JPH11214747A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPH11214747A
JPH11214747A JP1247698A JP1247698A JPH11214747A JP H11214747 A JPH11214747 A JP H11214747A JP 1247698 A JP1247698 A JP 1247698A JP 1247698 A JP1247698 A JP 1247698A JP H11214747 A JPH11214747 A JP H11214747A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
emitting device
light
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1247698A
Other languages
Japanese (ja)
Inventor
Kenichi Koya
賢一 小屋
研一 ▲真▼田
Kenichi Sanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1247698A priority Critical patent/JPH11214747A/en
Publication of JPH11214747A publication Critical patent/JPH11214747A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12035Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device which is compact, low in height, and capable of protecting a light-emitting element against damages due to static electricity. SOLUTION: A semiconductor light-emitting device equipped with a a Zener diode 6 for protecting a flip chip-type light-emitting element 1 against static electricity is mounted on a board 10, the light-emitting element 1 is mounted on the Zener diode 6 making its electrode electrically connected opposite in polarity to that of the Zener diode 6, and the side of the light-emitting device 1 opposite to its mounting side is made to serve as a main light extracting surface. In this case, the Zener diode 6 is possessed of a main surface which is composed of an element-mounting plane where the light-emitting element 1 is mounted and a bonding plane which is lower in level than the element mounting plane and where a wire 12 is bonded, and provided that the Zener diode 6 is of n-type silicon board, a p-type semiconductor region is provided at a prescribed position by diffusion, whereby the Zener diode 6 is connected electrically to the light-emitting element 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フリップチップ型
の発光素子を静電気保護素子とともに複合素子化した半
導体発光装置に係り、特に複合素子の高さ方向の嵩を小
さくして薄型化を可能とした半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light-emitting device in which a flip-chip type light-emitting element is combined with an electrostatic protection element as a composite element. And a semiconductor light emitting device.

【0002】[0002]

【従来の技術】GaN,GaAlN,InGaN及びI
nAlGaN等の窒化ガリウム系化合物の半導体の製造
では、その表面において半導体膜を成長させるための結
晶基板として、一般的には絶縁性のサファイアが利用さ
れる。このサファイアのような絶縁性の結晶基板を用い
る場合では、結晶基板側から電極を出すことができない
ので、半導体層に設けるp,nの電極は結晶基板と対向
する側の一面に形成されることになる。
2. Description of the Related Art GaN, GaAlN, InGaN and I
In the production of gallium nitride based semiconductors such as nAlGaN, insulating sapphire is generally used as a crystal substrate for growing a semiconductor film on the surface. When an insulating crystal substrate such as sapphire is used, electrodes cannot be provided from the crystal substrate side, so that the p and n electrodes provided on the semiconductor layer are formed on one surface facing the crystal substrate. become.

【0003】たとえば、GaN系化合物半導体を利用し
た発光素子は、絶縁性の基板としてサファイア基板を用
いてその上面にn型層及びp型層を有機金属気相成長法
によって積層形成し、p型層の一部をエッチングしてn
型層を露出させ、これらのn型層とp型層のそれぞれに
n側電極及びp側電極を形成するというものがその基本
的な構成である。そして、p側電極を透明電極とした場
合であれば、これらのp側及びn側の電極にそれぞれボ
ンディングパッド部を形成して、リードフレームや基板
にそれぞれワイヤボンディングされる。
For example, a light-emitting device using a GaN-based compound semiconductor uses a sapphire substrate as an insulating substrate, and forms an n-type layer and a p-type layer on the upper surface thereof by metal organic chemical vapor deposition to form a p-type layer. Etch part of the layer to n
The basic configuration is that the mold layer is exposed and an n-side electrode and a p-side electrode are formed on each of the n-type layer and the p-type layer. If the p-side electrode is a transparent electrode, bonding pads are formed on these p-side and n-side electrodes, respectively, and wire-bonded to a lead frame or a substrate.

【0004】一方、サファイア基板側から光を取り出す
ようにしたフリップチップ型の半導体発光素子では、p
側電極を透明電極としないままでこのp側及びn側の電
極のそれぞれにマイクロバンプを形成し、これらのマイ
クロバンプを基板またはリードフレームのp側及びn側
に接続する。
On the other hand, in a flip-chip type semiconductor light emitting device in which light is extracted from the sapphire substrate,
Micro-bumps are formed on each of the p-side and n-side electrodes without using the side electrodes as transparent electrodes, and these micro-bumps are connected to the p-side and n-side of the substrate or lead frame.

【0005】図5はフリップチップ型の半導体発光素子
を利用した基板タイプのチップLEDの概略を示す縦断
面図である。
FIG. 5 is a longitudinal sectional view schematically showing a substrate type chip LED using a flip-chip type semiconductor light emitting device.

【0006】図において、発光素子51は、絶縁性の透
明なサファイア基板51aの表面に半導体化合物層を積
層して、たとえばその中の一つの層として形成されるI
nGaN活性層を発光層としたものである。そして、n
型層の上面にn側電極52が、及びp型層の上面にはp
側電極53がそれぞれ蒸着法によって形成され、これら
のn側電極52及びp側電極53の上にはそれぞれマイ
クロバンプ54,55を形成している。そして、発光素
子51には外部から静電気等の過電流が印加されないよ
うにしてその破壊を防止するため、静電気保護素子とし
てツェナーダイオード57を設け、発光素子51ととも
に複合素子化している。
In FIG. 1, a light emitting element 51 is formed by laminating a semiconductor compound layer on the surface of an insulating transparent sapphire substrate 51a and forming, for example, one of the layers therein.
The nGaN active layer is a light emitting layer. And n
An n-side electrode 52 is provided on the upper surface of the p-type layer, and a p-type electrode 52 is provided on the upper surface of the p-type layer.
Side electrodes 53 are formed by vapor deposition, and micro bumps 54 and 55 are formed on the n-side electrode 52 and the p-side electrode 53, respectively. The light emitting element 51 is provided with a Zener diode 57 as an electrostatic protection element in order to prevent an overcurrent such as static electricity from being applied from the outside and prevent its destruction.

