JP2007096090A - Semiconductor light emitting element and method of manufacturing the same - Google Patents

Semiconductor light emitting element and method of manufacturing the same Download PDF

Info

Publication number
JP2007096090A
JP2007096090A JP2005285015A JP2005285015A JP2007096090A JP 2007096090 A JP2007096090 A JP 2007096090A JP 2005285015 A JP2005285015 A JP 2005285015A JP 2005285015 A JP2005285015 A JP 2005285015A JP 2007096090 A JP2007096090 A JP 2007096090A
Authority
JP
Japan
Prior art keywords
electrode
light emitting
semiconductor light
layer
wire bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285015A
Other languages
Japanese (ja)
Inventor
Saburo Nakajima
三郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005285015A priority Critical patent/JP2007096090A/en
Publication of JP2007096090A publication Critical patent/JP2007096090A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device which can be prevented from decreasing in light emission intensity and increasing in leak current not by giving damage to a light emission region of a semiconductor light emission layer caused by mechanical stress or a shock during wire bonding. <P>SOLUTION: A conductive substrate 1, a p-side electrode 6, and an insulating layer 5 are joined to one another through a conductive fusion layer 7. A nitride semiconductor layer 2 including the light emission region is formed as the semiconductor light emission layer, and the p-side electrode 6 is formed of metal below the nitride semiconductor layer 2. An n-side electrode comprises an n-side wire bonding electrode 3, and an auxiliary electrode 4. The n-side wire bonding electrode 3 is arranged in a region apart from a region where the nitride semiconductor layer 2 is formed, so that neither a shock nor stress during wire bonding is applied to the nitride semiconductor layer 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ワイヤボンディング電極を有する半導体発光素子及び半導体発光素子の製造方法に関する。   The present invention relates to a semiconductor light emitting device having a wire bonding electrode and a method for manufacturing the semiconductor light emitting device.

今日、GaN(窒化ガリウム)、AlN(窒化アルミニウム)、InN(窒化インジウム)、BN(窒化ホウ素)もしくはTlN(窒化タリウム)またはこれらの混晶等を用いたIII−V族窒化物半導体(以下、窒化物系半導体と呼ぶ)およびこれらの混晶にAs、PおよびSbの少なくとも1つの元素を含む混晶等のIII−V族窒化物半導体からなる化合物半導体層を有する窒化物系半導体素子を利用した発光ダイオード(以下LED)の開発が盛んに行われている。特に近年、将来の照明代替用途を目指して発光出力の向上と低コスト化の要望が強い。そのためには歩留まり向上が重要となってくる。   Today, III-V group nitride semiconductors using GaN (gallium nitride), AlN (aluminum nitride), InN (indium nitride), BN (boron nitride), TlN (thallium nitride), or a mixed crystal thereof (hereinafter referred to as the following) Nitride-based semiconductor elements having a compound semiconductor layer made of a III-V group nitride semiconductor such as a mixed crystal containing at least one element of As, P, and Sb in these mixed crystals are used. The development of light emitting diodes (hereinafter referred to as LEDs) has been actively conducted. In particular, in recent years, there is a strong demand for improvement in light emission output and cost reduction for future lighting alternative applications. For this purpose, yield improvement is important.

ところで、上記窒化物系半導体素子を利用したLED等に限らず、一般に半導体発光素子では、発光領域に電流を流すために、電極にリードワイヤーをワイヤボンディングにより接続することが行われている。このワイヤボンディング時には、キャピラリによる過度の力等が電極に加わることにより電極下の半導体層の発光領域にダメージを与えて破壊してしまうようなことがあり、発光領域へのダメージは、発光強度の低下やリーク電流の増大という問題を引き起こしていた。   By the way, not only the LED using the nitride-based semiconductor element and the like, but generally in a semiconductor light-emitting element, a lead wire is connected to an electrode by wire bonding in order to flow a current in a light-emitting region. At the time of wire bonding, excessive force or the like by the capillary may be applied to the electrode to damage the light emitting region of the semiconductor layer under the electrode, causing damage to the light emitting region. This causes problems such as a decrease and an increase in leakage current.

そこで、上記問題を解決するために、例えば特許文献1に示されるように、ワイヤボンディングする電極を半導体発光素子の発光領域以外の場所に形成する技術が提案されている。この従来技術を用いた半導体発光素子の構造を図4に示す。図4(a)は平面図を、(b)は(a)のA−A’断面図を、(c)は(a)のB−B’断面図を示す。サファイア等の絶縁性基板21上には、n型窒化物半導体層27、発光層及びp型層を含む窒化物半導体層22が形成されている。p側ワイヤボンディング用電極23は、窒化物半導体層22の上に設けられており、n側ワイヤボンディング用電極24は、n型窒化物半導体層27に直接形成されている。   In order to solve the above problem, for example, as disclosed in Patent Document 1, a technique for forming an electrode to be wire-bonded in a place other than the light emitting region of the semiconductor light emitting element has been proposed. The structure of a semiconductor light emitting device using this conventional technique is shown in FIG. 4A is a plan view, FIG. 4B is a sectional view taken along the line A-A ′ in FIG. 4A, and FIG. 4C is a sectional view taken along the line B-B ′ in FIG. On an insulating substrate 21 such as sapphire, an n-type nitride semiconductor layer 27, a nitride semiconductor layer 22 including a light emitting layer and a p-type layer are formed. The p-side wire bonding electrode 23 is provided on the nitride semiconductor layer 22, and the n-side wire bonding electrode 24 is formed directly on the n-type nitride semiconductor layer 27.

