JP3911839B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3911839B2
JP3911839B2 JP9564198A JP9564198A JP3911839B2 JP 3911839 B2 JP3911839 B2 JP 3911839B2 JP 9564198 A JP9564198 A JP 9564198A JP 9564198 A JP9564198 A JP 9564198A JP 3911839 B2 JP3911839 B2 JP 3911839B2
Authority
JP
Japan
Prior art keywords
light emitting
electrode
semiconductor light
emitting element
electrostatic protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9564198A
Other languages
Japanese (ja)
Other versions
JPH11298035A (en
Inventor
修作 前田
浩人 勝田
美智雄 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP9564198A priority Critical patent/JP3911839B2/en
Publication of JPH11298035A publication Critical patent/JPH11298035A/en
Application granted granted Critical
Publication of JP3911839B2 publication Critical patent/JP3911839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば青色発光ダイオード等の光デバイスに利用される窒化ガリウム系化合物を利用したフリップチップ型の半導体発光素子を備える半導体発光装置に係り、特に静電気による破壊を防止するための静電気保護素子を付帯して安定動作を可能とした半導体発光装置に関する。
【0002】
【従来の技術】
GaN,GaAlN,InGaN及びInAlGaN等の窒化ガリウム系化合物の半導体の製造では、その表面において半導体膜を成長させるための結晶基板として、一般的には絶縁性のサファイアが利用される。このサファイアのような絶縁性の結晶基板を用いる場合では、結晶基板側から電極を出すことができないので、半導体層に設けるp,nの電極は結晶基板と対向する側の一面に形成されることになる。
【0003】
たとえば、GaN系化合物半導体を利用した発光素子は、絶縁性の基板としてサファイア基板を用いてその上面にn型層及びp型層を有機金属気相成長法によって積層形成し、p型層の一部をエッチングしてn型層を露出させ、これらのn型層とp型層のそれぞれにn側電極及びp側電極を形成するというものがその基本的な構成である。そして、p側電極を透明電極とした場合であれば、これらのp側及びn側の電極にそれぞれボンディングパッド部を形成して、リードフレームや基板にそれぞれワイヤボンディングされる。
【0004】
一方、サファイア基板側から光を取り出すようにしたフリップチップ型の半導体発光素子では、p側電極を透明電極としないままでこのp側及びn側の電極のそれぞれにマイクロバンプを形成し、これらのマイクロバンプを基板またはリードフレームのp側及びn側に接続する。
【0005】
図4はフリップチップ型の半導体発光素子を利用した従来のチップLEDの概略を示す縦断面図である。
【0006】
図において、発光素子1は、絶縁性の透明なサファイア基板1aの表面に、たとえばGaNバッファ層,n型GaN層,InGaN活性層,p型AlGaN層及びp型GaN層を順に積層し、InGaN活性層を発光層としたものである。そして、n型GaN層の上面にn側電極2が、及びp型GaN層の上面にはp側電極3がそれぞれ蒸着法によって形成され、更にこれらのn側電極2及びp側電極3の上にはそれぞれマイクロバンプ4,5を形成している。
【0007】
発光素子1は、基板6に導電性接着剤等で固定したリード6a,6bにそれぞれマイクロバンプ4,5をたとえば加熱圧着法等によって接合して固定し、モールド樹脂7によって封止され、基板6からの通電によって発光素子1に導通させることにより、発光層からの光が透明のサファイア基板1aを抜けて上方に放出される。また、p側電極3を含む面を厚膜化または光反射膜とすることによって、発光層からの光を上方に向けて反射して発光出力を上げることができる。
【0008】
ところが、このような絶縁性のサファイア基板1aに半導体層を積層したチップLEDでは、素子材料のたとえば誘電率ε等の物理定数や素子構造に起因して、静電気に対して非常に弱いことが知られている。たとえば、チップLEDと静電気がチャージされたコンデンサとを対向させて両者間に放電を生じさせたとき、順方向でおよそ100Vの静電圧で、逆方向ではおよそ30Vの静電圧で破壊されてしまう。
【0009】
これに対し、発光素子1による静電気の影響による破壊を防止するため、p−n接合の逆電圧を増大したとき破壊電圧(ツェナー降伏電圧)においては電流が増大しても電圧値は一定値をとるという特性を利用した定電圧ダイオードすなわちツェナーダイオードとして知られている静電気保護素子を備えることが有効とされている。この静電気保護素子は、本願出願人が先に提案して特願平9−18782号として既に出願した明細書及び図面に記載のものが適用できる。
【0010】
図5は静電気保護素子を備える場合のLEDランプの構成例の概略を示す縦断面図であり、図4に示した同じ部材については共通の符号で指示する。
【0011】
この例では、発光素子1は一方のリード6bに電気的に導通させて固定したSiダイオード素子20の上に搭載され、このSiダイオード素子20とリード6aとの間にワイヤ21をボンディングしている。Siダイオード素子20と発光素子1とは、逆極性の関係で接続すなわち互いのp電極とn電極とのうち逆極性の電極どうしを接続して発光素子1にリード6a,6bから高電圧が印加されないようにしたものである。
【0012】
このような構成であれば、リード6a,6bに高電圧が印加されたときには、発光素子1に印加される逆方向電圧はSiダイオード素子20の順方向電圧付近の電圧値で、及び発光素子1に印加される順方向電圧はSiダイオード素子20の逆方向ブレークダウン電圧付近の電圧値で、それぞれカットされる。したがって、静電気による発光素子1の破壊を確実に防ぐことができる。
【0013】
【発明が解決しようとする課題】
