WO2003043097A1 - Ultraviolet emitting device - Google Patents

Ultraviolet emitting device Download PDF

Info

Publication number
WO2003043097A1
WO2003043097A1 PCT/JP2002/011770 JP0211770W WO03043097A1 WO 2003043097 A1 WO2003043097 A1 WO 2003043097A1 JP 0211770 W JP0211770 W JP 0211770W WO 03043097 A1 WO03043097 A1 WO 03043097A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gan
light emitting
ultraviolet light
type
Prior art date
Application number
PCT/JP2002/011770
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Okagawa
Kazuyuki Tadatomo
Yoichiro Ouchi
Takashi Tsunekawa
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Priority to KR1020047007434A priority Critical patent/KR100709058B1/en
Publication of WO2003043097A1 publication Critical patent/WO2003043097A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a semiconductor light-emitting device, and more particularly to a GaN-based ultraviolet light-emitting device using an InGaN-based material having a composition capable of emitting ultraviolet light as a material of a light-emitting layer.
  • GaN light-emitting devices such as GaN-based light-emitting diodes (LEDs) and GaN-based semiconductor lasers (LDs), those using InGaN as the light-emitting layer (especially, light-emitting layers with a high In composition)
  • LEDs gallium-based light-emitting diodes
  • LDs gallium-based semiconductor lasers
  • InGaN InGaN
  • a blue-green light-emitting element having high efficiency can emit light with high efficiency. This is because, due to the localization of carriers due to fluctuations in the In composition, the proportion of carriers injected into the light-emitting layer that is trapped in non-light-emitting centers is reduced, resulting in high-efficiency light emission. Is described.
  • InG aN In composition 0.15 or less
  • InG aN In composition 0.15 or less
  • the upper limit of the wavelength of ultraviolet light is shorter than the short wavelength end of visible light (380 ⁇ ⁇ ! ⁇ 400 nm), and the lower limit is around I nm (0.2 nm ⁇ 2niii).
  • Ultraviolet light including 420 ⁇ or less emitted by InG aN having an Iri composition of 0.15 or less is referred to as ultraviolet light.
  • the wavelength of ultraviolet light that can be generated by G a ⁇ is 365 nm. Therefore, when InGaN is a ternary system that essentially contains the In composition and does not contain the A1 composition, the lower limit of the wavelength of the ultraviolet light that can be generated is a wavelength longer than 365 nm.
  • an ultraviolet light emitting device using InGaN as a material of a light emitting layer is referred to as an InGaN ultraviolet light emitting device.
  • the InGaN ultraviolet light emitting element needs to reduce the In composition of the light emitting layer because the ultraviolet light has a short wavelength. For this reason, the effect of localization due to the fluctuation of the In composition described above is reduced, and non-light emission is performed. The rate of capture at the recombination center has increased, and as a result, has hindered high output.
  • the light-emitting portion has a single quantum well (SQW) structure or a multiple quantum well (MQW) structure (the so-called DH structure is included in the SQW structure because the active layer is thin).
  • the light emitting layer (well layer) is sandwiched by cladding layers (including barrier layers in the quantum well structure) made of a material of a larger band gap.
  • cladding layers including barrier layers in the quantum well structure
  • the difference in the band gap between the light emitting layer and the cladding layer be 0.3 eV or more. Is out.
  • the cladding layer sandwiching the light emitting layer ⁇ The barrier layer must have a large band gap in consideration of carrier confinement. N is used.
  • FIG. 2 is a diagram showing an example of a conventional element structure of a conventional UV LED using 97 N (emission wavelength: 380 nm) as a material of an emission layer.
  • an n-type GaN contact layer 101 is formed on a crystal substrate B10 via a buffer layer B20, and a light emitting portion (n-type Aa. . 9 N cladding layer 102, I ll 0. 03 G a .. g7 N well layer (light emitting layer) 103, p-type A l 0. 2 G a .. 8 N cladding layer 10 4), p-type G a N
  • the contact layers 105 are sequentially stacked by crystal growth. Further, an element structure in which an ⁇ -type electrode P 10 is provided on the partially exposed ⁇ -type Ga contact layer 101 and a p-type electrode P 20 is provided on the ⁇ -type Ga contact layer 105 It has become.
  • the barrier layer located between the two well layers needs to be thick enough to cause a tunnel effect. Is about 3 to 6 nm.
  • the InGaN ultraviolet light-emitting device has not been able to obtain a sufficient output due to the low In composition of the light-emitting layer.
  • the object of the present invention is to solve the above-mentioned problems, and when using InG aN as the material of the light emitting layer, and even when using IiiGaN-based material, by optimizing the element structure, a higher output ultraviolet light can be obtained. It is to provide a light emitting device.
  • the present inventors have limited the structure of the light-emitting portion to the MQW structure, even if the material of the light-emitting layer is an InGaN-based material capable of emitting ultraviolet light, and furthermore, the number of well layers and the thickness of the barrier layer. It has been found that the output can be improved by limiting the value to a specific value, and the present invention has been completed. That is, the ultraviolet light emitting device of the present invention has the following features. '
  • a stacked structure composed of a GaN-based crystal layer is formed on a crystal substrate via a buffer layer or directly, and the stacked structure includes a p-type layer and an n-type layer.
  • a GaN-based semiconductor light-emitting device including a light-emitting portion to be formed, wherein the light-emitting portion has a multiple quantum well structure, and the well layer is made of an In GaN-based material capable of emitting ultraviolet light;
  • An ultraviolet light emitting device wherein the number of well layers is 2 to 20, and the thickness of the barrier layer is 7 nm to 30 nm.
  • the laminate structure be one that is formed on the crystal substrate through the A 1 N low-temperature growth buffer layer, directly on the A 1 N low-temperature grown buffer layer A 1 X G a Bok X N ( 0 ⁇ x ⁇ 1)
  • the positional relationship between the p-type layer and the n-type layer in the above laminated structure is such that the p-type layer is on the upper side, and the p-type contact layer is In n Y G ai — Y N (0 ⁇ ⁇ 1)
  • the ultraviolet light-emitting device according to the above (1) characterized by the following.
  • the multiple quantum well structure has a barrier layer in contact with the ⁇ -type layer, and the thickness of the barrier layer in contact with the ⁇ -type layer is 10 ⁇ !
  • the ultraviolet light emitting device according to the above (1) wherein
  • the above multiple quantum well structure has a well layer made of an undoped GaN-based crystal,
  • the ultraviolet light-emitting device according to the above (1) comprising an i-added barrier layer made of a GaN-based crystal.
  • FIG. 1 is a schematic view showing a structural example of an ultraviolet light emitting device according to the present invention. Each symbol in the figure indicates the following.
  • B Crystal substrate
  • S Laminated structure composed of GaN-based crystal layer
  • 2 n-type clad layer
  • 3 MQW structure
  • 4 p-type clad layer
  • P1 n-type electrode
  • P2 p-type electrode.
  • FIG. 2 is a schematic view showing another structural example of the ultraviolet light emitting device according to the present invention.
  • FIG. 3 is a graph showing the relationship between the number of MQW well layers and light emission output, obtained by measurement in Example 1 of the present invention.
  • FIG. 4 is a graph showing the relationship between the thickness of the MQW barrier layer and the light emission output, obtained by the measurement in Example 2 of the present invention.
  • FIG. 5 is a graph showing the relationship between the carrier concentration (unit: cm ⁇ 3 ) of the barrier layer due to the addition of Si to the barrier layer and the emission output in the ultraviolet device according to the present invention.
  • Figure 6 shows In. .. 3 was G a 0. Of a 97 N-emitting layer material is a diagram illustrating an example of an element structure of a conventional UV LED.
  • compound semiconductors for example, A1N, GaN, AlGaN, InGaN, InGaA1N, and the like are important compounds.
  • the I The InGaN-based the Among I n x Ga Y A l z N, and comprise a I n compositions and G a composition mandatory, other I The InGaN, is A 1 composition I The InGaN It may be added.
  • the ultraviolet light emitting device may be an ultraviolet LED, an ultraviolet LD, etc. Force
  • the present invention will be described using an ultraviolet LED as an example.
  • the p-type and n-type layers may be formed on either side (the crystal substrate side). For this reason, an embodiment in which the ⁇ -type layer is on the lower side is preferable.
  • the device structure will be described with the ⁇ -type layer as the lower side, but the present invention is not limited to this.
  • FIG. 1 is a view showing one structural example (LED element structure) of an ultraviolet light emitting element according to the present invention.
  • a laminated structure S composed of a GaN-based crystal layer is grown on a crystal substrate B via a GaN-based low-temperature growth buffer layer B1.
  • the ultraviolet light emitting device according to the present invention includes a light emitting portion including a p-type layer and an n-type layer, and is further provided with electrodes.
  • each layer in the example of FIG. 1 is shown more specifically.
  • the N clad layer 4] is a p-type GaN contact layer 5.
  • the n-type GaN contact layer is partially exposed, an ⁇ -type electrode P1 is formed on the exposed surface, and a p-type electrode P2 is formed on the upper surface of the ⁇ -type Ga a contact layer.
  • the light emitting portion essentially includes an MQW structure, and InGaN having a composition capable of emitting ultraviolet light is used as a material for the well layer of the MQW structure.
  • the number of well layers is 2 to 20, and the thickness of barrier layers is 7 to 30 nm.
  • the light emitting portion By limiting the light emitting portion to such a configuration, a higher output than before can be obtained even though it is an ultraviolet light emitting device using an InGaN-based material, particularly InGaN as a light emitting layer.
  • the light emitting section is configured to include a P-type cladding layer and an n-type cladding layer, and has an MQW structure therebetween.
  • the n-type and p-type cladding layers may be layers that also serve as n-type and P- type contact layers, respectively.
  • a waveguide layer, a cap layer, or the like may be added to the inside of the cladding layer, if necessary.
  • FIG. 3 is a graph showing the relationship between the number of MQW well layers and light emission output, obtained by measurement in Example 1 below. As is clear from the graph, the number of well layers should be 2 to 20. Outside this range, the light emission output is low as before. The number of well layers is particularly preferably from 8 to 15, and the highest light emission output is obtained at this time.
  • the material for the well layer I nG a N-based materials, in particular I n x G ai - is a X N (0 ⁇ x ⁇ 1 G a is rather 0 if required X ⁇ 1), 420 nm UV light below Any composition that can emit light may be used.
  • a more specific and preferred value of the In composition X of In x G & 1 _ ⁇ is 0 ⁇ x ⁇ 0.11.
  • the material of the well layer does not necessarily need to have the same In composition in all the layers, and may be appropriately selected as needed, for example, by being inclined.
  • the thickness of the well layer may be similar to a known MQW structure, for example, 2 ⁇ ! ⁇ 1 O nm is sufficient.
  • the barrier layer does not necessarily need to exist independently as the outermost layer adjacent to both cladding layers, and may be in the following modes 1 to 3, for example.
  • cladding layer also serves as the outermost barrier layer, as in (n-type cladding layer / well layer / well layer Zp-type cladding layer).
  • the outermost barrier layer exists separately from the cladding layer, as in (n-type cladding layer Z barrier layer Z well layer no barrier layer Z well layer no barrier layer / P type cladding layer). (3) The outermost barrier layer exists independently on only one side, such as (n-type clad layer / well layer barrier layer / well layer Z barrier layer Zp-type clad layer).
  • the thickness of the barrier layer of all the MQW structures is 7 nm to 30 nm.
  • FIG. 4 is a graph showing the relationship between the thickness of the barrier layer and the output of the light emitting element, obtained by measurement in the following examples. As is evident from the graph in the same figure, when the thickness of the barrier layer is 7 nm to 30 nm, an ultraviolet light emitting device having a high emission output can be obtained, and when the barrier layer is thinner than 7 nin or more than 30 nm. When the thickness is large, the light emission output is low as before. Among the above ranges of the thickness of the barrier layer, particularly preferred is a thickness of 8 nm to 15 nm. At this time, a light-emitting element having the highest output can be obtained.
  • the thickness of the barrier layer in the conventional MQW structure is 3 nm to 6 nm
  • the thickness of the barrier layer is 7 nm to 30 nm.
  • the wave functions do not overlap, and the SQW structure is more stacked than the MQW structure, but a sufficiently high output is achieved.
  • the thickness of the barrier layer exceeds 30 nm, holes injected from the p-layer are trapped by non-emission center dislocation defects existing in the GaN barrier layer before reaching the well layer, and light is emitted. It is not preferable because the efficiency is reduced.
  • the outermost barrier layer is always present on the p-type cladding layer side (that is, the above-described embodiment (1) or (3)), and the outermost barrier layer thickness on the p-type side is as follows. Is set to 10 to 30 ⁇ .
  • the well layer is less likely to be damaged by heat or gas when growing the layers subsequent to the p-type cladding layer, thereby reducing the damage.
