JP2003218403A - Composite light emitting device and its manufacturing method - Google Patents

Composite light emitting device and its manufacturing method

Info

Publication number
JP2003218403A
JP2003218403A JP2002009722A JP2002009722A JP2003218403A JP 2003218403 A JP2003218403 A JP 2003218403A JP 2002009722 A JP2002009722 A JP 2002009722A JP 2002009722 A JP2002009722 A JP 2002009722A JP 2003218403 A JP2003218403 A JP 2003218403A
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
semiconductor light
electrodes
bumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002009722A
Other languages
Japanese (ja)
Other versions
JP4032752B2 (en
Inventor
Tomio Inoue
登美男 井上
Kunihiko Obara
邦彦 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002009722A priority Critical patent/JP4032752B2/en
Publication of JP2003218403A publication Critical patent/JP2003218403A/en
Application granted granted Critical
Publication of JP4032752B2 publication Critical patent/JP4032752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flip-chip type composite light emitting device which is improved in heat dissipation properties. <P>SOLUTION: A composite light emitting device is equipped with a semiconductor light emitting element 2 provided with a pair of electrodes formed on the one surface of a semiconductor thin film layer laminated on a transparent board, a sub-mount device 3 which is equipped with two electrodes and joined to the semiconductor light emitting element 2 as its two electrodes are electrically connected to the electrodes of the light emitting element 2, and a first and a second large bump, 4 and 5, which join the semiconductor light emitting device 2 and the sub-mount device 3 together. The total sum of the plane cross sectional areas of the large bumps 4 and 5 is set 3/10 or above as large as the plane cross sectional area of the semiconductor light emitting device 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フリップチップ型
の複合発光素子にかかり、特に半導体発光素子からサブ
マウント素子への放熱特性を向上させた複合発光素子及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip type composite light emitting device, and more particularly to a composite light emitting device having improved heat dissipation characteristics from a semiconductor light emitting device to a submount device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、サブマウント素子上にバンプを介
してフリップチップ型の半導体発光素子を接合した複合
発光素子が多く使用されている。
2. Description of the Related Art Conventionally, a composite light emitting device in which a flip-chip type semiconductor light emitting device is bonded onto a submount device via a bump has been widely used.

【0003】図6(A)、(B)に示すように、この複
合発光素子70は、シリコンデバイスであるツェナーダ
イオード素子71上にGaN系LED素子72をAuバ
ンプ73,74で接合した構造、すなわちフリップチッ
プ実装した構造である。ツェナーダイオード素子71の
下面にはAu電極75が設けられ、上面にはAl電極7
6a,76bが設けられている。また、白色LEDとし
て使用するために、青色発光のGaN系LEDをYAG
系蛍光体77で覆う構造にしている。
As shown in FIGS. 6 (A) and 6 (B), this composite light emitting device 70 has a structure in which a GaN LED device 72 is joined by Au bumps 73 and 74 on a Zener diode device 71 which is a silicon device. That is, the structure is flip-chip mounted. An Au electrode 75 is provided on the lower surface of the Zener diode element 71, and an Al electrode 7 is provided on the upper surface.
6a and 76b are provided. In order to use it as a white LED, a blue-emitting GaN-based LED is used as a YAG.
The structure is covered with the system phosphor 77.

【0004】GaN系LEDを単独で使用する場合に比
べると、Auバンプで接合することによりLED素子の
静電保護を行うことができ、また、サファイア基板側か
ら光を取り出すことによる輝度が向上するという作用効
果があった。
Compared with the case where a GaN-based LED is used alone, the LED element can be electrostatically protected by bonding with Au bumps, and the brightness can be improved by extracting light from the sapphire substrate side. There was a function effect.

【0005】複合発光素子70に流す電流は、現状では
F=20mA程度であるが、近年では、これをIF=1
00mA程度まで増加させて複合発光素子の輝度を増加
させることが考えられている。
The current flowing through the composite light emitting device 70 is about I F = 20 mA at present, but in recent years, this is I F = 1.
It has been considered to increase the brightness of the composite light emitting device by increasing it to about 00 mA.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、複合発
光素子70は、放熱性に問題があり、電流をある程度以
上増やしても輝度が増加せずに、逆に下がる場合もあっ
た。
However, the composite light emitting element 70 has a problem in heat dissipation, and even if the current is increased to a certain extent or more, the brightness does not increase but may decrease in reverse.

【0007】すなわち、LED素子で発生する熱の流れ
やすさは、熱伝導率(k)と面積(S)の積(kS)で
評価できる。例えば、GaN系LEDを単独で使用し、
リードフレームに接続した場合には、サファイア基板の
熱伝導率k=42W/m/Kに、サファイア基板の面積
S=0.32mm×0.32mmを乗じると、kS=
4.3×10-6W・m/Kとなる。
That is, the ease with which heat is generated in the LED element can be evaluated by the product (kS) of the thermal conductivity (k) and the area (S). For example, using a GaN-based LED alone,
When connected to a lead frame, multiplying the thermal conductivity k = 42 W / m / K of the sapphire substrate by the area S of the sapphire substrate S = 0.32 mm × 0.32 mm gives kS =
It becomes 4.3 × 10 −6 W · m / K.