【0007】一方、基板56は、前記複合素子化した発
光素子51を搭載する側及び発光素子51のn側とをワ
イヤでボンディング接続する側に配線パターン56a,
56bをそれぞれ設けたものである。
On the other hand, the substrate 56 has a wiring pattern 56a on the side on which the light emitting element 51 as the composite element is mounted and the side on which the n side of the light emitting element 51 is connected by bonding with a wire.
56b are provided.

【0008】配線パターン56aの上には、前記複合素
子化した発光素子51とツェナーダイオード57が搭載
される。
The light emitting element 51 and the zener diode 57 are mounted on the wiring pattern 56a.

【0009】このツェナーダイオード57は、導電性の
Agペースト58によって配線パターン56aに接着固
定されるもので、n型シリコン基板57cを基材とした
ものであり、その底面に配線パターン56aと導通させ
るためのn電極57dを設けるとともに、上面にはその
表面の一部を除いて被覆する絶縁膜57eを形成してい
る。そしてn型シリコン基板57cの上面の一部がp型
半導体領域57fとして拡散形成され、このp型半導体
領域57fに対応する位置にp側電極57aを形成する
とともにn側電極57bはn型半導体領域に接合されて
いる。なお、p型半導体領域57fは、n型シリコン基
板57cの上面の一部のみからp型不純物イオンを注入
して形成されるもので、その拡散領域はイオン注入量及
び注入領域によって一義的に決められる。
The Zener diode 57 is adhered and fixed to the wiring pattern 56a by a conductive Ag paste 58, has an n-type silicon substrate 57c as a base material, and is electrically connected to the wiring pattern 56a on its bottom surface. And an insulating film 57e covering the top surface except for a part of the surface. A part of the upper surface of the n-type silicon substrate 57c is diffused and formed as a p-type semiconductor region 57f. A p-side electrode 57a is formed at a position corresponding to the p-type semiconductor region 57f, and the n-side electrode 57b is Is joined to. The p-type semiconductor region 57f is formed by implanting p-type impurity ions only from a part of the upper surface of the n-type silicon substrate 57c, and the diffusion region is uniquely determined by the ion implantation amount and the implantation region. Can be

【0010】発光素子51は、サファイア基板51aが
上面を向く姿勢としてツェナーダイオード57の上に搭
載され、n側及びp側のマイクロバンプ54,55をそ
れぞれツェナーダイオード57の電極57a,57bに
接合することによって電気的に導通させる。また、ツェ
ナーダイオード57のp側電極57aと配線パターン5
6bとの間をワイヤ59によってボンディングするとと
もに、このワイヤ59を含めて全体をエポキシ樹脂60
によって封止することにより、図示の形状のチップLE
Dが構成される。
The light emitting element 51 is mounted on a Zener diode 57 with the sapphire substrate 51a facing upward, and the n-side and p-side micro bumps 54, 55 are joined to the electrodes 57a, 57b of the Zener diode 57, respectively. In this way, electrical conduction is achieved. The p-side electrode 57a of the Zener diode 57 and the wiring pattern 5
6b is bonded with a wire 59, and the entirety including the wire 59 is epoxy resin 60.
The chip LE having the shape shown in the figure is sealed by sealing.
D is configured.

【0011】発光素子51への通電があるときには、半
導体積層膜中のInGaN活性層が発光層となり、この
発光層からの光がサファイア基板51a及びp側電極5
3の両方向へ向かう。そして、p側電極53を光透過し
ない反射型の積層膜としておくことにより、サファイア
基板51aの上面からの発光輝度を最大としてこの面を
主光取出し面とすることができる。
When the light-emitting element 51 is energized, the InGaN active layer in the semiconductor laminated film becomes a light-emitting layer, and light from this light-emitting layer is transmitted to the sapphire substrate 51 a and the p-side electrode 5.
Go in both directions. By forming the p-side electrode 53 as a reflective laminated film that does not transmit light, this surface can be used as a main light extraction surface by maximizing light emission luminance from the upper surface of the sapphire substrate 51a.

【0012】[0012]

【発明が解決しようとする課題】ところが、基板56の
配線パターン56aの上にツェナーダイオード57を搭
載してさらにその上に発光素子51を載せるアセンブリ
となるので、静電気保護素子を含まない従来のチップL
EDに比べると、発光素子51の上端までの高さ寸法が
大きくなる。特に、p側電極57aにボンディングする
ワイヤ59は、このp側電極57aの側方に位置してい
る配線パターン56bとの間で上向きに弓なりの形状と
して配線することになるので、このワイヤ59の上向き
への突き出し長さによっても高さ方向の嵩が大きくなっ
てしまう。
However, since a Zener diode 57 is mounted on the wiring pattern 56a of the substrate 56 and the light emitting element 51 is further mounted thereon, a conventional chip which does not include an electrostatic protection element is provided. L
The height dimension up to the upper end of the light emitting element 51 is larger than that of the ED. In particular, the wire 59 to be bonded to the p-side electrode 57a is wired upward in an arcuate shape with the wiring pattern 56b located on the side of the p-side electrode 57a. The bulk in the height direction also increases depending on the length of the upward projection.

【0013】このように、ツェナーダイオード57のよ
うな静電気保護素子を備えることで、静電気等の過電流
の印加による発光素子51の破壊を確実に防止できると
いう新たな機能を活用できる。ところが、その反面で、
複合素子化したことによる基板56の搭載面から発光素
子51の上端面までの高さと、ツェナーダイオード57
にボンディングするワイヤ59の配線の高さとがどちら
も大きくなる。
By providing an electrostatic protection element such as the Zener diode 57, a new function of reliably preventing the light emitting element 51 from being damaged by the application of an overcurrent such as static electricity can be utilized. However, on the other hand,
The height from the mounting surface of the substrate 56 to the upper end surface of the light emitting element 51 due to the composite element, and the Zener diode 57
And the height of the wire of the wire 59 to be bonded to both becomes large.

