the air flow of the heat transfer tube immediately before the refrigerant outlet during the cooling operation and the dehumidifying operation of the main first heat exchanger. The air conditioner according to claim 1, wherein the air conditioner is disposed in a space.
【請求項5】 第1熱交換器の除湿運転時における冷媒
の出口直前の空気の流れの上流側列の伝熱管と空気の流
れの下流側列の伝熱管との列間に、伝熱管列間での熱伝
導をなくすための切れ目を板状フィンに設けたことを特
徴とする請求項1から4のいずれかに記載の空気調和
機。
5. A row of heat transfer tubes between a row of heat transfer tubes in an upstream row of air flow and a row of heat transfer tubes in a downstream row of air flow immediately before a refrigerant outlet during a dehumidifying operation of the first heat exchanger. The air conditioner according to any one of claims 1 to 4, wherein a cut for eliminating heat conduction between the plate fins is provided.
【請求項6】 室内熱交換器を収納する室内機は、貫流
型のファンを内蔵し、室内機本体の前面と上面に吸い込
みグリルを有するものであり、 前記室内熱交換器を構成する第1熱交換器は、前面の前
記吸い込みグリルと前記ファンとの間に位置して、前面
の前記吸い込みグリルと上面の吸い込みグリルの手前側
部分を通過した空気と熱交換し、 前記室内熱交換器を構成する第2熱交換器は、上面の前
記吸い込みグリルと前記ファンとの間に位置して、上面
の吸い込みグリルの奥前側部分を通過した空気と熱交換
することを特徴とする請求項1から5のいずれかに記載
の空気調和機。
6. An indoor unit accommodating the indoor heat exchanger, which has a built-in once-through type fan and has suction grills on a front surface and an upper surface of the indoor unit main body, wherein the first unit constituting the indoor heat exchanger is provided. The heat exchanger is located between the suction grill on the front and the fan, and exchanges heat with air passing through the front side of the suction grill on the front and the suction grill on the top, and The second heat exchanger that is configured is located between the suction grill on the upper surface and the fan, and exchanges heat with the air that has passed through the rear part of the suction grill on the upper surface. 5. The air conditioner according to any one of 5.
【請求項7】 第1熱交換器の除湿運転時における冷媒
の出口直前の空気の流れの上流側列の伝熱管は、第1熱
交換器における相対的に空気の流れの速い箇所に配置さ
れていることを特徴とする請求項1から6のいずれかに
記載の空気調和機。
7. The heat transfer tubes in the upstream row of the air flow immediately before the outlet of the refrigerant during the dehumidifying operation of the first heat exchanger are arranged in the first heat exchanger at locations where the air flow is relatively high. The air conditioner according to any one of claims 1 to 6, wherein:
【請求項8】 多数平行に並べられた板状フィンに直角
に挿通され内部を冷媒が流動する伝熱管が空気の流れ方
向に複数列に構成され、2つの冷媒の出入口に近接する
前記伝熱管がともに空気の流れの上流側となる列に配置
されたフィンチューブ形の第1熱交換器と、 多数平行に並べられた板状フィンに直角に挿通され内部
を冷媒が流動する伝熱管が空気の流れ方向に複数列に構
成され、2つの冷媒の出入口のうち一方の冷媒の出入口
に近接する前記伝熱管が空気の流れの上流側となる列に
配置され他方の冷媒の出入口に近接する前記伝熱管が空
気の流れの下流側となる列に配置されたフィンチューブ
形の第2熱交換器と、 前記第1熱交換器の2つの冷媒の出入口のうち一方の冷
媒の出入口と前記第2熱交換器の空気の流れの上流側と
なる列に配置された冷媒の出入口とを接続する接続管の
途中に設けられた冷媒の流路抵抗が大きい状態と冷媒の
流路抵抗が小さい状態をもつ冷媒絞り機構とにより構成
され、 前記第1熱交換器と前記第2熱交換器とが空気の流れの
方向で重ならないように前記第1熱交換器と前記第2熱
交換器とを配置した熱交換器ユニット。
8. A plurality of heat transfer tubes, which are inserted at right angles to a large number of plate-like fins arranged in parallel and through which a refrigerant flows, are arranged in a plurality of rows in the direction of air flow, and wherein the heat transfer tubes are close to two refrigerant inlets / outlets. The first heat exchanger is a fin tube type arranged in a row on the upstream side of the air flow, and the heat transfer tube through which a refrigerant flows inside at right angles through a large number of parallel plate-shaped fins is formed by air. The heat transfer tubes that are arranged in a plurality of rows in the flow direction of the two refrigerants and that are close to the one of the refrigerant inlets and outlets are arranged in a row on the upstream side of the air flow and that are close to the other refrigerants. A fin tube-shaped second heat exchanger in which the heat transfer tubes are arranged in a row on the downstream side of the air flow; an inlet / outlet of one of the two refrigerant inlets / outlets of the first heat exchanger; Rows upstream of heat exchanger airflow The first heat exchange is constituted by a refrigerant throttle mechanism having a state in which the flow path resistance of the refrigerant is high and a state in which the flow path resistance of the refrigerant is low, which is provided in the middle of the connection pipe connecting the arranged inlet and outlet of the refrigerant. A heat exchanger unit in which the first heat exchanger and the second heat exchanger are arranged such that a heat exchanger and the second heat exchanger do not overlap in the direction of air flow.