  • the dopant material (such as Mg) from the p-type layer is reduced. Since diffusion into the well layer is reduced and the strain applied to the well layer is also reduced, not only the output is improved, but also the effect of extending the life of the element is obtained.
  • the material of the barrier layer may be a GaN-based semiconductor material having a band gap that can serve as a barrier layer for the InGaN well layer.
  • GaN is recommended as a preferable material.
  • a barrier layer with a sufficiently larger band gap than the well layer is used in consideration of confinement of carriers in the well layer.
  • the band gap of the well layer itself is larger than that of a blue light emitting element or the like. Therefore, it is necessary to use a material having a larger band gap for the barrier layer.
  • the well layer is made of InGaN (In composition 0.03), A 1 GaN is used for the barrier layer and the cladding layer.
  • the combination of the InGaN well layer and the A1GaN barrier layer focuses on the fact that the optimum values of the crystal growth temperatures are greatly different from each other, and this is taken up as a problem. . That is, A 1 N having a composition of A 1 GaN has a higher melting point than GaN, and InN having a composition of In GaN has a lower melting point than GaN. Specifically, the optimum temperature for crystal growth is 1000 ° C for GaN and 1000 for InGaN. C or less (preferably about 600 to 800; about C), A 1 G aN is G a N or more.
  • the growth temperature must be significantly changed between the growth of the well layer and the growth of the barrier layer to the respective preferable values. In this case, a layer having a preferable crystal quality cannot be obtained.
  • the above trade-off problem is reduced by using GaN as a material for the barrier layer.
  • As an InGaN-based material A1 InGaN in which A1 is mixed into InGaN may be used as a well layer, thereby obtaining the same effect as that of InGaN. It is possible.
  • the present invention in connection with the solution of the above-mentioned problem relating to the combination of the InGaN well layer and the A1GaN barrier layer, between the crystal substrate and the well layer (the A1N low-temperature growth buffer layer described later)
  • the A 1 GaN underlayer is formed immediately above the GaN layer
  • it is recommended that the A 1 GaN layer is not present between the A 1 GaN underlayer and the well layer. This alleviates the above-mentioned problem caused by the crystal growth temperature difference.
  • a GaN layer is used instead of the A 1 GaN layer. In the example shown in Fig.
  • an undoped GaN crystal layer (0.1111 to 2.0 m thick) without impurities is grown on the GaN low-temperature buffer layer, and an n-type GaN crystal Layer (contact layer / cladding layer) is grown. Note that the undoped GaN crystal layer may be omitted. Further, the n-type GaN crystal layer may be provided separately for the n-type GaN contact layer and the n-type GaN clad layer by changing the carrier concentration.
  • Another preferred embodiment of the MQW structure is one in which the well layer is not added and Si is added to the barrier layer.
  • FIG. 5 is a graph showing the relationship between the carrier concentration due to the addition of Si to the barrier layer and the emission output.
  • the number of well layers is 6, and the thickness of the barrier layer is 10 nm, but the same applies to other cases.
  • the luminescence output was small, and the luminescence output decreased even when the amount of Si added was 5 ⁇ 10 18 cm ⁇ 3 or more.
  • the addition of Si to the barrier layer is desirable because it has the function of increasing the emission intensity. However, if the addition amount is too large, the crystallinity decreases, and conversely, the emission intensity decreases. Desirable Si addition amount is 5 ⁇ 10 26 c ⁇ 3 to 5 ⁇ 10 18 cm— 3 .
  • the crystal substrate used for the growth may be any as long as the GaN-based crystal can be grown.
  • Preferred crystal substrates include, for example, sapphire (C-plane, A-plane, R-plane), SiC (6H, 4H, 3C), GAN, A1N, Si, spinel, ZnO, G a As and NGOs. Further, a substrate having these crystals as a surface layer may be used.
  • the plane orientation of the substrate is not particularly limited, and may be a just substrate. A substrate having an off angle may be used.
  • a puffer layer may be interposed between the crystal substrate and the GaN-based crystal layer, if necessary.
  • the buffer layer is not essential.
  • an A1 GaN film (A1 GaN underlayer) with a different lattice constant from the GaN film is used as the underlayer for growing the GaN film. It turned out that it was good to arrange.
  • GaN is grown on the A1 GaN film, compressive stress is applied to GaN.
  • dislocations are bent perpendicular to the growth direction at the interface between the A 1 GaN film and the GaN film (precisely, the initial stage of GaN growth on the A 1 GaN film). Is no longer propagated. In other words, a high-quality GaN film can be obtained by doing this.
  • a buffer layer is a GaN-based low-temperature growth buffer layer.
  • the known technology may be referred to for the material, formation method and formation conditions of the buffer layer, but GaN, A1N, InN, etc. are exemplified as the GaN-based low-temperature growth buffer layer material. Is 300. C-600. C is listed.
  • the thickness of the buffer layer is 10 nm to 50 nm, especially 20 ⁇ ! ⁇ 40 nm is preferred.
  • a particularly preferred embodiment is an A 1 N buffer layer.
  • FIG. 2 shows an example of the element structure of this embodiment.
  • a laminated structure S composed of a GaN-based crystal layer is grown on a crystal substrate B via an A 1 N low-temperature growth buffer layer 10.
  • a l x G ai — X N (0 ⁇ x ⁇ 1) underlayer 11 is formed directly above.
  • a 1 Composition of A 1 X G a X N base layer (value of x) in the growth direction Is also good.
  • the A1 composition may be changed continuously or in multiple steps.
  • the light emitting portion may be formed directly thereon.
  • forming the p-type contact layer with InGaN is one of the preferred embodiments.
  • the Mg-doped I n Y G a wN (0 ⁇ Y ⁇ 1).
  • the gas atmosphere in the I nG a New layer growth ⁇ 2 + ⁇ 3 it is possible to omit the relaxation or process itself so-called ⁇ -type processing conditions to activate the Mg after growth. This is because if the amount of H 2 in the gas atmosphere during growth is small, the incorporation of H 2 that inactivates Mg into the film can be suppressed.
  • the hole carrier concentration at room temperature becomes high, so that the conditions for the p-type treatment can be relaxed or the treatment itself can be omitted. it can.
  • the light emission output can be further improved. This is because the conditions of the p-type treatment (especially thermal annealing) can be relaxed or the treatment itself can be omitted for the above-mentioned reason, and as a result, diffusion of the doped impurities into the well layer can be suppressed. Because you can.
  • the MQW structure is composed of a well layer made of an GaN-based crystal with no addition and a barrier layer made of a GaN-based crystal with Si added, no heat treatment is required. Thus, a steep impurity profile can be obtained. As a result, it is considered that the light emission output is further improved.
  • a structure for reducing the dislocation density may be appropriately introduced. With the introduction of a structure for reducing dislocation density, a portion composed of a different material such as SiO 2 may be included in a laminated structure composed of a GaN-based crystal layer.
  • (B) A structure in which dots and stripes are formed on the crystal substrate so that the GaN-based crystal can grow laterally or facetly.
  • the above (b) is a preferable structure that does not use a mask layer. Hereinafter, this will be described.
  • Examples of the method of processing the unevenness include a method of forming a pattern according to the desired unevenness using a normal photolithography technique, and performing an etching process using the RIE technique or the like to obtain the desired unevenness. You.
  • the arrangement pattern of the irregularities is a pattern in which dot-shaped concave parts (or convex parts) are arranged, a linear or curved concave groove (or convex ridge) is arranged at fixed intervals and irregular intervals, Concentric patterns and the like can be mentioned.
  • a pattern in which convex ridges intersect in a grid pattern can be regarded as a pattern in which dot-shaped (square-hole) concave parts are regularly arranged.
  • the cross-sectional shape of the unevenness includes a rectangular (including trapezoidal) wavy shape, a triangular wavy shape, a sine carp shape, and the like.
  • the stripe-shaped concavo-convex pattern ' (rectangular wave shape in cross section), in which linear concave grooves (or convex ridges) are arranged at regular intervals, can simplify the manufacturing process and improve the pattern shape. Fabrication is easy and preferable.
  • the longitudinal direction of the stripe may be arbitrary, but for a GaN crystal grown by embedding this, ⁇ 111-200 ) Direction, lateral growth is suppressed, and oblique facets such as ⁇ 1-1101 ⁇ planes are easily formed.
  • dislocations propagating in the C-axis direction from the substrate side are bent laterally on the facet surface, making it difficult to propagate upwards, and being particularly preferable in that a low dislocation density region can be formed.
  • the longitudinal direction of the stripe is the ⁇ 100> direction for the growing GaN crystal
  • the GaN crystal that started growing from the upper part of the convex part grows at high speed in the lateral direction, and the concave part becomes hollow.
  • a GaN-based crystal layer is formed in the state where it remains.
  • the longitudinal direction of the stripe is set in the ⁇ 1-100> direction, the same effect as in the case of the ⁇ 111> direction can be obtained by selecting growth conditions that easily form the facet plane. Can be.
  • Preferable dimensions when the cross section of the unevenness is a rectangular wave shape are as follows.
  • the width of the groove is 0.1 ⁇ ! To 20 / m, particularly preferably 0.5 ⁇ m to 10 ⁇ m.
  • the width of the convex part is 0.1 l Aim to 20 / im, especially 0.5 ⁇ ! ⁇ 10 m is preferred.
  • the amplitude of the unevenness (depth of the concave groove) should be at least 20% of the larger of the concave and convex portions.
  • GaN-based crystal layers can be grown by HVPE, MOVPE, MB, etc.
  • HVP E method When forming a thick film, the HVP E method is preferable, but when forming a thin film, the MOVPE method or the MBE method is preferable.
  • the ultraviolet LED shown in Fig. 1 was manufactured, the thickness of the barrier layer was fixed at 10 nm, and the number of well layers was 1 to 25 to form a total of 25 types of samples.
  • the element forming process is as follows.
  • a C-plane sapphire substrate was mounted on a MOVPE apparatus, and the temperature was increased to 1100 ° C in a hydrogen atmosphere, and thermal etching was performed.
  • the temperature is 500. C, and trimethylgallium (TMG) as Group III raw material
  • TMG trimethylgallium
  • a low-temperature GaN buffer layer with a thickness of 30 nm was grown by flowing ammonia as a feedstock.
  • the temperature was then raised to 1000 ° C, TMG and ammonia were flowed as raw materials, and an undoped GaN crystal layer 1
  • Si H 4 was flowed to grow a Si-doped n-type GaN crystal layer ′ (contact layer / cladding layer) at 3 ⁇ .
  • a GaN barrier layer (10 nm thick) with Si added at 5 ⁇ 10 17 cm— 3 and an InGaN well layer (emission wavelength 380 nm, In composition (0.03, thickness 3 nm) was changed from 1 to 25 for each sample.
  • the last GaN barrier layer (Si added at 5 ⁇ 10 17 cm— 3 , thickness 20 nm) in contact with the p layer was formed.
  • a 30-nm-thick p-type A1 GaN cladding layer 4 and a 50-nm-thick p-type GaN contact layer were sequentially formed, and the emission wavelength was 380 nm.
  • An ultraviolet LED wafer was used, electrodes were formed, and elements were separated.
  • the ultraviolet LED shown in Fig. 1 was manufactured by the same process as in the first embodiment, and the number of well layers was fixed at 6, and the thickness of the barrier layer was changed from 3 nm to 40 nm. A sample was prepared and the output of each sample was measured.
  • the output of the sample of the UV LED chips having different barrier layer thicknesses obtained in the present example was measured at a wavelength of 380 nm by applying a current of 2 OmA in a bare chip state, As shown in FIG. 4, a graph showing the relationship between the thickness of the barrier layer and the output was obtained.
  • the barrier layer thickness is 7 ⁇ ! 3030 nm, especially 8 ⁇ ! It was found that 15 nm is a preferable thickness of the barrier layer that can obtain a light emission output of 5 mW or more.
  • the thickness of the barrier layer is fixed to one type
  • the number of the well layers is fixed to one type.
  • Samples with different thicknesses in the range of ⁇ 30 nm were fabricated, and element samples with the number of well layers varied in the range of 2 to 20 were formed for each thickness.
  • a curve similar to that in Fig. 3 was obtained for the change in the number of well layers, and a curve showing the same tendency as in Fig. 4 was obtained for the change in the thickness of the barrier layer for any number of wells. all right.
  • the GaN low-temperature buffer layer was used as the A1N low-temperature buffer layer
  • the undoped GaN crystal layer was used as the AI GaN underlayer
  • the p-type Ultraviolet LED samples were fabricated using the GaN contact layer as a p-type InGaN contact layer, and the output of each sample was measured.
  • the device formation process is as follows.
  • a C-plane sapphire substrate was mounted on a MOVPE apparatus, and the temperature was increased to 1100 ° C in a hydrogen atmosphere to perform thermal etching. The temperature was lowered to 350 ° C, and trimethylaluminum (TMA)
  • Ammonia was flowed as an N source, and a 20-nm-thick A1N low-temperature buffer layer was grown.
  • p-type AI GaN cladding layer 4 with a thickness of 30 nm, 1) type 0 &] ⁇ layer with a thickness of 5011111, p-type InGaN contact layer with a thickness of 5 nm (In composition 10 %)
  • In composition 10 p-type InGaN contact layer with a thickness of 5 nm
  • the number of well layers is set to 2 to 20, and the thickness of the barrier layer is set to 7 nm to 30 nm, thereby emitting InGaN-based materials, particularly InGaN.
  • the thickness of the barrier layer is set to 7 nm to 30 nm, thereby emitting InGaN-based materials, particularly InGaN.
  • a higher output than ever before can be obtained.