先に特願平9−18782号として出願した明細書及び図面におけるSiダイオード素子20は、n型シリコン基板のp電極側に相当する部分の表面の一部に不純物イオンの注入によりp型半導体領域20aを拡散形成したものである。そして、このp型半導体領域20aの上面とこれから外れた位置にそれぞれp側電極とn側電極とを形成し、p側電極の一部をボンディングパッドとしてこれにワイヤ21がボンディングされる。
【0014】
ところが、静電気保護用のSiダイオード素子20を発光素子1と別体として設ける場合では、リード6a側とこのSiダイオード素子20とを導通させるためのワイヤ21が必要である。このため、図4に示したチップLEDの場合に比べると、ワイヤ21を張る分だけの高さ方向の嵩が大きくなり、発光装置の薄型化への障害の一因となる。また、ワイヤ21を張る場合では鋭角的に曲げることができないので、Siダイオード素子20とリード6aとのボンディング点との間の距離を或る程度確保しなければならない。このため、リード6a,6bどうしの間の長さも大きくなり、高さ方向だけでなく幅方向の嵩も大きくなってしまう。
【0015】
更に、Siダイオード素子20を一方のリード6bの上に搭載するので、発光素子1は一対のリード6a,6bに対して左側に偏った配置となり、チップLED単体で使用するときには、発光点がチップ中心からずれてしまう。このため、たとえばリード6a,6bの内面を鏡面層としておき発光素子1の下側や側方へ漏れ出る光を反射させて発光出力を向上させようとした場合、リード6a,6bに対する偏りによって反射光の強度の分布を伴うことになり、発光の一様性が損なわれる恐れがある。
【0016】
このように静電気保護用のSiダイオード素子20を備えるものでは、発光装置の高さ及び幅方向の嵩が大きくて小型化及び薄型化の障害となるほか、発光点のずれによる発光障害を伴いやすいという問題がある。
【0017】
本発明において解決すべき課題は、静電気保護用の素子を組み込んでも装置の嵩を小さく抑えることができるとともに良好な発光が得られる半導体発光装置を提供することにある。
【0018】
【課題を解決するための手段】
本発明は、静電気保護素子をリードフレームや基板等の基材の搭載面に搭載し、フリップチップ型の半導体発光素子を前記静電気保護素子の上面にp側及びn側の電極を逆極性で導通させて搭載し、前記半導体発光素子の搭載面側と反対側を主光取出し面とした半導体発光装置において、前記静電気保護素子は、前記基材と半導体発光素子との間の導通路を形成するn型半導体領域を縦方向の全長に形成させ、これらの半導体領域の上面及び下面にそれぞれn電極及びp電極を形成し、このn電極及びp電極を前記半導体発光素子及び基材に接合してなることを特徴とする。
【0019】
このような構成であれば、静電気保護素子を利用して基材側と発光素子側とを導通させることができるので、ワイヤボンディングが不要なアセンブリとすることができる。
【0020】
【発明の実施の形態】
請求項1に記載の発明は、静電気保護素子をリードフレームや基板等の基材の搭載面に搭載し、フリップチップ型の半導体発光素子を前記静電気保護素子の上面にp側及びn側の電極を逆極性で導通させて搭載し、前記半導体発光素子の搭載面側と反対側を主光取出し面とした半導体発光装置において、前記静電気保護素子は、前記基材と半導体発光素子との間の導通路を形成するn型半導体領域とp型半導体領域をそれぞれ静電気保護素子の縦方向の全長にわたって備え前記n型半導体領域の上面及び下面にn電極を形成し、前記p型半導体領域の上面及び下面にp電極を形成し、上面に形成したn電極及びp電極を前記半導体発光素子と導通接続させ、下面に形成したn電極及びp電極を基材に導通接続してなるものであり、ワイヤボンディングを必要としないアセンブリによって小型化された発光装置が得られるという作用を有する。
【0021】
請求項2に記載の発明は、前記静電気保護素子をSiダイオードとし、このSiダイオードのシリコン基板の全断面の厚さを150μm以下としてなる請求項1記載の半導体発光装置であり、シリコン基板の表裏両面から拡散形成するp型及びn型の半導体領域をそれぞれ確実に重合させることができ、その製造時間の短縮化が図れるとともに半導体発光装置を薄型化できるという作用を有する。
【0022】
以下に、本発明の実施の形態の具体例を図面を参照しながら説明する。
図1は本発明の一実施の形態による半導体発光装置であってチップLEDの例を示す概略縦断面図、図2は要部の拡大図である。なお、従来例で示したものと同じ部材については共通の符号で指示し、その詳細な説明は省略する。
【0023】
発光素子1は、たとえばその基板1aに下から順にGaNバッファ層,n型GaN層,InGaN活性層,p型AlGaN層及びp型GaN層を形成したいわゆるダブルヘテロ構造のものとすることができる。この半導体膜の積層構造では、通電によってInGaN活性層が発光層となり、発光層からの光がサファイア基板1aの主光取出し面(図1においてサファイア基板1aの上面)側及びp側電極3に向かう。
【0024】
リード6a,6bどうしの間には発光素子1の静電気による破壊を防止するための静電気保護素子としてSiダイオード素子8を架け渡して設け、このSiダイオード素子の上に発光素子1を搭載して電気的に導通させる。
【0025】
Siダイオード素子8はn型シリコン基板を用いたもので、n型半導体領域8aとp型半導体領域8bとに区分されたものである。すなわち、図4の従来例ではn型シリコン基板の上面からのみボロン等の不純物を拡散することで、上端側の一部をp型半導体領域20aとしたものであるのに対し、本発明においてはn型シリコン基板を上下両面からボロン等の不純物を拡散して縦方向の全長にp型半導体領域8bを拡散形成させたものである。
【0026】
このようなp型半導体領域8bの拡散形成のための具体的な製造方法は次のとおりであり、図3の概略の工程図を参照して説明する。
【0027】
まず、図1及び図2の例におけるSiダイオード素子8の材料としたn型シリコン基板10(図3の(a))の表面及び裏面側をそれぞれSiNx等による酸化膜11,12によって皮膜する(同図(b))。そして、形成しようとするp側拡散領域に対応する部分の酸化膜11,12をリソグラィー工程及びエッチング工程で取り除くことより、これらの酸化膜11,12のそれぞれにp型拡散窓11a,12aを形成する(同図(c))。
【0028】
次いで、形成されたp側拡散窓11a,12aにボロン等の不純物を注入する。この場合、n型シリコン基板10の全断面の厚さ(図3において上下方向の厚さ)が大きくなり過ぎると、n型シリコン基板10の表裏両面から拡散するp型半導体領域8bが上側と下側から完全に重合するまでの時間が長くなる。また、ボロン等の拡散はn型シリコン基板10の厚さ方向と同時に横方向にも拡散していくため、n型シリコン基板10が厚いとn側の領域が少なくなる。したがって、n型シリコン基板10の厚さには上限を設けることが好ましく、本発明者等はn型シリコン基板10の全断面の厚さは150μm以下とすることが好ましいことを知見によって得た。