【請求項9】 第1熱交換器は、反冷媒絞り機構側の冷
媒の出入口から冷媒絞り機構側の冷媒の出入口へ冷媒を
流した場合に、冷媒が、反冷媒絞り機構側の冷媒の出入
口から流入して、空気流と同じ方向に冷媒が流れた後、
空気流と対向する方向に冷媒が流れて、冷媒絞り機構側
の冷媒の出入口から流出するように伝熱管経路が構成さ
れていることを特徴とする請求項8記載の熱交換器ユニ
ット。
9. When the refrigerant flows from the inlet / outlet of the refrigerant on the side of the refrigerant restricting mechanism to the inlet / outlet of the refrigerant on the side of the refrigerant restricting mechanism, the first heat exchanger converts the refrigerant into and out of the refrigerant on the side of the anti-refrigerant restrictor. After flowing in from the refrigerant in the same direction as the air flow,
The heat exchanger unit according to claim 8, wherein the heat transfer tube path is configured such that the refrigerant flows in a direction facing the air flow and flows out of the refrigerant inlet / outlet on the refrigerant throttle mechanism side.
【請求項10】 第1熱交換器は、空気の流れ方向に2
列の伝熱管をもち、2つの伝熱管経路が並列に経路構成
され、 反冷媒絞り機構側の冷媒の出入口から冷媒絞り機構側の
冷媒の出入口へ冷媒を流した場合に、冷媒が、反冷媒絞
り機構側の冷媒の出入口から流入して2つの前記伝熱管
経路へ分流され、それぞれの前記伝熱管経路において、
まず、空気の流れの上流側となる列の複数本の伝熱管を
所定本数連続して通過し、次に空気の流れの下流側とな
る列の複数本の伝熱管を連続して通過した後、空気の流
れの上流側となる列の残りの伝熱管を連続して通過し
て、合流し冷媒絞り機構側の冷媒の出入口から流出する
ように構成されていることを特徴とする請求項8記載の
熱交換器ユニット。
10. The first heat exchanger has two heat exchangers in the air flow direction.
When the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism to the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, the refrigerant becomes an anti-refrigerant. The refrigerant flows in from the inlet / outlet of the throttle mechanism side and is divided into two heat transfer tube paths. In each of the heat transfer tube paths,
First, after continuously passing a predetermined number of heat transfer tubes in a row on the upstream side of the air flow, and then continuously passing through a plurality of heat transfer tubes in a row on the downstream side of the air flow. 9. The air conditioner according to claim 8, wherein the heat exchanger continuously passes through the remaining heat transfer tubes in the row on the upstream side of the air flow, merges and flows out from the refrigerant inlet / outlet on the refrigerant throttle mechanism side. A heat exchanger unit as described.
【請求項11】 第1熱交換器は、空気の流れ方向に2
列の伝熱管をもち、2つの伝熱管経路が並列に経路構成
され、 冷媒絞り機構側の冷媒の出入口に近接する伝熱管は反冷
媒絞り機構側の冷媒の出入口に近接する伝熱管より下の
段に位置し、 並列に経路構成される2つの伝熱管経路の一方は、反冷
媒絞り機構側の冷媒の出入口から熱交換器上端に向かっ
て形成し、さらに熱交換器上端付近で空気の流れの下流
側となる列に移り熱交換器下端に向かって熱交換器中央
付近まで形成し、さらに熱交換器中央付近で空気の流れ
の上流側となる列に移り熱交換器下端に向かって冷媒絞
り機構側の冷媒の出入口まで形成し、 並列に経路構成される2つの伝熱管経路の他方は、反冷
媒絞り機構側の冷媒の出入口から熱交換器下端に向かっ
て熱交換器中央付近まで形成し、さらに熱交換器中央付
近で空気の流れの下流側となる列に移り熱交換器下端に
向かって形成し、さらに熱交換器下端付近で空気の流れ
の上流側となる列に移り熱交換器上端に向かって冷媒絞
り機構側の冷媒の出入口まで形成する構成としたことを
特徴とする請求項8記載の熱交換器ユニット。
11. The first heat exchanger includes two heat exchangers in the air flow direction.
With two rows of heat transfer tubes, two heat transfer tube paths are configured in parallel, and the heat transfer tubes near the refrigerant inlet / outlet on the refrigerant throttle mechanism side are located below the heat transfer tubes near the refrigerant inlet / outlet on the anti-refrigerant throttle mechanism side. One of the two heat transfer tube paths, which are located in stages and are formed in parallel, is formed from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism to the upper end of the heat exchanger. To the lower row of the heat exchanger to the lower end of the heat exchanger and to the vicinity of the center of the heat exchanger, and further to the upper row of the air flow near the center of the heat exchanger and to the lower stream of the heat exchanger toward the lower end of the heat exchanger. The other of the two heat transfer tube paths formed in parallel to the refrigerant inlet and outlet on the throttle mechanism side is formed from the refrigerant inlet and outlet on the anti-refrigerant throttle mechanism side to the heat exchanger lower end and near the center of the heat exchanger. Air flow near the center of the heat exchanger. Of the refrigerant on the side of the refrigerant throttle mechanism toward the upper end of the heat exchanger, moving to the row on the upstream side of the air flow near the lower end of the heat exchanger. 9. The heat exchanger unit according to claim 8, wherein the heat exchanger unit is formed up to the entrance.
【請求項12】 第1熱交換器は、空気の流れ方向に2
列の伝熱管をもち2つの伝熱管経路が並列に経路構成さ
れる主第1熱交換器と、空気の流れ方向に1列の伝熱管
をもち前記主第1熱交換器よりも空気の流れ方向と略直
角な段方向の長さが短い補助第1熱交換器とからなり、 反冷媒絞り機構側の冷媒の出入口から冷媒絞り機構側の
冷媒の出入口へ冷媒を流した場合に、冷媒が、反冷媒絞
り機構側の冷媒の出入口から前記補助第1熱交換器に流
入して、前記補助第1熱交換器の複数本の伝熱管を連続
して通過した後に前記補助第1熱交換器から流出し、2
つの前記伝熱管経路へ分流されて前記主第1熱交換器に
流入し、それぞれの前記伝熱管経路において、まず、空
気の流れの上流側となる列の複数本の伝熱管を所定本数
連続して通過し、次に空気の流れの下流側となる列の複
数本の伝熱管を連続して通過した後、空気の流れの上流
側となる列の残りの伝熱管を連続して通過して、合流し
冷媒絞り機構側の冷媒の出入口から流出するように構成
されており、 前記補助第1熱交換器が、前記主第1熱交換器の空気の
流れの上流側で、かつ冷媒絞り機構側の冷媒の出入口に
近接する前記主第1熱交換器の伝熱管の空気の流れの上
流側に位置しないように配置されていることを特徴とす
る請求項8記載の熱交換器ユニット。
12. The heat exchanger according to claim 1, wherein the first heat exchanger is provided in the air flow direction.
A main first heat exchanger having a row of heat transfer tubes and two heat transfer tube paths arranged in parallel, and a flow of air having a row of heat transfer tubes in the direction of air flow, which is higher than that of the main first heat exchanger. The auxiliary first heat exchanger having a short length in a step direction substantially perpendicular to the direction, and when the refrigerant flows from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism to the inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, The auxiliary first heat exchanger flows into the auxiliary first heat exchanger from the inlet / outlet of the refrigerant on the side of the anti-refrigerant throttle mechanism and continuously passes through a plurality of heat transfer tubes of the auxiliary first heat exchanger. Leaked from
The heat is divided into two heat transfer tube paths and flows into the main first heat exchanger. In each of the heat transfer tube paths, first, a predetermined number of heat transfer tubes in a row on the upstream side of the air flow are continuously arranged. After passing successively through the plurality of heat transfer tubes in the row on the downstream side of the air flow, and continuously passing through the remaining heat transfer tubes in the row on the upstream side of the air flow. The auxiliary first heat exchanger is configured to flow out of an inlet / outlet of the refrigerant on the side of the refrigerant throttle mechanism, and the auxiliary first heat exchanger is provided on the upstream side of the air flow of the main first heat exchanger, and the refrigerant throttle mechanism is provided. 9. The heat exchanger unit according to claim 8, wherein the heat exchanger unit is arranged so as not to be located on the upstream side of the air flow of the heat transfer tube of the main first heat exchanger that is close to the inlet / outlet of the refrigerant on the side.