【0008】フリップチップ型の複合発光素子をリード
フレームに接続した場合には、ツェナーダイオードから
リードフレームへの熱の移動と、GaN系LED素子か
らツェナーダイオードへの熱の移動を考慮する必要があ
る。
When the flip-chip type composite light emitting device is connected to the lead frame, it is necessary to consider the heat transfer from the Zener diode to the lead frame and the heat transfer from the GaN-based LED device to the Zener diode. .

【0009】ツェナーダイオードのkS値は、kS=
4.42×10-5W・m/Kとなり、GaN系LEDか
らリードフレームへの熱の流れより、熱の流れは10倍
以上流れやすいと考えられる。
The kS value of the Zener diode is kS =
It is 4.42 × 10 −5 W · m / K, and it is considered that the heat flow is 10 times or more easier than the heat flow from the GaN-based LED to the lead frame.

【0010】一方、AuバンプのkS値を考えると、A
uバンプの熱伝導率k=319W/m/Kに、Auバン
プ2つ分の面積0.05mm×0.05mm×π×2を
乗じると、kS=5.01×10-6W・m/Kとなり、
これはGaN系LEDを単独で使用する場合に比べて少
しだけ大きいだけである。
On the other hand, considering the kS value of the Au bump, A
Multiplying the thermal conductivity of the u bump by k = 319 W / m / K by the area of two Au bumps of 0.05 mm × 0.05 mm × π × 2, kS = 5.01 × 10 −6 W · m / K,
This is only slightly larger than when using a GaN-based LED alone.

【0011】また、IF=20mAのときにGaN系L
EDから発生する熱量に比べて、IF=100mAのと
きの熱量は、消費電力I×Vに比例するとして、6.8
倍に増加する。これは、GaN系LEDのVF値がIF
20mAのときVF=3.5Vであるのに対し、IF=1
00mAではVF=4.8Vに増加するからである。し
たがって従来の複合発光素子は、IF=20mAのとき
は十分信頼性が確保できるだけの放熱特性を持つが、そ
れ以上の電流に対しては、十分な放熱特性を持つことが
できない。そのネックとなっているのが、複合発光素子
の場合、Auバンプの平断面積が小さいことである。従
来の複合発光素子のAuバンプの平断面積の合計は、半
導体発光素子の平断面積の15%程度である。
When I F = 20 mA, GaN-based L
Compared with the amount of heat generated from the ED, the amount of heat when I F = 100 mA is 6.8, which is proportional to the power consumption I × V.
Doubled. This is because the V F value of the GaN-based LED is I F =
While V F = 3.5V at 20 mA, I F = 1
This is because at 00 mA, V F increases to 4.8 V. Therefore, the conventional composite light emitting device has a heat dissipation characteristic that can secure sufficient reliability when I F = 20 mA, but cannot have a sufficient heat dissipation characteristic for a current higher than that. The bottleneck is that, in the case of the composite light emitting device, the Au bump has a small plane sectional area. The total plane sectional area of the Au bumps of the conventional composite light emitting element is about 15% of the plane sectional area of the semiconductor light emitting element.

【0012】したがって、フリップチップ型の複合発光
素子は、Auバンプを通過する熱の流れがIF=20m
A以上のときには不十分であるため、GaN系LEDの
発熱を十分に放熱できずに大電流を流したときの信頼性
の確保が困難になるという問題がある。
Therefore, in the flip-chip type composite light emitting device, the heat flow through the Au bump is I F = 20 m.
Since it is insufficient when the value is A or more, there is a problem in that it is difficult to secure the reliability when a large current is passed without sufficiently releasing the heat generated by the GaN-based LED.

【0013】そこで本発明は、放熱性を向上させたフリ
ップチップ型の複合発光素子を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a flip-chip type composite light emitting device having improved heat dissipation.

【0014】[0014]

【課題を解決するための手段】本発明の複合発光素子に
おいては、第1、第2の大型バンプの平断面積の合計
を、半導体発光素子の平断面積の30%以上としたもの
である。
In the composite light emitting device of the present invention, the total of the plane sectional areas of the first and second large bumps is 30% or more of the plane sectional area of the semiconductor light emitting device. .

【0015】この発明によれば、放熱性を向上させたフ
リップチップ型の複合発光素子が得られる。
According to the present invention, a flip-chip type composite light emitting device having improved heat dissipation can be obtained.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載の発明
は、透明基板上に積層した半導体薄膜層の一方の面に一
対の電極を形成した半導体発光素子と、2つの電極を有
し、この2つの電極に前記一対の電極がそれぞれ導通す
る状態に前記半導体発光素子を接合するサブマウント素
子と、前記半導体発光素子と前記サブマウント素子とを
接合した第1、第2の大型バンプとを有し、前記第1、
第2の大型バンプの平断面積の合計を、前記半導体発光
素子の平断面積の30%以上としたことを特徴とする複
合発光素子としたものであり、半導体発光素子で発生し
た熱量が第1、第2の大型バンプにより効率よく放熱さ
れるので、増加させた電流量に応じた輝度を得ることが
できるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention has a semiconductor light emitting element in which a pair of electrodes are formed on one surface of a semiconductor thin film layer laminated on a transparent substrate, and two electrodes. A submount element for joining the semiconductor light emitting element to the two electrodes in a state where the pair of electrodes are electrically connected to each other, and first and second large bumps for joining the semiconductor light emitting element and the submount element And the first,
The present invention provides a composite light emitting device, characterized in that the total of the plane sectional areas of the second large-sized bumps is 30% or more of the plane sectional area of the semiconductor light emitting element. Since the first and second large-sized bumps radiate heat efficiently, there is an effect that the brightness corresponding to the increased current amount can be obtained.

【0017】請求項2に記載の発明は、透明基板上に積
層した半導体薄膜層の一方の面に一対の電極を形成した
半導体発光素子と、2つの電極を有し、この2つの電極
に前記一対の電極がそれぞれ導通する状態に前記半導体
発光素子を接合するサブマウント素子とを、第1、第2
の大型バンプで接合する複合発光素子の製造方法におい
て、前記半導体発光素子と前記サブマウント素子とを、
第1、第2の小型バンプで接合する工程と、前記第1、
第2の小型バンプに金メッキを施して前記半導体発光素
子の平断面積の30%以上に平断面積を拡大した第1、
第2の大型バンプを形成する工程とを有することを特徴
とする複合発光素子の製造方法であり、従来使用されて
いた第1、第2の小型バンプを用いて半導体発光素子と
サブマウント素子とを接合した後に第1、第2の小型バ
ンプの平断面積を大きくできるので、工程の変更を少な
くして、製造を容易に行うことができる。
According to a second aspect of the present invention, there is provided a semiconductor light emitting device having a pair of electrodes formed on one surface of a semiconductor thin film layer laminated on a transparent substrate, and two electrodes. A submount element for joining the semiconductor light emitting element in a state in which a pair of electrodes are electrically connected to each other;
In the method for manufacturing a composite light-emitting element, which is joined with a large bump, the semiconductor light-emitting element and the submount element are
The step of joining with the first and second small bumps, and the first,
A first small bump having a flat cross-sectional area expanded to 30% or more of the flat cross-sectional area of the semiconductor light emitting device by gold plating;
And a step of forming a second large bump, which is a method for manufacturing a composite light emitting element, wherein a semiconductor light emitting element and a submount element are formed by using the first and second small bumps that have been conventionally used. Since the plane cross-sectional areas of the first and second small bumps can be increased after the joining, the manufacturing steps can be facilitated with few process changes.

【0018】請求項3に記載の発明は、透明基板上に積
層した半導体薄膜層の一方の面に一対の電極を形成した
半導体発光素子と、2つの電極を有し、この2つの電極
に前記一対の電極がそれぞれ導通する状態に前記半導体
発光素子を接合するサブマウント素子とを、第1、第2
の大型バンプで接合する複合発光素子の製造方法におい
て、前記サブマウント素子上に前記半導体発光素子の平
断面積の30%以上の平断面積を有する第1、第2の大
型バンプをめっきにより形成する工程と、前記第1、第
2の大型バンプに前記半導体発光素子を接合する工程と
を有することを特徴とする複合発光素子の製造方法であ
り、サブマウント素子上に大型バンプを形成してから半
導体発光素子を接合するので、工数を減らして作業を単
純化することができる。
According to a third aspect of the present invention, there is provided a semiconductor light emitting device having a pair of electrodes formed on one surface of a semiconductor thin film layer laminated on a transparent substrate, and two electrodes. A submount element for joining the semiconductor light emitting element in a state in which a pair of electrodes are electrically connected to each other;
In the method for manufacturing a composite light-emitting device, which is joined with a large bump, the first and second large bumps having a plane cross-sectional area of 30% or more of the plane cross-sectional area of the semiconductor light-emitting device are formed on the submount element by plating. And a step of joining the semiconductor light emitting element to the first and second large-sized bumps, wherein a large bump is formed on the submount element. Since the semiconductor light emitting element is bonded to the semiconductor light emitting element, the number of steps can be reduced and the work can be simplified.

【0019】以下、本発明の実施の形態について、図
1、図2を用いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

【0020】(実施の形態1)図1(A)は本発明の第
1の実施の形態にかかる複合発光素子の平面図、(B)
は同複合発光素子の正断面図を示す。図1において複合
発光素子1は、半導体発光素子2と、サブマウント素子
3と、半導体発光素子2及びサブマウント素子3を接合
する第1、第2の大型バンプ4,5を有している。
(First Embodiment) FIG. 1A is a plan view of a composite light emitting device according to a first embodiment of the present invention, and FIG.
Shows a front sectional view of the same composite light emitting device. In FIG. 1, the composite light emitting element 1 has a semiconductor light emitting element 2, a submount element 3, and first and second large bumps 4 and 5 for joining the semiconductor light emitting element 2 and the submount element 3.

【0021】サブマウント素子3は、n型シリコン基板
を素材としたもので、一部からp型不純物イオンを注入
して拡散させて、p型半導体領域を部分的に形成しツェ
ナーダイオードとしたものである。n型半導体領域に相
当する部分にn側電極を、p型半導体領域に相当する部
分にp側電極をそれぞれ形成している。
The submount element 3 is made of an n-type silicon substrate, and is a Zener diode in which p-type impurity ions are partially implanted and diffused to partially form a p-type semiconductor region. Is. An n-side electrode is formed in a portion corresponding to the n-type semiconductor region, and a p-side electrode is formed in a portion corresponding to the p-type semiconductor region.

【0022】半導体発光素子2は従来例と同様にGaN
系化合物半導体を用いた青色発光のフリップチップ型の
ものであって、サファイアの基板にp型層及びn型層を
積層するとともに、これらの層の表面にp側電極及びn
側電極を蒸着法によって形成したものである。
The semiconductor light emitting device 2 is made of GaN as in the conventional example.
It is a blue light emitting flip-chip type using a compound semiconductor, and a p-type layer and an n-type layer are laminated on a sapphire substrate, and a p-side electrode and an n-type layer are formed on the surface of these layers.
The side electrode is formed by a vapor deposition method.

【0023】サブマウント素子3上に設けられ、半導体
発光素子2をサブマウント素子3上に搭載接合させる第
1、第2の大型バンプ4,5の平断面積の合計は、半導
体発光素子2の平断面積の30%以上にしている。な
お、第1、第2の大型バンプ4,5は、両者が接触しな
い距離まで近接させて設けることができる。
The total of the plane cross-sectional areas of the first and second large-sized bumps 4 and 5 provided on the sub-mount element 3 for mounting and bonding the semiconductor light-emitting element 2 on the sub-mount element 3 is the same as that of the semiconductor light-emitting element 2. The cross-sectional area is 30% or more. The first and second large-sized bumps 4 and 5 can be provided in close proximity to each other so that they do not contact each other.

【0024】第1、第2の大型バンプ4,5の平断面積
の合計を半導体発光素子2の平断面積の30%以上にす
ることにより、半導体発光素子2に流す電流を例えばI
F=40mA以上にして使用でき、輝度を1.5倍以上
に増加させることができる。第1、第2の大型バンプ
4,5の平断面積の合計が半導体発光素子2の平断面積
の30%未満では、放熱効果がまだ不十分で輝度の増加
が1.5倍に達しない場合もあり好ましくない。
By setting the total of the plane sectional areas of the first and second large-sized bumps 4 and 5 to be 30% or more of the plane sectional area of the semiconductor light emitting element 2, the current flowing through the semiconductor light emitting element 2 is, for example, I.
It can be used with F = 40 mA or more and the brightness can be increased by 1.5 times or more. If the total of the plane sectional areas of the first and second large-sized bumps 4 and 5 is less than 30% of the plane sectional area of the semiconductor light emitting element 2, the heat dissipation effect is still insufficient and the increase in brightness does not reach 1.5 times. In some cases, it is not preferable.

【0025】なお、第1、第2の大型バンプの平断面積
の合計を63%以上に設定してIF=80mAの電流を
流すこともでき、さらに半導体発光素子のチップサイズ
を現行の0.32mm角から0.34mm角に大きく
し、平断面積の合計を68%以上に設定してIF=10
0mAの電流を流すことも可能である。
It is also possible to set the total of the plane cross-sectional areas of the first and second large bumps to 63% or more and to flow a current of I F = 80 mA, and further to reduce the chip size of the semiconductor light emitting device to the current 0. I F = 10 by increasing from 0.32 mm square to 0.34 mm square and setting the total flat cross-sectional area to 68% or more.
It is also possible to pass a current of 0 mA.

【0026】サブマウント素子3がツェナーダイオード
の場合、半導体発光素子2とツェナーダイオードとを逆
極性に接続することによって静電気保護の機能を付加す
ることができる。
When the submount element 3 is a Zener diode, a static electricity protection function can be added by connecting the semiconductor light emitting element 2 and the Zener diode in opposite polarities.

【0027】すなわち、このような逆極性の接続によっ
て、サブマウント素子3に高電圧による過電流が印加さ
れたときには、半導体発光素子2に印加される逆方向電
圧はサブマウント素子3の順方向電圧付近すなわち0.
9Vでバイパスが開く。また、半導体発光素子2に印加
される順方向電圧はサブマウント素子3のツェナー電圧
Vzを10V付近に設定することにより、その電圧でバ
イパスが開き、それぞれ過電流が逃がされる。したがっ
て、静電気による半導体発光素子2の破壊を確実に防ぐ
ことができる。
That is, when an overcurrent due to a high voltage is applied to the submount element 3 by such a reverse polarity connection, the reverse voltage applied to the semiconductor light emitting element 2 is the forward voltage of the submount element 3. Near, that is, 0.
The bypass opens at 9V. Further, by setting the Zener voltage Vz of the submount element 3 to about 10V, the forward voltage applied to the semiconductor light emitting element 2 opens the bypass at that voltage, and the overcurrent is released. Therefore, it is possible to reliably prevent the semiconductor light emitting element 2 from being damaged by static electricity.

【0028】次に、複合発光素子の製造方法について説
明する。
Next, a method of manufacturing the composite light emitting device will be described.

【0029】図2は、複合発光素子の製造手順を示す説
明図である。
FIG. 2 is an explanatory view showing the manufacturing procedure of the composite light emitting device.

【0030】(STB(スタッドバンプボンディング)
工程)切断される前の複数個連結されたサブマウント素
子3のそれぞれ2つの電極にAuからなる第1、第2の
小型バンプ6,7をボンディングする。
(STB (stud bump bonding)
Step) The first and second small bumps 6 and 7 made of Au are bonded to the two electrodes of each of the sub-mount elements 3 connected to each other before being cut.

【0031】(FCB(フリップチップボンディング)
工程)各サブマウント素子3の第1、第2の小型バンプ
6,7上に半導体発光素子2をボンディングして接合す
る。このとき、サブマウント素子と半導体発光素子2の
間隔は10μm以上、好ましくは15μm以上になるよ
うに条件設定する。その理由は、次のAuメッキ工程で
Auバンプの周囲にAuメッキ液が回り込みやすくする
ためである。
(FCB (Flip Chip Bonding)
Process) The semiconductor light emitting element 2 is bonded and bonded onto the first and second small bumps 6 and 7 of each submount element 3. At this time, the condition is set so that the distance between the submount element and the semiconductor light emitting element 2 is 10 μm or more, preferably 15 μm or more. The reason is that the Au plating solution is likely to flow around the Au bumps in the next Au plating step.

【0032】(Auメッキ工程)連結されたサブマウン
ト素子3の所定箇所にマスキングを施し、その後メッキ
槽8内で電流を流して電解メッキ作業を行い、第1、第
2の小型バンプ6,7に金メッキを施し、半導体発光素
子2の平断面積の30%以上に平断面積を拡大した第
1、第2の大型バンプ4,5をそれぞれ形成する。な
お、第1、第2の大型バンプ4,5の平断面積を等しく
する必要はなく、電極の電位の差によって第1、第2の
小型バンプ6,7の一方だけに金メッキを施すことも可
能である。
(Au Plating Step) Masking is applied to predetermined portions of the connected submount elements 3, and then electric current is passed in the plating tank 8 to perform electrolytic plating work, and first and second small bumps 6, 7 are formed. Is plated with gold to form first and second large-sized bumps 4 and 5 each having a plane sectional area enlarged to 30% or more of the plane sectional area of the semiconductor light emitting element 2. The first and second large bumps 4 and 5 do not have to have the same plane cross-sectional area, and only one of the first and second small bumps 6 and 7 may be gold-plated due to the difference in the potential of the electrodes. It is possible.

【0033】かかる方法によって、放熱特性のよい複合
発光素子が得られる。
By such a method, a composite light emitting device having good heat dissipation characteristics can be obtained.

【0034】(実施の形態2)図3(A)は本発明の第
2の実施の形態にかかる複合発光素子の平面図、(B)
は同複合発光素子の正断面図を示す。複合発光素子11
は、前述した複合発光素子1の第1、第2の大型バンプ
4,5の替わりに、これと異なる製造方法によって得ら
れた第1、第2の大型バンプ13,12を用いたもので
ある。
(Second Embodiment) FIG. 3A is a plan view of a composite light emitting device according to a second embodiment of the present invention, and FIG.
Shows a front sectional view of the same composite light emitting device. Composite light emitting element 11
In the above, the first and second large-sized bumps 13 and 12 obtained by a different manufacturing method are used instead of the first and second large-sized bumps 4 and 5 of the composite light emitting device 1 described above. .

【0035】次に、複合発光素子11の製造方法につい
て説明する。
Next, a method of manufacturing the composite light emitting device 11 will be described.

【0036】図4は、複合発光素子の製造手順を示す説
明図である。
FIG. 4 is an explanatory view showing the manufacturing procedure of the composite light emitting device.

【0037】(メッキバンプ形成工程)切断される前の
複数個連結されたサブマウント素子3の所定箇所にマス
キングを施し、その後メッキ槽8内で電流を流して電解
メッキ作業を行い、サブマウント素子3の2つの電極に
金メッキを施し、半導体発光素子2の平断面積の30%
以上の平断面積を有する第1、第2の大型バンプ13,
12をそれぞれ形成する。
(Plating Bump Forming Step) Masking is applied to a predetermined portion of the connected submount elements 3 before being cut, and then an electric current is passed in the plating tank 8 to perform electroplating work. 30% of the plane cross-sectional area of the semiconductor light-emitting element 2 by applying gold plating to the two electrodes of 3
The first and second large-sized bumps 13 having the above flat cross-sectional areas,
12 are formed respectively.

【0038】(FCB(フリップチップボンディング)
工程)各サブマウント素子3の第1、第2の大型バンプ
13,12上に半導体発光素子2をボンディングして接
合する。
(FCB (Flip Chip Bonding)
Step) The semiconductor light emitting element 2 is bonded and bonded onto the first and second large bumps 13 and 12 of each submount element 3.

【0039】かかる方法によって、放熱特性のよい複合
発光素子が得られる。
By such a method, a composite light emitting device having good heat dissipation characteristics can be obtained.

【0040】(実施の形態3)図5(A)は本発明の第
3の実施の形態にかかる複合発光素子の平面図、(B)
は同複合発光素子の正断面図を示す。
(Third Embodiment) FIG. 5A is a plan view of a composite light emitting device according to a third embodiment of the present invention, and FIG.
Shows a front sectional view of the same composite light emitting device.

【0041】上記の実施の形態1,2において半導体発
光素子は1つの単体の発光素子として説明したが、本発
明はこれに限定されるものではなく、1つのブロックサ
ブマウント素子23上に例えば4つの半導体発光素子2
を1つのブロックとしたブロック発光素子22を配置し
たブロック複合発光素子21とした場合においても本発
明に含まれる。
Although the semiconductor light emitting device has been described as a single light emitting device in the above-described first and second embodiments, the present invention is not limited to this, and for example, four semiconductor light emitting devices are provided on one block submount device 23. Two semiconductor light emitting devices
The present invention also includes a case where the block composite light emitting element 21 in which the block light emitting element 22 in which each of the blocks is arranged is arranged.

【0042】[0042]

【発明の効果】以上のように本発明によれば、第1、第
2の大型バンプの断面積の合計を、半導体発光素子の平
断面積の30%以上としたことにより、半導体発光素子
で発生した熱量が第1、第2の大型バンプで効率よく放
熱され、増加させた電流量に応じた輝度を得ることがで
き、製品の性能を向上させることができる。
As described above, according to the present invention, the total cross-sectional area of the first and second large-sized bumps is 30% or more of the plane cross-sectional area of the semiconductor light-emitting element. The amount of heat generated is efficiently radiated by the first and second large bumps, the brightness corresponding to the increased current amount can be obtained, and the performance of the product can be improved.

【0043】また、第1、第2の小型バンプに金メッキ
を施して、第1、第2の大型バンプを形成することによ
り、従来使用されていた第1、第2の小型バンプを用い
て半導体発光素子とサブマウント素子とを接合した後に
第1、第2の小型バンプの平断面積を大きくでき、工程
の変更を少なくして、製造を容易に行うことができる。
Further, the first and second small bumps are gold-plated to form the first and second large bumps, and the semiconductor is formed by using the first and second small bumps which have been conventionally used. After the light emitting element and the submount element are bonded together, the plane sectional areas of the first and second small bumps can be increased, and the manufacturing process can be facilitated with few process changes.

【0044】また、サブマウント素子上に大型バンプを
メッキにより形成してから半導体発光素子を接合するこ
とにより、工数を減らして作業を単純化することができ
るとともに、大型バンプを精度よく形成でき、半導体発
光素子の傾斜を防止して製品品質を向上させることがで
きる。
By forming a large bump on the submount element by plating and then joining the semiconductor light emitting element, the number of steps can be reduced and the work can be simplified, and the large bump can be accurately formed. It is possible to prevent tilting of the semiconductor light emitting device and improve product quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の第1の実施の形態にかかる複
合発光素子の平面図 (B)は同複合発光素子の正断面図
FIG. 1A is a plan view of a composite light emitting device according to a first embodiment of the present invention, and FIG. 1B is a front sectional view of the same composite light emitting device.

【図2】複合発光素子の製造手順を示す説明図FIG. 2 is an explanatory view showing a manufacturing procedure of a composite light emitting device.

【図3】(A)は本発明の第2の実施の形態にかかる複
合発光素子の平面図 (B)は同複合発光素子の正断面図
FIG. 3A is a plan view of a composite light emitting device according to a second embodiment of the present invention, and FIG. 3B is a front sectional view of the composite light emitting device.

【図4】複合発光素子の製造手順を示す説明図FIG. 4 is an explanatory view showing a manufacturing procedure of a composite light emitting device.

【図5】(A)は本発明の第3の実施の形態にかかる複
合発光素子の平面図 (B)は同複合発光素子の正断面図
FIG. 5A is a plan view of a composite light-emitting device according to a third embodiment of the present invention, and FIG. 5B is a front sectional view of the composite light-emitting device.

【図6】(A)は従来例にかかる複合発光素子の平面図 (B)は同複合発光素子の正断面図FIG. 6A is a plan view of a composite light emitting device according to a conventional example. (B) is a front sectional view of the same composite light emitting device

【符号の説明】[Explanation of symbols]

1 複合発光素子 2 半導体発光素子 3 サブマウント素子 4 第1の大型バンプ 5 第2の大型バンプ 6 第1の小型バンプ 7 第2の小型バンプ 8 メッキ槽 11 複合発光素子 12 第2の大型バンプ 13 第1の大型バンプ 21 ブロック複合発光素子 22 ブロック発光素子 23 ブロックサブマウント素子 1 Compound light emitting element 2 Semiconductor light emitting element 3 submount elements 4 First large bump 5 Second large bump 6 First small bump 7 Second small bump 8 plating tank 11 Composite light emitting device 12 Second large bump 13 First large bump 21 block compound light emitting device 22 Block light emitting element 23 Block submount element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に積層した半導体薄膜層の一
方の面に一対の電極を形成した半導体発光素子と、 2つの電極を有し、この2つの電極に前記一対の電極が
それぞれ導通する状態に前記半導体発光素子を接合する
サブマウント素子と、 前記半導体発光素子と前記サブマウント素子とを接合し
た第1、第2の大型バンプとを有し、 前記第1、第2の大型バンプの平断面積の合計を、前記
半導体発光素子の平断面積の30%以上としたことを特
徴とする複合発光素子。
1. A semiconductor light emitting device having a pair of electrodes formed on one surface of a semiconductor thin film layer laminated on a transparent substrate, and two electrodes, and the two electrodes are electrically connected to the pair of electrodes, respectively. A submount element that joins the semiconductor light emitting element to each other, and first and second large bumps that join the semiconductor light emitting element and the submount element to each other. A composite light emitting device, wherein the total of the plane cross sectional areas is 30% or more of the plane cross sectional area of the semiconductor light emitting device.
【請求項2】 透明基板上に積層した半導体薄膜層の一
方の面に一対の電極を形成した半導体発光素子と、2つ
の電極を有し、この2つの電極に前記一対の電極がそれ
ぞれ導通する状態に前記半導体発光素子を接合するサブ
マウント素子とを、第1、第2の大型バンプで接合する
複合発光素子の製造方法において、 前記半導体発光素子と前記サブマウント素子とを、第
1、第2の小型バンプで接合する工程と、 前記第1、第2の小型バンプに金メッキを施して前記半
導体発光素子の平断面積の30%以上に平断面積を拡大
した第1、第2の大型バンプを形成する工程とを有する
ことを特徴とする複合発光素子の製造方法。
2. A semiconductor light emitting device having a pair of electrodes formed on one surface of a semiconductor thin film layer laminated on a transparent substrate, and two electrodes, and the two electrodes are electrically connected to the pair of electrodes, respectively. In a method for manufacturing a composite light emitting device, wherein a submount device for joining the semiconductor light emitting device in a state is joined by first and second large bumps, the semiconductor light emitting device and the submount device are And a step of joining the first and second small bumps with gold to enlarge the flat cross sectional area to 30% or more of the flat cross sectional area of the semiconductor light emitting device. A method of manufacturing a composite light emitting device, comprising the step of forming bumps.
【請求項3】 透明基板上に積層した半導体薄膜層の一
方の面に一対の電極を形成した半導体発光素子と、2つ
の電極を有し、この2つの電極に前記一対の電極がそれ
ぞれ導通する状態に前記半導体発光素子を接合するサブ
マウント素子とを、第1、第2の大型バンプで接合する
複合発光素子の製造方法において、 前記サブマウント素子上に前記半導体発光素子の平断面
積の30%以上の平断面積を有する第1、第2の大型バ
ンプをメッキにより形成する工程と、 前記第1、第2の大型バンプに前記半導体発光素子を接
合する工程とを有することを特徴とする複合発光素子の
製造方法。
3. A semiconductor light emitting device having a pair of electrodes formed on one surface of a semiconductor thin film layer laminated on a transparent substrate, and two electrodes, and the two electrodes are electrically connected to the pair of electrodes, respectively. A method for manufacturing a composite light-emitting device, comprising: joining a semiconductor light-emitting device to a sub-mount device with a first and a second large-sized bump; % Of the plane cross-sectional area of the first and second large bumps are formed by plating, and the semiconductor light emitting element is bonded to the first and second large bumps. Manufacturing method of composite light emitting device.
JP2002009722A 2002-01-18 2002-01-18 Method for manufacturing composite light emitting device Expired - Fee Related JP4032752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009722A JP4032752B2 (en) 2002-01-18 2002-01-18 Method for manufacturing composite light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009722A JP4032752B2 (en) 2002-01-18 2002-01-18 Method for manufacturing composite light emitting device

Publications (2)

Publication Number Publication Date
JP2003218403A true JP2003218403A (en) 2003-07-31
JP4032752B2 JP4032752B2 (en) 2008-01-16

Family

ID=27647658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009722A Expired - Fee Related JP4032752B2 (en) 2002-01-18 2002-01-18 Method for manufacturing composite light emitting device

Country Status (1)

Country Link
JP (1) JP4032752B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191052A (en) * 2004-12-29 2006-07-20 Samsung Electro Mech Co Ltd Flip chip bonding structure of luminous element using metal column
JP2007081417A (en) * 2005-09-13 2007-03-29 Philips Lumileds Lightng Co Llc Interconnection for semiconductor light emitting devices
WO2009063638A1 (en) 2007-11-15 2009-05-22 Panasonic Corporation Semiconductor light emitting device
US7692259B2 (en) 2005-09-07 2010-04-06 Toyoda Gosei Co., Ltd. Solid-state element device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341040A (en) * 1997-06-09 1998-12-22 Nec Corp Optical semiconductor module and fabrication thereof
JPH11191641A (en) * 1997-10-14 1999-07-13 Matsushita Electron Corp Semiconductor light-emitting element, semiconductor light-emitting device using the same and manufacture thereof
JP2001203386A (en) * 1999-12-22 2001-07-27 Lumileds Lighting Us Llc Group iii nitride ligh-emitting device with raised light generation capability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341040A (en) * 1997-06-09 1998-12-22 Nec Corp Optical semiconductor module and fabrication thereof
JPH11191641A (en) * 1997-10-14 1999-07-13 Matsushita Electron Corp Semiconductor light-emitting element, semiconductor light-emitting device using the same and manufacture thereof
JP2001203386A (en) * 1999-12-22 2001-07-27 Lumileds Lighting Us Llc Group iii nitride ligh-emitting device with raised light generation capability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191052A (en) * 2004-12-29 2006-07-20 Samsung Electro Mech Co Ltd Flip chip bonding structure of luminous element using metal column
KR100862457B1 (en) 2004-12-29 2008-10-08 삼성전기주식회사 Structure for flip-chip bonding a light emitting device using metal column
US7692259B2 (en) 2005-09-07 2010-04-06 Toyoda Gosei Co., Ltd. Solid-state element device
JP2007081417A (en) * 2005-09-13 2007-03-29 Philips Lumileds Lightng Co Llc Interconnection for semiconductor light emitting devices
WO2009063638A1 (en) 2007-11-15 2009-05-22 Panasonic Corporation Semiconductor light emitting device

Also Published As

Publication number Publication date
JP4032752B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
TWI414088B (en) Light-emitting device and the manufacturing method thereof
JP3130292B2 (en) Semiconductor light emitting device and method of manufacturing the same
US7956364B2 (en) Thin film light emitting diode
US7897981B2 (en) Light emitting device and method of manufacturing the same
US20090321778A1 (en) Flip-chip light emitting diode and method for fabricating the same
US20130049061A1 (en) Light-emitting device and method of manufacturing the same
JP2003110148A (en) Semiconductor light-emitting device
JPH0864872A (en) Semiconductor light emitting element and manufacture thereof
JP2003218397A (en) Semiconductor light emission device and light emission device for lighting using the same
JP4904628B2 (en) Composite light emitting device
CN100454587C (en) Light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof and methods of forming the same
JPH1140857A (en) Semiconductor light-emitting element
JP4393306B2 (en) Semiconductor light emitting element, method for manufacturing the same, and semiconductor device
JP3911839B2 (en) Semiconductor light emitting device
CN109155351A (en) Semiconductor light-emitting apparatus
TW200411957A (en) Semiconductor light emitting diode
JP2006073618A (en) Optical element and manufacturing method thereof
JP2017157593A (en) Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device
JP2007096090A (en) Semiconductor light emitting element and method of manufacturing the same
JP4032752B2 (en) Method for manufacturing composite light emitting device
TW201108467A (en) Method for manufacturing light emitting diode assembly
TWI533473B (en) Light-emitting device and the manufacturing method thereof
JPH11354848A (en) Semiconductor light emitting device
JP2000012898A (en) Semiconductor light-emitting device
JP2000077722A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees