JP2003218396A - Ultraviolet-ray emitting element - Google Patents

Ultraviolet-ray emitting element

Info

Publication number
JP2003218396A
JP2003218396A JP2002073871A JP2002073871A JP2003218396A JP 2003218396 A JP2003218396 A JP 2003218396A JP 2002073871 A JP2002073871 A JP 2002073871A JP 2002073871 A JP2002073871 A JP 2002073871A JP 2003218396 A JP2003218396 A JP 2003218396A
Authority
JP
Japan
Prior art keywords
layer
gan
light emitting
type
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002073871A
Other languages
Japanese (ja)
Inventor
Hiroaki Okagawa
広明 岡川
Kazuyuki Tadatomo
一行 只友
Yoichiro Ouchi
洋一郎 大内
Takashi Tsunekawa
高志 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002073871A priority Critical patent/JP2003218396A/en
Priority to PCT/JP2002/011770 priority patent/WO2003043097A1/en
Priority to CNB028225341A priority patent/CN100355094C/en
Priority to KR1020047007434A priority patent/KR100709058B1/en
Priority to TW91133333A priority patent/TW567620B/en
Publication of JP2003218396A publication Critical patent/JP2003218396A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet-ray emitting element with higher output by optimizing the structure of the ultraviolet-ray emitting element of which the InGaN is the material of a light emission layer. <P>SOLUTION: On a crystal substrate B, a laminated structure S comprising a GaN-based crystal layer is formed across a buffer layer or directly while including a light emission part. The light emission part is in a multi-quantum well structure and InGaN which can emit ultraviolet rays is used for well layers, the number of the well layers is 2 to 20 and the thickness of a barrier layer is 7 to 30 nm. Consequently, high-output ultraviolet-ray emission is obtained although InGaN is used for a light emission layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
関し、特に、紫外線を発し得る組成のInGaN系材料
が発光層の材料として用いられた、GaN系の紫外線発
光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly, to a GaN-based ultraviolet light emitting device in which an InGaN-based material having a composition capable of emitting ultraviolet light is used as a material for a light emitting layer.

【0002】[0002]

【従来の技術】GaN系発光ダイオード(LED)やG
aN系半導体レーザー(LD)などのGaN発光素子の
なかでも、InGaNを発光層に用いたもの(なかで
も、高いIn組成の発光層を有する青・緑色発光素子)
は、一般に高効率の発光が得られることが知られてい
る。これは、In組成揺らぎによるキャリアの局在化の
ため、発光層に注入されたキャリアの内、非発光中心に
捕獲されるものの割合が少なくなり、結果、高効率の発
光が得られるからであると説明されている。
2. Description of the Related Art GaN-based light emitting diodes (LEDs) and G
Among GaN light emitting devices such as aN semiconductor lasers (LD), those using InGaN for the light emitting layer (in particular, blue / green light emitting devices having a light emitting layer with a high In composition)
It is generally known that highly efficient light emission can be obtained. This is because carriers are localized by fluctuations in the In composition, so that the proportion of the carriers injected into the light-emitting layer that are trapped in the non-radiative centers is small, resulting in highly efficient light emission. It is explained.

【0003】GaN系LEDやGaN系LDにおいて、
420nm以下の紫外線を発光させようとする場合に
も、一般には発光層の材料としてInGaN(In組成
0.15以下)が用いられる。一般に、紫外線の波長の
上限は可視光の短波長端(380nm〜400nm)よ
り短く、下限は1nm前後(0.2nm〜2nm)とさ
れているが、本明細書では、上記したIn組成0.15
以下のInGaNによって発せられる420nm以下の
青紫光をも含めて、紫外線と呼ぶ。GaNによって発生
し得る紫外線の波長は365nmである。よって、In
GaNがIn組成を必須に含みかつAl組成を含まない
3元系の場合には、発生し得る紫外線の波長の下限は、
前記365nmよりも長い波長である。以下、InGa
Nを発光層の材料として用いた紫外線発光素子を、In
GaN紫外線発光素子と呼ぶ。
In GaN-based LEDs and GaN-based LDs,
In order to emit ultraviolet rays of 420 nm or less, InGaN (In composition of 0.15 or less) is generally used as the material of the light emitting layer. Generally, the upper limit of the wavelength of ultraviolet rays is shorter than the short wavelength end of visible light (380 nm to 400 nm), and the lower limit thereof is around 1 nm (0.2 nm to 2 nm), but in the present specification, the above In composition of 0. 15
The blue-violet light having a wavelength of 420 nm or less emitted from InGaN below is also referred to as ultraviolet light. The wavelength of ultraviolet light that can be generated by GaN is 365 nm. Therefore, In
When GaN is a ternary system that essentially contains an In composition and does not contain an Al composition, the lower limit of the wavelength of ultraviolet rays that can be generated is
The wavelength is longer than 365 nm. Below, InGa
An ultraviolet light emitting device using N as a material for the light emitting layer is
It is called a GaN ultraviolet light emitting device.

【0004】しかし、青・緑色発光素子での発光層の高
いIn組成に比べて、InGaN紫外線発光素子では、
紫外線が短波長である為、発光層のIn組成を低下させ
る必要がある。この為、上述のIn組成揺らぎによる局
在化の効果が低減し、非発光再結合中心に捕獲される割
合が増え、結果として高出力化の妨げとなっている。
However, in comparison with the high In composition of the light emitting layer in the blue / green light emitting device, in the InGaN ultraviolet light emitting device,
Since ultraviolet rays have a short wavelength, it is necessary to reduce the In composition of the light emitting layer. For this reason, the effect of localization due to the above In composition fluctuation is reduced, and the ratio of being trapped in the non-radiative recombination center is increased, resulting in an obstacle to higher output.

【0005】一方、InGaN紫外線発光素子では、発
光部の構造は、単一量子井戸(SQW)構造や多重量子
井戸(MQW)構造とされ(所謂DH構造は活性層が薄
いためにSQW構造に含まれる)、発光層(井戸層)を
それよりも大きなバンドギャップの材料からなるクラッ
ド層(量子井戸構造では障壁層をも含む)で挟んだ構造
とされる。文献(米津宏雄著、工学図書株式会社刊、
「光通信素子工学」第72頁)によると、一般には発光
層とクラッド層とのバンドギャップ差を「0.3eV」
以上とする指針が出ている。
On the other hand, in the InGaN ultraviolet light emitting device, the structure of the light emitting portion is a single quantum well (SQW) structure or a multiple quantum well (MQW) structure (so-called DH structure is included in the SQW structure because the active layer is thin). ), A light emitting layer (well layer) is sandwiched between cladding layers (including a barrier layer in a quantum well structure) made of a material having a bandgap larger than that. Literature (written by Hiroo Yonezu, published by Engineering Books Co., Ltd.,
According to "Optical Communication Device Engineering", page 72), the band gap difference between the light emitting layer and the cladding layer is generally "0.3 eV".
There is a guideline for the above.

【0006】上記背景から、InGaNを発光層(井戸
層)に用いて紫外線を発生させる場合、発光層を挟むク
ラッド層・障壁層には、キャリアの閉じ込めを考慮して
バンドギャップの大きなAlGaNが用いられている。
From the above background, when InGaN is used for the light emitting layer (well layer) to generate ultraviolet rays, AlGaN having a large band gap is used for the clad layer / barrier layer sandwiching the light emitting layer in consideration of carrier confinement. Has been.

【0007】図6は、In0.03Ga0.97N(発光波長3
80nm)を発光層の材料とした、従来の紫外線LED
の素子構造の一例を示す図である。同図に示すように、
結晶基板B10上に、バッファ層B20を介して、n型
GaNコンタクト層101が形成され、その上にSQW
構造の発光部(n型Al0.1Ga0.9Nクラッド層10
2、In0.03Ga0.97N井戸層(発光層)103、p型
Al0.2Ga0.8Nクラッド層104)、p型GaNコン
タクト層105が順次結晶成長によって積み重ねられて
いる。さらに、部分的に露出したn型GaNコンタクト
層101上にはn型電極P10が設けられ、p型GaN
コンタクト層105上にはp型電極P20が設けられた
素子構造となっている。
FIG. 6 shows In 0.03 Ga 0.97 N (emission wavelength 3
Conventional UV LED using 80 nm) as the material for the light emitting layer
It is a figure which shows an example of the element structure of. As shown in the figure,
The n-type GaN contact layer 101 is formed on the crystal substrate B10 via the buffer layer B20, and the SQW is formed thereon.
Light emitting part of structure (n-type Al 0.1 Ga 0.9 N cladding layer 10
2, In 0.03 Ga 0.97 N well layer (light emitting layer) 103, p-type Al 0.2 Ga 0.8 N cladding layer 104), and p-type GaN contact layer 105 are sequentially stacked by crystal growth. Further, an n-type electrode P10 is provided on the partially exposed n-type GaN contact layer 101, and p-type GaN is formed.
The element structure has a p-type electrode P20 provided on the contact layer 105.

【0008】図6の例における発光部はSQW構造であ
るが、これをMQW構造とする場合、2つの井戸層の間
に位置する障壁層はトンネル効果を生じる程度の厚さに
する必要があり、一般的には3〜6nm程度とされてい
る。
The light emitting portion in the example of FIG. 6 has an SQW structure, but when this has an MQW structure, the barrier layer located between the two well layers must be thick enough to cause a tunnel effect. Generally, it is about 3 to 6 nm.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ように種々の発光部の構造とされていても、InGaN
紫外線発光素子は、発光層のIn組成の低さに起因して
十分な出力が得られていなかった。本発明の課題は、上
記問題を解決し、発光層の材料としてInGaNを用い
る場合、さらにはInGaN系材料を用いる場合でも、
素子構造を最適化することによって、より高出力の紫外
線発光素子を提供することである。
However, even if the structure of various light emitting portions is set as described above, InGaN
In the ultraviolet light emitting device, sufficient output was not obtained due to the low In composition of the light emitting layer. An object of the present invention is to solve the above problems and to use InGaN as a material of a light emitting layer, and even when an InGaN-based material is used.
It is to provide a higher-power ultraviolet light emitting device by optimizing the device structure.