【請求項13】 第1熱交換器は、空気の流れ方向に2
列の伝熱管をもち2つの伝熱管経路が並列に経路構成さ
れる主第1熱交換器と、空気の流れ方向に1列の伝熱管
をもち前記主第1熱交換器よりも空気の流れ方向と略直
角な段方向の長さが短い補助第1熱交換器とからなり、 冷媒絞り機構側の冷媒の出入口に近接する前記主第1熱
交換器の伝熱管は、反冷媒絞り機構側の冷媒の出入口に
近接する前記補助第1熱交換器の伝熱管より下の段に位
置し、 前記補助第1熱交換器の伝熱管経路は、前記補助第1熱
交換器の下端付近に配置された反冷媒絞り機構側の冷媒
の出入口からから熱交換器上端に向かって熱交換器上端
付近の伝熱管まで形成し、 前記主第1熱交換器の並列に経路構成される2つの伝熱
管経路の一方は、前記補助第1熱交換器の熱交換器上端
付近の伝熱管と接続される分流部から熱交換器上端に向
かって形成し、さらに熱交換器上端付近で空気の流れの
下流側となる列に移り熱交換器下端に向かって熱交換器
中央付近まで形成し、さらに熱交換器中央付近で空気の
流れの上流側となる列に移り熱交換器下端に向かって冷
媒絞り機構側の冷媒の出入口まで形成し、 前記主第1熱交換器の並列に経路構成される2つの伝熱
管経路の他方は、前記補助第1熱交換器の熱交換器上端
付近の伝熱管と接続される分流部から熱交換器下端に向
かって熱交換器中央付近まで形成し、さらに熱交換器中
央付近で空気の流れの下流側となる列に移り熱交換器下
端に向かって形成し、さらに熱交換器下端付近で空気の
流れの上流側となる列に移り熱交換器上端に向かって冷
媒絞り機構側の冷媒の出入口まで形成する構成としたこ
とを特徴とする請求項8記載の熱交換器ユニット。
13. The heat exchanger according to claim 1, wherein the first heat exchanger is provided in the air flow direction.
A main first heat exchanger having a row of heat transfer tubes and two heat transfer tube paths arranged in parallel, and a flow of air having a row of heat transfer tubes in the direction of air flow, which is higher than that of the main first heat exchanger. The auxiliary first heat exchanger having a short length in a step direction substantially perpendicular to the direction, and a heat transfer tube of the main first heat exchanger that is close to the refrigerant inlet / outlet on the side of the refrigerant throttle mechanism, The heat transfer pipe path of the auxiliary first heat exchanger is located near the lower end of the auxiliary first heat exchanger. Two heat transfer tubes formed from the refrigerant inlet / outlet on the anti-refrigerant throttle mechanism side to the heat exchanger upper end in the vicinity of the heat exchanger upper end, and arranged in parallel with the main first heat exchanger. One of the paths is from a branch portion connected to a heat transfer tube near the upper end of the heat exchanger of the auxiliary first heat exchanger. Formed toward the upper end of the heat exchanger, further moved to the row on the downstream side of the air flow near the upper end of the heat exchanger, and formed near the center of the heat exchanger toward the lower end of the heat exchanger, and further near the center of the heat exchanger It moves to a row on the upstream side of the flow of air, and is formed toward the lower end of the heat exchanger up to the inlet and outlet of the refrigerant on the side of the refrigerant throttle mechanism, and the two heat transfer tube paths configured in parallel with the main first heat exchanger The other is formed from the branching portion connected to the heat transfer tube near the upper end of the heat exchanger of the auxiliary first heat exchanger to the center of the heat exchanger toward the lower end of the heat exchanger, and further, the air is formed near the center of the heat exchanger. To the lower row of the heat exchanger, and form toward the lower end of the heat exchanger, and further to the row closer to the upper stream of the air flow near the lower end of the heat exchanger, on the side of the refrigerant throttle mechanism toward the upper end of the heat exchanger. It is characterized in that it is configured to form up to the inlet and outlet of the refrigerant The heat exchanger unit according to claim 8, wherein.