Abstract

A multilayer structure (S) comprising a GaN crystal layer and an emitting region is built directly on a crystal substrate (B) or on a buffer layer on the crystal substrate (B). The emitting region has a multiple quantum well structure. The well layers are made of InGaN that can emit ultraviolet radiation. The number of well layers is 2 to 20, and the thickness of a barrier layer is 7 to 30 nm. Therefore, a high output power of ultraviolet radiation is achieved though the emitting layer is made of InGaN. To form a high-quality GaN film, an AlGaN underlying layer is preferably formed directly on an AlN low-temperature growth buffer layer. A mode is recommended in which an AlGaN layer is not formed between the crystal substrate and a well layer (between the AlGaN underlying layer and a well layer in the case of the mode where the AlGaN underlying layer is provided.)

Description

明細書  Specification
紫外線発光素子  UV light emitting element
技術分野  Technical field
本発明は、 半導体発光素子に関し、 特に、 紫外線を発し得る組成の I nGaN 系材料が発光層の材料として用いられた、 G a N系の紫外線発光素子に関するも のである。  The present invention relates to a semiconductor light-emitting device, and more particularly to a GaN-based ultraviolet light-emitting device using an InGaN-based material having a composition capable of emitting ultraviolet light as a material of a light-emitting layer.
背景技術  Background art
G a N系発光ダイオード (LED) や G a N系半導体レーザー (LD) などの G a N発光素子のなかでも、 I nGaNを発光層に用いたもの (なかでも、 高い I n組成の発光層を有する青 ·緑色発光素子) は、 一般に高効率の発光が得られ ることが知られている。 これは、 I n組成揺らぎによるキャリアの局在化のため 、 発光層に注入されたキャリアの内、 非発光中心に捕獲されるものの割合が少な くなり、 結果、 高効率の発光が得られるからであると説明されている。  Among GaN light-emitting devices such as GaN-based light-emitting diodes (LEDs) and GaN-based semiconductor lasers (LDs), those using InGaN as the light-emitting layer (especially, light-emitting layers with a high In composition) It is generally known that a blue-green light-emitting element having high efficiency can emit light with high efficiency. This is because, due to the localization of carriers due to fluctuations in the In composition, the proportion of carriers injected into the light-emitting layer that is trapped in non-light-emitting centers is reduced, resulting in high-efficiency light emission. Is described.
G a N系 LEDや G a N系 LDにおいて、 420 n m以下の紫外線を発光させ ようとする場合にも、 一般には発光層の材料として I nG a N ( I n組成 0. 1 5以下) が用いられる。  Even when trying to emit ultraviolet light of 420 nm or less in GaN-based LEDs or GaN-based LDs, InG aN (In composition 0.15 or less) is generally used as the material of the light-emitting layer. Used.
—般に、 紫外線の波長の上限は可視光の短波長端 (380 η π!〜 400 n m) より短く、 下限は I n m前後 (0. 2nm〜2niii) とされているが、 本明細書 では、 上記した I ri組成 0. 1 5以下の I nG a Nによって発せられる 420 η πι以下の青紫光をも含めて、 紫外線と呼ぶ。 G a Νによって発生し得る紫外線の 波長は 365 nmである。 よって、 I n G a Nが I n組成を必須に含みかつ A 1 組成を含まない 3元系の場合には、 発生し得る紫外線の波長の下限は、 前記 36 5 nmよりも長い波長である。 以下、 I nG a Nを発光層の材料として用いた紫 外線発光素子を、 I n G a N紫外線発光素子と呼ぶ。  In general, the upper limit of the wavelength of ultraviolet light is shorter than the short wavelength end of visible light (380 η π! ~ 400 nm), and the lower limit is around I nm (0.2 nm ~ 2niii). Ultraviolet light including 420 ηπι or less emitted by InG aN having an Iri composition of 0.15 or less is referred to as ultraviolet light. The wavelength of ultraviolet light that can be generated by G a Ν is 365 nm. Therefore, when InGaN is a ternary system that essentially contains the In composition and does not contain the A1 composition, the lower limit of the wavelength of the ultraviolet light that can be generated is a wavelength longer than 365 nm. . Hereinafter, an ultraviolet light emitting device using InGaN as a material of a light emitting layer is referred to as an InGaN ultraviolet light emitting device.
しかし、 青 '緑色発光素子での発光層の高い I n組成に比べて、 I nGaN紫 外線発光素子では、 紫外線が短波長である為、 発光層の I n組成を低下させる必 要がある。 この為、 上述の I n組成揺らぎによる局在化の効果が低減し、 非発光 再結合中心に捕獲される割合が増え、 結果として高出力化の妨げとなっている。 一方、 I riGaN紫外線発光素子では、 発光部の構造は、 単一量子井戸 (SQ W) 構造や多重量子井戸 (MQW) 構造とされ (所謂 DH構造は活性層が薄いた めに SQW構造に含まれる) 、 発光層 (井戸層) をそれよりも大きなパンドギヤ ップの材料からなるクラッド層 (量子井戸構造では障壁層をも含む) で挟んだ構 造とされる。 文献 (米津宏雄著、 工学図書株式会社刊、 「光通信素子工学」 第 7 2頁) によると、 一般には発光層とクラッド層とのパンドギャップ差を 「0. 3 eV」 以上とする指針が出ている。 However, compared to the high In composition of the light emitting layer of the blue-green light emitting element, the InGaN ultraviolet light emitting element needs to reduce the In composition of the light emitting layer because the ultraviolet light has a short wavelength. For this reason, the effect of localization due to the fluctuation of the In composition described above is reduced, and non-light emission is performed. The rate of capture at the recombination center has increased, and as a result, has hindered high output. On the other hand, in the IriGaN ultraviolet light-emitting device, the light-emitting portion has a single quantum well (SQW) structure or a multiple quantum well (MQW) structure (the so-called DH structure is included in the SQW structure because the active layer is thin). ), The light emitting layer (well layer) is sandwiched by cladding layers (including barrier layers in the quantum well structure) made of a material of a larger band gap. According to the literature (Hiroo Yonezu, published by Kogaku Tosho Co., Ltd., “Optical Communication Device Engineering”, page 72), it is generally suggested that the difference in the band gap between the light emitting layer and the cladding layer be 0.3 eV or more. Is out.
上記背景から、 I nGaNを発光層 (井戸層) に用いて紫外線を発生させる場 合、 発光層を挟むクラッド層 '障壁層には、 キャリアの閉じ込めを考慮してパン ドギヤップの大きな A 1 G a Nが用いられている。  From the above background, when ultraviolet light is generated by using InGaN for the light emitting layer (well layer), the cladding layer sandwiching the light emitting layer 障壁 The barrier layer must have a large band gap in consideration of carrier confinement. N is used.
図 6は、 I n0.03G a。.97N (発光波長 380 nm) を発光層の材料とした、 従 来の紫外線 LEDの素子構造の一例を示す図である。 同図に示すように、 結晶基 板 B 10上に、 バッファ層 B 20を介して、 n型 G aNコンタクト層 101が形 成され、 その上に S QW構造の発光部 (n型 A a。.9Nクラッド層 102、 I ll0.03Ga。.g7N井戸層 (発光層) 103、 p型A l0.2Ga。.8Nクラッド層10 4) 、 p型 G a Nコンタクト層 105が順次結晶成長によって積み重ねられてい る。 さらに、 部分的に露出した η型 G a Νコンタクト層 101上には η型電極 P 10が設けられ、 ρ型 G a Νコンタクト層 105上には p型電極 P 20が設けら れた素子構造となっている。 6, I n 0. 03 G a . FIG. 2 is a diagram showing an example of a conventional element structure of a conventional UV LED using 97 N (emission wavelength: 380 nm) as a material of an emission layer. As shown in the figure, an n-type GaN contact layer 101 is formed on a crystal substrate B10 via a buffer layer B20, and a light emitting portion (n-type Aa. . 9 N cladding layer 102, I ll 0. 03 G a .. g7 N well layer (light emitting layer) 103, p-type A l 0. 2 G a .. 8 N cladding layer 10 4), p-type G a N The contact layers 105 are sequentially stacked by crystal growth. Further, an element structure in which an η-type electrode P 10 is provided on the partially exposed η-type Ga contact layer 101 and a p-type electrode P 20 is provided on the ρ-type Ga contact layer 105 It has become.
図 6の例における発光部は SQW構造であるが、 これを MQW構造とする場合 、 2つの井戸層の間に位置する障壁層はトンネル効果を生じる程度の厚さにする 必要があり、 一般的には 3〜 6 nm程度とされている。  Although the light emitting part in the example of FIG. 6 has an SQW structure, if this is an MQW structure, the barrier layer located between the two well layers needs to be thick enough to cause a tunnel effect. Is about 3 to 6 nm.
しかしながら、 上記のように種々の発光部の構造とされていても、 I nGaN 紫外線発光素子は、 発光層の I n組成の低さに起因して十分な出力が得られてい なかった。  However, even with various light-emitting portions as described above, the InGaN ultraviolet light-emitting device has not been able to obtain a sufficient output due to the low In composition of the light-emitting layer.
発明の開示 本発明の課題は、 上記問題を解決し、 発光層の材料として I nG a Nを用いる 場合、 さらには I iiGaN系材料を用いる場合でも、 素子構造を最適化すること によって、 より高出力の紫外線発光素子を提供することである。 Disclosure of the invention The object of the present invention is to solve the above-mentioned problems, and when using InG aN as the material of the light emitting layer, and even when using IiiGaN-based material, by optimizing the element structure, a higher output ultraviolet light can be obtained. It is to provide a light emitting device.
本発明者等は、 発光層の材料が、 紫外線発光可能な組成の I nGaN系材料で あっても、 発光部の構造を MQW構造に限定し、 さらにその井戸層の数、 障壁層 の厚さを特定の値に限定することによって、 出力を向上させ得ることを見出し、 本発明を完成させた。 即ち、 本発明の紫外線発光素子は以下の特徴を有するもの である。'  The present inventors have limited the structure of the light-emitting portion to the MQW structure, even if the material of the light-emitting layer is an InGaN-based material capable of emitting ultraviolet light, and furthermore, the number of well layers and the thickness of the barrier layer. It has been found that the output can be improved by limiting the value to a specific value, and the present invention has been completed. That is, the ultraviolet light emitting device of the present invention has the following features. '
(1) 結晶基板上に、 バッファ層を介してまたは直接的に、 GaN系結晶層か らなる積層構造が形成され、 該積層構造には、 p型層と n型層とを有して構成さ れる発光部が含まれている G a N系半導体発光素子であって、 該発光部は多重量 子井戸構造を有し、 かつ、 井戸層が紫外線発光可能な I n GaN系材料からなり 、 井戸層の数が 2〜20、 障壁層の厚さが 7 nm〜30 nmであることを特徴と する紫外線発光素子。  (1) A stacked structure composed of a GaN-based crystal layer is formed on a crystal substrate via a buffer layer or directly, and the stacked structure includes a p-type layer and an n-type layer. A GaN-based semiconductor light-emitting device including a light-emitting portion to be formed, wherein the light-emitting portion has a multiple quantum well structure, and the well layer is made of an In GaN-based material capable of emitting ultraviolet light; An ultraviolet light emitting device, wherein the number of well layers is 2 to 20, and the thickness of the barrier layer is 7 nm to 30 nm.
(2) 上記積層構造が A 1 N低温成長バッファ層を介して結晶基板上に形成さ れたものであって、 該 A 1 N低温成長バッファ層の直上に A 1 XG a卜 XN (0く x≤ 1) 下地層が形成されていることを特徴とする上記 (1) 記載の紫外線発光 素子。 (2) the laminate structure be one that is formed on the crystal substrate through the A 1 N low-temperature growth buffer layer, directly on the A 1 N low-temperature grown buffer layer A 1 X G a Bok X N ( 0 ≦ x ≦ 1) The ultraviolet light emitting device according to the above (1), wherein an underlayer is formed.
(3) A 1 XG a !_XN (0<x≤ 1) 下地層と井戸層との間に、 A 1 G a Nか らなる層がないことを特徴とする上記 (2) 記載の紫外線発光素子。 (3) A 1 X G a! _ X N (0 <x≤ 1) The above (2), wherein there is no layer made of A 1 G aN between the underlayer and the well layer. Ultraviolet light emitting element.
(4) 上記積層構造中の p型層と n型層との位置関係が p型層を上側とするも のであって、 p型コンタク ト層が I nYG a iYN (0<Υ≤ 1) からなることを 特徴とする上記 (1) 記載の紫外線発光素子。 (4) The positional relationship between the p-type layer and the n-type layer in the above laminated structure is such that the p-type layer is on the upper side, and the p-type contact layer is In n Y G aiY N (0 <Υ ≤ 1) The ultraviolet light-emitting device according to the above (1), characterized by the following.
(5) 上記多重量子井戸構造が ρ型層と接する障壁層を有しており、 該 ρ型層 と接する障壁層の厚さが 10 ηπ!〜 30 であることを特徴とする上記 (1) 記載の紫外線発光素子。  (5) The multiple quantum well structure has a barrier layer in contact with the ρ-type layer, and the thickness of the barrier layer in contact with the ρ-type layer is 10 ηπ! The ultraviolet light emitting device according to the above (1), wherein
(6) 上記多重量子井戸構造が、 無添加の GaN系結晶からなる井戸層と、 S i添加の G a N系結晶からなる障壁層とによって構成されたものである、 上記 ( 1) 記載の紫外線発光素子。 (6) The above multiple quantum well structure has a well layer made of an undoped GaN-based crystal, The ultraviolet light-emitting device according to the above (1), comprising an i-added barrier layer made of a GaN-based crystal.
(7) 上記多重量子井戸構造が、 I nxGa ixN (0<x≤ 1) からなる井戸 層と、 GaNからなる障壁層とによって構成されたものである、 上記 (1) 記載 の紫外線発光素子。 (7) The multi-quantum well structure, I n x G ai - those constructed and well layers made of x N (0 <x≤ 1) , by a barrier layer made of GaN, the (1), wherein Ultraviolet light emitting element.
(8) 上記 I nxG a — XNの I n組成 xが、 0く x 0. 1 1である、 上記 ( 7) 記載の紫外線発光素子。 (8) above I n x G a - X N of I n the composition x is 0 rather x 0. 1 1, (7) the ultraviolet light emitting device according.
(9) 結晶基板と井戸層との間に、 A 1 GaNからなる層がないことを特徴と する上記 (1) 記載の紫外線発光素子。  (9) The ultraviolet light emitting device according to the above (1), wherein there is no layer made of A 1 GaN between the crystal substrate and the well layer.
(10) 結晶基板が表面に凹凸を加工されたものであり、 GaN系結晶層が該 凹凸を覆って気相成長し積層構造となっている、 上記 (1) 記載の紫外線発光素 子。  (10) The ultraviolet light-emitting device according to the above (1), wherein the crystal substrate has a surface processed with irregularities, and the GaN-based crystal layer covers the irregularities by vapor phase growth to form a laminated structure.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による紫外線発光素子の構造例を示す模式図である。 同図の各 符号は、 それぞれつぎのものを示している。 B ;結晶基板、 S ; GaN系結晶層 からなる積層構造、 2 ; n型クラッド層、 3 ; MQW構造、 4 ; p型クラッド層 、 P 1 ; n型電極、 P 2 ; p型電極。  FIG. 1 is a schematic view showing a structural example of an ultraviolet light emitting device according to the present invention. Each symbol in the figure indicates the following. B: Crystal substrate, S: Laminated structure composed of GaN-based crystal layer, 2: n-type clad layer, 3: MQW structure, 4: p-type clad layer, P1: n-type electrode, P2: p-type electrode.
図 2は、 本発明による紫外線発光素子の別の構造例を示す模式図である。  FIG. 2 is a schematic view showing another structural example of the ultraviolet light emitting device according to the present invention.
図 3は、 本発明の実施例 1での測定で得られた、 MQWの井戸層の数と発光出 力との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the number of MQW well layers and light emission output, obtained by measurement in Example 1 of the present invention.
図 4は、 本発明の実施例 2での測定で得られた、 MQWの障壁層の厚さと発光 出力との関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the thickness of the MQW barrier layer and the light emission output, obtained by the measurement in Example 2 of the present invention.
図 5は、 本発明による紫外線素子において、 障壁層への S i添加による障壁層 キャリア濃度 (単位 cm—3) と発光出力との関係を示したグラフである。 FIG. 5 is a graph showing the relationship between the carrier concentration (unit: cm− 3 ) of the barrier layer due to the addition of Si to the barrier layer and the emission output in the ultraviolet device according to the present invention.
図 6は、 I n。.。3G a0.97Nを発光層の材料とした、 従来の紫外線 LEDの素子 構造の一例を示す図である。 Figure 6 shows In. .. 3 was G a 0. Of a 97 N-emitting layer material is a diagram illustrating an example of an element structure of a conventional UV LED.
発明を実施するための最良の形態 本発明でいう G a N系とは、 I nxGaYA lzN (0≤X≤ 1 , 0≤Y≤ 1 , 0 ≤Ζ≤ 1 , Χ + Υ+Ζ= 1) で示される化合物半導体であって、 例えば、 A 1 N 、 GaN、 A l GaN、 I nGaN、 I n G a A 1 Nなどが重要な化合物として 挙げられる。 BEST MODE FOR CARRYING OUT THE INVENTION The G a N system in the present invention is represented by In x Ga Y A l z N (0≤X≤1, 0≤Y≤1, 0≤≤≤1, Ζ + Χ + Υ = 1) Among compound semiconductors, for example, A1N, GaN, AlGaN, InGaN, InGaA1N, and the like are important compounds.
また、 I nGaN系とは、 前記 I nxGaYA lzNのなかでも、 I n組成および G a組成を必須に含むものであって、 I nGaNの他、 I nGaNに A 1組成が 加えられたものであってもよい。 Further, the I The InGaN-based, the Among I n x Ga Y A l z N, and comprise a I n compositions and G a composition mandatory, other I The InGaN, is A 1 composition I The InGaN It may be added.
本発明による紫外線発光素子は、 紫外線 LED、 紫外線 LDなどであってよい 力 以下に、 紫外線 LEDを例として挙げて、 本発明を説明する。 また、 素子構 造中において、 p型、 n型の層は、 どちらが下側 (結晶基板側) であってもよい 1 G a N系半導体の高品質な結晶を得やすいことなどの製造上の理由から、 η 型の層を下側とする態様が好ましい。 以下、 η型の層を下側として素子構造を説 明するが、 これに限定されるものではない。  The ultraviolet light emitting device according to the present invention may be an ultraviolet LED, an ultraviolet LD, etc. Force Hereinafter, the present invention will be described using an ultraviolet LED as an example. In addition, during the element structure, the p-type and n-type layers may be formed on either side (the crystal substrate side). For this reason, an embodiment in which the η-type layer is on the lower side is preferable. Hereinafter, the device structure will be described with the η-type layer as the lower side, but the present invention is not limited to this.
図 1は、 本発明による紫外線発光素子の一構造例 (LED素子構造) を示した 図である。 同図に示すように、 結晶基板 B上に、 G a N系低温成長バッファ層 B 1を介して G a N系結晶層からなる積層構造 Sが成長しており、 該積層構造 Sに は、 p型層と n型層とを有して構成される発光部が含まれ、 さらに電極が設けら れて本発明による紫外線発光素子となっている。  FIG. 1 is a view showing one structural example (LED element structure) of an ultraviolet light emitting element according to the present invention. As shown in the figure, a laminated structure S composed of a GaN-based crystal layer is grown on a crystal substrate B via a GaN-based low-temperature growth buffer layer B1. The ultraviolet light emitting device according to the present invention includes a light emitting portion including a p-type layer and an n-type layer, and is further provided with electrodes.
図 1の例について、 より具体的に各層の構成を示すと、 下層側から順に、 サフ アイァ結晶基板 B、 GaN低温成長バッファ層 B 1、 アンドープ GaN層 1、 発 光部 〔n型 GaNクラッド層 (=コンタク ト層) 2、 MQW構造 3 (G a N障壁 層 I nG a N井戸層 ZG a N障壁層/ I n G a N井戸層/ G a N障壁層) 、 p 型 A 1 G a Nクラッド層 4〕 、 p型 G a Nコンタクト層 5となっている。 n型 G aNコンタクト層は部分的に露出し、 該露出面には η型電極 P 1が形成され、 ρ 型 G a Νコンタクト層の上面には p型電極 P 2が形成されている。  The structure of each layer in the example of FIG. 1 is shown more specifically.From the lower layer side, a sapphire crystal substrate B, a GaN low-temperature growth buffer layer B1, an undoped GaN layer 1, a light emitting section (n-type GaN clad layer) (= Contact layer) 2, MQW structure 3 (GaN barrier layer InGaN well layer ZGaN barrier layer / InGaN well layer / GaN barrier layer), p-type A1Ga The N clad layer 4] is a p-type GaN contact layer 5. The n-type GaN contact layer is partially exposed, an η-type electrode P1 is formed on the exposed surface, and a p-type electrode P2 is formed on the upper surface of the ρ-type Ga a contact layer.
上記素子構造における重要な特徴は、 発光部が必須に MQW構造を含んでおり 、 該 MQW構造の井戸層の材料に紫外線発光可能な組成の I n G a Nが用いられ 、 かつ、 井戸層の数が 2〜20、 障壁層の厚さが 7 nm〜30 nmとされている 点にある。 An important feature of the above device structure is that the light emitting portion essentially includes an MQW structure, and InGaN having a composition capable of emitting ultraviolet light is used as a material for the well layer of the MQW structure. In addition, the number of well layers is 2 to 20, and the thickness of barrier layers is 7 to 30 nm.
発光部をこのような構成に限定したことによって、 I nGaN系材料、 特に I n G a Nを発光層に用いた紫外線発光素子でありながら、 従来よりも高い出力が 得られる。  By limiting the light emitting portion to such a configuration, a higher output than before can be obtained even though it is an ultraviolet light emitting device using an InGaN-based material, particularly InGaN as a light emitting layer.
発光部は、 P型クラッド層と n型クラッド層とを有して構成され、 その間に M QW構造を有する。 n型、 p型の両クラッド層は、 それぞれ n型、 P型の両コン タクト層を兼任する層であってもよい。 また、 LDの素子構造などでは、 必要に 応じて、 導波層やキヤップ層などをクラッド層の内側に加えてもよい。 The light emitting section is configured to include a P-type cladding layer and an n-type cladding layer, and has an MQW structure therebetween. The n-type and p-type cladding layers may be layers that also serve as n-type and P- type contact layers, respectively. In the LD device structure, a waveguide layer, a cap layer, or the like may be added to the inside of the cladding layer, if necessary.
図 3は、 下記実施例 1での測定によって得られた、 MQWの井戸層の数と発光 出力との関係を示したグラフである。 該グラフから明らかなように、 井戸層の数 は、 2〜 20とすべきであり、 この範囲外では、 発光出力は従来どおり低い値と なっている。 また、 井戸層の数は、 特に 8〜1 5が好ましく、 このときに最も高 い発光出力が得られている。  FIG. 3 is a graph showing the relationship between the number of MQW well layers and light emission output, obtained by measurement in Example 1 below. As is clear from the graph, the number of well layers should be 2 to 20. Outside this range, the light emission output is low as before. The number of well layers is particularly preferably from 8 to 15, and the highest light emission output is obtained at this time.
井戸層の材料は、 I nG a N系材料、 特に I nxG a iXN (0 < x≤ 1 G a が必須ならば 0く X < 1 ) であって、 420 nm以下の紫外線が発光可能な組成 のものであればよい。 I nxG & 1_ΧΝの I n組成 Xのより具体的で好ましい値は 、 0<x≤0. 1 1である。 井戸層の材料は、 必ずしも各層全てが同じ I n組成 である必要はなく、 傾斜させるなど、 必要に応じて適宜選択すればよい。 The material for the well layer, I nG a N-based materials, in particular I n x G ai - is a X N (0 <x≤ 1 G a is rather 0 if required X <1), 420 nm UV light below Any composition that can emit light may be used. A more specific and preferred value of the In composition X of In x G & 1 _ Χ is 0 <x≤0.11. The material of the well layer does not necessarily need to have the same In composition in all the layers, and may be appropriately selected as needed, for example, by being inclined.
井戸層の厚さは、 公知の MQW構造と同様であってよく、 例えば、 2 ηπ!〜 1 O nmでよい。  The thickness of the well layer may be similar to a known MQW structure, for example, 2 ηπ! ~ 1 O nm is sufficient.
障壁層は、 必ずしも両クラッド層に隣接する最外層として独立的に存在する必 要はなく、 例えば、 次の①〜③の態様などであってよい。  The barrier layer does not necessarily need to exist independently as the outermost layer adjacent to both cladding layers, and may be in the following modes 1 to 3, for example.
① (n型クラッド層ノ井戸層/障壁層 井戸層 Zp型クラッド層) のように、 クラッド層が最外の障壁層を兼ねている態様。  (1) An aspect in which the cladding layer also serves as the outermost barrier layer, as in (n-type cladding layer / well layer / well layer Zp-type cladding layer).
② (n型クラッド層 Z障壁層 Z井戸層ノ障壁層 Z井戸層ノ障壁層/ P型クラッ ド層) のように、 最外の障壁層がクラッド層とは別に存在する態様。 ③ (n型クラッド層/井戸層 障壁層/井戸層 Z障壁層 Zp型クラッド層) の ように、 片側だけ最外の障壁層が独立して存在する態様。 (2) The outermost barrier layer exists separately from the cladding layer, as in (n-type cladding layer Z barrier layer Z well layer no barrier layer Z well layer no barrier layer / P type cladding layer). (3) The outermost barrier layer exists independently on only one side, such as (n-type clad layer / well layer barrier layer / well layer Z barrier layer Zp-type clad layer).
本発明では、 MQW構造全ての障壁層の厚さを、 7 nm〜30 nmとする。 図 4は、 下記実施例での測定によって得られた、 障壁層厚さと発光素子の出力 との関係を示すグラフである。 同図のグラフから明らかなように、 障壁層の厚さ が 7 nm〜30 n mの時に高い発光出力の紫外線発光素子が得られ、 障壁層が 7 n inよりも薄い場合や、 30 nmよりも厚い場合には、 従来どおり発光出力は低 くなる。 上記障壁層厚さの範囲の中でも、 特に好ましいのは、 8 nm〜1 5 nm であって、 この時に最も高い出力の発光素子が得られる。  In the present invention, the thickness of the barrier layer of all the MQW structures is 7 nm to 30 nm. FIG. 4 is a graph showing the relationship between the thickness of the barrier layer and the output of the light emitting element, obtained by measurement in the following examples. As is evident from the graph in the same figure, when the thickness of the barrier layer is 7 nm to 30 nm, an ultraviolet light emitting device having a high emission output can be obtained, and when the barrier layer is thinner than 7 nin or more than 30 nm. When the thickness is large, the light emission output is low as before. Among the above ranges of the thickness of the barrier layer, particularly preferred is a thickness of 8 nm to 15 nm. At this time, a light-emitting element having the highest output can be obtained.
従来の MQW構造における障壁層の厚さが 3 nm.~6 nmであったのに対して 、 本発明では障壁層の厚さを 7 nm〜 30 nmとしている。 障壁層をこのような 値まで厚くすることによって、 波動関数の重なりが無くなり、 MQW構造という よりも S QW構造を多重に積み重ねたような状態となるが、 充分に高出力化が達 成される。 障壁層の厚さが 30 nmを超えると、 p層から注入された正孔が井戸 層へ到達するまでに G a N障壁層中に存在する非発光中心となる転位欠陥などに トラップされ、 発光効率が低下するので好ましくない。  While the thickness of the barrier layer in the conventional MQW structure is 3 nm to 6 nm, in the present invention, the thickness of the barrier layer is 7 nm to 30 nm. By increasing the thickness of the barrier layer to such a value, the wave functions do not overlap, and the SQW structure is more stacked than the MQW structure, but a sufficiently high output is achieved. . If the thickness of the barrier layer exceeds 30 nm, holes injected from the p-layer are trapped by non-emission center dislocation defects existing in the GaN barrier layer before reaching the well layer, and light is emitted. It is not preferable because the efficiency is reduced.
本発明における MQW構造の好ましい態様として、 p型クラッド層側に最外の 障壁層が必ず存在する態様 (即ち、 上記②または③の態様) とし、 その p型側の 最外の障壁層厚さを 10〜30 ηπιとする態様が挙げられる。 これによつて、 p 型クラッド層以後の層を成長させるときの熱や、 ガスによる損傷を井戸層が受け 難くなるのでダメージが軽減され、 また、 p型層からのドーパント材料 (Mgな ど) が井戸層に拡散することが低減され、 さらには井戸層にかかる歪みも低減さ れるので、 出力が向上するだけでなく、 素子が長寿命化するという作用効果も得 られる。  In a preferred embodiment of the MQW structure according to the present invention, the outermost barrier layer is always present on the p-type cladding layer side (that is, the above-described embodiment (1) or (3)), and the outermost barrier layer thickness on the p-type side is as follows. Is set to 10 to 30 ηπι. As a result, the well layer is less likely to be damaged by heat or gas when growing the layers subsequent to the p-type cladding layer, thereby reducing the damage. In addition, the dopant material (such as Mg) from the p-type layer is reduced. Since diffusion into the well layer is reduced and the strain applied to the well layer is also reduced, not only the output is improved, but also the effect of extending the life of the element is obtained.
障壁層の材料は、 I nG a N井戸層に対し、 障壁層となり得るパンドギャップ を有する G a N系半導体材料であればよいが、 本発明では、 好ましい材料として G a Nを推奨する。 従来の MQW構造では、 井戸層内へのキャリアの閉じ込めを配慮し、 井戸層よ りもパンドギャップの十分に大きな障壁層を用いている。 特に、 紫外線発光素子 の場合、 青色発光素子などに比べ井戸層自体のパンドギャップが大きいため、 障 壁層にはさらにパンドギャップの大きい材料を用いる必要があった。 例えば、 井 戸層を I nGaN(I n組成 0. 03 )とした場合、 障壁層ゃクラッド層には A 1 G a Nが用いられるなどである。 The material of the barrier layer may be a GaN-based semiconductor material having a band gap that can serve as a barrier layer for the InGaN well layer. In the present invention, GaN is recommended as a preferable material. In the conventional MQW structure, a barrier layer with a sufficiently larger band gap than the well layer is used in consideration of confinement of carriers in the well layer. In particular, in the case of an ultraviolet light emitting element, the band gap of the well layer itself is larger than that of a blue light emitting element or the like. Therefore, it is necessary to use a material having a larger band gap for the barrier layer. For example, when the well layer is made of InGaN (In composition 0.03), A 1 GaN is used for the barrier layer and the cladding layer.
これに対して本発明では、 I nG a N井戸層と A 1 G a N障壁層との組合せで は、 結晶成長温度の最適値が互いに大きく異なる事に着目し、 これを問題として 取り上げている。 即ち、 A 1 G a Nの組成である A 1 Nは、 G a Nに比べ高融点 であり、 I nG a Nの組成である I nNは、 G a Nに比べ低融点である。 具体的 な結晶成長の最適温度は、 G a Nが 1000°Cであり、 I n G a Nが 1000。C 以下 (好ましくは 600〜800。C程度) 、 A 1 G a Nは G a N以上である。 よ つて、 I nGaN井戸層と、 A 1 G a N障壁層とを組合せると、 井戸層の成長時 と、 障壁層の成長時とで、 成長温度をそれぞれの好ましい値へと大きく変えなけ れば、 それぞれ好ましい結晶品質の層は得られない。  On the other hand, in the present invention, the combination of the InGaN well layer and the A1GaN barrier layer focuses on the fact that the optimum values of the crystal growth temperatures are greatly different from each other, and this is taken up as a problem. . That is, A 1 N having a composition of A 1 GaN has a higher melting point than GaN, and InN having a composition of In GaN has a lower melting point than GaN. Specifically, the optimum temperature for crystal growth is 1000 ° C for GaN and 1000 for InGaN. C or less (preferably about 600 to 800; about C), A 1 G aN is G a N or more. Therefore, when the InGaN well layer and the A1GaN barrier layer are combined, the growth temperature must be significantly changed between the growth of the well layer and the growth of the barrier layer to the respective preferable values. In this case, a layer having a preferable crystal quality cannot be obtained.
しかし、 成長温度を井戸層 Z障壁層毎に変化させることは成長中断を設ける事 となり、 3 nm程度の薄膜である井戸層では、 この成長中断中にエッチング作用 により厚さが変動したり、 表面に結晶欠陥が入る等の問題が生じる。  However, changing the growth temperature for each of the well layers and the Z barrier layers causes a growth interruption, and the thickness of the well layer, which is a thin film of about 3 nm, changes due to the etching action during the growth interruption, or the surface of the surface changes. There is a problem that crystal defects enter the crystal.
これらトレードオフの関係が有る為、 A 1 G a N障壁層、 I n G a N井戸層の 組合せで高品質な物を得るのは困難である。 また、 障壁層を A 1 GaNとする事 で井戸層へ歪みがかかる問題もあり、 高出力化の妨げになる。  Because of these trade-offs, it is difficult to obtain a high-quality product by combining the A1GaN barrier layer and the InGaN well layer. In addition, there is a problem that the well layer is distorted when the barrier layer is made of A 1 GaN, which hinders high output.
そこで、 本発明では、 障壁層の材料として G a Nを用い、 上記トレードオフの 問題を軽減させている。 これによつて、 障壁層と井戸層とのバンドギャップ差は 小さくなるが、 両層の結晶品質が改善される結果、 総合的には出力が向上する。 なお、 I nGaN系材料として、 I n G a Nに A 1を混入した A 1 I n G a N を井戸層として用いてもよく、 これによつて I n GaNの場合と等しい作用効果 を得ることが可能である。 さらに本発明では、 I nG a N井戸層と A 1 G a N障壁層との組合せに関する 上記問題の解決に関連して、 結晶基板と井戸層との間 (後述する A 1 N低温成長 バッファ層の直上に A 1 G a N下地層を形成する態様では、 該 A 1 G a N下地層 と井戸層との間) に A 1 Ga N層を存在させない態様を推奨する。 これによつて 、 結晶成長温度差に起因する上記問題が緩和される。 A 1 Ga N層を存在させな いための具体的な態様例としては、 A 1 G a N層の代わりに G a N層を用いる態 様が挙げられる。 図 1の例では、 GaN低温バッファ層上に、 不純物を添加しな いアンドープの G a N結晶層 (厚さ 0. 1 111〜2. 0 m) を成長させ、 その 上に n型 GaN結晶層 (コンタクト層兼クラッド層) を成長させている。 なお、 アンドープの GaN結晶層は省略してもよい。 また、 n型 GaN結晶層は、 キヤ リア濃度を変えて、 n型 G a Nコンタクト層、 n型 G a Nクラッド層に区別して 設けてもよい。 Therefore, in the present invention, the above trade-off problem is reduced by using GaN as a material for the barrier layer. This reduces the band gap difference between the barrier layer and the well layer, but improves the crystal quality of both layers, resulting in an overall improvement in output. As an InGaN-based material, A1 InGaN in which A1 is mixed into InGaN may be used as a well layer, thereby obtaining the same effect as that of InGaN. It is possible. Further, according to the present invention, in connection with the solution of the above-mentioned problem relating to the combination of the InGaN well layer and the A1GaN barrier layer, between the crystal substrate and the well layer (the A1N low-temperature growth buffer layer described later) In the embodiment in which the A 1 GaN underlayer is formed immediately above the GaN layer, it is recommended that the A 1 GaN layer is not present between the A 1 GaN underlayer and the well layer. This alleviates the above-mentioned problem caused by the crystal growth temperature difference. As a specific example of an embodiment in which the A 1 GaN layer is not present, there is an embodiment in which a GaN layer is used instead of the A 1 GaN layer. In the example shown in Fig. 1, an undoped GaN crystal layer (0.1111 to 2.0 m thick) without impurities is grown on the GaN low-temperature buffer layer, and an n-type GaN crystal Layer (contact layer / cladding layer) is grown. Note that the undoped GaN crystal layer may be omitted. Further, the n-type GaN crystal layer may be provided separately for the n-type GaN contact layer and the n-type GaN clad layer by changing the carrier concentration.
MQW構造の他の好ましい態様として、 井戸層を無添加とし、 障壁層に S iを 添加する態様が挙げられる。  Another preferred embodiment of the MQW structure is one in which the well layer is not added and Si is added to the barrier layer.
図 5は、 障壁層への S i添加によるキャリア濃度と発光出力との関係を示した グラフである。 測定に用いたサンプルでは、 井戸層の数を 6とし、 障壁層の厚さ を 10 nmとしているが、 他の場合も同様である。 同図のグラフから明らかなよ うに、 S i無添加の場合には、 発光出力は小さく、 また、 S i添加量を 5 X 1 0 18cm— 3以上としても発光出力は低下することが判る。 障壁層への S i添加は、 発光強度を増加させる働きがあるため望ましいが、 添加量を多くし過ぎると結晶 性が低下し、 逆に発光強度が低下する。 望ましい S i添加量は 5 X 1 026c π 3 〜 5 X 1 018c m— 3である。 FIG. 5 is a graph showing the relationship between the carrier concentration due to the addition of Si to the barrier layer and the emission output. In the sample used for the measurement, the number of well layers is 6, and the thickness of the barrier layer is 10 nm, but the same applies to other cases. As is evident from the graph in the same figure, when no Si was added, the luminescence output was small, and the luminescence output decreased even when the amount of Si added was 5 × 10 18 cm− 3 or more. . The addition of Si to the barrier layer is desirable because it has the function of increasing the emission intensity. However, if the addition amount is too large, the crystallinity decreases, and conversely, the emission intensity decreases. Desirable Si addition amount is 5 × 10 26 c π 3 to 5 × 10 18 cm— 3 .
成長に用いられる結晶基板は、 G a N系結晶が成長可能なものであればよい。 好ましい結晶基板としては、 例えば、 サファイア (C面、 A面、 R面) 、 S i C (6H、 4H、 3 C) 、 G a N、 A 1 N、 S i、 スピネル、 Z n O、 G a A s、 NGOなどが挙げられる。 また、 これらの結晶を表層として有する基材であって もよい。 なお、 基板の面方位は特に限定されなく、 更にジャスト基板でも良いし オフ角を付与した基板であっても良い。 The crystal substrate used for the growth may be any as long as the GaN-based crystal can be grown. Preferred crystal substrates include, for example, sapphire (C-plane, A-plane, R-plane), SiC (6H, 4H, 3C), GAN, A1N, Si, spinel, ZnO, G a As and NGOs. Further, a substrate having these crystals as a surface layer may be used. The plane orientation of the substrate is not particularly limited, and may be a just substrate. A substrate having an off angle may be used.
結晶基板と G a N系結晶層との間には、 必要に応じてパッファ層を介在させて よい。 なお、 結晶基板として G a Nや、 A 1 N結晶などからなる基板を用いる場 合には、 バッファ層は必須では無い。  A puffer layer may be interposed between the crystal substrate and the GaN-based crystal layer, if necessary. When a substrate made of GaN, A 1 N crystal, or the like is used as the crystal substrate, the buffer layer is not essential.
転位などが少ない高品質な G a N膜を得るには、 G a N膜を成長する下地層と して GaN膜とは格子定数の異なる A 1 GaN膜 (A 1 G a N下地層) を配置す るとよいことがわかった。 A 1 G a N膜の上に G a Nの成長を行うと G a Nには 圧縮応力がかかる。 このような状態で成長を行うと A 1 G a N膜/ G a N膜界面 (正確には A 1 GaN膜上の GaN成長初期) で転位が成長方向と垂直に曲げら れ、 成長方向には伝搬しなくなることがわかった。 つまりこうすることで高品質 な GaN膜が得られる。 この A l GaN下地層を成長するにはさらにその下地に バッファ層を用いることが好ましい。 好ましいバッファ層としては、 GaN系低 温成長バッファ層が挙げられる。 バッファ層の材料、 形成方法、 形成条件は、 公 知技術を参照すればよいが、 G a N系低温成長バッファ層材料としては、 GaN 、 A 1 N、 I nNなどが例示され、 成長温度としては、 300。C〜 600。Cが挙 げられる。 バッファ層の厚さは 10 nm〜50 nm、 特に 20 ηπ!〜 40 nmが 好ましい。 特に好ましい形態としては A 1 Nバッファ層が挙げられる。 図 2に本 態様の素子構造の一例を示す。 同図に示すように、 結晶基板 B上に、 A 1 N低温 成長バッファ層 10を介して G a N系結晶層からなる積層構造 Sが成長しており 、 該 A l N低温成長バッファ層 10の直上に A lxGa iXN (0 < x≤ 1) 下地 層 1 1が形成されている。 To obtain a high-quality GaN film with few dislocations, an A1 GaN film (A1 GaN underlayer) with a different lattice constant from the GaN film is used as the underlayer for growing the GaN film. It turned out that it was good to arrange. When GaN is grown on the A1 GaN film, compressive stress is applied to GaN. When growth is performed in such a state, dislocations are bent perpendicular to the growth direction at the interface between the A 1 GaN film and the GaN film (precisely, the initial stage of GaN growth on the A 1 GaN film). Is no longer propagated. In other words, a high-quality GaN film can be obtained by doing this. In order to grow this AlGaN underlayer, it is preferable to further use a buffer layer as the underlayer. A preferable buffer layer is a GaN-based low-temperature growth buffer layer. The known technology may be referred to for the material, formation method and formation conditions of the buffer layer, but GaN, A1N, InN, etc. are exemplified as the GaN-based low-temperature growth buffer layer material. Is 300. C-600. C is listed. The thickness of the buffer layer is 10 nm to 50 nm, especially 20 ηπ! ~ 40 nm is preferred. A particularly preferred embodiment is an A 1 N buffer layer. FIG. 2 shows an example of the element structure of this embodiment. As shown in the figure, a laminated structure S composed of a GaN-based crystal layer is grown on a crystal substrate B via an A 1 N low-temperature growth buffer layer 10. A l x G aiX N (0 <x≤ 1) underlayer 11 is formed directly above.
A lxGa — XN下地層の最適な厚みは A 1組成 ( xの値) により変動する。 例えば、 A 1組成が 30% (x = 0. 3) の場合、 厚みは 10 nm〜5 m、 特に 50 ηπ!〜 1 μπιが好ましい。 10 nmよりも薄いと上記効果がなくなるた め好ましくない。 また、 5 μπιよりも厚いと G a N層の結晶性が低下するので好 ましくない。 A lxGa - optimal thickness X N underlayer varies by A 1 Composition (value of x). For example, when the A1 composition is 30% (x = 0.3), the thickness is 10 nm to 5 m, especially 50 ηπ! ~ 1 μπι is preferred. If the thickness is less than 10 nm, the above effect is lost, which is not preferable. On the other hand, if the thickness is more than 5 μπι, the crystallinity of the GaN layer is undesirably reduced.
また、 A 1 XG a XN下地層の A 1組成 (xの値) を成長方向に傾斜をかけて も良い。 なお、 A 1組成は、 連続的に変化していてもステップ状に多段に変化し ていても良い。 Further, by applying a gradient A 1 Composition of A 1 X G a X N base layer (value of x) in the growth direction Is also good. The A1 composition may be changed continuously or in multiple steps.
さらに、 A 1 G a N下地層の厚みが厚い (例えば、 A 1組成が 30%の時、 5 00 ηπ!〜 5000 nm程度) 場合、 その上に直接発光部を形成しても良い。 本発明では、 p型コンタクト層を I n G a Nにて形成することは好ましい態様 の 1つである。  Further, when the thickness of the A 1 GaN base layer is large (for example, when the A 1 composition is 30%, about 500 ηπ! To 5000 nm), the light emitting portion may be formed directly thereon. In the present invention, forming the p-type contact layer with InGaN is one of the preferred embodiments.
即ち、 p型 G a Nコンタク ト層を用いた従来の G a N系発光素子では、 p型コ ンタクト抵抗が、 1 X 10—3Ω cm2程度と高く、 良いものでも 1 X 1 (Γ4Ω cm2 程度である。 これに対して、 I nG a Nを p型コンタクト層の材料として用いた 場合、 ァクセプタ準位が浅くなり、 ホール濃度が増加するという利点や、 コンタ クト抵抗が 1 X 10— 6Ω cm2程度にまで下がるという利点が得られる。 That is, in the conventional G a N-based light-emitting element using a p-type G a N contactor coat layer, p-type co Ntakuto resistance, 1 X 10- 3 Ω cm 2 about the high, but may 1 X 1 (gamma is a 4 Omega cm 2 approximately. in contrast, when using the I nG a N as the material of the p-type contact layer, and shallow Akuseputa level, and the advantage that the hole concentration is increased, contour transfected resistance 1 advantage down to about X 10- 6 Ω cm 2 is obtained.
p型電極を形成すべき p型コンタ ト層は、 Mg ドープ I nYG a wN (0 < Y≤ 1) とすることが特に好ましい。 I nG a Ν層成長中のガス雰囲気を Ν2 + ΝΗ3とすることで、 成長後に Mgを活性化させるいわゆる ρ型化処理の条件を 緩和もしくは処理自体を省略することができる。 これは、 成長時のガス雰囲気中 の H2量が少ないと、 Mgを不活性化させる H2の膜中への混入を抑えることがで きるからである。 また、 I nGaNへ Mgをドーピングした時に形成されるァク セプタ準位が浅いために室温でのホールキヤリァ濃度が高くなることによっても 、 p型化処理の条件を緩和もしくは処理自体を省略することができる。 p-type electrode formation p-type contour coat layer to be, it is particularly preferable that the Mg-doped I n Y G a wN (0 <Y≤ 1). By the gas atmosphere in the I nG a New layer growth Ν 2 + ΝΗ 3, it is possible to omit the relaxation or process itself so-called ρ-type processing conditions to activate the Mg after growth. This is because if the amount of H 2 in the gas atmosphere during growth is small, the incorporation of H 2 that inactivates Mg into the film can be suppressed. Also, due to the shallow acceptor level formed when Mg is doped into InGaN, the hole carrier concentration at room temperature becomes high, so that the conditions for the p-type treatment can be relaxed or the treatment itself can be omitted. it can.
p型 I nGaNコンタクト層を紫外線発光素子に応用することで、 発光出力を より向上させることができる。 これは、 上述の理由から p型化処理 (特に熱ァニ ール) の条件を緩和もしくは処理自体を省略することができる結果として、 ドー ピングした不純物の井戸層への拡散を抑制することができるからである。  By applying the p-type InGaN contact layer to an ultraviolet light emitting device, the light emission output can be further improved. This is because the conditions of the p-type treatment (especially thermal annealing) can be relaxed or the treatment itself can be omitted for the above-mentioned reason, and as a result, diffusion of the doped impurities into the well layer can be suppressed. Because you can.
特に、 MQW構造が、 無添加の G a N系結晶からなる井戸層と、 S i添加の G a N系結晶からなる障壁層とによって構成されたものである場合、 熱処理を行わ なくてよいため、 急峻な不純物プロファイルが得られるようになる。 この結果、 発光出力がより向上すると考えられる。 結晶基板上に成長する G a N系結晶層の転位密度を低減させるために、 転位密 度低下のための構造を適宜導入してよい。 転位密度低減のための構造を導入する ことに伴い、 S i 02などの異種材料からなる部分が G a N系結晶層からなる積 層構造中に含まれる場合'もある。 In particular, when the MQW structure is composed of a well layer made of an GaN-based crystal with no addition and a barrier layer made of a GaN-based crystal with Si added, no heat treatment is required. Thus, a steep impurity profile can be obtained. As a result, it is considered that the light emission output is further improved. In order to reduce the dislocation density of the GaN-based crystal layer grown on the crystal substrate, a structure for reducing the dislocation density may be appropriately introduced. With the introduction of a structure for reducing dislocation density, a portion composed of a different material such as SiO 2 may be included in a laminated structure composed of a GaN-based crystal layer.
転位密度低減のための構造としては、 例えば次のものが挙げられる。  As a structure for reducing the dislocation density, for example, the following is mentioned.
(い) 従来公知の選択成長法 (E L O法) を実施し得るように、 結晶基板上にマ スク層 (S i 02などが用いられる) をストライプパターンなどとして形成した 構造。 (I) A structure in which a mask layer (of which SiO 2 or the like is used) is formed as a stripe pattern on a crystal substrate so that a conventionally known selective growth method (ELO method) can be performed.
(ろ) G a N系結晶がラテラル成長やファセット成長をし得るように、 結晶基板 上に、 ドット状、 ストライプ状の凹凸加工を施した構造。  (B) A structure in which dots and stripes are formed on the crystal substrate so that the GaN-based crystal can grow laterally or facetly.
これらの構造とバッファ層とは、 適宜組合せてよい。  These structures and the buffer layer may be appropriately combined.
転位密度低減のための構造のなかでも、 上記 (ろ) は、 マスク層を用いない好 ましい構造である。 以下、 これについて説明する。  Among the structures for reducing the dislocation density, the above (b) is a preferable structure that does not use a mask layer. Hereinafter, this will be described.
凹凸の加工方法としては、 例えば、 通常のフォトリソグラフィ技術を用いて、 目的の凹凸の態様に応じてパターン化し、 R I E技術等を使ってエッチング加工 を施して目的の凹凸を得る方法などが例示される。  Examples of the method of processing the unevenness include a method of forming a pattern according to the desired unevenness using a normal photolithography technique, and performing an etching process using the RIE technique or the like to obtain the desired unevenness. You.
凹凸の配置パターンは、 ドット状の凹部 (または凸部) が配列されたパターン 、 直線状または曲線状の凹溝 (または凸尾根) が一定間隔 ·不定の間隔で配列さ れた、 ストライプ状や同心状のパターンなどが挙げられる。 凸尾根が格子状に交 差したパターンは、 ドット状 (角穴状) の凹部が規則的に配列されたパターンと みることができる。 また、 凹凸の断面形状は、 矩形 (台形を含む) 波状、 三角波 状、 サインカープ状などが挙げられる。  The arrangement pattern of the irregularities is a pattern in which dot-shaped concave parts (or convex parts) are arranged, a linear or curved concave groove (or convex ridge) is arranged at fixed intervals and irregular intervals, Concentric patterns and the like can be mentioned. A pattern in which convex ridges intersect in a grid pattern can be regarded as a pattern in which dot-shaped (square-hole) concave parts are regularly arranged. The cross-sectional shape of the unevenness includes a rectangular (including trapezoidal) wavy shape, a triangular wavy shape, a sine carp shape, and the like.
これら種々の凹凸態様の中でも、 直線状の凹溝 (または凸尾根) が一定間隔で 配列された、 ストライプ状の凹凸パターン' (断面矩形波状) は、 その作製工程を 簡略化できると共に、 パターンの作製が容易であり好ましい。  Among these various concavo-convex modes, the stripe-shaped concavo-convex pattern '(rectangular wave shape in cross section), in which linear concave grooves (or convex ridges) are arranged at regular intervals, can simplify the manufacturing process and improve the pattern shape. Fabrication is easy and preferable.
凹凸のパターンをストライプ状とする場合、 そのストライプの長手方向は任意 であってよいが、 これを埋め込んで成長する G a N系結晶にとって 〈1 1一 2 0 ) 方向とした場合、 横方向成長が抑制され、 {1一 101} 面などの斜めファセ ットが形成され易くなる。 この結果、 基板側から C軸方向に伝搬した転位がこの ファセット面で横方向に曲げられ、 上方に伝搬し難くなり、 低転位密度領域を形 成できる点で特に好ましい。 When the pattern of concavities and convexities is in the form of a stripe, the longitudinal direction of the stripe may be arbitrary, but for a GaN crystal grown by embedding this, <111-200 ) Direction, lateral growth is suppressed, and oblique facets such as {1-1101} planes are easily formed. As a result, dislocations propagating in the C-axis direction from the substrate side are bent laterally on the facet surface, making it difficult to propagate upwards, and being particularly preferable in that a low dislocation density region can be formed.
ストライプの長手方向を、 成長する G a N系結晶にとって 〈ϊ— 100〉 方向 とした場合、 凸部の上部から成長を開始した G a Ν系結晶は、 横方向に高速成長 し、 凹部を空洞として残した状態で GaN系結晶層となる。 ただし、 ストライプ の長手方向を 〈1— 100〉 方向にした場合であっても、 ファセット面が形成さ れやすい成長条件を選ぶ事により 〈1 1一 20〉 方向の場合と同様の効果を得る ことができる。  If the longitudinal direction of the stripe is the <ϊ−100> direction for the growing GaN crystal, the GaN crystal that started growing from the upper part of the convex part grows at high speed in the lateral direction, and the concave part becomes hollow. A GaN-based crystal layer is formed in the state where it remains. However, even when the longitudinal direction of the stripe is set in the <1-100> direction, the same effect as in the case of the <111> direction can be obtained by selecting growth conditions that easily form the facet plane. Can be.
凹凸の断面を矩形波状とする場合の好ましい寸法は次のとおりである。 凹溝の 幅は、 0. 1 π!〜 20 / m、 特に 0. 5 μ m〜 10 μ mが好ましい。 凸部の幅 は、 0. l Aim〜20 /im、 特に 0. 5 μ π!〜 10 mが好ましい。 凹凸の振幅 (凹溝の深さ) は、 凹部、 凸部の内、 広い方の 20%以上の深さがあれば良い。 これらの寸法やそこから計算されるピッチ等は、 他の断面形状の凹凸においても 同様である。 .  Preferable dimensions when the cross section of the unevenness is a rectangular wave shape are as follows. The width of the groove is 0.1 π! To 20 / m, particularly preferably 0.5 μm to 10 μm. The width of the convex part is 0.1 l Aim to 20 / im, especially 0.5 μπ! ~ 10 m is preferred. The amplitude of the unevenness (depth of the concave groove) should be at least 20% of the larger of the concave and convex portions. These dimensions and the pitch calculated therefrom are the same for the irregularities of other cross-sectional shapes. .
G a N系結晶層の成長方法としては、 HVPE法、 MOVPE法、 MB 法な どが拳げられる。 厚膜を作製する場合は H VP E法が好ましいが、 薄膜を形成す る場合は MO VP E法や MB E法が好ましい。  GaN-based crystal layers can be grown by HVPE, MOVPE, MB, etc. When forming a thick film, the HVP E method is preferable, but when forming a thin film, the MOVPE method or the MBE method is preferable.
. 実施例  . Example
実施例 1 Example 1
本実施例では、 図 1に示す紫外線 LEDを製作し、 障壁層の厚さを 10 nmに 固定して、 井戸層の数を 1〜25とした計 25種類のサンプルを形成し、 各々の 出力を測定した。 素子形成プロセスは次のとおりである。  In this example, the ultraviolet LED shown in Fig. 1 was manufactured, the thickness of the barrier layer was fixed at 10 nm, and the number of well layers was 1 to 25 to form a total of 25 types of samples. Was measured. The element forming process is as follows.
各サンプルいずれも、 先ず、 MOVPE装置に C面サファイア基板を装着し、 水素雰囲気下で 1100°Cまで昇温し、 サーマルエッチングを行った。 温度を 5 00。Cまで下げ、 III 族原料としてトリメチルガリウム (以下 TMG) を、 N原 料としてアンモニアを流し、 厚さ 30 nmの G a N低温バッファ層を成長させた 続いて温度を 1000°Cに昇温し、 原料として TMG、 アンモニアを流し、 ァ ンドープの G a N結晶層 1を 成長させた後、 S i H4を流し、 S i ドープ の n型 G a N結晶層 '(コンタクト層兼クラッド層) を 3 μπι成長させた。 First, for each sample, a C-plane sapphire substrate was mounted on a MOVPE apparatus, and the temperature was increased to 1100 ° C in a hydrogen atmosphere, and thermal etching was performed. The temperature is 500. C, and trimethylgallium (TMG) as Group III raw material A low-temperature GaN buffer layer with a thickness of 30 nm was grown by flowing ammonia as a feedstock.The temperature was then raised to 1000 ° C, TMG and ammonia were flowed as raw materials, and an undoped GaN crystal layer 1 After growing Si, Si H 4 was flowed to grow a Si-doped n-type GaN crystal layer ′ (contact layer / cladding layer) at 3 μπι.
〔量子井戸構造〕  (Quantum well structure)
温度を 800°Cに低下させた後、 S iを 5 X 1 017c m— 3添加した G a N障壁 層 (厚さ 10 nm) と、 I nGaN井戸層 (発光波長 380 nm、 I n組成は 0 . 03、 厚さ 3 nm) とのペアを、 各サンプル毎に変えて、 1〜 25とした。 さ らに、 いずれのサンプルにおいても、 p層に接する最後の G a N障壁層 (S iを 5 X 1017c m— 3添加、 厚さ 20 nm) を形成した。 After lowering the temperature to 800 ° C, a GaN barrier layer (10 nm thick) with Si added at 5 × 10 17 cm— 3 and an InGaN well layer (emission wavelength 380 nm, In composition (0.03, thickness 3 nm) was changed from 1 to 25 for each sample. In addition, in each of the samples, the last GaN barrier layer (Si added at 5 × 10 17 cm— 3 , thickness 20 nm) in contact with the p layer was formed.
各サンプルいずれも、 成長温度を 1000°Cに昇温後、 厚さ 30 nmの p型 A 1 GaNクラッド層 4、 厚さ 50 nmの p型 GaNコンタクト層を順に形成し、 発光波長 380 nmの紫外 LEDウェハとし、 さらに、 電極形成、 素子分離を行 い、 紫外線 LEDチップとした。  After increasing the growth temperature to 1000 ° C for each sample, a 30-nm-thick p-type A1 GaN cladding layer 4 and a 50-nm-thick p-type GaN contact layer were sequentially formed, and the emission wavelength was 380 nm. An ultraviolet LED wafer was used, electrodes were formed, and elements were separated.
上記で得られた井戸層数の異なる紫外線 L E Dチップのサンプルを、 各々ベア チップ状態で 2 OmA通電にて波長 380 n mでの出力を測定したところ、 図 3 に示すように、 井戸層の数と出力との関係を示すグラフが得られた。 上述したと おり、 井戸層の数は、 出力 2 mW以上が得られる 2〜 20とすべきであって、 特 に 6〜15は、 発光出力として 5 mW以上が得られる好ましい井戸層数であるこ と力 Sわ力つ 7こ。  Samples of the UV LED chips with different numbers of well layers obtained above were measured at a wavelength of 380 nm by applying a current of 2 OmA in a bare chip state, and as shown in Fig. 3, the number of well layers A graph showing the relationship with the output was obtained. As described above, the number of well layers should be 2 to 20 which can provide an output of 2 mW or more, and especially 6 to 15 is a preferable number of well layers which can provide a light output of 5 mW or more. And power S woratsu 7
実施例 2 Example 2
本実施例では、 上記実施例 1と同様のプロセスにて、 図 1に示す紫外線 LED を製作し、 井戸層の数を 6に固定して、 障壁層の厚さを 3 nm〜40 nmまで変 化させたサンプルを形成し、 各々の出力を測定した。  In this embodiment, the ultraviolet LED shown in Fig. 1 was manufactured by the same process as in the first embodiment, and the number of well layers was fixed at 6, and the thickness of the barrier layer was changed from 3 nm to 40 nm. A sample was prepared and the output of each sample was measured.
本実施例で得られた障壁層厚さの異なる紫外線 L E Dチップのサンプルを、 各 々ベアチップ状態で 2 OmA通電にて波長 380 n mでの出力を測定したところ 、 図 4に示すような、 障壁層厚さと出力との関係を示すグラフが得られた。 上述 したとおり、 障壁層厚さは、 出力 2mW以上が得られる 7 ηπ!〜 30 nmとすべ きであって、 特に、 8 ηπ!〜 15 nmは、 発光出力として 5 mW以上が得られる 好ましい障壁層厚さであることがわかった。 When the output of the sample of the UV LED chips having different barrier layer thicknesses obtained in the present example was measured at a wavelength of 380 nm by applying a current of 2 OmA in a bare chip state, As shown in FIG. 4, a graph showing the relationship between the thickness of the barrier layer and the output was obtained. As described above, the barrier layer thickness is 7 ηπ! 3030 nm, especially 8 ηπ! It was found that 15 nm is a preferable thickness of the barrier layer that can obtain a light emission output of 5 mW or more.
上記実施例 1では障壁層の厚さを 1種類に固定し、 上記実施例 2では井戸層の 数を 1種類に固定したが、 上記素子形成プロセスと同様にして、 障壁層の厚さを 7〜 30 nmの範囲で変えたサンプルを製作し、 各々の厚さにおいて、 井戸層の 数を 2〜20の範囲で変化させた素子サンプルを形成したところ、 いずれの障壁 層厚さの場合でも、 井戸層の数の変化については図 3と相似的な曲線が得られ、 いずれの井戸数の場合でも、 障壁層の厚さ変化については図 4と同様の傾向を示 す曲線が得られることがわかった。  In the first embodiment, the thickness of the barrier layer is fixed to one type, and in the second embodiment, the number of the well layers is fixed to one type. Samples with different thicknesses in the range of ~ 30 nm were fabricated, and element samples with the number of well layers varied in the range of 2 to 20 were formed for each thickness. A curve similar to that in Fig. 3 was obtained for the change in the number of well layers, and a curve showing the same tendency as in Fig. 4 was obtained for the change in the thickness of the barrier layer for any number of wells. all right.
実施例 3 Example 3
本実施例では、 上記実施例 1および 2で製作した全てのサンプルについて、 G a N低温バッファ層を A 1 N低温バッファ層どし、 アンドープ G a N結晶層を A I GaN下地層とし、 p型 G a Nコンタクト層を p型 I nG a Nコンタクト層と して紫外線 LEDのサンプルを製作し、 各々の出力を測定した。 素子形成プロセ スは次のとおりである。  In this example, for all the samples manufactured in Examples 1 and 2, the GaN low-temperature buffer layer was used as the A1N low-temperature buffer layer, the undoped GaN crystal layer was used as the AI GaN underlayer, and the p-type Ultraviolet LED samples were fabricated using the GaN contact layer as a p-type InGaN contact layer, and the output of each sample was measured. The device formation process is as follows.
各サンプルいずれも、 先ず、 MOVPE装置に C面サファイア基板を装着し、 水素雰囲気下で 1 100°Cまで昇温し、 サーマルエッチングを行った。 温度を 3 50°Cまで下げ、 III 族原料としてトリメチルアルミニウム (以下 TMA) を、 First, for each sample, a C-plane sapphire substrate was mounted on a MOVPE apparatus, and the temperature was increased to 1100 ° C in a hydrogen atmosphere to perform thermal etching. The temperature was lowered to 350 ° C, and trimethylaluminum (TMA)
N原料としてアンモニアを流し、 厚さ 20 nmの A 1 N低温バッファ層を成長さ せた。 Ammonia was flowed as an N source, and a 20-nm-thick A1N low-temperature buffer layer was grown.
続いて温度を 1000。Cに昇温し、 原料として TMA、 TMG、 アンモニアを 流し、 A 1組成 10%のアンドープの A 1 G a N結晶層 (下地層) 1を 20 O n m成長させた後、 TMA供給を止め、 S i H4を流し、 S i ドープの n型 GaN 結晶層 (コンタクト層兼クラッド層) を 4 μπι成長させた。 その後、 実施例 1お よび 2と同様にして MQW構造を形成した。 各サンプルいずれも、 成長温度を 1000。Cに昇温後、 厚さ 30 nmの p型 A I GaNクラッド層 4、 厚さ 5011111の1)型0&]^層、 厚さ 5 nmの p型 I nG a Nコンタク ト層 (I n組成 10%) を順に形成し、 発光波長 380 n mの紫外 LEDウェハとし、 さらに、 電極形成、 素子分離を行い、 紫外線 LEDチップと した。 Then the temperature is 1000. The temperature was raised to C, and TMA, TMG, and ammonia were flowed as raw materials. After growing an undoped A 1 GaN crystal layer (underlayer) 1 having a composition of A 1 of 20% by 20 O nm, the supply of TMA was stopped. S i H 4 flushed, n-type GaN crystal layer S i doped (contact layer and the cladding layer) 4 was μπι growth. Thereafter, an MQW structure was formed in the same manner as in Examples 1 and 2. Each sample has a growth temperature of 1000. After heating to C, p-type AI GaN cladding layer 4 with a thickness of 30 nm, 1) type 0 &] ^ layer with a thickness of 5011111, p-type InGaN contact layer with a thickness of 5 nm (In composition 10 %) In order to form an ultraviolet LED wafer with an emission wavelength of 380 nm, followed by electrode formation and element separation to obtain an ultraviolet LED chip.
上記で得られた紫外線 LEDチップのサンプルを、 各々ベアチップ状態で 20 mA通電にて波長 380 nmでの出力を測定したところ、 いずれのサンプルも、 実施例 1および 2のサンプルと比較して、 10%〜30%程度の出力の向上が見 られた。  When the output of the ultraviolet LED chip samples obtained above was measured at a wavelength of 380 nm by applying a current of 20 mA in a bare chip state, each sample was compared with the samples of Examples 1 and 2 by 10%. Output improvement of about% to 30% was observed.
産業上の利用分野  Industrial applications
以上のように、 MQW構造として、 井戸層の数を 2〜20とし、 障壁層の厚さ を 7 nm〜30 nmとすることによって、 I nG a N系材料、.特に I nG a Nを 発光層の材料として用いた紫外線素子でありながら、 従来に無い高い出力が得ら れるようになった。  As described above, in the MQW structure, the number of well layers is set to 2 to 20, and the thickness of the barrier layer is set to 7 nm to 30 nm, thereby emitting InGaN-based materials, particularly InGaN. Despite being an ultraviolet element used as a material for the layer, a higher output than ever before can be obtained.
本出願は、 日本で出願された特願 2001— 350615、 特願 2002— 0 73871を基礎としておりそれらの内容は本明細書に全て包含される。  This application is based on patent application Nos. 2001-350615 and 2002-073871 filed in Japan, the contents of which are incorporated in full herein.

Claims

請求の範囲 The scope of the claims
1. 結晶基板上に、 バッファ層を介してまたは直接的に、 G a N系結晶層からな る積層構造が形成され、 該積層構造には、 p型層と n型層とを有して構成される 発光部が含まれている G a N系半導体発光素子であって、  1. A stacked structure composed of a GaN-based crystal layer is formed on a crystal substrate via a buffer layer or directly, and the stacked structure includes a p-type layer and an n-type layer. A G a N based semiconductor light emitting device including a light emitting portion,
該発光部は多重量子井戸構造を有し、 かつ、 井戸層が紫外線発光可能な I nG a N系材料からなり、 井戸層の数が 2〜 20、 障壁層の厚さが 7 ηπ!〜 30 nm であることを特徴とする紫外線発光素子。  The light emitting section has a multiple quantum well structure, and the well layer is made of an InGaN-based material capable of emitting ultraviolet light. The number of well layers is 2 to 20, and the thickness of the barrier layer is 7 ηπ! An ultraviolet light emitting device having a wavelength of up to 30 nm.
2. 上記積層構造が A 1 N低温成長バッファ層を介して結晶基板上に形成された ものであって、 該 A 1 N低温成長バッファ層の直上に A 1 XG a (0 < x≤ 1) 下地層が形成されていることを特徴とする請求の範囲 1記載の紫外線発光素 子。 2. The above laminated structure is formed on a crystal substrate via an A 1 N low-temperature growth buffer layer, and A 1 X G a (0 <x ≤ 1 2. The ultraviolet light emitting device according to claim 1, wherein an underlayer is formed.
3. A 1 XG a X.XN (0 < x≤ l) 下地層と井戸層との間に、 A l G aNからな る層がないことを特徴とする請求の範囲 2記載の紫外線発光素子。 3. A 1 X G a X. X N (0 <x≤ l) between the base layer and the well layer, UV according to claim 2, wherein, wherein there is no A l G aN Tona Ru layer Light emitting element.
4. 上記積層構造中の p型層と II型層との位置関係が p型 ϋを上側とするもので あって、 ρ型コンタクト層が I nYG & 1_ΥΝ (0 <Υ≤ 1) からなることを特徴 とする請求の範囲 1記載の紫外線発光素子。 4. The positional relationship between the p-type layer and the II-type layer in the above laminated structure is such that the p-type 上 側 is on the upper side and the ρ-type contact layer is In n Y G & 1 _ Υ 0 (0 <Υ≤ 2. The ultraviolet light emitting device according to claim 1, wherein the ultraviolet light emitting device comprises:
5. 上記多重量子井戸構造が ρ型層と接する障壁層を有しており、 該 ρ型層と接 する障壁層の厚さが 10 nm〜30 n mであることを特徴とする請求の範囲 1記 载の紫外線発光素子。  5. The method according to claim 1, wherein the multiple quantum well structure has a barrier layer in contact with the ρ-type layer, and the thickness of the barrier layer in contact with the ρ-type layer is 10 nm to 30 nm. The ultraviolet light emitting device of the above.
6. 上記多重量子井戸構造が、 無添加の G a N系結晶からなる井戸層と、 S i添 加の G a N系結晶からなる障壁層とによって構成されたものである、 請求の範囲 1記載の紫外線発光素子。 6. The multiple quantum well structure according to claim 1, wherein the multiple quantum well structure is constituted by a well layer made of a GaN-based crystal with no addition and a barrier layer made of a GaN-based crystal with Si added. The ultraviolet light-emitting device according to the above.
7. 上記多重量子井戸構造が、 I nxGa i_xN (0<x≤ 1) からなる井戸層と 、 G a Nからなる障壁層とによって構成されたものである、 請求の範囲 1記載の 紫外線発光素子。 7. the multiple quantum well structure is one that is configured and the well layer made of I n x G ai _ x N (0 <x≤ 1), by a barrier layer consisting of G a N, claims 1 The ultraviolet light emitting device according to the above.
8. 上記 I nxG a i_xNの I n組成 Xが、 0<x≤0. 1 1である、 請求の範囲 7記載の紫外線発光素子。 8. The above I n x G ai _ x N of I n composition X is, 0 <x≤0. 1 is a 1, the ultraviolet light-emitting element in the range 7 wherein claims.
9. 結晶基板と井戸層との間に、 A 1 G aNからなる層がないことを特徴とする 請求の範囲 1記載の紫外線発光素子。 9. The ultraviolet light emitting device according to claim 1, wherein there is no layer made of A 1 GaN between the crystal substrate and the well layer.
10. 結晶基板が表面に凹凸を加工されたものであり、 GaN系結晶層が該凹凸 を覆つて気相成長し積層構造となっている、 請求の範囲 1記載の紫外線発光素子 0 10. are those crystalline substrate is processed rough surface, GaN-based crystal layer is a laminated structure grown covered connexion gas phase uneven, ultraviolet light emitting devices 0 according to claim 1, wherein
PCT/JP2002/011770 2001-11-15 2002-11-12 Ultraviolet emitting device WO2003043097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020047007434A KR100709058B1 (en) 2001-11-15 2002-11-12 Ultraviolet emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001350615 2001-11-15
JP2001-350615 2001-11-15
JP2002-73871 2002-03-18
JP2002073871A JP2003218396A (en) 2001-11-15 2002-03-18 Ultraviolet-ray emitting element

Publications (1)

Publication Number Publication Date
WO2003043097A1 true WO2003043097A1 (en) 2003-05-22

Family

ID=26624542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011770 WO2003043097A1 (en) 2001-11-15 2002-11-12 Ultraviolet emitting device

Country Status (5)

Country Link
JP (1) JP2003218396A (en)
KR (1) KR100709058B1 (en)
CN (1) CN100355094C (en)
TW (1) TW567620B (en)
WO (1) WO2003043097A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334739C (en) * 2005-04-27 2007-08-29 中国科学院上海技术物理研究所 Ultraviolet dual wave-band gallium nitride detector
WO2008056637A1 (en) * 2006-11-08 2008-05-15 Showa Denko K.K. Method for manufacturing iii nitride compound semiconductor light emitting element, iii nitride compound semiconductor light emitting element and lamp
WO2008075559A1 (en) * 2006-12-20 2008-06-26 Showa Denko K.K. Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1673815B1 (en) 2003-10-14 2019-06-05 Toyoda Gosei Co., Ltd. Group iii nitride semiconductor element and semiconductor devices incorporating the same
JP2006100475A (en) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2007042944A (en) * 2005-08-04 2007-02-15 Rohm Co Ltd Method of manufacturing nitride semiconductor element
US20080258131A1 (en) * 2005-09-30 2008-10-23 Seoul Opto-Device Co., Ltd. Light Emitting Diode
JP5151139B2 (en) * 2006-12-19 2013-02-27 住友電気工業株式会社 Semiconductor light emitting device
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
KR101364169B1 (en) * 2007-03-30 2014-02-17 서울바이오시스 주식회사 Near-uv light emitting diode having barrier layer of superlattice structure
EP1976031A3 (en) 2007-03-29 2010-09-08 Seoul Opto Device Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
KR20100037169A (en) * 2007-08-08 2010-04-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Nonpolar iii-nitride light emitting diodes with long wavelength emission
KR100877774B1 (en) 2007-09-10 2009-01-16 서울옵토디바이스주식회사 Light emitting diode with improved structure
CN102136533A (en) * 2008-01-24 2011-07-27 晶元光电股份有限公司 Method for manufacturing light-emitting element
TWI466314B (en) * 2008-03-05 2014-12-21 Advanced Optoelectronic Tech Light emitting device of iii-nitride based semiconductor
KR101017396B1 (en) * 2008-08-20 2011-02-28 서울옵토디바이스주식회사 Light emitting diode having modulation doped layer
JP5671244B2 (en) 2010-03-08 2015-02-18 日亜化学工業株式会社 Nitride semiconductor light emitting device
KR101990095B1 (en) * 2011-07-11 2019-06-18 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, and light emitting device package
KR101262725B1 (en) * 2011-08-08 2013-05-09 일진엘이디(주) Nitride based light emitting diode with excellent effect of blocking leakage current and manufacturing method thereof
EP2618388B1 (en) * 2012-01-20 2019-10-02 OSRAM Opto Semiconductors GmbH Light-emitting diode chip
CN104205369A (en) * 2012-03-19 2014-12-10 皇家飞利浦有限公司 Light emitting device grown on a silicon substrate
KR101983775B1 (en) * 2012-10-25 2019-09-03 엘지이노텍 주식회사 Light emitting device
KR102019751B1 (en) * 2013-01-29 2019-09-09 엘지이노텍 주식회사 Light emitting device
JP2014154840A (en) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp Manufacturing method of m-diagonal nitride-based light-emitting diode
CN104157754B (en) * 2014-07-03 2017-01-11 华南理工大学 InGaN/GaN multiple quantum well growing on W substrate and preparation method thereof
CN104518059A (en) * 2014-11-06 2015-04-15 聚灿光电科技(苏州)有限公司 Epitaxy structure and growth method thereof based on GaN-based quantum well
KR101803929B1 (en) * 2016-03-10 2018-01-11 주식회사 소프트에피 Light emitting device emiting near-uv rays and iii-nitride semiconductor template used for the smae
US11158995B2 (en) * 2018-06-01 2021-10-26 Visual Photonics Epitaxy Co., Ltd. Laser diode with defect blocking layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111558A (en) * 1994-10-07 1996-04-30 Hitachi Ltd Semiconductor laser element
EP0732754A2 (en) * 1995-03-17 1996-09-18 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JPH09293897A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Semiconductor element and manufacture thereof
JP2000331947A (en) * 1999-03-17 2000-11-30 Mitsubishi Cable Ind Ltd Semiconductor base material and manufacture thereof
JP2001102629A (en) * 1999-09-28 2001-04-13 Nichia Chem Ind Ltd Nitride semiconductor element
JP2001168384A (en) * 1999-12-08 2001-06-22 Nichia Chem Ind Ltd Nitride semiconductor light emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936423A (en) * 1995-07-24 1997-02-07 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111558A (en) * 1994-10-07 1996-04-30 Hitachi Ltd Semiconductor laser element
EP0732754A2 (en) * 1995-03-17 1996-09-18 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JPH09293897A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Semiconductor element and manufacture thereof
JP2000331947A (en) * 1999-03-17 2000-11-30 Mitsubishi Cable Ind Ltd Semiconductor base material and manufacture thereof
JP2001102629A (en) * 1999-09-28 2001-04-13 Nichia Chem Ind Ltd Nitride semiconductor element
JP2001168384A (en) * 1999-12-08 2001-06-22 Nichia Chem Ind Ltd Nitride semiconductor light emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA ET AL.: "High-power InGaN/GaN double-heterostructure violet light emitting diodes", APPL. PHYS. LETT., vol. 62, no. 19, 10 May 1993 (1993-05-10), pages 2390 - 2392, XP000367440 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334739C (en) * 2005-04-27 2007-08-29 中国科学院上海技术物理研究所 Ultraviolet dual wave-band gallium nitride detector
WO2008056637A1 (en) * 2006-11-08 2008-05-15 Showa Denko K.K. Method for manufacturing iii nitride compound semiconductor light emitting element, iii nitride compound semiconductor light emitting element and lamp
JP2008124060A (en) * 2006-11-08 2008-05-29 Showa Denko Kk Group iii nitride compound semiconductor light-emitting element and manufacturing method thereof, and lamp
US8106419B2 (en) 2006-11-08 2012-01-31 Showa Denko K.K. Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
US9040319B2 (en) 2006-11-08 2015-05-26 Toyoda Gosei Co., Ltd. Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
WO2008075559A1 (en) * 2006-12-20 2008-06-26 Showa Denko K.K. Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
JP2008177525A (en) * 2006-12-20 2008-07-31 Showa Denko Kk Method for manufacturing group iii nitride compound semiconductor light-emitting element, the group iii nitride compound semiconductor light-emitting element and lamp
US8273592B2 (en) 2006-12-20 2012-09-25 Showa Denko K.K. Method of manufacturing group-III nitride semiconductor light emitting device, group III nitride semiconductor light emitting device and lamp

Also Published As

Publication number Publication date
KR20040062636A (en) 2004-07-07
KR100709058B1 (en) 2007-04-18
CN1586015A (en) 2005-02-23
TW567620B (en) 2003-12-21
CN100355094C (en) 2007-12-12
JP2003218396A (en) 2003-07-31
TW200300300A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
WO2003043097A1 (en) Ultraviolet emitting device
JP3744211B2 (en) Nitride semiconductor device
JPWO2008153130A1 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor
JP2003101160A (en) Nitride semiconductor element
JP3660446B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2004087908A (en) Nitride semiconductor light-emitting element, method for manufacturing the same, and optical device mounting the same
JPH11298090A (en) Nitride semiconductor element
JP2007036174A (en) Gallium nitride-based light emitting diode
JP3275810B2 (en) Nitride semiconductor light emitting device
JP3896718B2 (en) Nitride semiconductor
KR100625835B1 (en) Nitride Semiconductor Device
JP3651260B2 (en) Nitride semiconductor device
JPH11191639A (en) Nitride semiconductor device
JPH11191637A (en) Nitride semiconductor device
JP2007266401A (en) Nitride semiconductor light-emitting device and manufacturing method therefor
JPH11195812A (en) Nitride semiconductor light-emitting element
JP3819398B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100511530B1 (en) The nitride semiconductor device
JP3857417B2 (en) Nitride semiconductor device
JP3888036B2 (en) Method for growing n-type nitride semiconductor
JP4954407B2 (en) Nitride semiconductor light emitting device
JP2005294306A (en) Nitride semiconductor element
JP4198003B2 (en) Nitride semiconductor light emitting device
JP2003347681A (en) Nitride semiconductor device
JP3800146B2 (en) Method of manufacturing nitride semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028225341

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047007434

Country of ref document: KR

122 Ep: pct application non-entry in european phase