【0014】したがって、発光素子51及びワイヤ59
を含めてエポキシ樹脂60によって封止することによっ
て得られるチップLEDの厚さにも制約を受けることに
なり、発光装置の薄型化の大きな障害となる。
Therefore, the light emitting element 51 and the wire 59
And the thickness of the chip LED obtained by sealing with the epoxy resin 60 is also restricted, which is a major obstacle to thinning the light emitting device.

【0015】本発明において解決すべき課題は、静電気
による発光素子の破壊を防止するとともに高さ方向の嵩
を小さくしたコンパクトな半導体発光装置を提供するこ
とにある。
It is an object of the present invention to provide a compact semiconductor light emitting device that prevents a light emitting element from being damaged by static electricity and has a reduced height.

【0016】[0016]

【課題を解決するための手段】本発明は、静電気保護素
子をリードフレームまたは基板等の基材の搭載面に搭載
し、フリップチップ型の半導体発光素子を前記静電気保
護素子の上面にp側及びn側の電極を逆極性で、マイク
ロバンプ等により電気的に接続した形で搭載し、前記半
導体発光素子の搭載面側と反対側を主光取出し面とした
半導体発光装置において、前記静電気保護素子は、前記
発光素子を搭載する素子搭載面と、この素子搭載面より
も低く段差状に形成した前記基材とワイヤ接合するため
のボンディング面と、前記素子搭載面とボンディング面
までにかけて配線した電極と、前記素子搭載面からボン
ディング面までにかけて拡散形成もしくは素子搭載面の
み拡散形成した拡散領域を含むことを特徴とする。
According to the present invention, an electrostatic protection element is mounted on a mounting surface of a base material such as a lead frame or a substrate, and a flip-chip type semiconductor light emitting element is mounted on the p-side and the upper surface of the electrostatic protection element. In the semiconductor light emitting device, the n-side electrode is mounted in a reverse polarity and electrically connected by a microbump or the like, and the side opposite to the mounting surface side of the semiconductor light emitting element is a main light extraction surface. Is an element mounting surface on which the light emitting element is mounted, a bonding surface for wire bonding with the base formed in a stepped lower shape than the element mounting surface, and an electrode wired up to the element mounting surface and the bonding surface. And a diffusion region formed by diffusion from the element mounting surface to the bonding surface or by diffusion only on the element mounting surface.

【0017】この構成では、ワイヤボンディングするボ
ンディング面が発光素子の搭載面よりも低い位置にある
ので、ワイヤを上に向けて凸の円弧を描くようにボンデ
ィングする場合でもワイヤの最大高さを抑えることがで
きる。
In this configuration, since the bonding surface for wire bonding is located at a position lower than the mounting surface of the light emitting element, the maximum height of the wire is suppressed even when bonding the wire upward so as to draw a convex arc. be able to.

【0018】[0018]

【発明の実施の形態】請求項1に記載の発明は、静電気
保護素子をリードフレームまたは基板等の基材の搭載面
に搭載し、フリップチップ型の半導体発光素子を前記静
電気保護素子の上面にp側及びn側の電極を逆極性で、
マイクロバンプ等により電気的に接続した形で搭載し、
前記半導体発光素子の搭載面側と反対側を主光取出し面
とした半導体発光装置において、前記静電気保護素子
は、前記発光素子を搭載する素子搭載面と、この素子搭
載面よりも低く段差状に形成した前記基材とワイヤ接合
するためのボンディング面と、前記素子搭載面とボンデ
ィング面までにかけて配線した電極と、前記素子搭載面
からボンディング面までにかけて拡散形成もしくは素子
搭載面のみ、拡散形成した拡散領域を含むものであり、
ワイヤを上に向けて凸の円弧を描くようにボンディング
する場合でもワイヤの最大高さを抑えて嵩を小さくする
という作用を有する。
According to the first aspect of the present invention, an electrostatic protection element is mounted on a mounting surface of a base material such as a lead frame or a substrate, and a flip-chip type semiconductor light emitting element is mounted on an upper surface of the electrostatic protection element. The p-side and n-side electrodes are of opposite polarity,
Mounted in a form electrically connected by micro bumps, etc.,
In a semiconductor light emitting device having a main light extraction surface on the side opposite to the mounting surface side of the semiconductor light emitting element, the electrostatic protection element has an element mounting surface on which the light emitting element is mounted, and a step lower than the element mounting surface. A bonding surface for wire bonding to the formed base material, an electrode wired from the element mounting surface to the bonding surface, and a diffusion formed from the element mounting surface to the bonding surface or a diffusion formed only from the element mounting surface. Including the area,
Even when the wire is bonded so as to draw a convex arc with the wire facing upward, there is an effect that the maximum height of the wire is suppressed and the bulk is reduced.

【0019】請求項2に記載の発明は、前記静電気保護
素子は、Siを用いたダイオードとしてなる請求項1記
載の半導体発光装置であり、Siを用いたダイオードを
部材とすることで、電気配線を容易に行えるとともに、
発光素子の静電耐圧が弱い場合においては、発光装置が
静電気保護機能を備えているため、発光装置として静電
耐圧の向上が実現できる。
According to a second aspect of the present invention, there is provided the semiconductor light emitting device according to the first aspect, wherein the electrostatic protection element is a diode using Si. Can be easily performed,
When the light-emitting element has a low electrostatic withstand voltage, the light-emitting device has an electrostatic protection function, so that the light-emitting device can have an improved electrostatic withstand voltage.

【0020】請求項3に記載の発明は、前記発光素子
は、窒化物を含む化合物半導体としてなる請求項1また
は2記載の半導体発光装置であり、特に静電耐圧が低い
窒化化合物半導体を用いた発光素子に対して静電耐圧を
格段に向上させることができ、発光装置としての信頼性
が向上する。
According to a third aspect of the present invention, there is provided the semiconductor light emitting device according to the first or second aspect, wherein the light emitting element is a compound semiconductor containing a nitride. The electrostatic breakdown voltage of the light emitting element can be remarkably improved, and the reliability of the light emitting device is improved.

【0021】請求項4に記載の発明は、前記静電気保護
素子に形成された段差状のボンディング面は、静電気保
護素子のリードフレームまたは基板等への搭載面に対す
る高さを50〜150μmの範囲としてなる請求項1か
ら3のいずれかに記載の半導体発光装置であり、ボンデ
ィング面の位置を規制することで、ウェーハ製造プロセ
ス並びにダイスボンド工程等で生じる割れ等の対策を図
ることができるという作用を有する。
According to a fourth aspect of the present invention, the step-like bonding surface formed on the electrostatic protection element has a height of 50 to 150 μm with respect to a mounting surface of the electrostatic protection element on a lead frame or a substrate. 4. The semiconductor light emitting device according to claim 1, wherein by controlling the position of the bonding surface, it is possible to take measures such as cracks generated in a wafer manufacturing process and a die bonding process. Have.

【0022】以下に、本発明の実施の形態の具体例を図
面を参照しながら説明する。図1は本発明の一実施の形
態による半導体発光装置であって、チップLEDを例示
する概略縦断面図である。
Hereinafter, specific examples of the embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view illustrating a semiconductor light emitting device according to an embodiment of the present invention, which illustrates a chip LED.

【0023】図において、従来例で示したものと同様に
基板10の配線パターン10aにAgペースト11を介
して静電気保護素子としてのツェナーダイオード6が搭
載され、このツェナーダイオード6の上に発光素子1が
相互の電極を逆極性として電気的に導通接続されて搭載
されている。
In the drawing, a zener diode 6 as an electrostatic protection element is mounted on a wiring pattern 10a of a substrate 10 via an Ag paste 11 in the same manner as in the conventional example, and the light emitting element 1 is mounted on the zener diode 6. Are mounted so as to be electrically conductively connected with the electrodes having opposite polarities.

【0024】発光素子1は、絶縁性の透明なサファイア
基板1aの表面に、たとえばGaNバッファ層,n型G
aN層,InGaN活性層,p型AlGaN層及びp型
GaN層を順に積層し、InGaN活性層を発光層とし
たものである。そして、n型GaN層の上面にn側電極
2が、及びp型GaN層の上面にはp側電極3がそれぞ
れ蒸着法によって形成され、更にこれらのn側電極2及
びp側電極3の上にはそれぞれマイクロバンプ4,5を
形成している。
The light emitting element 1 is provided on a surface of an insulating transparent sapphire substrate 1a, for example, with a GaN buffer layer, an n-type G
An aN layer, an InGaN active layer, a p-type AlGaN layer, and a p-type GaN layer are sequentially stacked, and the InGaN active layer is used as a light emitting layer. Then, an n-side electrode 2 is formed on the upper surface of the n-type GaN layer, and a p-side electrode 3 is formed on the upper surface of the p-type GaN layer by a vapor deposition method. Have micro bumps 4 and 5, respectively.

【0025】ツェナーダイオード6は、n型シリコン基
板6cを利用したものであり、その底面にはn電極6c
−1を形成するとともに、上面にはp側及びn側の電極
6a,6bをそれぞれ形成している。また、n型シリコ
ン基板6cは、図示のように右端部側の上面の肉を盗ん
だ断面形状の段差状として形成され、左側の高い部分を
発光素子1の搭載面としている。
The Zener diode 6 utilizes an n-type silicon substrate 6c, and has an n-electrode 6c
In addition to forming −1, p-side and n-side electrodes 6a and 6b are formed on the upper surface, respectively. Further, the n-type silicon substrate 6c is formed as a step having a cross-sectional shape in which the upper surface on the right end portion is stolen, as shown in the figure, and a high portion on the left side is a mounting surface of the light emitting element 1.

【0026】n型シリコン基板6cには、発光素子1の
素子搭載面からその右側方の段差部及びこの段差部に連
なって搭載面よりも低くしたボンディング面までにかけ
て、p型半導体領域6dを拡散形成する。このp型半導
体領域6dは、製造工程において酸化膜等で被膜した後
に拡散窓をエッチング等によって開け、この拡散窓から
p型不純物イオンを注入することで形成されるものであ
る。そして、このp型半導体領域6dに対応してp側電
極6aが接合されるとともに、素子搭載面側のn型半導
体領域すなわちn型シリコン基板6cに接触してn側電
極6bが形成されている。また、これらのp側及びn側
の電極6a,6b下には絶縁膜6eを設けている。
In the n-type silicon substrate 6c, the p-type semiconductor region 6d is diffused from the element mounting surface of the light emitting element 1 to the step portion on the right side thereof and the bonding surface connected to the step portion and lower than the mounting surface. Form. The p-type semiconductor region 6d is formed by coating the substrate with an oxide film or the like in a manufacturing process, opening a diffusion window by etching or the like, and implanting p-type impurity ions from the diffusion window. The p-side electrode 6a is joined to the p-type semiconductor region 6d, and the n-side electrode 6b is formed in contact with the n-type semiconductor region on the element mounting surface side, that is, the n-type silicon substrate 6c. . An insulating film 6e is provided under the p-side and n-side electrodes 6a and 6b.

【0027】発光素子1は、n側及びp側の電極2,3
に設けたマイクロバンプ4,5をそれぞれp側電極6a
及びn側電極6bに載せて搭載接合される。この場合、
発光素子1はツェナーダイオード6のほぼ左側半分を占
める領域の素子搭載面に被さるように位置させる。そし
て、配線パターン10bとの間のボンディング用のワイ
ヤ12は、段差部分の低い側まで延びている部分のp側
電極6aにボンディングすることによって、ツェナーダ
イオード6を配線パターン10b側と導通させる。
The light emitting element 1 has n-side and p-side electrodes 2 and 3
Micro bumps 4 and 5 provided on the p-side electrode 6a, respectively.
And mounted and joined on the n-side electrode 6b. in this case,
The light emitting element 1 is positioned so as to cover the element mounting surface in a region occupying substantially the left half of the Zener diode 6. The bonding wire 12 between the wiring pattern 10b and the p-side electrode 6a extending to the lower side of the step portion makes the Zener diode 6 conductive with the wiring pattern 10b.

【0028】このようなアセンブリにより、発光素子1
とツェナーダイオード6のそれぞれのp側及びn側の電
極2,3,6a,6bが逆極性として接続され、基板1
0側からの高電圧が印加されないようにして発光素子1
の破壊を防止することができる。そして、基板10の上
面から発光素子1及びワイヤ12を含めて全体をエポキ
シ樹脂13によって封止することで、図1に示すチップ
LEDが得られる。
With such an assembly, the light emitting device 1
And the p-side and n-side electrodes 2, 3, 6a, and 6b of the Zener diode 6 are connected with opposite polarities, and the substrate 1
The light emitting element 1 is set so that no high voltage is applied from the 0 side.
Can be prevented from being destroyed. Then, the entire chip including the light emitting element 1 and the wire 12 is sealed with the epoxy resin 13 from the upper surface of the substrate 10, whereby the chip LED shown in FIG. 1 is obtained.

【0029】以上の構成において、発光素子1への通電
があるときには、半導体積層膜中のInGaN活性層が
発光層となり、この発光層からの光がサファイア基板1
a及びp側電極3の両方向へ向かう。そして、p側電極
3を光透過しない反射型の積層膜としておくことによ
り、サファイア基板1aの上面からの発光輝度を最大と
してこの面を主光取出し面とすることができる。
In the above configuration, when the light emitting element 1 is energized, the InGaN active layer in the semiconductor laminated film becomes a light emitting layer, and light from this light emitting layer is transmitted to the sapphire substrate 1.
It proceeds in both directions of the a and p-side electrodes 3. By forming the p-side electrode 3 as a reflection type laminated film that does not transmit light, this surface can be used as a main light extraction surface with maximum light emission luminance from the upper surface of the sapphire substrate 1a.

【0030】本発明においては、ツェナーダイオード6
のn型シリコン基板6cは、配線パターン10bとの間
のワイヤ12のボンディング面を段差状にしてツェナー
ダイオード6の素子搭載面よりも低くしているので、p
側電極6aに接合するワイヤ12のボンディングポイン
トも低くなる。
In the present invention, the Zener diode 6
Since the bonding surface of the wire 12 between the n-type silicon substrate 6c and the wiring pattern 10b is stepped and lower than the element mounting surface of the Zener diode 6,
The bonding point of the wire 12 bonded to the side electrode 6a also becomes lower.

【0031】すなわち、図5に示した従来構造では、発
光素子51を搭載する面と同じ高さのp側電極57aに
ワイヤ59をボンディングしているので、ワイヤ59が
上に凸の向きに張られて基板56に接続されるときに
は、ワイヤ59の弓なり状の弧も高くなる。これに対
し、図1に示すように、ボンディング面に被さっている
p側電極6aはツェナーダイオード6の素子搭載面より
も低いので、このp側電極6aにボンディングするワイ
ヤ12の最大高さは小さく抑えられる。
That is, in the conventional structure shown in FIG. 5, since the wire 59 is bonded to the p-side electrode 57a having the same height as the surface on which the light emitting element 51 is mounted, the wire 59 is stretched upward. When the wire 59 is connected to the substrate 56, the arc of the wire 59 becomes higher. On the other hand, as shown in FIG. 1, since the p-side electrode 6a covering the bonding surface is lower than the element mounting surface of the Zener diode 6, the maximum height of the wire 12 bonded to the p-side electrode 6a is small. Can be suppressed.

【0032】したがって、ツェナーダイオード6の上に
発光素子1を搭載し複合素子化してても、ワイヤ12の
弓なりの弧の上端を発光素子1の上端面よりも低くする
ことができる。これにより、図5の従来構造に比べる
と、基板10からのワイヤ12の高さ方向の嵩を格段に
小さくできるとともに、エポキシ樹脂13の封止高さも
小さくなるので、発光装置の小型化が可能となる。
Therefore, even when the light emitting element 1 is mounted on the Zener diode 6 to form a composite element, the upper end of the arc of the wire 12 can be made lower than the upper end surface of the light emitting element 1. As a result, compared to the conventional structure of FIG. 5, the bulk of the wire 12 from the substrate 10 in the height direction can be significantly reduced, and the sealing height of the epoxy resin 13 is also reduced, so that the light emitting device can be downsized. Becomes

【0033】また、p側電極6aのうちワイヤ12をボ
ンディングする部分を接合している段差のボンディング
面は、ツェナーダイオード6の底面から50〜150μ
m程度の高さとなるように形成することが好ましい。こ
のような高さに相当する肉厚であれば、n型シリコン基
板6cの素材からボンディング面を切除するウェーハ製
造プロセスにおいても、ウェーハの割れやクラックの発
生を防止することができ、製品の歩留りに影響すること
もない。
The bonding surface of the step connecting the portion of the p-side electrode 6a to which the wire 12 is bonded is 50 to 150 μm from the bottom of the Zener diode 6.
It is preferable that the height is about m. With a thickness corresponding to such a height, cracks and cracks in the wafer can be prevented from occurring even in a wafer manufacturing process in which the bonding surface is cut from the material of the n-type silicon substrate 6c, and the product yield Does not affect

【0034】図2はp型半導体領域を素子搭載面に含ま
れる部分にのみ拡散形成した例である。なお、図1で示
したものと同じ部材については共通の符号で指示し、そ
の詳細な説明は省略する。
FIG. 2 shows an example in which a p-type semiconductor region is formed by diffusion only in a portion included in the element mounting surface. The same members as those shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0035】ツェナーダイオード6のn型シリコン基板
6cは図1のものと同様の外郭形状であり、p型半導体
領域6dは発光素子1を搭載したときにそのn側電極2
と対向する部分に拡散形成されている。そして、p側電
極6aはこのp型半導体領域6dの上面に被さる位置か
ら段差部及びボンディング面までにかけて接合形成さ
れ、絶縁膜6eはボンディング面からp型半導体領域6
dの一部を被覆して形成されている。
The n-type silicon substrate 6c of the Zener diode 6 has the same outer shape as that of FIG. 1, and the p-type semiconductor region 6d has the n-side electrode 2 when the light emitting element 1 is mounted.
Is diffused at a portion opposed to. Then, the p-side electrode 6a is formed by bonding from a position covering the upper surface of the p-type semiconductor region 6d to the step portion and the bonding surface, and the insulating film 6e is formed from the bonding surface to the p-type semiconductor region 6d.
It is formed by covering a part of d.

【0036】ツェナーダイオード6は、図1の例と同様
に、基板10の配線パターン10aの上にAgペースト
によって固定され、他方の配線パターン10bとp側電
極6aとの間にワイヤ12をボンディングしたものであ
る。そして、この例においても、ワイヤ12をp側電極
6aにボンディングする位置は発光素子1の搭載面より
も低いので、図1の例と同様にワイヤ12の高さ方向の
嵩を小さくすることがきる。
The zener diode 6 is fixed on the wiring pattern 10a of the substrate 10 with an Ag paste, and the wire 12 is bonded between the other wiring pattern 10b and the p-side electrode 6a, as in the example of FIG. Things. Also in this example, since the position where the wire 12 is bonded to the p-side electrode 6a is lower than the mounting surface of the light emitting element 1, the height of the wire 12 in the height direction can be reduced as in the example of FIG. Wear.

【0037】以上の例では、n型シリコン基板のツェナ
ーダイオードとしているが、これに代えてp型シリコン
基板とすることもでき、ツェナーダイオード及びこれに
搭載した発光素子の要部を図3及び図4に示す。
In the above example, a Zener diode of an n-type silicon substrate is used. However, a p-type silicon substrate may be used instead. A main part of the Zener diode and the light emitting element mounted thereon is shown in FIGS. It is shown in FIG.

【0038】図3において、底面にp電極7a−1を形
成したp型シリコン基板7aを利用したツェナーダイオ
ード7は、左端側の上面の肉を盗んだ段差状に形成さ
れ、右側の高い部分を発光素子1の搭載面とするととも
に左側の低い部分をワイヤ12のボンディング面とした
ものである。そして、素子搭載面の左端側からボンディ
ング面までにかけてn型半導体領域7bをn型不純物イ
オンの注入によって形成し、このn型半導体領域7bに
n側電極7cを接合するとともに、素子搭載面側にはp
型半導体領域すなわちp型シリコン基板7aに接触する
p側電極7dを接合している。また、p型シリコン基板
7aの上面には、絶縁膜7eが所定の領域に形成されて
いる。
In FIG. 3, a Zener diode 7 using a p-type silicon substrate 7a having a p-electrode 7a-1 formed on the bottom surface is formed in a stepped shape stealing the upper surface on the left end side, and a high portion on the right side is formed. The lower part on the left side is used as the bonding surface of the wire 12 as well as the mounting surface of the light emitting element 1. Then, an n-type semiconductor region 7b is formed by implanting n-type impurity ions from the left end side of the element mounting surface to the bonding surface, and an n-side electrode 7c is joined to the n-type semiconductor region 7b and the n-type semiconductor region 7b is formed on the element mounting surface side. Is p
The p-side electrode 7d that contacts the type semiconductor region, that is, the p-type silicon substrate 7a, is joined. An insulating film 7e is formed in a predetermined region on the upper surface of the p-type silicon substrate 7a.

【0039】このようにp型シリコン基板7aを利用す
る場合であっても、ワイヤ12のボンディング面を発光
素子1の搭載面よりも低くすることによって、ワイヤ1
2の高さ方向の嵩を小さくするアセンブリが可能とな
る。
As described above, even when the p-type silicon substrate 7a is used, by setting the bonding surface of the wire 12 lower than the mounting surface of the light emitting element 1, the wire 1
2 enables an assembly to reduce the bulk in the height direction.

【0040】図4は、発光素子1の搭載面に含まれる位
置であって発光素子1のp側電極3に対応する部分にの
みn型半導体領域7bを形成した例である。これは、n
型シリコン基板6cを用いた図2の例で説明したものと
同様の構成であり、ワイヤ12のボンディング面が素子
搭載面よりも低くできることは図3の例と同じであり、
したがってワイヤ12の高さ方向の嵩を小さくすること
ができる。
FIG. 4 shows an example in which the n-type semiconductor region 7b is formed only at a position included in the mounting surface of the light emitting element 1 and corresponding to the p-side electrode 3 of the light emitting element 1. This is n
The configuration is the same as that described in the example of FIG. 2 using the die-shaped silicon substrate 6c, and the bonding surface of the wire 12 can be lower than the element mounting surface, as in the example of FIG.
Therefore, the bulk of the wire 12 in the height direction can be reduced.

【0041】[0041]

【発明の効果】請求項1の発明では、静電気保護素子に
は、ワイヤボンディングするボンディング面を発光素子
の搭載面よりも低い位置に形成してp型またはn型の半
導体領域により発光素子とボンディング部側とを導通さ
せるので、ボンディング面に接続するワイヤの高さ方向
の突き出しを抑えることができ、発光装置の小型及び薄
型化が可能となる。
According to the first aspect of the present invention, the bonding surface for wire bonding is formed at a position lower than the mounting surface of the light emitting element in the electrostatic protection element, and the electrostatic protection element is bonded to the light emitting element by a p-type or n-type semiconductor region. Since the electrical connection with the unit side is made, the protrusion of the wire connected to the bonding surface in the height direction can be suppressed, and the light emitting device can be reduced in size and thickness.

【0042】請求項2の発明では、Siを用いたダイオ
ードを静電保護素子の部材とすることで、発光素子の静
電耐圧が弱くても、静電気保護機能によって発光装置の
静電耐圧を向上させることができ、耐久性が向上する。
According to the second aspect of the present invention, by using a diode using Si as a member of the electrostatic protection element, the electrostatic protection function of the light emitting device can be improved even if the light emitting element has a low electrostatic withstand voltage. And the durability is improved.

【0043】請求項3の発明では、特に静電耐圧が低い
窒化化合物半導体を用いた発光素子に対して静電耐圧を
格段に向上させることができ、発光装置としての信頼性
が更に向上する。
According to the third aspect of the invention, the electrostatic breakdown voltage of a light emitting element using a nitride compound semiconductor having a particularly low electrostatic breakdown voltage can be remarkably improved, and the reliability as a light emitting device is further improved.

【0044】請求項4の発明では、ボンディング面の高
さを規定することによって、ウェーハ製造プロセス及び
ダイスボンド工程での割れの発生を抑えることができ、
歩留りの向上及び割れやクラックによる特性劣化を防止
できるので、発光装置としての信頼性が更に向上する。
According to the fourth aspect of the invention, by defining the height of the bonding surface, it is possible to suppress the occurrence of cracks in the wafer manufacturing process and the die bonding process.
Since the yield can be improved and the characteristic deterioration due to cracks and cracks can be prevented, the reliability of the light emitting device can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態によるフリップチップ型
の半導体発光素子を備えたチップLEDの概略縦断面図
FIG. 1 is a schematic longitudinal sectional view of a chip LED having a flip-chip type semiconductor light emitting device according to an embodiment of the present invention.

【図2】p型半導体領域を発光素子の搭載面のみに拡散
形成した例の発光装置の要部を示す拡大図
FIG. 2 is an enlarged view showing a main part of a light emitting device in which a p-type semiconductor region is formed only by diffusion on a light emitting element mounting surface;

【図3】p型シリコン基板を用いた場合の発光装置の要
部を示す拡大図
FIG. 3 is an enlarged view showing a main part of a light emitting device using a p-type silicon substrate.

【図4】p型シリコン基板を用いる例であってn型半導
体領域を発光素子の搭載面に含まれる位置に設けた発光
装置の要部を示す拡大図
FIG. 4 is an enlarged view showing a main part of a light-emitting device in which an n-type semiconductor region is provided at a position included in a mounting surface of a light-emitting element, using a p-type silicon substrate.

【図5】従来の静電気保護素子を備えたチップLEDの
概略図
FIG. 5 is a schematic view of a conventional chip LED having an electrostatic protection element.

【符号の説明】[Explanation of symbols]

1 発光素子 1a サファイア基板 2 n側電極 3 p側電極 4 マイクロバンプ 5 マイクロバンプ 6 ツェナーダイオード 6a p側電極 6b n側電極 6c n型シリコン基板 6c−1 n電極 6d p型半導体領域 6e 絶縁膜 7 ツェナーダイオード 7a p型シリコン基板 7a−1 p電極 7b n型半導体領域 7c n側電極 7d p側電極 7e 絶縁膜 10 基板 10a,10b 配線パターン 11 Agペースト 12 ワイヤ 13 エポキシ樹脂 51 発光素子 51a サファイア基板 52 n側電極 53 p側電極 54 マイクロバンプ 55 マイクロバンプ 56 基板 57 ツェナ−ダイオ−ド 57a p側電極 57b n側電極 57c n型シリコン基板 57d n電極 57e 絶縁膜 57f p型半導体領域 58 Agペースト 59 ワイヤ 60 エポキシ樹脂 Reference Signs List 1 light-emitting element 1a sapphire substrate 2 n-side electrode 3 p-side electrode 4 microbump 5 microbump 6 Zener diode 6a p-side electrode 6b n-side electrode 6c n-type silicon substrate 6c-1 n-electrode 6d p-type semiconductor region 6e insulating film 7 Zener diode 7a p-type silicon substrate 7a-1 p-electrode 7b n-type semiconductor region 7c n-side electrode 7d p-side electrode 7e insulating film 10 substrate 10a, 10b wiring pattern 11 Ag paste 12 wire 13 epoxy resin 51 light emitting element 51a sapphire substrate 52 n-side electrode 53 p-side electrode 54 micro-bump 55 micro-bump 56 substrate 57 zener diode 57a p-side electrode 57b n-side electrode 57c n-type silicon substrate 57d n-electrode 57e insulating film 57f p-type semiconductor region 58 Ag paste 59 wire 6 0 Epoxy resin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 静電気保護素子をリードフレームまたは
基板等の基材の搭載面に搭載し、フリップチップ型の半
導体発光素子を前記静電気保護素子の上面にp側及びn
側の電極を逆極性で、マイクロバンプ等により電気的に
接続した形で搭載し、前記半導体発光素子の搭載面側と
反対側を主光取出し面とした半導体発光装置において、
前記静電気保護素子は、前記発光素子を搭載する素子搭
載面と、この素子搭載面よりも低く段差状に形成した前
記基材とワイヤ接合するためのボンディング面と、前記
素子搭載面とボンディング面までにかけて配線した電極
と、前記素子搭載面からボンディング面までにかけて拡
散形成もしくは素子搭載面のみ拡散形成した拡散領域を
含む半導体発光装置。
An electrostatic protection device is mounted on a mounting surface of a base material such as a lead frame or a substrate, and a flip-chip type semiconductor light emitting device is mounted on an upper surface of the electrostatic protection device on a p-side and an n-side.
In the semiconductor light emitting device, the electrodes on the opposite side are mounted in a form electrically connected by micro bumps or the like, and the side opposite to the mounting surface side of the semiconductor light emitting element has a main light extraction surface.
The electrostatic protection element has an element mounting surface on which the light emitting element is mounted, a bonding surface for wire bonding to the base material formed in a stepped shape lower than the element mounting surface, and a bonding surface between the element mounting surface and the bonding surface. A semiconductor light emitting device comprising: an electrode wired over the diffusion region; and a diffusion region formed by diffusion from the element mounting surface to the bonding surface or by diffusion only on the element mounting surface.
【請求項2】 前記静電気保護素子は、Siを用いたダ
イオードとしてなる請求項1記載の半導体発光装置。
2. The semiconductor light emitting device according to claim 1, wherein said electrostatic protection element is a diode using Si.
【請求項3】 前記発光素子は、窒化物を含む化合物半
導体としてなる請求項1または2記載の半導体発光装
置。
3. The semiconductor light emitting device according to claim 1, wherein the light emitting element is a compound semiconductor containing a nitride.
【請求項4】 前記静電気保護素子に形成された段差状
のボンディング面は、静電気保護素子のリードフレーム
または基板等への搭載面に対する高さを50〜150μ
mの範囲としてなる請求項1から3のいずれかに記載の
半導体発光装置。
4. The step-like bonding surface formed on the electrostatic protection element has a height of 50 to 150 μm with respect to a mounting surface of the electrostatic protection element on a lead frame or a substrate.
The semiconductor light emitting device according to claim 1, wherein the range is m.
JP1247698A 1998-01-26 1998-01-26 Semiconductor light-emitting device Pending JPH11214747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247698A JPH11214747A (en) 1998-01-26 1998-01-26 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247698A JPH11214747A (en) 1998-01-26 1998-01-26 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPH11214747A true JPH11214747A (en) 1999-08-06

Family

ID=11806444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247698A Pending JPH11214747A (en) 1998-01-26 1998-01-26 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPH11214747A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020082143A (en) * 2001-04-23 2002-10-30 도요다 고세이 가부시키가이샤 Semiconductor light-emitting device
JP2006351895A (en) * 2005-06-17 2006-12-28 Koito Mfg Co Ltd Light-emitting device and optical source using the same
CN100370632C (en) * 2004-04-17 2008-02-20 Lg电子有限公司 Light emitting device and fabrication method thereof and light emitting system using the same
US7405431B2 (en) 2004-09-15 2008-07-29 Sanken Electric Co., Ltd. Light-emitting semiconductor device having an overvoltage protector
JP2009059745A (en) * 2007-08-30 2009-03-19 Kyocera Corp Light emitting device
EP2210285A2 (en) * 2007-11-01 2010-07-28 LG Innotek Co., Ltd. Light emitting device package and method for fabricating the same
JP2011171741A (en) * 2010-02-18 2011-09-01 Lg Innotek Co Ltd Light emitting element, and method of manufacturing the same
US8405304B2 (en) 2006-12-26 2013-03-26 Seoul Semiconductor Co., Ltd. Light emtting device
US9070614B2 (en) 2012-06-14 2015-06-30 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
DE102009018603B4 (en) * 2008-04-25 2020-11-19 Samsung Electronics Co., Ltd. Lighting device and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020082143A (en) * 2001-04-23 2002-10-30 도요다 고세이 가부시키가이샤 Semiconductor light-emitting device
CN100370632C (en) * 2004-04-17 2008-02-20 Lg电子有限公司 Light emitting device and fabrication method thereof and light emitting system using the same
US7405431B2 (en) 2004-09-15 2008-07-29 Sanken Electric Co., Ltd. Light-emitting semiconductor device having an overvoltage protector
JP2006351895A (en) * 2005-06-17 2006-12-28 Koito Mfg Co Ltd Light-emitting device and optical source using the same
US8569944B2 (en) 2006-12-26 2013-10-29 Seoul Semiconductor Co., Ltd. Light emitting device
US8405304B2 (en) 2006-12-26 2013-03-26 Seoul Semiconductor Co., Ltd. Light emtting device
JP2009059745A (en) * 2007-08-30 2009-03-19 Kyocera Corp Light emitting device
US8217416B2 (en) 2007-11-01 2012-07-10 Lg Innotek Co., Ltd. Light emitting device package and method for fabricating the same
EP2210285A4 (en) * 2007-11-01 2011-05-04 Lg Innotek Co Ltd Light emitting device package and method for fabricating the same
EP2210285A2 (en) * 2007-11-01 2010-07-28 LG Innotek Co., Ltd. Light emitting device package and method for fabricating the same
DE102009018603B4 (en) * 2008-04-25 2020-11-19 Samsung Electronics Co., Ltd. Lighting device and manufacturing method thereof
DE102009018603B9 (en) * 2008-04-25 2021-01-14 Samsung Electronics Co., Ltd. Lighting device and manufacturing method thereof
JP2011171741A (en) * 2010-02-18 2011-09-01 Lg Innotek Co Ltd Light emitting element, and method of manufacturing the same
US8637885B2 (en) 2010-02-18 2014-01-28 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, method of manufacturing light emitting device and lighting system
US9287465B2 (en) 2010-02-18 2016-03-15 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, method of manufacturing light emitting device and lighting system
US9070614B2 (en) 2012-06-14 2015-06-30 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US9331063B2 (en) 2012-06-14 2016-05-03 Renesas Electronics Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
JP4996463B2 (en) Chip scale method for packaging light emitting device and light emitting device packaged on chip scale
KR100853064B1 (en) Composite light-emitting device
TWI459580B (en) Light-emitting device and method for manufacturing the same
JP3399440B2 (en) Composite light emitting element, light emitting device and method of manufacturing the same
JP3673621B2 (en) Chip light emitting device
US7456438B2 (en) Nitride-based semiconductor light emitting diode
US6091084A (en) Semiconductor light emitting device
JPH11289110A (en) Semiconductor light-emitting device
JP2007049045A (en) Semiconductor light emitting device and semiconductor device using the same
JP2001217461A (en) Compound light-emitting device
JP3911839B2 (en) Semiconductor light emitting device
JP4474753B2 (en) Manufacturing method of semiconductor light emitting device
JPH11214747A (en) Semiconductor light-emitting device
KR20090078480A (en) Semiconductor device
JP2002043623A (en) Optical semiconductor element and its manufacturing method
JP2002094117A (en) Light emitting diode device and its manufacturing method
US9608167B2 (en) Light emitting device
JPH11354836A (en) Full color semiconductor light emitting device
JPH11121797A (en) Chip type semiconductor light emitting device
JP3723328B2 (en) Semiconductor light emitting device
JP2000012898A (en) Semiconductor light-emitting device
JP2001196631A (en) Gallium nitride compound semiconductor element and its manufacturing method
US8673667B2 (en) Method for manufacturing light emitting diode chip
JPH11346007A (en) Semiconductor light emitting device and its manufacturing method
JP2002094116A (en) Compound semiconductor light emitting device and its manufacturing method