【請求項14】 第1熱交換器の冷媒絞り機構側の冷媒
の出入口に近接する空気の流れの上流側となる列の伝熱
管と空気の流れの下流側となる列の伝熱管との列間に、
伝熱管列間での熱伝導をなくすための切れ目を板状フィ
ンに設けたことを特徴とする請求項8から13のいずれ
かに記載の熱交換器ユニット。
14. A row of heat transfer tubes in a row on the upstream side of the air flow and a row of heat transfer tubes on the downstream side of the air flow near the inlet / outlet of the refrigerant on the refrigerant throttle mechanism side of the first heat exchanger. Between,
14. The heat exchanger unit according to claim 8, wherein a cut for eliminating heat conduction between the heat transfer tube rows is provided in the plate-like fin.
【請求項15】 冷媒絞り機構は、全開状態と微開状態
をもつ制御弁により構成されることを特徴とする請求項
8から14のいずれかに記載の熱交換器ユニット。
15. The heat exchanger unit according to claim 8, wherein the refrigerant throttle mechanism includes a control valve having a fully opened state and a slightly opened state.
【請求項16】 冷媒絞り機構は、キャピラリチューブ
と、前記キャピラリチューブをバイパスするバイパス路
に設けられた二方弁により構成されることを特徴とする
請求項8から14のいずれかに記載の熱交換器ユニッ
ト。
16. The heat pump according to claim 8, wherein the refrigerant throttle mechanism includes a capillary tube and a two-way valve provided in a bypass that bypasses the capillary tube. Exchanger unit.
JP10210601A 1998-07-27 1998-07-27 Air-conditioning equipment and heat exchanger unit Withdrawn JP2000039167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10210601A JP2000039167A (en) 1998-07-27 1998-07-27 Air-conditioning equipment and heat exchanger unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10210601A JP2000039167A (en) 1998-07-27 1998-07-27 Air-conditioning equipment and heat exchanger unit

Publications (1)

Publication Number Publication Date
JP2000039167A true JP2000039167A (en) 2000-02-08

Family

ID=16592037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10210601A Withdrawn JP2000039167A (en) 1998-07-27 1998-07-27 Air-conditioning equipment and heat exchanger unit

Country Status (1)

Country Link
JP (1) JP2000039167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917468A (en) * 2017-12-12 2018-04-17 广东美的制冷设备有限公司 Air-conditining and its control method
CN108087972A (en) * 2017-12-12 2018-05-29 广东美的制冷设备有限公司 Air-conditining and its control method
CN108105863A (en) * 2017-12-12 2018-06-01 广东美的制冷设备有限公司 Air-conditining and its control method
CN113587248A (en) * 2021-07-13 2021-11-02 重庆海尔空调器有限公司 Method and device for self-cleaning air duct of air conditioner, air conditioner and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917468A (en) * 2017-12-12 2018-04-17 广东美的制冷设备有限公司 Air-conditining and its control method
CN108087972A (en) * 2017-12-12 2018-05-29 广东美的制冷设备有限公司 Air-conditining and its control method
CN108105863A (en) * 2017-12-12 2018-06-01 广东美的制冷设备有限公司 Air-conditining and its control method
CN107917468B (en) * 2017-12-12 2020-09-11 广东美的制冷设备有限公司 Air conditioner hanging machine and control method thereof
CN113587248A (en) * 2021-07-13 2021-11-02 重庆海尔空调器有限公司 Method and device for self-cleaning air duct of air conditioner, air conditioner and storage medium
CN113587248B (en) * 2021-07-13 2023-01-13 重庆海尔空调器有限公司 Method and device for self-cleaning air duct of air conditioner, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP2003254555A (en) Air conditioner
JP4178472B2 (en) Heat exchanger and air conditioner
CN217817549U (en) Heat exchanger and air conditioner
JP2006170608A (en) Heat exchanger in air conditioner
KR20130095296A (en) Evaporator and refrigerating system with said evaporator thereof
JP2001174047A (en) Indoor unit of air conditioner
JP4411986B2 (en) Dehumidifier
JP4041067B2 (en) Air conditioner with air conditioning function
KR20050077041A (en) Air flow switching type air conditioner
JP2006317063A (en) Air conditioner
JP2000039167A (en) Air-conditioning equipment and heat exchanger unit
JP3851403B2 (en) Indoor unit for air conditioner
JP4647512B2 (en) Air conditioner
JP3724011B2 (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP2003214723A (en) Air conditioner
JP7414845B2 (en) Refrigeration cycle equipment
JP3677887B2 (en) Air conditioner
JP2998740B2 (en) Air conditioner
JP3885063B2 (en) Air conditioner
JP2017048953A (en) Air conditioner
JPH10196984A (en) Air conditioner
JP7401800B2 (en) Refrigeration cycle equipment
WO2023062801A1 (en) Heat exchanger and air conditioner
JPH09152216A (en) Air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050719

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070614