【0010】[0010]

【課題を解決するための手段】本発明者等は、発光層の
材料が、紫外線発光可能な組成のInGaN系材料であ
っても、発光部の構造をMQW構造に限定し、さらにそ
の井戸層の数、障壁層の厚さを特定の値に限定すること
によって、出力を向上させ得ることを見出し、本発明を
完成させた。即ち、本発明の紫外線発光素子は以下の特
徴を有するものである。
The inventors of the present invention have limited the structure of the light emitting portion to the MQW structure even if the material of the light emitting layer is an InGaN-based material having a composition capable of emitting ultraviolet light, and further, the well layer thereof. The inventors have found that the output can be improved by limiting the number of layers and the thickness of the barrier layer to specific values, and have completed the present invention. That is, the ultraviolet light emitting device of the present invention has the following features.

【0011】(1)結晶基板上に、バッファ層を介して
または直接的に、GaN系結晶層からなる積層構造が形
成され、該積層構造には、p型層とn型層とを有して構
成される発光部が含まれているGaN系半導体発光素子
であって、該発光部は多重量子井戸構造を有し、かつ、
井戸層が紫外線発光可能なInGaN系材料からなり、
井戸層の数が2〜20、障壁層の厚さが7nm〜30n
mであることを特徴とする紫外線発光素子。
(1) A laminated structure made of a GaN-based crystal layer is formed on a crystal substrate via a buffer layer or directly, and the laminated structure has a p-type layer and an n-type layer. A GaN-based semiconductor light-emitting device including a light-emitting portion configured as described above, wherein the light-emitting portion has a multiple quantum well structure, and
The well layer is made of an InGaN-based material capable of emitting ultraviolet light,
The number of well layers is 2 to 20 and the thickness of barrier layers is 7 nm to 30 n
m is an ultraviolet light emitting element.

【0012】(2)上記積層構造がAlN低温成長バッ
ファ層を介して結晶基板上に形成されたものであって、
該AlN低温成長バッファ層の直上にAlxGa1-x
(0<x≦1)下地層が形成されていることを特徴とす
る上記(1)記載の紫外線発光素子。
(2) The above laminated structure is formed on a crystal substrate via an AlN low temperature growth buffer layer,
Immediately above the AlN low temperature growth buffer layer, Al x Ga 1-x N
(0 <x ≦ 1) The ultraviolet light emitting element as described in (1) above, wherein an underlayer is formed.

【0013】(3)AlxGa1-xN(0<x≦1)下地
層と井戸層との間に、AlGaNからなる層がないこと
を特徴とする上記(2)記載の紫外線発光素子。
(3) Al x Ga 1 -x N (0 <x ≤ 1) The ultraviolet light emitting device according to the above (2), characterized in that there is no AlGaN layer between the underlayer and the well layer. .

【0014】(4)上記積層構造中のp型層とn型層と
の位置関係がp型層を上側とするものであって、p型コ
ンタクト層がInYGa1-YN(0<Y≦1)からなるこ
とを特徴とする上記(1)〜(3)のいずれかに記載の
紫外線発光素子。
(4) The positional relationship between the p-type layer and the n-type layer in the above laminated structure is such that the p-type layer is on the upper side, and the p-type contact layer is In Y Ga 1 -Y N (0 < Y ≦ 1), the ultraviolet light emitting device as described in any one of (1) to (3) above.

【0015】(5)上記多重量子井戸構造がp型層と接
する障壁層を有しており、該p型層と接する障壁層の厚
さが10nm〜30nmであることを特徴とする上記
(1)〜(4)のいずれかに記載の紫外線発光素子。
(5) The multiple quantum well structure has a barrier layer in contact with the p-type layer, and the thickness of the barrier layer in contact with the p-type layer is 10 nm to 30 nm. ) To (4), the ultraviolet light emitting device.

【0016】(6)上記多重量子井戸構造が、無添加の
GaN系結晶からなる井戸層と、Si添加のGaN系結
晶からなる障壁層とによって構成されたものである、上
記(1)〜(5)のいずれかに記載の紫外線発光素子。
(6) The above-mentioned multiple quantum well structure is composed of a well layer made of a non-doped GaN-based crystal and a barrier layer made of a Si-doped GaN-based crystal. The ultraviolet light emitting device according to any one of 5).

【0017】(7)上記多重量子井戸構造が、Inx
1-xN(0<x≦1)からなる井戸層と、GaNから
なる障壁層とによって構成されたものである、上記
(1)〜(6)のいずれかに記載の紫外線発光素子。
(7) The above-mentioned multiple quantum well structure is In x G
The ultraviolet light emitting device according to any one of (1) to (6) above, which is configured by a well layer made of a 1-x N (0 <x ≦ 1) and a barrier layer made of GaN.

【0018】(8)結晶基板と井戸層との間に、AlG
aNからなる層がないことを特徴とする上記(1)記載
の紫外線発光素子。
(8) AlG is provided between the crystal substrate and the well layer.
The ultraviolet light emitting device as described in (1) above, which is free of a layer made of aN.

【0019】(9)結晶基板が表面に凹凸を加工された
ものであり、GaN系結晶層が該凹凸を覆って気相成長
し積層構造となっている、上記(1)〜(8)のいずれ
かに記載の紫外線発光素子。
(9) The above-mentioned (1) to (8), wherein the crystal substrate is processed to have irregularities on its surface, and the GaN-based crystal layer covers the irregularities and is vapor-phase grown to have a laminated structure. The ultraviolet light emitting device according to any one of claims.

【0020】[0020]

【発明の実施の形態】本発明でいうGaN系とは、In
XGaYAlZN(0≦X≦1、0≦Y≦1、0≦Z≦
1、X+Y+Z=1)で示される化合物半導体であっ
て、例えば、AlN、GaN、AlGaN、InGa
N、InGaAlNなどが重要な化合物として挙げられ
る。また、InGaN系とは、前記InXGaYAlZ
のなかでも、In組成、Ga組成を必須に含むものであ
って、InGaNの他、InGaNにAl組成が加えら
れたものであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The GaN system referred to in the present invention means In
X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦
1, X + Y + Z = 1), for example, AlN, GaN, AlGaN, InGa
N, InGaAlN and the like are mentioned as important compounds. In addition, InGaN-based means the In x Ga y Al z N
Among them, the In composition and the Ga composition are indispensable, and in addition to InGaN, InGaN may be added with the Al composition.

【0021】本発明による紫外線発光素子は、紫外線L
ED、紫外線LDなどであってよいが、以下に、紫外線
LEDを例として挙げて、本発明を説明する。また、素
子構造中において、p型、n型の層は、どちらが下側
(結晶基板側)であってもよいが、GaN系半導体の高
品質な結晶を得やすいことなどの製造上の理由から、n
型の層を下側とする態様が好ましい。以下、n型の層を
下側として素子構造を説明するが、これに限定されるも
のではない。
The ultraviolet light emitting device according to the present invention comprises an ultraviolet light L
The present invention will be described below by taking an ultraviolet LED as an example although it may be an ED or an ultraviolet LD. Further, in the element structure, whichever of the p-type layer and the n-type layer may be on the lower side (the crystal substrate side), it is easy to obtain a high-quality GaN-based semiconductor crystal for manufacturing reasons. , N
The embodiment in which the mold layer is on the lower side is preferable. Hereinafter, the element structure will be described with the n-type layer as the lower side, but the invention is not limited to this.

【0022】図1は、本発明による紫外線発光素子の一
構造例(LED素子構造)を示した図である。同図に示
すように、結晶基板B上に、GaN系低温成長バッファ
層B1を介してGaN系結晶層からなる積層構造Sが成
長しており、該積層構造Sには、p型層とn型層とを有
して構成される発光部が含まれ、さらに電極が設けられ
て本発明による紫外線発光素子となっている。
FIG. 1 is a view showing one structural example (LED element structure) of the ultraviolet light emitting element according to the present invention. As shown in the figure, a laminated structure S composed of a GaN-based crystal layer is grown on a crystal substrate B via a GaN-based low temperature growth buffer layer B1. The laminated structure S includes a p-type layer and an n-type layer. An ultraviolet light emitting device according to the present invention is provided by including a light emitting portion configured with a mold layer and further providing electrodes.

【0023】図1の例について、より具体的に各層の構
成を示すと、下層側から順に、サファイア結晶基板B、
GaN低温成長バッファ層B1、アンドープGaN層
1、発光部〔n型GaNクラッド層(=コンタクト層)
2、MQW構造3(GaN障壁層/InGaN井戸層/
GaN障壁層/InGaN井戸層/GaN障壁層)、p
型AlGaNクラッド層4〕、p型GaNコンタクト層
5となっている。n型GaNコンタクト層は部分的に露
出し、該露出面にはn型電極P1が形成され、p型Ga
Nコンタクト層の上面にはp型電極P2が形成されてい
る。
More specifically showing the structure of each layer in the example of FIG. 1, the sapphire crystal substrate B,
GaN low temperature growth buffer layer B1, undoped GaN layer 1, light emitting part [n-type GaN cladding layer (= contact layer)
2, MQW structure 3 (GaN barrier layer / InGaN well layer /
GaN barrier layer / InGaN well layer / GaN barrier layer), p
Type AlGaN clad layer 4] and p type GaN contact layer 5. The n-type GaN contact layer is partially exposed, the n-type electrode P1 is formed on the exposed surface, and the p-type Ga is formed.
A p-type electrode P2 is formed on the upper surface of the N contact layer.

【0024】上記素子構造における重要な特徴は、発光
部が必須にMQW構造を含んでおり、該MQW構造の井
戸層の材料に紫外線発光可能な組成のInGaNが用い
られ、かつ、井戸層の数が2〜20、障壁層の厚さが7
nm〜30nmとされている点にある。発光部をこのよ
うな構成に限定したことによって、InGaN系材料、
特にInGaNを発光層に用いた紫外線発光素子であり
ながら、従来よりも高い出力が得られる。
An important feature of the above device structure is that the light emitting portion essentially includes the MQW structure, InGaN having a composition capable of emitting ultraviolet light is used as the material of the well layer of the MQW structure, and the number of well layers is 2 to 20, the thickness of the barrier layer is 7
It is at a point of being set to nm to 30 nm. By limiting the light emitting portion to such a structure, an InGaN-based material,
In particular, although it is an ultraviolet light emitting device using InGaN for the light emitting layer, a higher output than before can be obtained.

【0025】発光部は、p型クラッド層とn型クラッド
層とを有して構成され、その間にMQW構造を有する。
n型、p型の両クラッド層は、それぞれn型、p型の両
コンタクト層を兼任する層であってもよい。また、LD
の素子構造などでは、必要に応じて、導波層やキャップ
層などをクラッド層の内側に加えてもよい。
The light emitting portion is constituted by including a p-type cladding layer and an n-type cladding layer, and has an MQW structure between them.
Both the n-type and p-type cladding layers may be layers that also serve as both the n-type and p-type contact layers, respectively. Also, LD
In the device structure of 1), a waveguiding layer, a cap layer, or the like may be added inside the clad layer, if necessary.

【0026】図3は、下記実施例1での測定によって得
られた、MQWの井戸層の数と発光出力との関係を示し
たグラフである。該グラフから明らかなように、井戸層
の数は、2〜20とすべきであり、この範囲外では、発
光出力は従来どおり低い値となっている。また、井戸層
の数は、特に8〜15が好ましく、このときに最も高い
発光出力が得られている。
FIG. 3 is a graph showing the relation between the number of MQW well layers and the light emission output, obtained by the measurement in Example 1 below. As is clear from the graph, the number of well layers should be 2 to 20, and outside this range, the light emission output is a low value as before. Further, the number of well layers is particularly preferably 8 to 15, and the highest light emission output is obtained at this time.

【0027】井戸層の材料は、InGaN系材料、特に
InxGa1-xNであって、420nm以下の紫外線が発
光可能な組成のものであればよい。InxGa1-xNの具
体的なIn組成xは、0≦x≦0.11である。井戸層
の材料は、必ずしも各層全てが同じIn組成である必要
はなく、傾斜させるなど、必要に応じて適宜選択すれば
よい。井戸層の厚さは、公知のMQW構造と同様であっ
てよく、例えば、2nm〜10nmでよい。
The material for the well layer may be an InGaN-based material, especially In x Ga 1 -x N, as long as it has a composition capable of emitting ultraviolet rays of 420 nm or less. The specific In composition x of In x Ga 1-x N is 0 ≦ x ≦ 0.11. The material of the well layer does not necessarily have to have the same In composition in all the layers, and may be appropriately selected, for example, by grading. The thickness of the well layer may be the same as that of a known MQW structure, and may be, for example, 2 nm to 10 nm.

【0028】障壁層は、必ずしも両クラッド層に隣接す
る最外層として独立的に存在する必要はなく、例えば、
次の〜の態様などであってよい。 (n型クラッド層/井戸層/障壁層/井戸層/p型ク
ラッド層)のように、クラッド層が最外の障壁層を兼ね
ている態様。 (n型クラッド層/障壁層/井戸層/障壁層/井戸層
/障壁層/p型クラッド層)のように、最外の障壁層が
クラッド層とは別に存在する態様。 (n型クラッド層/井戸層/障壁層/井戸層/障壁層
/p型クラッド層)のように、片側だけ最外の障壁層が
独立して存在する態様。
The barrier layer does not necessarily have to exist independently as the outermost layer adjacent to both cladding layers.
The following modes 1 to 3 may be used. A mode in which the cladding layer also serves as the outermost barrier layer, such as (n-type cladding layer / well layer / barrier layer / well layer / p-type cladding layer). A mode in which the outermost barrier layer exists separately from the cladding layer, such as (n-type cladding layer / barrier layer / well layer / barrier layer / well layer / barrier layer / p-type cladding layer). (N-type clad layer / well layer / barrier layer / well layer / barrier layer / p-type clad layer), in which the outermost barrier layer exists independently on only one side.

【0029】本発明では、MQW構造全ての障壁層の厚
さを、7nm〜30nmとする。図4は、下記実施例で
の測定によって得られた、障壁層厚さと発光素子の出力
との関係を示すグラフである。同図のグラフから明らか
なように、障壁層の厚さが7nm〜30nmの時に高い
発光出力の紫外線発光素子が得られ、障壁層が7nmよ
りも薄い場合や、30nmよりも厚い場合には、従来ど
おり発光出力は低くなる。上記障壁層厚さの範囲の中で
も、特に好ましいのは、8nm〜15nmであって、こ
の時に最も高い出力の発光素子が得られる。
In the present invention, the thickness of all barrier layers of the MQW structure is set to 7 nm to 30 nm. FIG. 4 is a graph showing the relation between the barrier layer thickness and the output of the light emitting device, which is obtained by the measurement in the following examples. As is clear from the graph of the figure, an ultraviolet light emitting device having a high emission output can be obtained when the thickness of the barrier layer is 7 nm to 30 nm, and when the barrier layer is thinner than 7 nm or thicker than 30 nm, The emission output is low as before. Within the range of the thickness of the barrier layer, 8 nm to 15 nm is particularly preferable, and at this time, the light emitting device having the highest output can be obtained.

【0030】従来のMQW構造における障壁層の厚さが
3nm〜6nmであったのに対して、本発明では障壁層
の厚さを7nm〜30nmとしている。障壁層をこのよ
うな値まで厚くすることによって、波動関数の重なりが
無くなり、MQW構造というよりもSQW構造を多重に
積み重ねたような状態となるが、充分に高出力化が達成
される。障壁層の厚さが30nmを超えると、p層から
注入された正孔が井戸層へ到達するまでにGaN障壁層
中に存在する非発光中心となる転位欠陥などにトラップ
され、発光効率が低下するので好ましくない。
In the conventional MQW structure, the thickness of the barrier layer was 3 nm to 6 nm, whereas in the present invention, the thickness of the barrier layer is 7 nm to 30 nm. By increasing the thickness of the barrier layer to such a value, overlapping of the wave functions is eliminated, and a state in which SQW structures are stacked in multiple layers rather than an MQW structure is obtained, but a sufficiently high output is achieved. When the thickness of the barrier layer exceeds 30 nm, holes injected from the p-layer are trapped by dislocation defects or the like that are non-radiative centers existing in the GaN barrier layer before reaching the well layer, and the emission efficiency is reduced. Is not preferred.

【0031】本発明におけるMQW構造の好ましい態様
として、p型クラッド層側に最外の障壁層が必ず存在す
る態様(即ち、上記またはの態様)とし、そのp型
側の最外の障壁層厚さを10〜30nmとする態様が挙
げられる。これによって、p型クラッド層以後の層を成
長させるときの熱や、ガスによる損傷を井戸層が受け難
くなるのでダメージが軽減され、また、p型層からのド
ーパント材料(Mgなど)が井戸層に拡散することが低
減され、さらには井戸層にかかる歪みも低減されるの
で、出力が向上するだけでなく、素子が長寿命化すると
いう作用効果も得られる。
As a preferred embodiment of the MQW structure in the present invention, the outermost barrier layer is always present on the p-type clad layer side (that is, the above-mentioned or embodiment), and the outermost barrier layer thickness on the p-type side. A mode in which the thickness is 10 to 30 nm is included. As a result, the well layer is less likely to be damaged by heat and gas when the layers after the p-type clad layer are grown, so that the damage is reduced, and the dopant material (Mg or the like) from the p-type layer is removed from the well layer. Diffusion is reduced and the strain applied to the well layer is also reduced, so that not only the output is improved, but also the effect of prolonging the life of the device is obtained.

【0032】障壁層の材料は、InGaN井戸層に対
し、障壁層となり得るバンドギャップを有するGaN系
半導体材料であればよいが、本発明では、好ましい材料
としてGaNを推奨する。従来のMQW構造では、井戸
層内へのキャリアの閉じ込めを配慮し、井戸層よりもバ
ンドギャップの十分に大きな障壁層を用いている。特
に、紫外線発光素子の場合、青色発光素子などに比べ井
戸層自体のバンドギャップが大きいため、障壁層にはさ
らにバンドギャップの大きい材料を用いる必要があっ
た。例えば、井戸層をInGaN(In組成0.03)と
した場合、障壁層やクラッド層にはAlGaNが用いら
れるなどである。
The material of the barrier layer may be any GaN-based semiconductor material having a bandgap that can serve as a barrier layer for the InGaN well layer, but GaN is recommended as the preferred material in the present invention. In the conventional MQW structure, in consideration of carrier confinement in the well layer, a barrier layer having a band gap sufficiently larger than that of the well layer is used. In particular, in the case of an ultraviolet light emitting element, the band gap of the well layer itself is larger than that of a blue light emitting element, so that it is necessary to use a material having a larger band gap for the barrier layer. For example, when the well layer is InGaN (In composition 0.03), AlGaN is used for the barrier layer and the cladding layer.

【0033】これに対して本発明では、InGaN井戸
層とAlGaN障壁層との組合せでは、結晶成長温度の
最適値が互いに大きく異なる事に着目し、これを問題と
して取り上げている。即ち、AlGaNの組成であるA
lNは、GaNに比べ高融点であり、InGaNの組成
であるInNは、GaNに比べ低融点である。具体的な
結晶成長の最適温度は、GaNが1000℃であり、I
nGaNが1000℃以下(好ましくは600〜800
℃程度)、AlGaNはGaN以上である。よって、I
nGaN井戸層と、AlGaN障壁層とを組合せると、
井戸層の成長時と、障壁層の成長時とで、成長温度をそ
れぞれの好ましい値へと大きく変えなければ、それぞれ
好ましい結晶品質の層は得られない。
On the other hand, in the present invention, attention is paid to the fact that the optimum values of the crystal growth temperatures are greatly different in the combination of the InGaN well layer and the AlGaN barrier layer, and this is taken up as a problem. That is, A which is the composition of AlGaN
1N has a higher melting point than GaN, and InN, which is the composition of InGaN, has a lower melting point than GaN. The specific optimum temperature for crystal growth is 1000 ° C. for GaN, and I
nGaN is 1000 ° C. or lower (preferably 600 to 800)
Almost equal to or higher than GaN. Therefore, I
Combining the nGaN well layer and the AlGaN barrier layer,
Unless the growth temperature is largely changed to the respective preferable values during the growth of the well layer and during the growth of the barrier layer, a layer having a preferable crystal quality cannot be obtained.

【0034】しかし、成長温度を井戸層/障壁層毎に変
化させることは成長中断を設ける事となり、3nm程度
の薄膜である井戸層では、この成長中断中にエッチング
作用により厚さが変動したり、表面に結晶欠陥が入る等
の問題が生じる。これらトレードオフの関係が有る為、
AlGaN障壁層、InGaN井戸層の組合せで高品質
な物を得るのは困難である。また、障壁層をAlGaN
とする事で井戸層へ歪みがかかる問題もあり、高出力化
の妨げになる。
However, changing the growth temperature for each well layer / barrier layer provides a growth interruption, and in the case of a well layer which is a thin film of about 3 nm, the thickness varies due to the etching action during the growth interruption. However, problems such as crystal defects on the surface occur. Because of these trade-off relationships,
It is difficult to obtain a high quality product by combining the AlGaN barrier layer and the InGaN well layer. In addition, the barrier layer is made of AlGaN
Therefore, there is a problem that strain is applied to the well layer, which hinders high output.

【0035】そこで、本発明では、障壁層の材料として
GaNを用い、上記トレードオフの問題を軽減させてい
る。これによって、障壁層と井戸層とのバンドギャップ
差は小さくなるが、両層の結晶品質が改善される結果、
総合的には出力が向上する。なお、InGaN系材料と
して、InGaNにAlを混入したAlInGaNを井
戸層として用いてもよく、これによってInGaNの場
合と等しい作用効果を得ることが可能である。
Therefore, in the present invention, GaN is used as the material of the barrier layer to alleviate the above trade-off problem. This reduces the band gap difference between the barrier layer and the well layer, but improves the crystal quality of both layers,
The output is improved overall. In addition, as the InGaN-based material, AlInGaN in which Al is mixed with InGaN may be used as the well layer, and thereby it is possible to obtain the same effect as that of InGaN.

【0036】さらに本発明では、InGaN井戸層とA
lGaN障壁層との組合せに関する上記問題の解決に関
連して、結晶基板と井戸層との間(後述するAlN低温
成長バッファ層の直上にAlGaN下地層を形成する態
様では、AlGaN下地層と井戸層との間)にAlGa
N層を存在させない態様を推奨する。これによって、結
晶成長温度差に起因する上記問題が緩和される。具体的
な態様例としては、AlGaN層の代わりにGaN層を
用いる態様が挙げられる。図1の例では、GaN低温バ
ッファ層上に、不純物を添加しないアンドープのGaN
結晶層(厚さ0.1μm〜2.0μm)を成長させ、そ
の上にn型GaN結晶層(コンタクト層兼クラッド層)
を成長させている。なお、アンドープのGaN結晶層は
省略してもよい。また、n型GaN結晶層は、キャリア
濃度を変えて、n型GaNコンタクト層、n型GaNク
ラッド層に区別して設けてもよい。
Further, in the present invention, the InGaN well layer and A
In connection with the solution of the above-mentioned problem regarding the combination with the lGaN barrier layer, between the crystal substrate and the well layer (in a mode in which the AlGaN underlayer is formed directly on the AlN low temperature growth buffer layer described later, the AlGaN underlayer and the well layer are formed). Between) and AlGa
The mode in which the N layer is not present is recommended. This alleviates the above problem caused by the difference in crystal growth temperature. A specific example of the mode is a mode in which a GaN layer is used instead of the AlGaN layer. In the example of FIG. 1, undoped GaN with no impurities added on the GaN low temperature buffer layer.
A crystal layer (thickness 0.1 μm to 2.0 μm) is grown, and an n-type GaN crystal layer (contact layer / cladding layer) is grown on the crystal layer.
Is growing. The undoped GaN crystal layer may be omitted. The n-type GaN crystal layer may be provided separately for the n-type GaN contact layer and the n-type GaN clad layer by changing the carrier concentration.

【0037】MQW構造の他の好ましい態様として、井
戸層を無添加とし、障壁層にSiを添加する態様が挙げ
られる。図5は、障壁層へのSi添加によるキャリア濃
度と発光出力との関係を示したグラフである。測定に用
いたサンプルでは、井戸層の数を6とし、障壁層の厚さ
を10nmとしているが、他の場合も同様である。同図
のグラフから明らかなように、Si無添加の場合には、
発光出力は小さく、また、Si添加量を5×10 18cm
-3以上としても発光出力は低下することが判る。障壁層
へのSi添加は、発光強度を増加させる働きがあるため
望ましいが、添加量を多くし過ぎると結晶性が低下し、
逆に発光強度が低下する。望ましいSi添加量は5×1
16cm-3〜5×1018cm-3である。
As another preferred embodiment of the MQW structure,
An example is a mode in which the door layer is not added and Si is added to the barrier layer.
To be FIG. 5 shows the carrier concentration by adding Si to the barrier layer.
6 is a graph showing the relationship between the degree and the light emission output. For measurement
In the sample, the number of well layers was 6, and the thickness of the barrier layer was
Is set to 10 nm, but the same applies to other cases. Same figure
As is clear from the graph of, when Si is not added,
Light emission output is small, and the amount of Si added is 5 x 10 18cm
-3It can be seen that the light emission output is reduced even with the above. Barrier layer
Since addition of Si to Si has the function of increasing the emission intensity
Desirably, if too much is added, the crystallinity will decrease,
On the contrary, the emission intensity decreases. Desirable Si addition amount is 5 × 1
016cm-3~ 5 x 1018cm-3Is.

【0038】成長に用いられる結晶基板は、GaN系結
晶が成長可能なものであればよい。好ましい結晶基板と
しては、例えば、サファイア(C面、A面、R面)、S
iC(6H、4H、3C)、GaN、AlN、Si、ス
ピネル、ZnO、GaAs、NGOなどが挙げられる。
また、これらの結晶を表層として有する基材であっても
よい。なお、基板の面方位は特に限定されなく、更にジ
ャスト基板でも良いしオフ角を付与した基板であっても
良い。
The crystal substrate used for growth may be any one capable of growing GaN-based crystals. Preferred crystal substrates include, for example, sapphire (C plane, A plane, R plane), S
Examples thereof include iC (6H, 4H, 3C), GaN, AlN, Si, spinel, ZnO, GaAs, NGO and the like.
Further, it may be a substrate having these crystals as a surface layer. The plane orientation of the substrate is not particularly limited, and may be a just substrate or a substrate having an off angle.

【0039】結晶基板とGaN系結晶層との間には、必
要に応じてバッファ層を介在させてよい。なお、結晶基
板としてGaNや、AlN結晶などからなる基板を用い
る場合には、バッファ層は必須では無い。転位などが少
ない高品質なGaN膜を得るには、GaN膜を成長する
下地層として格子定数の異なるAlGaN膜を配置する
とよいことがわかった。AlGaN膜の上に成長を行う
とGaNには圧縮応力がかかる。このような状態で成長
を行うとAlGaN膜/GaN膜界面(正確にはAlG
aN膜上のGaN成長初期)で転位が成長方向と垂直に
曲げられ、成長方向には伝搬しなくなることがわかっ
た。つまりこうすることで高品質なGaN膜が得られ
る。このAlGaN下地層を成長するにはさらにその下
地にバッファ層を用いることが好ましい。好ましいバッ
ファ層としては、GaN系低温成長バッファ層が挙げら
れる。バッファ層の材料、形成方法、形成条件は、公知
技術を参照すればよいが、GaN系低温成長バッファ層
材料としては、GaN、AlN、InNなどが例示さ
れ、成長温度としては、300℃〜600℃が挙げられ
る。バッファ層の厚さは10nm〜50nm、特に20
nm〜40nmが好ましい。特に好ましい形態としては
AlNバッファ層が挙げられる。図2に本態様の素子構
造の一例を示す。同図に示すように、結晶基板B上に、
AlN低温成長バッファ層10を介してGaN系結晶層
からなる積層構造Sが成長しており、該AlN低温成長
バッファ層10の直上にAlxGa1-xN(0<x≦1)
下地層11が形成されている。
If desired, a buffer layer may be interposed between the crystal substrate and the GaN-based crystal layer. The buffer layer is not essential when using a substrate made of GaN, AlN crystal, or the like as the crystal substrate. In order to obtain a high quality GaN film with few dislocations, it was found that an AlGaN film having a different lattice constant should be arranged as an underlayer on which the GaN film is grown. When grown on the AlGaN film, compressive stress is applied to GaN. When the growth is performed in such a state, the AlGaN film / GaN film interface (more precisely, the AlG film
It was found that dislocations are bent perpendicularly to the growth direction at the initial growth stage of GaN on the aN film and do not propagate in the growth direction. That is, by doing so, a high quality GaN film can be obtained. To grow this AlGaN underlayer, it is preferable to use a buffer layer as the underlayer. A preferable example of the buffer layer is a GaN-based low temperature growth buffer layer. For the material, forming method, and forming conditions of the buffer layer, known techniques may be referred to, but as the GaN-based low temperature growth buffer layer material, GaN, AlN, InN, etc. are exemplified, and the growth temperature is 300 ° C to 600 ° C. ℃ is mentioned. The thickness of the buffer layer is 10 nm to 50 nm, especially 20 nm.
nm to 40 nm is preferable. A particularly preferable form is an AlN buffer layer. FIG. 2 shows an example of the element structure of this embodiment. As shown in the figure, on the crystal substrate B,
A laminated structure S composed of a GaN-based crystal layer is grown via the AlN low temperature growth buffer layer 10, and Al x Ga 1-x N (0 <x ≦ 1) is formed directly on the AlN low temperature growth buffer layer 10.
The base layer 11 is formed.

【0040】AlxGa1-xN下地層の最適な厚みはAl
組成(xの値)により変動する。例えば、Al組成が3
0%(x=0.3)の場合、厚みは10nm〜5μm、
特に50nm〜1μmが好ましい。10nmよりも薄い
と上記効果がなくなるため好ましくない。また、5μm
よりも厚いとGaN層の結晶性が低下するので好ましく
ない。また、AlxGa1-xN下地層のAl組成(xの
値)を成長方向に傾斜をかけても良い。なお、Al組成
は、連続的に変化していてもステップ状に多段に変化し
ていても良い。さらに、AlGaN下地層の厚みが厚い
(例えば、Al組成が30%の時、500nm〜500
0nm程度)場合、その上に直接発光部を形成しても良
い。
The optimum thickness of the Al x Ga 1-x N underlayer is Al
It varies depending on the composition (value of x). For example, if the Al composition is 3
In the case of 0% (x = 0.3), the thickness is 10 nm to 5 μm,
Particularly, 50 nm to 1 μm is preferable. If the thickness is less than 10 nm, the above effect is lost, which is not preferable. 5 μm
If it is thicker than this, the crystallinity of the GaN layer is deteriorated, which is not preferable. Further, the Al composition (value of x) of the Al x Ga 1-x N underlayer may be inclined in the growth direction. The Al composition may be continuously changed or may be changed stepwise in multiple stages. Further, the AlGaN underlayer has a large thickness (for example, when the Al composition is 30%, 500 nm to 500 nm).
In the case of about 0 nm), the light emitting portion may be formed directly thereon.

【0041】本発明では、p型コンタクト層をInGa
Nにて形成することは好ましい態様の1つである。即
ち、p型GaNコンタクト層を用いた従来のGaN系発
光素子では、p型コンタクト抵抗が、1×10-3Ωcm
2程度と高く、良いものでも1×10-4Ωcm2程度であ
る。これに対して、InGaNをp型コンタクト層の材
料として用いた場合、アクセプタ準位が浅くなり、ホー
ル濃度が増加するという利点や、コンタクト抵抗が1×
10-6Ωcm2程度にまで下がるという利点が得られ
る。
In the present invention, the p-type contact layer is made of InGa.
Forming with N is one of the preferable embodiments. That is, in the conventional GaN-based light emitting device using the p-type GaN contact layer, the p-type contact resistance is 1 × 10 −3 Ωcm.
It is as high as about 2, and even a good one is about 1 × 10 −4 Ωcm 2 . On the other hand, when InGaN is used as the material for the p-type contact layer, the acceptor level becomes shallow and the hole concentration increases, and the contact resistance is 1 ×.
The advantage is that it is as low as 10 −6 Ωcm 2 .

【0042】p型電極を形成すべきp型コンタクト層
は、MgドープInYGa1-YN(0<Y≦1)とするこ
とが特に好ましい。InGaN層成長中のガス雰囲気を
2+NH3とすることで、成長後にMgを活性化させる
いわゆるp型化処理の条件を緩和もしくは処理自体を省
略することができる。これは、成長時のガス雰囲気中の
2量が少ないと、Mgを不活性化させるH2の膜中への
混入を抑えることができるからである。また、InGa
NへMgをドーピングした時に形成されるアクセプタ準
位が浅いために室温でのホールキャリア濃度が高くなる
ことによっても、p型化処理の条件を緩和もしくは処理
自体を省略することができる。p型InGaNコンタク
ト層を紫外線発光素子に応用することで、発光出力をよ
り向上させることができる。これは、上述の理由からp
型化処理(特に熱アニール)の条件を緩和もしくは処理
自体を省略することができる結果として、ドーピングし
た不純物の井戸層への拡散を抑制することができるから
である。特に、MQW構造が、無添加のGaN系結晶か
らなる井戸層と、Si添加のGaN系結晶からなる障壁
層とによって構成されたものである場合、熱処理を行わ
なくてよいため、急峻な不純物プロファイルが得られる
ようになる。この結果、発光出力がより向上すると考え
られる。
The p-type contact layer on which the p-type electrode is to be formed is particularly preferably Mg-doped In Y Ga 1-Y N (0 <Y ≦ 1). By setting the gas atmosphere during the growth of the InGaN layer to N 2 + NH 3 , it is possible to relax the condition of so-called p-type treatment for activating Mg after the growth or omit the treatment itself. This is because if the amount of H 2 in the gas atmosphere during growth is small, it is possible to suppress the mixture of H 2 that inactivates Mg into the film. InGa
The acceptor level formed when Mg is doped into N increases the hole carrier concentration at room temperature due to the shallow acceptor level, so that the condition for the p-type treatment can be relaxed or the treatment itself can be omitted. By applying the p-type InGaN contact layer to the ultraviolet light emitting device, the light emission output can be further improved. This is p
This is because it is possible to suppress the diffusion of the doped impurities into the well layer as a result of relaxing the conditions for the patterning process (in particular, thermal annealing) or omitting the process itself. In particular, when the MQW structure is composed of a well layer made of non-doped GaN-based crystal and a barrier layer made of Si-doped GaN-based crystal, it is not necessary to perform heat treatment, so that a steep impurity profile is obtained. Will be obtained. As a result, it is considered that the light emission output is further improved.

【0043】結晶基板上に成長するGaN系結晶層の転
位密度を低減させるために、転位密度低下のための構造
を適宜導入してよい。転位密度低減のための構造を導入
することに伴い、SiO2などの異種材料からなる部分
がGaN系結晶層からなる積層構造中に含まれる場合も
ある。
In order to reduce the dislocation density of the GaN-based crystal layer grown on the crystal substrate, a structure for reducing the dislocation density may be appropriately introduced. Along with the introduction of the structure for reducing the dislocation density, a part made of a different material such as SiO 2 may be included in the laminated structure made of the GaN-based crystal layer.

【0044】転位密度低減のための構造としては、例え
ば次のものが挙げられる。 (い)従来公知の選択成長法(ELO法)を実施し得る
ように、結晶基板上にマスク層(SiO2などが用いら
れる)をストライプパターンなどとして形成した構造。 (ろ)GaN系結晶がラテラル成長やファセット成長を
し得るように、結晶基板上に、ドット状、ストライプ状
の凹凸加工を施した構造。 これらの構造とバッファ層とは、適宜組合せてよい。
Examples of the structure for reducing dislocation density include the following. (Ii) A structure in which a mask layer (SiO 2 or the like is used) is formed as a stripe pattern on a crystal substrate so that a conventionally known selective growth method (ELO method) can be carried out. (B) A structure in which dot-shaped and stripe-shaped irregularities are formed on the crystal substrate so that the GaN-based crystal can undergo lateral growth or facet growth. These structures and the buffer layer may be combined appropriately.

【0045】転位密度低減のための構造のなかでも、上
記(ろ)は、マスク層を用いない好ましい構造である。
以下、これについて説明する。凹凸の加工方法として
は、例えば、通常のフォトリソグラフイ技術を用いて、
目的の凹凸の態様に応じてパターン化し、RIE技術等
を使ってエッチング加工を施して目的の凹凸を得る方法
などが例示される。
Among the structures for reducing the dislocation density, the above (ro) is a preferable structure without using a mask layer.
This will be described below. As a method of processing unevenness, for example, using a normal photolithography technique,
Examples thereof include a method of patterning according to the mode of the target unevenness and performing etching processing using the RIE technique or the like to obtain the target unevenness.

【0046】凹凸の配置パターンは、ドット状の凹部
(または凸部)が配列されたパターン、直線状または曲
線状の凹溝(または凸尾根)が一定間隔・不定の間隔で
配列された、ストライプ状や同心状のパターンなどが挙
げられる。凸尾根が格子状に交差したパターンは、ドッ
ト状(角穴状)の凹部が規則的に配列されたパターンと
みることができる。また、凹凸の断面形状は、矩形(台
形を含む)波状、三角波状、サインカーブ状などが挙げ
られる。
The uneven pattern is a pattern in which dot-like concave portions (or convex portions) are arranged, or stripes in which linear or curved concave grooves (or convex ridges) are arranged at regular or irregular intervals. Such as a pattern and a concentric pattern. The pattern in which the convex ridges intersect in a grid pattern can be regarded as a pattern in which dot-shaped (square hole-shaped) recesses are regularly arranged. Further, the cross-sectional shape of the unevenness may be rectangular (including trapezoidal) wavy, triangular wave, sine curve, or the like.

【0047】これら種々の凹凸態様の中でも、直線状の
凹溝(または凸尾根)が一定間隔で配列された、ストラ
イプ状の凹凸パターン(断面矩形波状)は、その作製工
程を簡略化できると共に、パターンの作製が容易であり
好ましい。
Among these various concavo-convex patterns, the stripe-shaped concavo-convex pattern (rectangular wavy section) in which linear concave grooves (or convex ridges) are arranged at regular intervals can simplify the manufacturing process and It is preferable because the pattern can be easily produced.

【0048】凹凸のパターンをストライプ状とする場
合、そのストライプの長手方向は任意であってよいが、
これを埋め込んで成長するGaN系結晶にとって〈11
−20〉方向とした場合、横方向成長が抑制され、{1
−101}面などの斜めファセットが形成され易くな
る。この結果、基板側からC軸方向に伝搬した転位がこ
のファセット面で横方向に曲げられ、上方に伝搬し難く
なり、低転位密度領域を形成できる点で特に好ましい。
When the uneven pattern has a stripe shape, the longitudinal direction of the stripe may be arbitrary.
For a GaN-based crystal grown by embedding this, <11
In the case of the −20> direction, lateral growth is suppressed and {1
Oblique facets such as the −101} plane are easily formed. As a result, dislocations propagating in the C-axis direction from the substrate side are bent laterally on this facet surface, and it is difficult to propagate upward, which is particularly preferable in that a low dislocation density region can be formed.

【0049】ストライプの長手方向を、成長するGaN
系結晶にとって〈1−100〉方向とした場合、凸部の
上部から成長を開始したGaN系結晶は、横方向に高速
成長し、凹部を空洞として残した状態でGaN系結晶層
となる。ただし、ストライプの長手方向を〈1−10
0〉方向にした場合であっても、ファセット面が形成さ
れやすい成長条件を選ぶ事により〈11−20〉方向の
場合と同様の効果を得ることができる。
GaN growing in the longitudinal direction of the stripe
In the case of the <1-100> direction for the system crystal, the GaN-based crystal that has started to grow from the upper portion of the convex portion grows laterally at a high speed and becomes a GaN-based crystal layer with the concave portion left as a cavity. However, if the longitudinal direction of the stripe is <1-10
Even in the case of the <0> direction, the same effect as in the case of the <11-20> direction can be obtained by selecting the growth condition in which the facet surface is easily formed.

【0050】凹凸の断面を矩形波状とする場合の好まし
い寸法は次のとおりである。凹溝の幅は、0.1μm〜
20μm、特に0.5μm〜10μmが好ましい。凸部
の幅は、0.1μm〜20μm、特に0.5μm〜10
μmが好ましい。凹凸の振幅(凹溝の深さ)は、凹部、
凸部の内、広い方の20%以上の深さがあれば良い。こ
れらの寸法やそこから計算されるピッチ等は、他の断面
形状の凹凸においても同様である。
The preferred dimensions in the case of making the cross section of the unevenness into a rectangular wave shape are as follows. The width of the groove is from 0.1 μm
20 μm, particularly 0.5 μm to 10 μm is preferable. The width of the convex portion is 0.1 μm to 20 μm, particularly 0.5 μm to 10 μm.
μm is preferred. The amplitude of the unevenness (depth of the groove) is
It is sufficient that the projection has a depth of 20% or more of the wide one. These dimensions, the pitch calculated from them, and the like are the same for unevenness of other cross-sectional shapes.

【0051】GaN系結晶層の成長方法としては、HV
PE法、MOVPE法、MBE法などが挙げられる。厚
膜を作製する場合はHVPE法が好ましいが、薄膜を形
成する場合はMOVPE法やMBE法が好ましい。
As a method of growing the GaN-based crystal layer, HV is used.
The PE method, MOVPE method, MBE method and the like can be mentioned. The HVPE method is preferable when forming a thick film, but the MOVPE method or MBE method is preferable when forming a thin film.

【0052】[0052]

【実施例】実施例1 本実施例では、図1に示す紫外線LEDを製作し、障壁
層の厚さを10nmに固定して、井戸層の数を1〜25
とした計25種類のサンプルを形成し、各々の出力を測
定した。素子形成プロセスは次のとおりである。
Example 1 In this example, the ultraviolet LED shown in FIG. 1 was manufactured, the thickness of the barrier layer was fixed to 10 nm, and the number of well layers was 1 to 25.
25 kinds of samples were formed, and the output of each was measured. The element forming process is as follows.

【0053】各サンプルいずれも、先ず、MOVPE装
置にC面サファイア基板を装着し、水素雰囲気下で11
00℃まで昇温し、サーマルエッチングを行った。温度
を500℃まで下げ、III 族原料としてトリメチルガリ
ウム(以下TMG)を、N原料としてアンモニアを流
し、厚さ30nmのGaN低温バッファ層を成長させ
た。
For each of the samples, first, a C-plane sapphire substrate was mounted on a MOVPE apparatus, and the sample was placed under a hydrogen atmosphere at 11
The temperature was raised to 00 ° C. and thermal etching was performed. The temperature was lowered to 500 ° C., trimethylgallium (hereinafter referred to as TMG) as a III group raw material, and ammonia as a N raw material were flown to grow a GaN low temperature buffer layer having a thickness of 30 nm.

【0054】続いて温度を1000℃に昇温し、原料と
してTMG、アンモニアを流し、アンドープのGaN結
晶層1を2μm成長させた後、SiH4を流し、Siド
ープのn型GaN結晶層(コンタクト層兼クラッド層)
を3μm成長させた。
Then, the temperature is raised to 1000 ° C., TMG and ammonia are flown as raw materials to grow the undoped GaN crystal layer 1 to 2 μm, and then SiH 4 is flown to the Si-doped n-type GaN crystal layer (contact). Layer and clad layer)
Were grown to 3 μm.

【0055】〔量子井戸構造〕温度を800℃に低下さ
せた後、Siを5×1017cm-3添加したGaN障壁層
(厚さ10nm)と、InGaN井戸層(発光波長38
0nm、In組成は0.03、厚さ3nm)とのペア
を、各サンプル毎に変えて、1〜25とした。さらに、
いずれのサンプルにおいても、p層に接する最後のGa
N障壁層(Siを5×1017cm-3添加、厚さ20n
m)を形成した。
[Quantum Well Structure] After lowering the temperature to 800 ° C., a GaN barrier layer (thickness 10 nm) to which Si is added at 5 × 10 17 cm −3 and an InGaN well layer (emission wavelength 38
0 nm, In composition 0.03, thickness 3 nm) was changed for each sample to be 1 to 25. further,
In each sample, the last Ga that contacts the p-layer
N barrier layer (added Si 5 × 10 17 cm −3 , thickness 20 n
m) was formed.

【0056】各サンプルいずれも、成長温度を1000
℃に昇温後、厚さ30nmのp型AlGaNクラッド層
4、厚さ50nmのp型GaNコンタクト層を順に形成
し、発光波長380nmの紫外LEDウエハとし、さら
に、電極形成、素子分離を行い、紫外線LEDチップと
した。
The growth temperature of each sample was 1000.
After the temperature was raised to 0 ° C., a p-type AlGaN cladding layer 4 having a thickness of 30 nm and a p-type GaN contact layer having a thickness of 50 nm were sequentially formed to form an ultraviolet LED wafer having an emission wavelength of 380 nm, and further, electrodes were formed and elements were separated. An ultraviolet LED chip was used.

【0057】上記で得られた井戸層数の異なる紫外線L
EDチップのサンプルを、各々ベアチップ状態で20m
A通電にて波長380nmでの出力を測定したところ、
図3に示すように、井戸層の数と出力との関係を示すグ
ラフが得られた。上述したとおり、井戸層の数は、出力
2mW以上が得られる2〜20とすべきであって、特に
6〜15は、発光出力として5mW以上が得られる好ま
しい井戸層数であることがわかった。
Ultraviolet rays L having different numbers of well layers obtained above
20m each of ED chip samples in bare chip state
When the output at a wavelength of 380 nm was measured by energizing A,
As shown in FIG. 3, a graph showing the relationship between the number of well layers and the output was obtained. As described above, the number of well layers should be 2 to 20 at which an output of 2 mW or more can be obtained, and 6 to 15 in particular has been found to be a preferable number of well layers at which an emission output of 5 mW or more can be obtained. .

【0058】実施例2 本実施例では、上記実施例1と同様のプロセスにて、図
1に示す紫外線LEDを製作し、井戸層の数を6に固定
して、障壁層の厚さを3nm〜40nmまで変化させた
サンプルを形成し、各々の出力を測定した。
Example 2 In this example, the ultraviolet LED shown in FIG. 1 was manufactured by the same process as in Example 1, the number of well layers was fixed at 6, and the thickness of the barrier layer was 3 nm. Samples varied up to -40 nm were formed and the output of each was measured.

【0059】本実施例で得られた障壁層厚さの異なる紫
外線LEDチップのサンプルを、各々ベアチップ状態で
20mA通電にて波長380nmでの出力を測定したと
ころ、図4に示すような、障壁層厚さと出力との関係を
示すグラフが得られた。上述したとおり、障壁層厚さ
は、出力2mW以上が得られる7nm〜30nmとすべ
きであって、特に、8nm〜15nmは、発光出力とし
て5mW以上が得られる好ましい障壁層厚さであること
がわかった。
The samples of the ultraviolet LED chips having different barrier layer thicknesses obtained in this example were measured for output at a wavelength of 380 nm at a current of 20 mA in a bare chip state. A graph was obtained showing the relationship between thickness and output. As described above, the barrier layer thickness should be 7 nm to 30 nm at which an output of 2 mW or more can be obtained, and particularly 8 nm to 15 nm is a preferable barrier layer thickness at which an emission output of 5 mW or more can be obtained. all right.

【0060】上記実施例1では障壁層の厚さを1種類に
固定し、上記実施例2では井戸層の数を1種類に固定し
たが、上記素子形成プロセスと同様にして、障壁層の厚
さを7〜30nmの範囲で変えたサンプルを製作し、各
々の厚さにおいて、井戸層の数を2〜20の範囲で変化
させた素子サンプルを形成したところ、いずれの障壁層
厚さの場合でも、井戸層の数の変化については図3と相
似的な曲線が得られ、いずれの井戸数の場合でも、障壁
層の厚さ変化については図4と同様の傾向を示す曲線が
得られることがわかった。
Although the thickness of the barrier layer is fixed to one type in the first embodiment and the number of well layers is fixed to one in the second embodiment, the thickness of the barrier layer is the same as in the device forming process. The thickness of the barrier layer was changed in the range of 7 to 30 nm, and the element samples were formed in which the number of well layers was changed in the range of 2 to 20 at each thickness. However, a curve similar to that of FIG. 3 is obtained for the change of the number of well layers, and a curve showing the same tendency as that of FIG. 4 is obtained for the change of the thickness of the barrier layer regardless of the number of wells. I understood.

【0061】実施例3 本実施例では、上記実施例1および2で製作した全ての
サンプルについて、GaN低温バッファ層をAlN低温
バッファ層とし、アンドープGaN結晶層をAlGaN
下地層とし、p型GaNコンタクト層をp型InGaN
コンタクト層として紫外線LEDのサンプルを製作し、
各々の出力を測定した。素子形成プロセスは次のとおり
である。
Example 3 In this example, for all the samples manufactured in Examples 1 and 2, the GaN low temperature buffer layer was an AlN low temperature buffer layer and the undoped GaN crystal layer was AlGaN.
Using the p-type GaN contact layer as a base layer and p-type InGaN
Make a sample of UV LED as a contact layer,
The output of each was measured. The element forming process is as follows.

【0062】各サンプルいずれも、先ず、MOVPE装
置にC面サファイア基板を装着し、水素雰囲気下で11
00℃まで昇温し、サーマルエッチングを行った。温度
を350℃まで下げ、III族原料としてトリメチルアル
ミニウム(以下TMA)を、N原料としてアンモニアを
流し、厚さ20nmのAlN低温バッファ層を成長させ
た。
For each of the samples, first, a C-plane sapphire substrate was mounted on the MOVPE apparatus, and the sample was placed under a hydrogen atmosphere at 11
The temperature was raised to 00 ° C. and thermal etching was performed. The temperature was lowered to 350 ° C., trimethylaluminum (hereinafter referred to as TMA) as a group III raw material and ammonia as a raw material N were flown to grow an AlN low temperature buffer layer having a thickness of 20 nm.

【0063】続いて温度を1000℃に昇温し、原料と
してTMA、TMG、アンモニアを流し、Al組成10
%のアンドープのAlGaN結晶層(下地層)1を20
0nm成長させた後、TMA供給を止め、SiH4を流
し、Siドープのn型GaN結晶層(コンタクト層兼ク
ラッド層)を4μm成長させた。その後、実施例1およ
び2と同様にしてMQW構造を形成した。
Subsequently, the temperature is raised to 1000 ° C., TMA, TMG, and ammonia are flown as raw materials to obtain an Al composition of 10
% Undoped AlGaN crystal layer (underlayer) 1
After the growth of 0 nm, the supply of TMA was stopped, SiH 4 was flown, and a Si-doped n-type GaN crystal layer (contact layer / cladding layer) was grown to 4 μm. After that, an MQW structure was formed in the same manner as in Examples 1 and 2.

【0064】各サンプルいずれも、成長温度を1000
℃に昇温後、厚さ30nmのp型AlGaNクラッド層
4、厚さ50nmのp型GaN層、厚さ5nmのp型I
nGaNコンタクト層(In組成10%)を順に形成
し、発光波長380nmの紫外LEDウエハとし、さら
に、電極形成、素子分離を行い、紫外線LEDチップと
した。
The growth temperature of each sample was 1000.
After the temperature was raised to 0 ° C., the p-type AlGaN cladding layer 4 having a thickness of 30 nm, the p-type GaN layer having a thickness of 50 nm, and the p-type I having a thickness of 5 nm were formed.
An nGaN contact layer (In composition: 10%) was sequentially formed to form an ultraviolet LED wafer having an emission wavelength of 380 nm, and then electrodes were formed and elements were separated to obtain an ultraviolet LED chip.

【0065】上記で得られた紫外線LEDチップのサン
プルを、各々ベアチップ状態で20mA通電にて波長3
80nmでの出力を測定したところ、いずれのサンプル
も、実施例1および2のサンプルと比較して、10%〜
30%程度の出力の向上が見られた。
Each of the ultraviolet LED chip samples obtained as described above was exposed to a wavelength of 3 at a bare chip state and a current of 20 mA.
When the output at 80 nm was measured, all the samples were 10% to 10% higher than the samples of Examples 1 and 2.
The output was improved by about 30%.

【0066】[0066]

【発明の効果】以上のように、MQW構造として、井戸
層の数を2〜20とし、障壁層の厚さを7nm〜30n
mとすることによって、InGaN系材料、特にInG
aNを発光層の材料として用いた紫外線素子でありなが
ら、従来に無い高い出力が得られるようになった。
As described above, as the MQW structure, the number of well layers is 2 to 20, and the thickness of barrier layers is 7 nm to 30 n.
By setting m, InGaN-based materials, especially InG
Although it is an ultraviolet element using aN as the material of the light emitting layer, it has become possible to obtain a high output that has never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による紫外線発光素子の構造例を示す模
式図である。
FIG. 1 is a schematic view showing a structural example of an ultraviolet light emitting device according to the present invention.

【図2】本発明による紫外線発光素子の別の構造例を示
す模式図である。
FIG. 2 is a schematic view showing another structural example of the ultraviolet light emitting device according to the present invention.

【図3】本発明の実施例1での測定で得られた、MQW
の井戸層の数と発光出力との関係を示すグラフである。
FIG. 3 shows MQW obtained by measurement in Example 1 of the present invention
3 is a graph showing the relationship between the number of well layers and light emission output.

【図4】本発明の実施例2での測定で得られた、MQW
の障壁層の厚さと発光出力との関係を示したグラフであ
る。
FIG. 4 is an MQW obtained by measurement in Example 2 of the present invention.
5 is a graph showing the relationship between the thickness of the barrier layer and the light emission output.

【図5】本発明による紫外線素子において、障壁層への
Si添加による障壁層キャリア濃度(単位cm-3)と発
光出力との関係を示したグラフである。
FIG. 5 is a graph showing a relationship between a barrier layer carrier concentration (unit: cm −3 ) and light emission output due to addition of Si to the barrier layer in the ultraviolet device according to the present invention.

【図6】In0.03Ga0.97Nを発光層の材料とした、従
来の紫外線LEDの素子構造の一例を示す図である。
FIG. 6 is a diagram showing an example of an element structure of a conventional ultraviolet LED using In 0.03 Ga 0.97 N as a material for a light emitting layer.

【符号の説明】[Explanation of symbols]

B 結晶基板 S GaN系結晶層からなる積層構造 2 n型クラッド層 3 MQW構造 4 p型クラッド層 P1 n型電極 P2 p型電極 B crystal substrate Laminated structure composed of S GaN-based crystal layers 2 n-type clad layer 3 MQW structure 4 p-type clad layer P1 n-type electrode P2 p-type electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 洋一郎 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 常川 高志 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5F041 AA03 AA11 CA05 CA34 CA40 CA46 CA49 CA57 CA65 5F073 AA74 CA07 CB05 CB07 DA05 DA35    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoichiro Ouchi             4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Electric Cable             Industrial Co., Ltd. Itami Works (72) Inventor Takashi Tsunekawa             4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Electric Cable             Industrial Co., Ltd. Itami Works F-term (reference) 5F041 AA03 AA11 CA05 CA34 CA40                       CA46 CA49 CA57 CA65                 5F073 AA74 CA07 CB05 CB07 DA05                       DA35

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 結晶基板上に、バッファ層を介してまた
は直接的に、GaN系結晶層からなる積層構造が形成さ
れ、該積層構造には、p型層とn型層とを有して構成さ
れる発光部が含まれているGaN系半導体発光素子であ
って、 該発光部は多重量子井戸構造を有し、かつ、井戸層が紫
外線発光可能なInGaN系材料からなり、井戸層の数
が2〜20、障壁層の厚さが7nm〜30nmであるこ
とを特徴とする紫外線発光素子。
1. A laminated structure composed of a GaN-based crystal layer is formed on a crystal substrate via a buffer layer or directly, and the laminated structure has a p-type layer and an n-type layer. A GaN-based semiconductor light-emitting device including a configured light-emitting portion, wherein the light-emitting portion has a multiple quantum well structure, and the well layer is made of an InGaN-based material capable of emitting ultraviolet light. Is 2 to 20, and the thickness of the barrier layer is 7 nm to 30 nm.
【請求項2】 上記積層構造がAlN低温成長バッファ
層を介して結晶基板上に形成されたものであって、該A
lN低温成長バッファ層の直上にAlxGa1 -xN(0<
x≦1)下地層が形成されていることを特徴とする請求
項1記載の紫外線発光素子。
2. The layered structure is formed on a crystal substrate via an AlN low temperature growth buffer layer, wherein
Immediately above the 1N low temperature growth buffer layer, Al x Ga 1 -x N (0 <
x ≦ 1) The ultraviolet light emitting element according to claim 1, wherein a base layer is formed.
【請求項3】 AlxGa1-xN(0<x≦1)下地層と
井戸層との間に、AlGaNからなる層がないことを特
徴とする請求項2記載の紫外線発光素子。
3. The ultraviolet light emitting element according to claim 2, wherein there is no layer made of AlGaN between the Al x Ga 1-x N (0 <x ≦ 1) underlayer and the well layer.
【請求項4】 上記積層構造中のp型層とn型層との位
置関係がp型層を上側とするものであって、p型コンタ
クト層がInYGa1-YN(0<Y≦1)からなることを
特徴とする請求項1〜3のいずれかに記載の紫外線発光
素子。
4. The positional relationship between the p-type layer and the n-type layer in the laminated structure is such that the p-type layer is on the upper side, and the p-type contact layer is In Y Ga 1 -Y N (0 <Y <1) The ultraviolet light emitting element according to any one of claims 1 to 3, wherein
【請求項5】 上記多重量子井戸構造がp型層と接する
障壁層を有しており、該p型層と接する障壁層の厚さが
10nm〜30nmであることを特徴とする請求項1〜
4のいずれかに記載の紫外線発光素子。
5. The multi-quantum well structure has a barrier layer in contact with the p-type layer, and the thickness of the barrier layer in contact with the p-type layer is 10 nm to 30 nm.
4. The ultraviolet light emitting device according to any one of 4 above.
【請求項6】 上記多重量子井戸構造が、無添加のGa
N系結晶からなる井戸層と、Si添加のGaN系結晶か
らなる障壁層とによって構成されたものである、請求項
1〜5のいずれかに記載の紫外線発光素子。
6. The multi-quantum well structure is an undoped Ga
The ultraviolet light emitting device according to claim 1, wherein the ultraviolet light emitting device comprises a well layer made of an N-based crystal and a barrier layer made of a GaN-based crystal with Si added.
【請求項7】 上記多重量子井戸構造が、InxGa1-x
N(0<x≦1)からなる井戸層と、GaNからなる障
壁層とによって構成されたものである、請求項1〜6の
いずれかに記載の紫外線発光素子。
7. The multi-quantum well structure is In x Ga 1-x.
7. The ultraviolet light emitting device according to claim 1, which is composed of a well layer made of N (0 <x ≦ 1) and a barrier layer made of GaN.
【請求項8】 結晶基板と井戸層との間に、AlGaN
からなる層がないことを特徴とする請求項1記載の紫外
線発光素子。
8. AlGaN between the crystal substrate and the well layer
2. The ultraviolet light emitting device according to claim 1, wherein there is no layer formed of.
【請求項9】 結晶基板が表面に凹凸を加工されたもの
であり、GaN系結晶層が該凹凸を覆って気相成長し積
層構造となっている、請求項1〜8のいずれかに記載の
紫外線発光素子。
9. The crystal substrate according to claim 1, wherein the surface of the crystal substrate is processed to have irregularities, and the GaN-based crystal layer is vapor-deposited to cover the irregularities to form a laminated structure. Ultraviolet light emitting element.
JP2002073871A 2001-11-15 2002-03-18 Ultraviolet-ray emitting element Pending JP2003218396A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002073871A JP2003218396A (en) 2001-11-15 2002-03-18 Ultraviolet-ray emitting element
PCT/JP2002/011770 WO2003043097A1 (en) 2001-11-15 2002-11-12 Ultraviolet emitting device
CNB028225341A CN100355094C (en) 2001-11-15 2002-11-12 Ultraviolet emitting device
KR1020047007434A KR100709058B1 (en) 2001-11-15 2002-11-12 Ultraviolet emitting device
TW91133333A TW567620B (en) 2001-11-15 2002-11-14 Ultraviolet ray emitting element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-350615 2001-11-15
JP2001350615 2001-11-15
JP2002073871A JP2003218396A (en) 2001-11-15 2002-03-18 Ultraviolet-ray emitting element

Publications (1)

Publication Number Publication Date
JP2003218396A true JP2003218396A (en) 2003-07-31

Family

ID=26624542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073871A Pending JP2003218396A (en) 2001-11-15 2002-03-18 Ultraviolet-ray emitting element

Country Status (5)

Country Link
JP (1) JP2003218396A (en)
KR (1) KR100709058B1 (en)
CN (1) CN100355094C (en)
TW (1) TW567620B (en)
WO (1) WO2003043097A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100475A (en) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2007042944A (en) * 2005-08-04 2007-02-15 Rohm Co Ltd Method of manufacturing nitride semiconductor element
WO2007037648A1 (en) * 2005-09-30 2007-04-05 Seoul Opto-Device Co., Ltd. Light emitting diode
JP2008153531A (en) * 2006-12-19 2008-07-03 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
WO2011111606A1 (en) 2010-03-08 2011-09-15 日亜化学工業株式会社 Nitride semiconductor light-emitting element
JP2012500489A (en) * 2008-08-20 2012-01-05 ソウル オプト デバイス カンパニー リミテッド Light emitting diode with modulation doping layer
US8106419B2 (en) 2006-11-08 2012-01-31 Showa Denko K.K. Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
US8134168B2 (en) 2003-10-14 2012-03-13 Showa Denko K.K. Group-III nitride semiconductor device
KR20130007918A (en) * 2011-07-11 2013-01-21 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, and light emitting device package
US8575594B2 (en) 2007-09-10 2013-11-05 Seoul Opto Device Co., Ltd. Light emitting diode having a barrier layer with a superlattice structure
KR101364169B1 (en) * 2007-03-30 2014-02-17 서울바이오시스 주식회사 Near-uv light emitting diode having barrier layer of superlattice structure
JP2014078745A (en) * 2007-08-08 2014-05-01 Regents Of The Univ Of California Nonpolar iii-nitride light emitting diodes with long wavelength emission
KR20140052572A (en) * 2012-10-25 2014-05-07 엘지이노텍 주식회사 Light emitting device
JP2014154840A (en) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp Manufacturing method of m-diagonal nitride-based light-emitting diode
KR20140119704A (en) * 2012-01-20 2014-10-10 오스람 옵토 세미컨덕터스 게엠베하 Light-emitting diode chip
KR20140144228A (en) * 2012-03-19 2014-12-18 코닌클리케 필립스 엔.브이. Light emitting device grown on a silicon substrate
US9466761B2 (en) 2007-03-29 2016-10-11 Seoul Viosys Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
WO2017155215A1 (en) * 2016-03-10 2017-09-14 주식회사 소프트에피 Near-ultraviolet light-emitting semiconductor light-emitting element and group iii nitride semiconductor template used therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334739C (en) * 2005-04-27 2007-08-29 中国科学院上海技术物理研究所 Ultraviolet dual wave-band gallium nitride detector
JP2008177525A (en) * 2006-12-20 2008-07-31 Showa Denko Kk Method for manufacturing group iii nitride compound semiconductor light-emitting element, the group iii nitride compound semiconductor light-emitting element and lamp
CN102136533A (en) * 2008-01-24 2011-07-27 晶元光电股份有限公司 Method for manufacturing light-emitting element
TWI466314B (en) * 2008-03-05 2014-12-21 Advanced Optoelectronic Tech Light emitting device of iii-nitride based semiconductor
KR101262725B1 (en) * 2011-08-08 2013-05-09 일진엘이디(주) Nitride based light emitting diode with excellent effect of blocking leakage current and manufacturing method thereof
KR102019751B1 (en) * 2013-01-29 2019-09-09 엘지이노텍 주식회사 Light emitting device
CN104157754B (en) * 2014-07-03 2017-01-11 华南理工大学 InGaN/GaN multiple quantum well growing on W substrate and preparation method thereof
CN104518059A (en) * 2014-11-06 2015-04-15 聚灿光电科技(苏州)有限公司 Epitaxy structure and growth method thereof based on GaN-based quantum well
US11158995B2 (en) * 2018-06-01 2021-10-26 Visual Photonics Epitaxy Co., Ltd. Laser diode with defect blocking layer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111558A (en) * 1994-10-07 1996-04-30 Hitachi Ltd Semiconductor laser element
JPH0936423A (en) * 1995-07-24 1997-02-07 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
EP0732754B1 (en) * 1995-03-17 2007-10-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JP3778609B2 (en) * 1996-04-26 2006-05-24 三洋電機株式会社 Manufacturing method of semiconductor device
JP3471685B2 (en) * 1999-03-17 2003-12-02 三菱電線工業株式会社 Semiconductor substrate and manufacturing method thereof
JP3460641B2 (en) * 1999-09-28 2003-10-27 日亜化学工業株式会社 Nitride semiconductor device
JP4501194B2 (en) * 1999-12-08 2010-07-14 日亜化学工業株式会社 Nitride semiconductor light emitting device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134168B2 (en) 2003-10-14 2012-03-13 Showa Denko K.K. Group-III nitride semiconductor device
JP2006100475A (en) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2007042944A (en) * 2005-08-04 2007-02-15 Rohm Co Ltd Method of manufacturing nitride semiconductor element
WO2007037648A1 (en) * 2005-09-30 2007-04-05 Seoul Opto-Device Co., Ltd. Light emitting diode
US8106419B2 (en) 2006-11-08 2012-01-31 Showa Denko K.K. Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
US9040319B2 (en) 2006-11-08 2015-05-26 Toyoda Gosei Co., Ltd. Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
JP2008153531A (en) * 2006-12-19 2008-07-03 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
US9466761B2 (en) 2007-03-29 2016-10-11 Seoul Viosys Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
KR101364169B1 (en) * 2007-03-30 2014-02-17 서울바이오시스 주식회사 Near-uv light emitting diode having barrier layer of superlattice structure
JP2014078745A (en) * 2007-08-08 2014-05-01 Regents Of The Univ Of California Nonpolar iii-nitride light emitting diodes with long wavelength emission
US8575594B2 (en) 2007-09-10 2013-11-05 Seoul Opto Device Co., Ltd. Light emitting diode having a barrier layer with a superlattice structure
JP2012500489A (en) * 2008-08-20 2012-01-05 ソウル オプト デバイス カンパニー リミテッド Light emitting diode with modulation doping layer
WO2011111606A1 (en) 2010-03-08 2011-09-15 日亜化学工業株式会社 Nitride semiconductor light-emitting element
US8669546B2 (en) 2010-03-08 2014-03-11 Nichia Corporation Nitride group semiconductor light emitting device including multiquantum well structure
EP3399560A1 (en) 2010-03-08 2018-11-07 Nichia Corporation Nitride group semiconductor light emitting device
KR20130007918A (en) * 2011-07-11 2013-01-21 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, and light emitting device package
KR101990095B1 (en) 2011-07-11 2019-06-18 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, and light emitting device package
KR20140119704A (en) * 2012-01-20 2014-10-10 오스람 옵토 세미컨덕터스 게엠베하 Light-emitting diode chip
KR101961980B1 (en) 2012-01-20 2019-03-25 오스람 옵토 세미컨덕터스 게엠베하 Light-emitting diode chip
KR102116152B1 (en) * 2012-03-19 2020-05-28 루미리즈 홀딩 비.브이. Light emitting device grown on a silicon substrate
KR20140144228A (en) * 2012-03-19 2014-12-18 코닌클리케 필립스 엔.브이. Light emitting device grown on a silicon substrate
JP2015514312A (en) * 2012-03-19 2015-05-18 コーニンクレッカ フィリップス エヌ ヴェ Light-emitting devices grown on silicon substrates
KR20140052572A (en) * 2012-10-25 2014-05-07 엘지이노텍 주식회사 Light emitting device
KR101983775B1 (en) 2012-10-25 2019-09-03 엘지이노텍 주식회사 Light emitting device
JP2014154840A (en) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp Manufacturing method of m-diagonal nitride-based light-emitting diode
WO2017155215A1 (en) * 2016-03-10 2017-09-14 주식회사 소프트에피 Near-ultraviolet light-emitting semiconductor light-emitting element and group iii nitride semiconductor template used therefor
US11264538B2 (en) 2016-03-10 2022-03-01 Soft-Epi Inc. Near-ultraviolet light-emitting semiconductor light-emitting element and group III nitride semiconductor template used therefor

Also Published As

Publication number Publication date
KR100709058B1 (en) 2007-04-18
CN1586015A (en) 2005-02-23
CN100355094C (en) 2007-12-12
TW200300300A (en) 2003-05-16
KR20040062636A (en) 2004-07-07
WO2003043097A1 (en) 2003-05-22
TW567620B (en) 2003-12-21

Similar Documents

Publication Publication Date Title
JP2003218396A (en) Ultraviolet-ray emitting element
JP2009032709A (en) Semiconductor laser device
WO2002075821A1 (en) Semiconductor light-emitting device
JP2002246698A (en) Nitride semiconductor light-emitting device and method of manufacturing the same
JP2004193555A (en) Nitride semiconductor element and manufacturing method of the same
JP3660446B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2002151796A (en) Nitride semiconductor light emitting element and device comprising it
JP5076656B2 (en) Nitride semiconductor laser device
JPH11298090A (en) Nitride semiconductor element
JP2007036174A (en) Gallium nitride-based light emitting diode
JPH09148678A (en) Nitride semiconductor light emitting element
JP4665394B2 (en) Nitride semiconductor laser device
JP3896718B2 (en) Nitride semiconductor
JP3756831B2 (en) GaN-based semiconductor light emitting device
JP3282175B2 (en) Nitride semiconductor device
JP4873116B2 (en) Nitride semiconductor laser device and manufacturing method thereof
JP2002084038A (en) Nitride semiconductor element
JP3595276B2 (en) UV light emitting element
JP2000068559A (en) GaN GROUP CRYSTAL MATERIAL AND MANUFACTURE THEREOF
JP2007266401A (en) Nitride semiconductor light-emitting device and manufacturing method therefor
JP3819398B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH11163402A (en) Gan-based semiconductor light-emitting device
JP2002204035A (en) Nitride semiconductor light emitting element, and device including it
JP2008028375A (en) Nitride semiconductor laser device
JP2007189221A (en) Nitride semiconductor substrate, nitride semiconductor laser device, method of manufacturing nitride semiconductor substrate, and method of manufacturing nitride semiconductor laser device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017