また、p側ワイヤボンディング用電極23からは補助電極25が延出されており、n側ワイヤボンディング用電極24を取り囲むように環状に形成されている。この補助電極25が設けられていることで、窒化物半導体層22に電流がより均一に流れ、発光強度が向上する。   An auxiliary electrode 25 extends from the p-side wire bonding electrode 23 and is formed in an annular shape so as to surround the n-side wire bonding electrode 24. By providing the auxiliary electrode 25, a current flows more uniformly in the nitride semiconductor layer 22 and the light emission intensity is improved.

図4の構成において、仮に、ワイヤボンディング時の機械的ストレスや衝撃により窒化物半導体層22Bが破壊されたとしても、p側ワイヤボンディング用電極23下の窒化物半導体層22Bと、発光に寄与させる発光領域としての役割を果す窒化物半導体層22Aとを絶縁膜26により電気的に分離しているので、ダメージを受けていない窒化物半導体層22A側が発光領域として動作し、発光強度の低下やリーク電流の増大を防止することができるというものである。
特開2003−179236
In the configuration of FIG. 4, even if the nitride semiconductor layer 22B is destroyed due to mechanical stress or impact during wire bonding, the nitride semiconductor layer 22B under the p-side wire bonding electrode 23 contributes to light emission. Since the nitride semiconductor layer 22A serving as a light emitting region is electrically separated from the nitride semiconductor layer 22 by the insulating film 26, the nitride semiconductor layer 22A side that is not damaged operates as the light emitting region, and the emission intensity is reduced or leaked. The increase in current can be prevented.
JP 2003-179236 A

しかし、上記従来技術は、絶縁性基板に半導体発光層を成長させ、同一面側にp側電極とn側電極を有する構造を対象としている。したがって、導電性基板に半導体発光層を成長させ、半導体発光層のp側とn側にそれぞれ電極を対向して形成した半導体発光素子においては、ワイヤボンディング用電極と対向した電極との間で電流を流す構造となるため、上記従来技術を適用できず、ワイヤボンディング用電極下の窒化物半導体層を電気的に分離できないという問題があった。   However, the above prior art is directed to a structure in which a semiconductor light emitting layer is grown on an insulating substrate and a p-side electrode and an n-side electrode are provided on the same surface side. Therefore, in the semiconductor light emitting device in which the semiconductor light emitting layer is grown on the conductive substrate and the electrodes are formed on the p side and the n side of the semiconductor light emitting layer so as to face each other, the current between the wire bonding electrode and the facing electrode is Therefore, there is a problem in that the conventional technology cannot be applied and the nitride semiconductor layer under the wire bonding electrode cannot be electrically separated.

本発明は、上述した課題を解決するために創案されたものであり、ワイヤボンディング時の機械的ストレスや衝撃により半導体発光層の発光領域にダメージを与えないようにして、発光強度の低下やリーク電流の増大を防止することができ、歩留まりを良くすることができる半導体発光素子及び半導体発光素子の製造方法を提供することを目的としている。   The present invention was devised to solve the above-described problems, and reduces the emission intensity and leaks by preventing damage to the light emitting region of the semiconductor light emitting layer due to mechanical stress or impact during wire bonding. An object of the present invention is to provide a semiconductor light emitting device capable of preventing an increase in current and improving yield, and a method for manufacturing the semiconductor light emitting device.

上記目的を達成するために、本発明に係る半導体発光素子は、導電性基板上に、少なくとも、第1電極、発光領域を含む半導体発光層、第2電極が順に積層され、前記第2電極の一部がワイヤボンディング用電極を構成している半導体発光素子において、前記ワイヤボンディング用電極を前記半導体発光層と上下に重ならないように、半導体発光層が形成されている領域から分離した領域に配置したことを特徴とする半導体発光素子である。   In order to achieve the above object, a semiconductor light emitting device according to the present invention includes, on a conductive substrate, at least a first electrode, a semiconductor light emitting layer including a light emitting region, and a second electrode, which are sequentially stacked. In a semiconductor light emitting device, part of which constitutes a wire bonding electrode, the wire bonding electrode is disposed in a region separated from the region where the semiconductor light emitting layer is formed so as not to overlap the semiconductor light emitting layer. This is a semiconductor light emitting device characterized by the above.

また、前記ワイヤボンディング用電極と前記半導体発光層との間には電気的絶縁層が形成されていることを特徴とする請求項1記載の半導体発光素子である。   2. The semiconductor light emitting element according to claim 1, wherein an electrically insulating layer is formed between the wire bonding electrode and the semiconductor light emitting layer.

また、前記電気的絶縁層が、前記半導体発光層の一部に重なるようにして半導体発光層の上側に形成されていることを特徴とする請求項2記載の半導体発光素子である。   3. The semiconductor light emitting element according to claim 2, wherein the electrically insulating layer is formed on an upper side of the semiconductor light emitting layer so as to overlap a part of the semiconductor light emitting layer.

また、前記第1電極と導電性基板とは電気的に接続されており、電気的に接続された面と反対側の面は外部接続端子となっていることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体発光素子である。   The first electrode and the conductive substrate are electrically connected, and a surface opposite to the electrically connected surface is an external connection terminal. 4. The semiconductor light-emitting device according to any one of items 3.

また、本発明に係る半導体発光素子の製造方法は、成長用基板に発光領域を含む半導体発光層、第1電極の順に成長させ、導電性基板に前記半導体発光層、第1電極を貼り替えた後、前記半導体発光層の上に第2電極が積層されるとともに、該第2電極の一部を構成するワイヤボンディング用電極が前記半導体発光層と上下に重ならないように、半導体発光層が形成されている領域から分離した領域に設けられる半導体発光素子の製造方法において、成長用基板上で前記半導体発光層、第1電極のパターニングを行っておくことを特徴とする半導体発光素子の製造方法である。   Also, in the method for manufacturing a semiconductor light emitting device according to the present invention, a semiconductor light emitting layer including a light emitting region on a growth substrate and a first electrode are grown in this order, and the semiconductor light emitting layer and the first electrode are pasted on a conductive substrate. Thereafter, a second electrode is stacked on the semiconductor light emitting layer, and a semiconductor light emitting layer is formed so that a wire bonding electrode constituting a part of the second electrode does not overlap with the semiconductor light emitting layer. A method for manufacturing a semiconductor light emitting device, comprising: patterning the semiconductor light emitting layer and the first electrode on a growth substrate, wherein the semiconductor light emitting layer and the first electrode are patterned on a growth substrate. is there.

本発明によれば、半導体発光素子のワイヤボンディング電極部が、半導体発光層が形成されている領域とは異なる領域に形成されているので、ワイヤボンディング時に半導体発光層には機械的ストレスや衝撃が伝わらず、ダメージが発生しないので、発光強度の低下やリーク電流の増大を防止することができ、歩留まりを良くすることができる。   According to the present invention, since the wire bonding electrode portion of the semiconductor light emitting device is formed in a region different from the region where the semiconductor light emitting layer is formed, mechanical stress and impact are applied to the semiconductor light emitting layer during wire bonding. Therefore, no damage occurs, so that a decrease in light emission intensity and an increase in leakage current can be prevented, and the yield can be improved.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による半導体発光素子の構造を示す。図1(a)は、本発明の半導体発光素子の平面図を、同図(b)は(a)のA−A’断面図を、(c)は(a)のB−B’断面図を示す。     Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a semiconductor light emitting device according to the present invention. 1A is a plan view of a semiconductor light emitting device of the present invention, FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. 1A, and FIG. 1C is a cross-sectional view taken along line BB ′ in FIG. Indicates.

半導体発光層として発光領域を含む窒化物半導体層2が形成されており、窒化物半導体層2の下側には金属からなるp側電極6が、上側には金属からなるn側電極が形成されており、p側電極とn側電極は窒化物半導体層2を挟んで対向して設けられている。p側電極6とn側電極は、各々、第1電極又は第2電極のいずれかに相当するものである。   A nitride semiconductor layer 2 including a light emitting region is formed as a semiconductor light emitting layer. A p-side electrode 6 made of metal is formed on the lower side of the nitride semiconductor layer 2 and an n-side electrode made of metal is formed on the upper side. The p-side electrode and the n-side electrode are provided to face each other with the nitride semiconductor layer 2 interposed therebetween. Each of the p-side electrode 6 and the n-side electrode corresponds to either the first electrode or the second electrode.

また、n側電極は、n側ワイヤボンディング用電極3とn側ワイヤボンディング用電極3から延出されて環状に形成された補助電極4とで構成されている。この補助電極4は、窒化物半導体層2の上側と絶縁層5の上側に接触するように設けられており、補助電極4により窒化物半導体層2に電流がより均一に流れ、発光強度が向上する。   The n-side electrode includes an n-side wire bonding electrode 3 and an auxiliary electrode 4 that extends from the n-side wire bonding electrode 3 and has an annular shape. The auxiliary electrode 4 is provided so as to be in contact with the upper side of the nitride semiconductor layer 2 and the upper side of the insulating layer 5, and the auxiliary electrode 4 allows the current to flow more uniformly in the nitride semiconductor layer 2, thereby improving the light emission intensity. To do.

n側ワイヤボンディング用電極3は、導電性基板1の片隅に配置されており、絶縁層5上に形成されているもので、窒化物半導体層2とは接触しておらず、また、窒化物半導体層2が形成されている領域と離れた領域に配置され、窒化物半導体層2とは上下に重ならない位置に設けられている。一方、導電性基板1とp側電極6及び絶縁層5とは導電性融着層7を介して接合されており、この接合面と反対側にはp側電極端子8が形成されている。   The n-side wire bonding electrode 3 is disposed at one corner of the conductive substrate 1 and is formed on the insulating layer 5 and is not in contact with the nitride semiconductor layer 2. The semiconductor layer 2 is disposed in a region away from the region where the semiconductor layer 2 is formed, and is provided at a position where the nitride semiconductor layer 2 does not overlap vertically. On the other hand, the conductive substrate 1, the p-side electrode 6 and the insulating layer 5 are joined via a conductive fusion layer 7, and a p-side electrode terminal 8 is formed on the side opposite to the joined surface.

半導体発光層としての窒化物半導体層2は、n側電極から近い順に、例えば、n型コンタクト層、n型クラッド層、活性層、p型クラッド層、p型コンタクト層等から構成される。この場合、活性層が発光領域に相当する。   The nitride semiconductor layer 2 as the semiconductor light emitting layer includes, for example, an n-type contact layer, an n-type cladding layer, an active layer, a p-type cladding layer, and a p-type contact layer in order from the n-side electrode. In this case, the active layer corresponds to the light emitting region.

導電性基板1は、電気を導通させるものであれば何でも良いが、本実施例では、窒化物半導体層2を用いているので、導電性基板1は、窒化物半導体層2の熱膨張率と近い材料が良く、例えば、熱膨張率が近いものから順に、GaN、シリコン、SiCの導電性材料が望ましく、その他に酸化銅と銅粒子の焼成基板(CuO 50wt%)やCuW合金等が適切である。 The conductive substrate 1 may be anything as long as it conducts electricity. However, in this embodiment, the nitride semiconductor layer 2 is used, so the conductive substrate 1 has a coefficient of thermal expansion of the nitride semiconductor layer 2. Close materials are good. For example, conductive materials of GaN, silicon, and SiC are desirable in order of decreasing thermal expansion coefficient. In addition, copper oxide and copper particle fired substrates (Cu 2 O 50 wt%), CuW alloys, etc. Is appropriate.

また、絶縁層5は、電気的絶縁材料で構成されており、塗布型の絶縁物としてポリイミド樹脂等を、CVD、スパッタ、蒸着型の絶縁物としてSiO、TiO、Al等を用いる。SiO、TiO、Al等を用いた場合、これらの材料は、無機材料で耐熱性に優れているので、絶縁層の上にn側電極材料を蒸着やスパッタで形成する温度(基板温度は約200℃になる)に耐えることができ、電極材料の蒸着やスパッタ時の収縮がない。また、硬度が大きく、パターニング時の薬品に耐えることができ、組み立て工程での機械的ストレスでの変形がない。 The insulating layer 5 is made of an electrically insulating material, and polyimide resin or the like is used as a coating type insulator, and SiO 2 , TiO 2 , Al 2 O 3 or the like is used as a CVD, sputter, or vapor deposition type insulator. Use. When SiO 2 , TiO 2 , Al 2 O 3 or the like is used, these materials are inorganic materials and have excellent heat resistance. Therefore, the temperature at which the n-side electrode material is formed on the insulating layer by vapor deposition or sputtering ( The substrate temperature is about 200 ° C.), and there is no shrinkage during electrode material deposition or sputtering. Further, it has a high hardness, can withstand chemicals during patterning, and is not deformed by mechanical stress in the assembly process.

p側電極6は、例えば、金属の多層膜により構成されており、窒化物半導体層2側から近い順に、Ti(膜厚100Å)、Al(膜厚1000Å)、Ti(膜厚1000Å)、Pt(膜厚2000Å)、Au(膜厚3000Å)の多層構造となっている。一方、n側ワイヤボンディング用電極3と補助電極4とで構成されたn側電極は、p側電極6と同様、金属の多層膜により構成されており、例えば、窒化物半導体層2側から近い順に、Ni(膜厚100Å)、Al(膜厚1000Å)、Ti(膜厚1000Å)、Pt(膜厚2000Å)、Au(膜厚3000Å)の多層構造となっている。導電性基板1の両側に設けられた導電性融着層7とp側電極端子8は、例えば膜厚2〜8μmのAu(70〜80%)とSn(20〜30%)の合金により構成される。   The p-side electrode 6 is composed of, for example, a metal multilayer film, and in order from the nitride semiconductor layer 2 side, Ti (film thickness 100 mm), Al (film thickness 1000 mm), Ti (film thickness 1000 mm), Pt It has a multilayer structure of (film thickness 2000 mm) and Au (film thickness 3000 mm). On the other hand, the n-side electrode composed of the n-side wire bonding electrode 3 and the auxiliary electrode 4 is composed of a metal multilayer film like the p-side electrode 6, and is, for example, close to the nitride semiconductor layer 2 side. In order, it has a multilayer structure of Ni (film thickness 100 mm), Al (film thickness 1000 mm), Ti (film thickness 1000 mm), Pt (film thickness 2000 mm), and Au (film thickness 3000 mm). The conductive fusion layer 7 and the p-side electrode terminal 8 provided on both sides of the conductive substrate 1 are made of, for example, an alloy of Au (70 to 80%) and Sn (20 to 30%) having a film thickness of 2 to 8 μm. Is done.

n側ワイヤボンディング用電極3に、電源の負電極からのリードワイヤーをワイヤボンディングにより接続し、p側電極端子8を放熱体等に接続するとともに電源の正電極に接続して、窒化物半導体層2に電流を流し、発光させる。n側ワイヤボンディング用電極3は、窒化物半導体層2と上下に重ならないように、かつ窒化物半導体層2が形成されている領域と離れた領域に位置しているので、上記ワイヤボンディング時の機械的ストレスや衝撃は、ワイヤボンディング領域下の絶縁層5や導電性基板1に加わるのみで、窒化物半導体層2には加わらず、窒化物半導体層2にはダメージが発生しない。   A lead wire from the negative electrode of the power source is connected to the n-side wire bonding electrode 3 by wire bonding, and the p-side electrode terminal 8 is connected to a radiator or the like and also connected to the positive electrode of the power source, and the nitride semiconductor layer A current is passed through 2 to emit light. The n-side wire bonding electrode 3 is positioned so as not to overlap the nitride semiconductor layer 2 in the vertical direction and away from the region where the nitride semiconductor layer 2 is formed. Mechanical stress and impact are only applied to the insulating layer 5 and the conductive substrate 1 under the wire bonding region, and not applied to the nitride semiconductor layer 2, and no damage is caused to the nitride semiconductor layer 2.

図2は図1の半導体発光素子の製造方法を示す。また、図1と同じ番号を付しているものは、同じ構成を示す。図2(a)に示すように、まず、サファイア、SiC、GaN等の成長用基板10上に、エピタキシャル成長によって分離層9、活性層を含む窒化物半導体層2の順に成長させ、その上にp側電極6を全面に形成する。   FIG. 2 shows a method for manufacturing the semiconductor light emitting device of FIG. Moreover, what attaches | subjects the same number as FIG. 1 shows the same structure. As shown in FIG. 2A, first, on the growth substrate 10 made of sapphire, SiC, GaN or the like, a separation layer 9 and a nitride semiconductor layer 2 including an active layer are grown in this order by epitaxial growth, and p is formed thereon. The side electrode 6 is formed on the entire surface.

次に、図2(b)に示すように、接着面にAu−Sn合金等の導電性融着層7、対面にp側電極端子8を形成した導電性基板1と図2(a)において形成した多層基板とを融着する。図2(c)に示すように、例えばレーザリフトオフ(LLO)の方法を用い、分離層9で吸収されるレーザ光を分離層9全体にスキャンして分離層9を溶かして成長用基板10を分離する。   Next, as shown in FIG. 2 (b), in FIG. 2 (a), the conductive substrate 1 in which a conductive fusion layer 7 such as an Au-Sn alloy is formed on the bonding surface and the p-side electrode terminal 8 is formed on the opposite surface. The formed multilayer substrate is fused. As shown in FIG. 2C, for example, a laser lift-off (LLO) method is used to scan the entire separation layer 9 with the laser light absorbed by the separation layer 9 to melt the separation layer 9 to thereby form the growth substrate 10. To separate.

次に、図2(d)のように、窒化物半導体層2をパターニングしてp側電極6が露出する領域を形成する。その後、図2(e)のように、p側電極6が露出しているワイヤボンディング領域から窒化物半導体層2の一部に絶縁層5をパターン形成する。絶縁層5をパターン形成するときには、図のように、窒化物半導体層2の端部に絶縁層5が一部上下に重なるように形成しておく。仮に、窒化物半導体層2と絶縁層5を並べるようにして敷き詰めた場合には、窒化物半導体層2と絶縁層5との間に隙間が生じる場合があり、この隙間にn側電極材料が入り込んでp側電極と短絡することがあるので、このようなトラブルを防止するためである。最後にn側ワイヤボンディング用電極3及び補助電極4を形成する。そしてワイヤボンディング接続を行った状態を示すのが、Auワイヤボンド11である。   Next, as shown in FIG. 2D, the nitride semiconductor layer 2 is patterned to form a region where the p-side electrode 6 is exposed. Thereafter, as shown in FIG. 2E, the insulating layer 5 is patterned on a part of the nitride semiconductor layer 2 from the wire bonding region where the p-side electrode 6 is exposed. When patterning the insulating layer 5, the insulating layer 5 is formed so as to partially overlap the end of the nitride semiconductor layer 2 as shown in the figure. If the nitride semiconductor layer 2 and the insulating layer 5 are laid side by side, a gap may be formed between the nitride semiconductor layer 2 and the insulating layer 5, and the n-side electrode material is formed in this gap. This is to prevent such trouble because it may enter and short-circuit with the p-side electrode. Finally, the n-side wire bonding electrode 3 and the auxiliary electrode 4 are formed. And it is Au wire bond 11 which shows the state which performed wire bonding connection.

次に、図3に図2とは別の製造方法を示す。また、図1、2と同じ番号を付しているものは、同じ構成を示す。図3(a)に示すように、まず、サファイア、SiC、GaN等の成長用基板10上に、エピタキシャル成長によって分離層9、活性層を含む窒化物半導体層2の順に成長させ、その上にp側電極6を全面に形成する。その後、図3(b)に示すように、p側電極6と窒化物半導体層2をパターニングして分離層9が露出する領域を形成する。   Next, FIG. 3 shows a manufacturing method different from FIG. Moreover, what attached | subjected the same number as FIG.1, 2 shows the same structure. As shown in FIG. 3A, first, on the growth substrate 10 made of sapphire, SiC, GaN or the like, a separation layer 9 and a nitride semiconductor layer 2 including an active layer are grown in this order by epitaxial growth, and p is formed thereon. The side electrode 6 is formed on the entire surface. Thereafter, as shown in FIG. 3B, the p-side electrode 6 and the nitride semiconductor layer 2 are patterned to form a region where the separation layer 9 is exposed.

次に図3(c)に示すように、接着面にAu−Sn合金等の導電性融着層7、対面にp側端子8を形成した導電性基板1と図3(b)において形成した多層基板とを融着する。そして図3(d)に示すように、例えば分離層9で吸収されるレーザ光を分離層9全体にスキャンして分離層9を溶かして成長基板を分離する。   Next, as shown in FIG. 3 (c), the conductive substrate 1 in which a conductive fusion layer 7 such as an Au—Sn alloy is formed on the bonding surface and the p-side terminal 8 is formed on the opposite surface is formed in FIG. 3 (b). A multilayer substrate is fused. Then, as shown in FIG. 3D, for example, laser light absorbed by the separation layer 9 is scanned over the entire separation layer 9 to melt the separation layer 9 and separate the growth substrate.

図3(e)に示すように、導電性融着層7が露出しているワイヤボンディング領域から窒化物半導体層2の一部に絶縁層5をパターン形成する。最後にn側ワイヤボンディング用電極3及び補助電極4をパターン形成する。そしてワイヤボンディング接続を行った状態を示すのが、Auワイヤボンド11である。   As shown in FIG. 3E, the insulating layer 5 is patterned on a part of the nitride semiconductor layer 2 from the wire bonding region where the conductive fusion layer 7 is exposed. Finally, the n-side wire bonding electrode 3 and the auxiliary electrode 4 are patterned. And it is Au wire bond 11 which shows the state which performed wire bonding connection.

図3の製造方法は、図2の製造方法と異なり、成長用基板10上に半導体層を堆積させた状態でエッチングによるパターニングを行っている。この成長用基板10は半導体発光素子には用いられない部分なので、エッチングの際に、耐腐食性や堅さを考慮する必要がないが、図2では導電性基板1にこの制約が発生する。   The manufacturing method of FIG. 3 is different from the manufacturing method of FIG. 2 in that patterning is performed by etching in a state where a semiconductor layer is deposited on the growth substrate 10. Since this growth substrate 10 is a portion that is not used in a semiconductor light emitting device, it is not necessary to consider corrosion resistance and rigidity during etching, but this restriction occurs in the conductive substrate 1 in FIG.

また、エッチングによって窒化物半導体層2をパターニングした場合、p側電極6の露出している領域には、エッチングの影響で表面に凹凸が生じるが、図3では、エッチングによるパターニングを、成長用基板10上で済ませておき、その後窒化物半導体層2とp側電極6とを導電性基板1に貼り替えるようにしているので、導電性融着層7表面の平坦性に影響を与える工程がなくなり、導電性融着層7表面の平坦性が良好になるとともに、その後形成する絶縁層5とn側ワイヤボンディング用電極3及び補助電極4の表面の平坦性も向上する。   In addition, when the nitride semiconductor layer 2 is patterned by etching, the surface of the exposed region of the p-side electrode 6 is uneven due to the etching. In FIG. 10, and the nitride semiconductor layer 2 and the p-side electrode 6 are then attached to the conductive substrate 1, so there is no step affecting the flatness of the surface of the conductive fusion layer 7. The flatness of the surface of the conductive fusion layer 7 is improved, and the flatness of the surfaces of the insulating layer 5, the n-side wire bonding electrode 3 and the auxiliary electrode 4 to be formed thereafter is also improved.

次に、図2、図3以外の製造方法について以下に説明する。成長基板の分離をレーザリフトオフ等により行わないのが特徴である。絶縁性の成長用基板10上に、エピタキシャル成長によって、活性層を含む窒化物半導体層2を成長させ、その上にp側電極6を全面に形成する。これは図2(a)で分離層9がない構成に相当する。その後、図2(b)と同様に形成する。次に、成長用基板10を研磨して厚み10μm以下の薄膜化した成長用基板にする。   Next, manufacturing methods other than those shown in FIGS. 2 and 3 will be described below. The growth substrate is not separated by laser lift-off or the like. A nitride semiconductor layer 2 including an active layer is grown on the insulating growth substrate 10 by epitaxial growth, and a p-side electrode 6 is formed on the entire surface thereof. This corresponds to a configuration without the separation layer 9 in FIG. Then, it forms similarly to FIG.2 (b). Next, the growth substrate 10 is polished to form a growth substrate having a thickness of 10 μm or less.

さらに、図1に示すような補助電極4のパターンと窒化物半導体層2とのコンタクト形成のため、補助電極4の下に該当する領域について薄膜化した成長用基板をパターニングで除去する。そしてp側電極6が露出しているワイヤボンディング領域から窒化物半導体層2の一部に絶縁層5をパターン形成する。最後にn側ワイヤボンディング用電極3及び補助電極4をパターン形成する。   Further, in order to form a contact between the pattern of the auxiliary electrode 4 and the nitride semiconductor layer 2 as shown in FIG. 1, the growth substrate thinned in a corresponding region under the auxiliary electrode 4 is removed by patterning. Then, the insulating layer 5 is patterned on a part of the nitride semiconductor layer 2 from the wire bonding region where the p-side electrode 6 is exposed. Finally, the n-side wire bonding electrode 3 and the auxiliary electrode 4 are patterned.

上記実施例では、成長用基板のレーザ分離を行わないため、分離層のエピタキシャル成長が不要となり、高品質な窒化物半導体層を成長できる効果がある。また必要に応じて薄膜化した成長用基板表面を凹凸加工して光取り出し効率を向上させることもできる。
In the above embodiment, since the growth substrate is not subjected to laser separation, there is no need for epitaxial growth of the separation layer, and it is possible to grow a high-quality nitride semiconductor layer. Further, if necessary, the surface of the growth substrate that has been thinned can be processed to be uneven, thereby improving the light extraction efficiency.

本発明の半導体発光素子の構造を示す図である。It is a figure which shows the structure of the semiconductor light-emitting device of this invention. 本発明の半導体発光素子における製造方法を示す図である。It is a figure which shows the manufacturing method in the semiconductor light-emitting device of this invention. 本発明の半導体発光素子における他の製造方法を示す図である。It is a figure which shows the other manufacturing method in the semiconductor light-emitting device of this invention. 従来の半導体発光素子の構造を示す図である。It is a figure which shows the structure of the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

1 導電性基板
2 窒化物半導体層
3 n側ワイヤボンディング用電極
4 補助電極
5 絶縁層
6 p側電極
7 導電性融着層
8 p側電極端子
9 分離層
10 成長用基板
DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Nitride semiconductor layer 3 N side wire bonding electrode 4 Auxiliary electrode 5 Insulating layer 6 P side electrode 7 Conductive fusion layer 8 P side electrode terminal 9 Separation layer 10 Growth substrate

Claims (5)

導電性基板上に、少なくとも、第1電極、発光領域を含む半導体発光層、第2電極が順に積層され、前記第2電極の一部がワイヤボンディング用電極を構成している半導体発光素子において、前記ワイヤボンディング用電極を前記半導体発光層と上下に重ならないように、半導体発光層が形成されている領域から分離した領域に配置したことを特徴とする半導体発光素子。   In a semiconductor light emitting device in which at least a first electrode, a semiconductor light emitting layer including a light emitting region, and a second electrode are sequentially stacked on a conductive substrate, and a part of the second electrode constitutes a wire bonding electrode. A semiconductor light emitting element, wherein the wire bonding electrode is disposed in a region separated from a region where a semiconductor light emitting layer is formed so as not to overlap the semiconductor light emitting layer. 前記ワイヤボンディング用電極と前記半導体発光層との間には電気的絶縁層が形成されていることを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein an electrically insulating layer is formed between the wire bonding electrode and the semiconductor light emitting layer. 前記電気的絶縁層は、前記半導体発光層の一部に重なるようにして半導体発光層の上側に形成されていることを特徴とする請求項2記載の半導体発光素子。   3. The semiconductor light emitting element according to claim 2, wherein the electrically insulating layer is formed above the semiconductor light emitting layer so as to overlap a part of the semiconductor light emitting layer. 前記第1電極と導電性基板とは電気的に接続されており、電気的に接続された面と反対側の面は外部接続端子となっていることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体発光素子。   4. The first electrode and the conductive substrate are electrically connected, and a surface opposite to the electrically connected surface is an external connection terminal. The semiconductor light-emitting device according to any one of the above. 成長用基板に発光領域を含む半導体発光層、第1電極の順に成長させ、導電性基板に前記半導体発光層、第1電極を貼り替えた後、前記半導体発光層の上に第2電極が積層されるとともに、該第2電極の一部を構成するワイヤボンディング用電極が前記半導体発光層と上下に重ならないように、半導体発光層が形成されている領域から分離した領域に設けられる半導体発光素子の製造方法において、成長用基板上で前記半導体発光層、第1電極のパターニングを行っておくことを特徴とする半導体発光素子の製造方法。
A semiconductor light-emitting layer including a light-emitting region is grown on a growth substrate and a first electrode in this order. After the semiconductor light-emitting layer and the first electrode are pasted on a conductive substrate, a second electrode is stacked on the semiconductor light-emitting layer. And a semiconductor light emitting device provided in a region separated from the region where the semiconductor light emitting layer is formed so that a wire bonding electrode constituting a part of the second electrode does not overlap the semiconductor light emitting layer vertically In the method of manufacturing a semiconductor light emitting device, the semiconductor light emitting layer and the first electrode are patterned on a growth substrate.
JP2005285015A 2005-09-29 2005-09-29 Semiconductor light emitting element and method of manufacturing the same Pending JP2007096090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285015A JP2007096090A (en) 2005-09-29 2005-09-29 Semiconductor light emitting element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285015A JP2007096090A (en) 2005-09-29 2005-09-29 Semiconductor light emitting element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007096090A true JP2007096090A (en) 2007-04-12

Family

ID=37981411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285015A Pending JP2007096090A (en) 2005-09-29 2005-09-29 Semiconductor light emitting element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007096090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245286A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device
JP2010245288A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device
JP2011505073A (en) * 2007-11-30 2011-02-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor body and method of manufacturing optoelectronic semiconductor body
US8647923B2 (en) 2009-04-06 2014-02-11 Canon Kabushiki Kaisha Method of manufacturing semiconductor device
JP2016197737A (en) * 2016-06-29 2016-11-24 株式会社タムラ製作所 Semiconductor device and method for manufacturing the same, and crystal laminate structure
US10230007B2 (en) 2014-07-25 2019-03-12 Tamura Corporation Semiconductor element, method for manufacturing same, semiconductor substrate, and crystal laminate structure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213089A (en) * 1985-07-11 1987-01-21 Matsushita Electric Ind Co Ltd Assembling method for semiconductor light emitting device
JPH04361572A (en) * 1991-06-10 1992-12-15 Toshiba Corp Semiconductor light emitting element
JPH05347430A (en) * 1991-07-17 1993-12-27 Ricoh Co Ltd Semiconductor light-emitting device
JPH07193277A (en) * 1993-12-27 1995-07-28 Ricoh Co Ltd Semiconductor light emitting device and its manufacture
JPH11177138A (en) * 1997-12-11 1999-07-02 Stanley Electric Co Ltd Surface-mounting type device and light emitting device or light receiving device using the device
JP2003013089A (en) * 2001-06-29 2003-01-15 Denso Corp Method for synthesizing smell, smell synthesizer and smell information communication system
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP2003142728A (en) * 2001-11-02 2003-05-16 Sharp Corp Manufacturing method of semiconductor light emitting element
JP2003174193A (en) * 2001-12-04 2003-06-20 Sharp Corp Nitride-based compound semiconductor light-emitting device, and manufacturing method thereof
JP2004071895A (en) * 2002-08-07 2004-03-04 Sony Corp Mold for forming conductive layer and its manufacturing method
WO2005043631A2 (en) * 2003-11-04 2005-05-12 Matsushita Electric Industrial Co.,Ltd. Semiconductor light emitting device, lighting module, lighting apparatus, and manufacturing method of semiconductor light emitting device
JP2005150386A (en) * 2003-11-14 2005-06-09 Stanley Electric Co Ltd Semiconductor device and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213089A (en) * 1985-07-11 1987-01-21 Matsushita Electric Ind Co Ltd Assembling method for semiconductor light emitting device
JPH04361572A (en) * 1991-06-10 1992-12-15 Toshiba Corp Semiconductor light emitting element
JPH05347430A (en) * 1991-07-17 1993-12-27 Ricoh Co Ltd Semiconductor light-emitting device
JPH07193277A (en) * 1993-12-27 1995-07-28 Ricoh Co Ltd Semiconductor light emitting device and its manufacture
JPH11177138A (en) * 1997-12-11 1999-07-02 Stanley Electric Co Ltd Surface-mounting type device and light emitting device or light receiving device using the device
JP2003013089A (en) * 2001-06-29 2003-01-15 Denso Corp Method for synthesizing smell, smell synthesizer and smell information communication system
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP2003142728A (en) * 2001-11-02 2003-05-16 Sharp Corp Manufacturing method of semiconductor light emitting element
JP2003174193A (en) * 2001-12-04 2003-06-20 Sharp Corp Nitride-based compound semiconductor light-emitting device, and manufacturing method thereof
JP2004071895A (en) * 2002-08-07 2004-03-04 Sony Corp Mold for forming conductive layer and its manufacturing method
WO2005043631A2 (en) * 2003-11-04 2005-05-12 Matsushita Electric Industrial Co.,Ltd. Semiconductor light emitting device, lighting module, lighting apparatus, and manufacturing method of semiconductor light emitting device
JP2005150386A (en) * 2003-11-14 2005-06-09 Stanley Electric Co Ltd Semiconductor device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505073A (en) * 2007-11-30 2011-02-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor body and method of manufacturing optoelectronic semiconductor body
JP2010245286A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device
JP2010245288A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device
US8647923B2 (en) 2009-04-06 2014-02-11 Canon Kabushiki Kaisha Method of manufacturing semiconductor device
US10230007B2 (en) 2014-07-25 2019-03-12 Tamura Corporation Semiconductor element, method for manufacturing same, semiconductor substrate, and crystal laminate structure
JP2016197737A (en) * 2016-06-29 2016-11-24 株式会社タムラ製作所 Semiconductor device and method for manufacturing the same, and crystal laminate structure

Similar Documents

Publication Publication Date Title
US7268372B2 (en) Vertical GaN light emitting diode and method for manufacturing the same
JP4699258B2 (en) Flip chip light emitting diode and manufacturing method thereof
JP4602079B2 (en) LIGHT EMITTING DIODE INCLUDING BARRIER LAYER AND METHOD FOR MANUFACTURING SAME
US20160013386A1 (en) Manufacturing method of a light-emitting device having a patterned substrate
TWI300277B (en) Method for manufacturing gallium nitride light emitting diode devices
JP2003110148A (en) Semiconductor light-emitting device
JP2009141093A (en) Light emitting element and method of manufacturing the same
JPWO2008015900A1 (en) Semiconductor light emitting device and manufacturing method thereof
JP2007335877A (en) Light-emitting diode and its manufacturing method
KR100872276B1 (en) Vertical nitride semiconductor light emitting device and manufacturing method of the same
JP2007096090A (en) Semiconductor light emitting element and method of manufacturing the same
KR100774198B1 (en) LED having vertical structure
JP4825003B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2012174902A (en) Method of manufacturing nitride semiconductor light-emitting element
KR101189081B1 (en) Wafer substrate bonding structure, light emitting diode comprising the same and manufacturing method thereof
JP4799041B2 (en) Nitride semiconductor device manufacturing method
KR20100109169A (en) Fabrication method of light emitting diode and the light emitting diode fabricated by the method
KR100946441B1 (en) LED having Vertical- Structured Electrodes and Manufacturing Method thereof
TW201547053A (en) Method of forming a light-emitting device
US20050151136A1 (en) Light emitting diode having conductive substrate and transparent emitting surface
KR100953661B1 (en) Vertical Electrode Structure Light Emission Device and Manufacturing Method thereof
JP5167831B2 (en) Group III nitride semiconductor device and manufacturing method thereof
JP2007173369A (en) Semiconductor light-emitting element and manufacturing method thereof
JP4908982B2 (en) Semiconductor laser element
JP2009176966A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080118

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705