【0029】
拡散の深さは、n型シリコン基板10の表側及び裏側から拡散される拡散層がn型シリコン基板10の内部で完全につながる必要があるので、拡散層の深さはn型シリコン基板10の全断面の厚さの50%以上、たとえば、n型シリコン基板10の総厚が150μmの場合、表側及び裏側からの拡散深さはそれぞれ75μm以上の深さにすることが好ましい。このボロン等の不純物による拡散は、n型シリコン基板10の表面及び裏面の両面から拡散させることによって、n型シリコン基板10に対してその表裏両面側からそれぞれp型拡散領域13,14が形成され(同図(d))、これらのp型拡散領域13,14によって一つに繋がったp型拡散層が形成されることになる。そして、拡散窓11a,12aから外れている部分は酸化膜11,12によって覆われているために拡散は行われず、n型領域が確保されたままとなる。
【0030】
次いで、拡散窓11a,12a以外の酸化膜11,12を取り除いた後、n型シリコン基板10の表面側及び裏面側の全面にアルミニウム等をスパッタ法等で成膜して金属膜15,16を形成する(同図(e))。成膜された金属膜15,16は、n型シリコン基板10のp型拡散領域13,14とこれらを除くn型領域部分の表面側には発光素子1のマイクロバンプ4を接合するためのp電極8b−1とn電極8a−1を形成し、更に裏面側にはリードフレームに接合するためのp電極8b−2とn電極8a−2ををそれぞれ対向する形となるようにリソグラフィー工程及びエッチング工程により形成する(同図(f))。
【0031】
以上の工程の後、熱処理を施すとともにダイシング工程によって切断することにより、図1及び図2に示したSiダイオード素子8を得ることができる。
【0032】
以上の工程によって作製された図示のSiダイオード素子8は、図中に示すようにその表面側にはp電極8b−1,n電極8a−1が形成されるとともに、裏面側にはp電極8b−2,n電極8a−2が形成されることになる。そして、p電極8b−1,8b−2どうしの間及びn電極8a−1,8a−2どうしの間はそれぞれ導通状態にある。
【0033】
このようなSiダイオード素子8の作製においては、GaN系化合物半導体のLED素子の順方向破壊電圧をVf1,逆方向破壊電圧をVb1とし、Siダイオード素子の順方向動作電圧をVf2,逆方向ブレークダウン電圧をVb2とし、更にGaN,LED素子の動作電圧をVFとするとき、Vf2<Vb1,Vb2<Vf1,Vb2>VFの関係が成り立つものであればよい。
【0034】
以上の製造方法でも説明したように、n型半導体領域8aの上面及び下面にはそれぞれn電極8a−1,8a−2を形成して、発光素子1のp側電極3のマイクロバンプ5及びリード6bにそれぞれ導通接続する。また、p型半導体領域8bの上面及び下面にもそれぞれp電極8b−1,8b−2を形成し、発光素子1のn側電極2のマイクロバンプ4及びリード6aにそれぞれ導通接続する。このような導通接続によって、発光素子1とSiダイオード素子8とは逆極性の関係で接続された複合素子としてアセンブリされることになる。
【0035】
以上の構成において、Siダイオード素子8を発光素子1に対して逆極性の関係で接続したことにより、リード6a,6b間に高電圧が印加されたとき、発光素子1に印加される逆方向電圧及び順方向電圧のいずれもが、破壊電圧に達する前にカットされる。したがって、静電気による発光素子1の破壊が確実に防止される。
【0036】
Siダイオード素子8にn型及びp型の半導体領域8a,8bをそれぞれのn電極8a−1,8a−2及びp電極8b−1,8b−2に導通させて形成しているので、発光素子1との逆極性による接続だけでリード6a,6bと発光素子1との間の電気的導通が得られる。したがって、従来のようにリード6aとの間のボンディングワイヤが不要となり、ワイヤ配線に必要な高さ及び幅方向の嵩の分に相当して全体を薄く幅も狭いものとすることができる。
【0037】
また、Siダイオード素子をリード6a,6bに架け渡す配置としてその上面に発光素子1を搭載するので、発光点を発光装置の中心に合わせた配置が得られる。このため、リード6a,6bの内面を反射層として利用するような場合、反射光の分布を一様化でき、良好な発光が得られる。
【0038】
なお、図示の例では、リード6a,6bに搭載してモールド樹脂7で封止されたものとしたが、各種のLEDランプや基板に直接搭載してモールド樹脂で封止しないタイプの光源等に本発明を適用できることは無論である。
【0039】
【発明の効果】
本発明では、静電気保護素子を利用して発光素子とリードフレーム等の基材側との間の導通路を形成することができるので、ワイヤボンディングが不要となり、そのための工程が削減できるとともに、ワイヤを張るのに必要な嵩に相当する分を小型化できる。したがって、静電気保護素子を組み込んでも、発光装置の高さや幅を小さくすることができ、静電気による破壊防止とコンパクト化の両面が達成される。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるフリップチップ型の半導体発光素子を備えた半導体発光装置の概略縦断面図
【図2】発光素子とSiダイオード素子の要部を示す図
【図3】本発明におけるSiダイオード素子の製造工程を順に示す概略図
【図4】フリップチップ型の発光素子を備えた従来の発光装置の概略縦断面図
【図5】静電気保護用のSiダイオード素子を備えた従来の発光装置の概略縦断面図
【符号の説明】
1 発光素子
1a 結晶基板
2 n側電極
3 p側電極
4,5 マイクロバンプ
6 基板
6a,6b リード
7 モールド樹脂
8 Siダイオード素子(静電気保護素子)
8a n型半導体領域
8a−1,8a−2 n電極
8b p型半導体領域
8b−1,8b−2 p電極
10 n型シリコン基板
11,12 酸化膜
11a,12a p型拡散窓
13,14 p型拡散領域
15,16 金属膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light-emitting device including a flip-chip type semiconductor light-emitting element using a gallium nitride compound used in an optical device such as a blue light-emitting diode, and more particularly to an electrostatic protection element for preventing breakdown due to static electricity The present invention relates to a semiconductor light emitting device that can be operated stably with the above.
[0002]
[Prior art]
In the manufacture of semiconductors of gallium nitride compounds such as GaN, GaAlN, InGaN, and InAlGaN, insulating sapphire is generally used as a crystal substrate for growing a semiconductor film on the surface thereof. In the case of using an insulating crystal substrate such as sapphire, the electrode cannot be provided from the crystal substrate side, so that the p and n electrodes provided on the semiconductor layer are formed on one surface facing the crystal substrate. become.
[0003]
For example, a light-emitting element using a GaN-based compound semiconductor uses a sapphire substrate as an insulating substrate, and an n-type layer and a p-type layer are stacked on the upper surface thereof by metal organic chemical vapor deposition. The basic structure is that an n-type layer is exposed by etching a portion and an n-side electrode and a p-side electrode are formed on each of the n-type layer and the p-type layer. If the p-side electrode is a transparent electrode, bonding pad portions are formed on the p-side and n-side electrodes, respectively, and wire-bonded to the lead frame and the substrate, respectively.
[0004]
On the other hand, in the flip-chip type semiconductor light emitting device in which light is extracted from the sapphire substrate side, the microelectrodes are formed on each of the p-side electrode and the n-side electrode without using the p-side electrode as a transparent electrode. Micro bumps are connected to the p side and n side of the substrate or lead frame.
[0005]
FIG. 4 is a longitudinal sectional view showing an outline of a conventional chip LED using a flip-chip type semiconductor light emitting device.
[0006]
In the figure, the light-emitting element 1 is formed by laminating, for example, a GaN buffer layer, an n-type GaN layer, an InGaN active layer, a p-type AlGaN layer, and a p-type GaN layer in this order on the surface of an insulating transparent sapphire substrate 1a. The layer is a light emitting layer. An n-side electrode 2 is formed on the upper surface of the n-type GaN layer, and a p-side electrode 3 is formed on the upper surface of the p-type GaN layer, respectively. Are formed with micro bumps 4 and 5, respectively.
[0007]
The light emitting element 1 is fixed by bonding the micro bumps 4 and 5 to the leads 6a and 6b fixed to the substrate 6 with a conductive adhesive or the like, for example, by a thermocompression bonding method or the like. By conducting to the light emitting element 1 by energization from the light, the light from the light emitting layer is emitted upward through the transparent sapphire substrate 1a. Further, by making the surface including the p-side electrode 3 thick or a light reflecting film, light from the light emitting layer can be reflected upward to increase the light emission output.
[0008]
However, it is known that a chip LED in which a semiconductor layer is laminated on such an insulating sapphire substrate 1a is very weak against static electricity due to a physical constant of the element material such as a dielectric constant ε and an element structure. It has been. For example, when a chip LED and a capacitor charged with static electricity are opposed to each other and a discharge is generated between them, the chip LED is destroyed at a static voltage of about 100 V in the forward direction and at a static voltage of about 30 V in the reverse direction.
[0009]
On the other hand, when the reverse voltage of the pn junction is increased in order to prevent the light emitting element 1 from being destroyed due to the influence of static electricity, the voltage value remains constant even when the current increases in the breakdown voltage (Zener breakdown voltage). It is effective to provide an electrostatic protection element known as a constant voltage diode, that is, a Zener diode utilizing the characteristic of taking. As this electrostatic protection element, those described in the specification and drawings previously proposed by the applicant of the present application and already filed as Japanese Patent Application No. 9-18882 can be applied.
[0010]
FIG. 5 is a longitudinal sectional view showing an outline of a configuration example of an LED lamp in the case where an electrostatic protection element is provided, and the same members shown in FIG.
[0011]
In this example, the light emitting element 1 is mounted on a Si diode element 20 that is electrically connected and fixed to one lead 6b, and a wire 21 is bonded between the Si diode element 20 and the lead 6a. . The Si diode element 20 and the light emitting element 1 are connected in a reverse polarity relationship, that is, electrodes having opposite polarities are connected to each other, and a high voltage is applied to the light emitting element 1 from the leads 6a and 6b. It is not to be done.
[0012]
With such a configuration, when a high voltage is applied to the leads 6a and 6b, the reverse voltage applied to the light emitting element 1 is a voltage value near the forward voltage of the Si diode element 20, and the light emitting element 1 The forward voltage applied to is cut at a voltage value near the reverse breakdown voltage of the Si diode element 20, respectively. Therefore, destruction of the light emitting element 1 due to static electricity can be reliably prevented.
[0013]
[Problems to be solved by the invention]
The Si diode element 20 in the specification and drawings previously filed as Japanese Patent Application No. 9-18882 is a p-type semiconductor region formed by implanting impurity ions into a part of the surface corresponding to the p-electrode side of the n-type silicon substrate. 20a is formed by diffusion. Then, a p-side electrode and an n-side electrode are formed on the upper surface of the p-type semiconductor region 20a and at a position away from the upper surface, respectively, and a wire 21 is bonded thereto using a part of the p-side electrode as a bonding pad.
[0014]
However, in the case where the Si diode element 20 for electrostatic protection is provided separately from the light emitting element 1, a wire 21 for connecting the lead 6 a side and the Si diode element 20 is necessary. For this reason, as compared with the case of the chip LED shown in FIG. 4, the bulk in the height direction corresponding to the tension of the wire 21 is increased, which becomes an obstacle to thinning of the light emitting device. In addition, since the wire 21 cannot be bent at an acute angle, a certain distance must be secured between the bonding point between the Si diode element 20 and the lead 6a. For this reason, the length between the leads 6a and 6b is also increased, and the bulk in the width direction as well as the height direction is increased.
[0015]
Further, since the Si diode element 20 is mounted on the one lead 6b, the light emitting element 1 is disposed to the left with respect to the pair of leads 6a and 6b. When the chip LED is used alone, the light emitting point is the chip. Deviation from the center. For this reason, for example, when the inner surfaces of the leads 6a and 6b are used as a mirror surface layer and light that leaks to the lower side or the side of the light emitting element 1 is reflected to improve the light emission output, reflection is caused by the bias with respect to the leads 6a and 6b. This is accompanied by a distribution of light intensity, which may impair the uniformity of light emission.
[0016]
In this way, the device including the Si diode element 20 for electrostatic protection has a large height and width in the width direction, which hinders downsizing and thinning, and easily causes a light emission failure due to a deviation of the light emitting point. There is a problem.
[0017]
The problem to be solved in the present invention is to provide a semiconductor light emitting device capable of suppressing the bulk of the device even when an electrostatic protection element is incorporated and obtaining good light emission.
[0018]
[Means for Solving the Problems]
In the present invention, an electrostatic protection element is mounted on a mounting surface of a base material such as a lead frame or a substrate, and a flip-chip type semiconductor light emitting element is electrically connected to the upper surface of the electrostatic protection element with p-side and n-side electrodes in reverse polarity. In the semiconductor light emitting device that is mounted and has the main light extraction surface opposite to the mounting surface side of the semiconductor light emitting element, the electrostatic protection element forms a conduction path between the base material and the semiconductor light emitting element. An n-type semiconductor region is formed over the entire length in the vertical direction, an n-electrode and a p-electrode are formed on the upper and lower surfaces of these semiconductor regions , respectively, and the n-electrode and the p-electrode are bonded to the semiconductor light emitting element and the substrate. It is characterized by becoming.
[0019]
With such a configuration, the base material side and the light emitting element side can be made conductive using the electrostatic protection element, so that an assembly that does not require wire bonding can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, an electrostatic protection element is mounted on a mounting surface of a base material such as a lead frame or a substrate, and flip-chip type semiconductor light emitting elements are provided on the upper surface of the electrostatic protection element with p-side and n-side electrodes. In the semiconductor light emitting device having the main light extraction surface opposite to the mounting surface side of the semiconductor light emitting element, the electrostatic protection element is disposed between the substrate and the semiconductor light emitting element. n-type semiconductor region and the p-type semiconductor region forming a conductive path each comprise over longitudinal entire length of the electrostatic protection element, the n-electrode is formed on the upper surface and the lower surface of the n-type semiconductor region, the upper surface of the p-type semiconductor region A p-electrode is formed on the lower surface, the n-electrode and the p-electrode formed on the upper surface are electrically connected to the semiconductor light emitting element, and the n-electrode and the p-electrode formed on the lower surface are electrically connected to the base material, Wirebo It has the effect of miniaturized light emitting device can be obtained by an assembly that does not require loading.
[0021]
The invention according to claim 2 is the semiconductor light emitting device according to claim 1, wherein the electrostatic protection element is a Si diode, and the thickness of the entire cross section of the silicon substrate of the Si diode is 150 μm or less. Each of the p-type and n-type semiconductor regions diffused from both sides can be reliably polymerized, thereby reducing the manufacturing time and reducing the thickness of the semiconductor light emitting device.
[0022]
Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view showing an example of a chip LED, which is a semiconductor light emitting device according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part. In addition, about the same member as what was shown in the prior art example, it designates with a common code | symbol and the detailed description is abbreviate | omitted.
[0023]
The light-emitting element 1 may have a so-called double hetero structure in which a GaN buffer layer, an n-type GaN layer, an InGaN active layer, a p-type AlGaN layer, and a p-type GaN layer are formed on the substrate 1a in this order from the bottom. In this laminated structure of semiconductor films, the InGaN active layer becomes a light emitting layer by energization, and light from the light emitting layer is directed to the main light extraction surface (upper surface of the sapphire substrate 1a in FIG. 1) side and the p-side electrode 3. .
[0024]
A Si diode element 8 is provided between the leads 6a and 6b as an electrostatic protection element for preventing the light-emitting element 1 from being damaged by static electricity. The light-emitting element 1 is mounted on the Si diode element to electrically Make it conductive.
[0025]
The Si diode element 8 uses an n-type silicon substrate and is divided into an n-type semiconductor region 8a and a p-type semiconductor region 8b. That is, in the conventional example of FIG. 4, an impurity such as boron is diffused only from the upper surface of the n-type silicon substrate, so that a part of the upper end side is the p-type semiconductor region 20a. An n-type silicon substrate is formed by diffusing impurities such as boron from both the upper and lower sides to diffuse a p-type semiconductor region 8b over the entire length in the vertical direction.
[0026]
A specific manufacturing method for the diffusion formation of the p-type semiconductor region 8b is as follows, and will be described with reference to a schematic process diagram of FIG.
[0027]
First, the front and back sides of the n-type silicon substrate 10 (FIG. 3A), which is the material of the Si diode element 8 in the examples of FIGS. 1 and 2, are coated with oxide films 11 and 12 made of SiNx or the like, respectively ( (B) in FIG. Then, by removing the oxide films 11 and 12 corresponding to the p-side diffusion region to be formed by the lithography process and the etching process, the p-type diffusion windows 11a and 12a are formed in the oxide films 11 and 12, respectively. (FIG. (C)).
[0028]
Next, impurities such as boron are implanted into the formed p-side diffusion windows 11a and 12a. In this case, if the thickness of the entire cross section of the n-type silicon substrate 10 (the thickness in the vertical direction in FIG. 3) becomes too large, the p-type semiconductor region 8b diffusing from both the front and back surfaces of the n-type silicon substrate 10 It takes longer to completely polymerize from the side. Further, since diffusion of boron or the like diffuses in the lateral direction simultaneously with the thickness direction of the n-type silicon substrate 10, the n-side region decreases when the n-type silicon substrate 10 is thick. Therefore, it is preferable to set an upper limit on the thickness of the n-type silicon substrate 10, and the present inventors have obtained from knowledge that the thickness of the entire cross section of the n-type silicon substrate 10 is preferably 150 μm or less.
[0029]
The diffusion depth is such that the diffusion layers diffused from the front side and the back side of the n-type silicon substrate 10 need to be completely connected inside the n-type silicon substrate 10. When the thickness of the entire cross section is 50% or more, for example, when the total thickness of the n-type silicon substrate 10 is 150 μm, the diffusion depth from the front side and the back side is preferably 75 μm or more. The diffusion due to impurities such as boron is diffused from both the front and back surfaces of the n-type silicon substrate 10, so that p-type diffusion regions 13 and 14 are formed on the n-type silicon substrate 10 from both the front and back surfaces. (FIG. 4D), a p-type diffusion layer connected to one by the p-type diffusion regions 13 and 14 is formed. And since the part which remove | deviated from the diffusion windows 11a and 12a is covered with the oxide films 11 and 12, diffusion is not performed but an n-type area | region is ensured.
[0030]
Next, after removing the oxide films 11 and 12 other than the diffusion windows 11a and 12a, a film of aluminum or the like is formed on the entire surface on the front and back sides of the n-type silicon substrate 10 by sputtering or the like to form metal films 15 and 16. (FIG. (E)). The formed metal films 15 and 16 are p-type for bonding the micro-bumps 4 of the light-emitting element 1 to the surface side of the p-type diffusion regions 13 and 14 of the n-type silicon substrate 10 and the n-type region portion excluding them. A lithography process and an electrode 8b-1 and an n electrode 8a-1 are formed, and a p electrode 8b-2 and an n electrode 8a-2 for bonding to the lead frame are opposed to each other on the back side. It is formed by an etching process ((f) in the figure).
[0031]
After the above steps, the Si diode element 8 shown in FIGS. 1 and 2 can be obtained by performing heat treatment and cutting by a dicing step.
[0032]
As shown in the figure, the illustrated Si diode element 8 produced by the above process has a p-electrode 8b-1 and an n-electrode 8a-1 formed on the front surface side, and a p-electrode 8b on the back surface side. -2, n electrode 8a-2 is formed. The p electrodes 8b-1 and 8b-2 and the n electrodes 8a-1 and 8a-2 are in conduction.
[0033]
In manufacturing the Si diode element 8, the forward breakdown voltage of the GaN-based compound semiconductor LED element is Vf1, the reverse breakdown voltage is Vb1, and the forward operating voltage of the Si diode element is Vf2. When the voltage is Vb2 and the operating voltage of the GaN and LED elements is VF, it is sufficient if the relationship of Vf2 <Vb1, Vb2 <Vf1, Vb2> VF is established.
[0034]
As described in the above manufacturing method, n-electrodes 8a-1 and 8a-2 are formed on the upper and lower surfaces of the n-type semiconductor region 8a, respectively, and the micro bumps 5 and leads of the p-side electrode 3 of the light-emitting element 1 are formed. 6b is electrically connected to each other. In addition, p electrodes 8b-1 and 8b-2 are formed on the upper and lower surfaces of the p-type semiconductor region 8b, respectively, and are electrically connected to the micro bumps 4 and the leads 6a of the n-side electrode 2 of the light emitting element 1, respectively. With such a conductive connection, the light emitting element 1 and the Si diode element 8 are assembled as a composite element connected in a reverse polarity relationship.
[0035]
In the above configuration, since the Si diode element 8 is connected to the light emitting element 1 in a reverse polarity relationship, the reverse voltage applied to the light emitting element 1 when a high voltage is applied between the leads 6a and 6b. Both the forward voltage and the forward voltage are cut before the breakdown voltage is reached. Therefore, destruction of the light emitting element 1 due to static electricity is reliably prevented.
[0036]
The n-type and p-type semiconductor regions 8a and 8b are formed in the Si diode element 8 so as to be electrically connected to the n-electrodes 8a-1 and 8a-2 and the p-electrodes 8b-1 and 8b-2. The electrical continuity between the leads 6a and 6b and the light emitting element 1 can be obtained only by the connection with the opposite polarity to 1. Accordingly, a bonding wire between the lead 6a and the conventional method is not necessary, and the entire structure can be made thin and narrow corresponding to the height and width in the width direction necessary for the wire wiring.
[0037]
Further, since the light emitting element 1 is mounted on the upper surface of the Si diode element that spans the leads 6a and 6b, an arrangement in which the light emitting point is aligned with the center of the light emitting device can be obtained. For this reason, when the inner surfaces of the leads 6a and 6b are used as a reflective layer, the distribution of reflected light can be made uniform and good light emission can be obtained.
[0038]
In the illustrated example, it is mounted on the leads 6a and 6b and sealed with the mold resin 7. However, it is mounted on various LED lamps or substrates directly mounted on the substrate and not sealed with the mold resin. Of course, the present invention can be applied.
[0039]
【The invention's effect】
In the present invention, since a conduction path between the light emitting element and the substrate side such as the lead frame can be formed using the electrostatic protection element, wire bonding is not necessary, and the process for that can be reduced, and the wire The amount corresponding to the bulk required to stretch the film can be reduced in size. Therefore, even if an electrostatic protection element is incorporated, the height and width of the light emitting device can be reduced, and both the prevention of breakdown due to static electricity and the miniaturization are achieved.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a semiconductor light emitting device provided with a flip-chip type semiconductor light emitting element according to an embodiment of the present invention. FIG. 2 is a diagram showing a main part of the light emitting element and Si diode element. FIG. 4 is a schematic diagram illustrating a manufacturing process of a Si diode element in order according to the present invention. FIG. 4 is a schematic longitudinal sectional view of a conventional light emitting device provided with a flip-chip type light emitting element. Schematic longitudinal sectional view of a conventional light emitting device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light emitting element 1a Crystal substrate 2 N side electrode 3 P side electrode 4, 5 Micro bump 6 Substrate 6a, 6b Lead 7 Mold resin 8 Si diode element (electrostatic protection element)
8a n-type semiconductor regions 8a-1, 8a-2 n-electrode 8b p-type semiconductor regions 8b-1, 8b-2 p-electrode 10 n-type silicon substrate 11, 12 oxide films 11a, 12a p-type diffusion windows 13, 14 p-type Diffusion regions 15 and 16 Metal film

Claims (2)

静電気保護素子をリードフレームや基板等の基材の搭載面に搭載し、フリップチップ型の半導体発光素子を前記静電気保護素子の上面にp側及びn側の電極を逆極性で導通させて搭載し、前記半導体発光素子の搭載面側と反対側を主光取出し面とした半導体発光装置において、前記静電気保護素子は、前記基材と半導体発光素子との間の導通路を形成するn型半導体領域とp型半導体領域をそれぞれ静電気保護素子の縦方向の全長にわたって備え前記n型半導体領域の上面及び下面にn電極を形成し、前記p型半導体領域の上面及び下面にp電極を形成し、上面に形成したn電極及びp電極を前記半導体発光素子と導通接続させ、下面に形成したn電極及びp電極を基材に導通接続してなる半導体発光装置。An electrostatic protection element is mounted on the mounting surface of a base material such as a lead frame or a substrate, and a flip-chip type semiconductor light emitting element is mounted on the upper surface of the electrostatic protection element with the p-side and n-side electrodes conducting in reverse polarity. In the semiconductor light emitting device in which the side opposite to the mounting surface side of the semiconductor light emitting element is the main light extraction surface, the electrostatic protection element is an n-type semiconductor region that forms a conduction path between the base material and the semiconductor light emitting element the p-type semiconductor regions each provided over the longitudinal entire length of the electrostatic protection element, the n-electrode is formed on the upper surface and the lower surface of the n-type semiconductor region, the p-electrode is formed on the upper surface and the lower surface of the p-type semiconductor region and, A semiconductor light emitting device in which an n electrode and a p electrode formed on an upper surface are electrically connected to the semiconductor light emitting element, and an n electrode and a p electrode formed on a lower surface are electrically connected to a substrate. 前記静電気保護素子をSiダイオードとし、このSiダイオードのシリコン基板の全断面の厚さを150μm以下としてなる請求項1記載の半導体発光装置。  2. The semiconductor light emitting device according to claim 1, wherein the electrostatic protection element is a Si diode, and the thickness of the entire cross section of the silicon substrate of the Si diode is 150 [mu] m or less.
JP9564198A 1998-04-08 1998-04-08 Semiconductor light emitting device Expired - Fee Related JP3911839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9564198A JP3911839B2 (en) 1998-04-08 1998-04-08 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9564198A JP3911839B2 (en) 1998-04-08 1998-04-08 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11298035A JPH11298035A (en) 1999-10-29
JP3911839B2 true JP3911839B2 (en) 2007-05-09

Family

ID=14143144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9564198A Expired - Fee Related JP3911839B2 (en) 1998-04-08 1998-04-08 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3911839B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095363A (en) 2015-02-03 2016-08-11 엘지이노텍 주식회사 Lighting device
KR20160106322A (en) 2015-03-02 2016-09-12 엘지이노텍 주식회사 Lighting device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496596B2 (en) * 2000-03-27 2010-07-07 ソニー株式会社 Light emitting device
JP2002185049A (en) * 2000-11-08 2002-06-28 Lumileds Lighting Us Llc Flip-chip light-emitting diode and method for directly bonding flip-chip electrostatic discharge protection chip to electrode in package
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US7473933B2 (en) * 2004-10-29 2009-01-06 Ledengin, Inc. (Cayman) High power LED package with universal bonding pads and interconnect arrangement
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US9929326B2 (en) 2004-10-29 2018-03-27 Ledengin, Inc. LED package having mushroom-shaped lens with volume diffuser
JP5394617B2 (en) * 2006-06-16 2014-01-22 新光電気工業株式会社 Semiconductor device, semiconductor device manufacturing method and substrate
US8075165B2 (en) 2008-10-14 2011-12-13 Ledengin, Inc. Total internal reflection lens and mechanical retention and locating device
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
TWI501363B (en) * 2014-01-10 2015-09-21 Sfi Electronics Technology Inc Miniaturized smd tpye diode packing components and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095363A (en) 2015-02-03 2016-08-11 엘지이노텍 주식회사 Lighting device
KR20160106322A (en) 2015-03-02 2016-09-12 엘지이노텍 주식회사 Lighting device

Also Published As

Publication number Publication date
JPH11298035A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
CN109075184B (en) Light emitting diode
JP3130292B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR100853064B1 (en) Composite light-emitting device
US8338848B2 (en) LED structure
KR101028965B1 (en) Light emitting diode including barrier layers and manufacturing methods therefor
JP3399440B2 (en) Composite light emitting element, light emitting device and method of manufacturing the same
JP2005311364A (en) Light-emitting device, method for manufacturing the same, and luminescence system using the same
KR20130046754A (en) Light emitting device and light emitting device package
KR101393745B1 (en) Semiconductor LED and fabrication method thereof
JP3911839B2 (en) Semiconductor light emitting device
JPH11289110A (en) Semiconductor light-emitting device
JP2001217461A (en) Compound light-emitting device
JPH1140857A (en) Semiconductor light-emitting element
JP2000012913A (en) Electrostatic protective diode used for semiconductor light-emitting device and manufacture thereof
US20040119078A1 (en) Semiconductor light emitting diode
KR20090078480A (en) Semiconductor device
JP4277583B2 (en) Semiconductor light emitting device
JP2006073618A (en) Optical element and manufacturing method thereof
JPH11214747A (en) Semiconductor light-emitting device
JPH11354836A (en) Full color semiconductor light emitting device
JPH1154799A (en) Semiconductor light emitting device
KR100699146B1 (en) Light emitting device package and fabricating method thereof
JPH10209494A (en) Semiconductor light emitting device
JP3723328B2 (en) Semiconductor light emitting device
JPH11220176A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees