JP2003212888A - Method for producing glucose and/or water-soluble cellooligosaccharide - Google Patents

Method for producing glucose and/or water-soluble cellooligosaccharide

Info

Publication number
JP2003212888A
JP2003212888A JP2002009745A JP2002009745A JP2003212888A JP 2003212888 A JP2003212888 A JP 2003212888A JP 2002009745 A JP2002009745 A JP 2002009745A JP 2002009745 A JP2002009745 A JP 2002009745A JP 2003212888 A JP2003212888 A JP 2003212888A
Authority
JP
Japan
Prior art keywords
water
glucose
cellulose
soluble
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002009745A
Other languages
Japanese (ja)
Other versions
JP4330839B2 (en
Inventor
Shiro Saka
志朗 坂
Katsunobu Ebara
克信 江原
Yuji Matsue
雄二 松江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002009745A priority Critical patent/JP4330839B2/en
Publication of JP2003212888A publication Critical patent/JP2003212888A/en
Application granted granted Critical
Publication of JP4330839B2 publication Critical patent/JP4330839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for efficiently producing glucose and/or a water-soluble cellooligosaccharide from a cellulosic material. <P>SOLUTION: This method for producing glucose and/or the water-soluble cellooligosaccharide comprises hydrolyzing cellulose ≥100 in mean degree of polymerization by contact reaction with supercritical or subcritical water for 0.01-5 s, cooling and then further contact reaction with subcritical water for 1 s to 10 min. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、セルロースを含有
する材料からグルコース及び/又は水溶性セロオリゴ糖
を効率よく製造し得る新規なグルコース及び/又は水溶
性セロオリゴ糖の製造方法に関するものである。 【0002】 【従来の技術】セルロースの構成糖はグルコースであ
り、セルロースを加水分解することにより、セロオリゴ
糖更にはグルコースを得ることができる。グルコース
は、それ自身で重要な食品素材であり、また醗酵するこ
とによりエタノールが得られ、あるいは微生物若しくは
酵素または化学変換することによってフラクトース等の
糖類、クエン酸等の有機酸、ソルビトール等の糖アルコ
ール類等の素材を得ることができる。また、水溶性セロ
オリゴ糖は、各種オリゴ糖と同様に、生理機能が明らか
となりつつあり、機能性食品素材として期待されてい
る。ここで、水溶性セロオリゴ糖とは、グルコースの2
〜12程度の重合体を意味する。 【0003】従来、セルロースから水溶性セロオリゴ糖
やグルコースを得るために多くの研究がなされてきた。
当初は酸による加水分解が試みられ、例えば、濃硫酸を
用いる方法では、前処理によってヘミセルロースを分離
・分解後、80%硫酸でセルロースを加水分解し、その
後希硫酸で後処理をしてグルコースを得るものである。
しかしながら、この方法は、酸によって設備が腐食す
る、硫酸回収にコストがかかる、酸によりグルコースが
さらに分解される等の欠点が明らかとなり、それらの改
善が試みられているが、いまだ実用化には至っていな
い。 【0004】特開平5−31000号公報では、超臨界
また亜臨界状態の水を溶媒として用いて、セルロースの
ほか、天然または合成高分子を加水分解及び/又は熱分
解する方法が開示されている。しかしながら該方法で
は、グルコースの収率は20%〜30%にとどまってい
る。その理由は、加水分解を進めるため反応条件を過酷
にするとグルコースそのものの熱分解が進んでしまう、
一方熱分解を抑制するために反応条件を穏和にすると不
溶解セルロースが残存するためである。 【0005】これらの問題点を解決するため、特開20
01−95594号公報には、セルロースを超臨界水ま
たは亜臨界水で一時的に可溶化し、セルロースの分解物
が反応液中に溶解している間にセルラーゼによる酵素処
理を行ってグルコースおよび水溶性セロオリゴ糖を得る
方法が開示されている。この方法によるグルコースおよ
び水溶性セロオリゴ糖収率は75〜85%であり、有用
な方法であるが、酵素処理時間に30分〜20時間程度
を要しており、生産性はきわめて低い。 【0006】特開平10−327900号公報には、温
度が200〜300℃の亜臨界水にセルロースを接触さ
せて水溶性オリゴ糖を製造し、その後、酵素により糖化
分解してグルコースを製造する方法が開示されている。
しかし、水溶性セロオリゴ糖を80%以上の収率で得る
ための反応時間は15分以上を要し、さらにグルコース
を得るためには、酵素反応によって1〜2時間必要とす
るなど、実用上生産性に問題があった。 【0007】 【発明が解決しようとする課題】本発明は、セルロース
を含有する材料から効率よくグルコース及び/又は水溶
性セロオリゴ糖を製造する方法を提供するものである。 【0008】 【課題を解決するための手段】本発明者らは、セルロー
スを含有する材料から効率よくグルコース及び/又は水
溶性セロオリゴ糖を製造する方法について鋭意研究した
結果、短時間の滞留で超臨界水反応を行わせて、一旦あ
る程度セルロースを低分子化した後、そのまま、亜臨界
水でマイルドに加水分解反応を数分以内で行わせること
により、グルコースの二次分解反応を抑制し、かつ効率
よくグルコース及び/又は水溶性セロオリゴ糖が生成す
ることを見出し、本発明を完成した。 【0009】すなわち、本発明は、平均重合度100以
上のセルロースを、温度250℃以上450℃以下、圧
力15MPa以上450MPaの超臨界水または亜臨界
水と0.01秒以上5秒以下接触反応させ、その後、圧
力15MPa以上450MPa以下、温度250℃以上
350℃以下の亜臨界水と1秒以上10分以下接触反応
させて加水分解することを特徴とするグルコース及び/
又はセロオリゴ糖の製造方法である。 【0010】 【発明の実施の形態】本発明で用いるセルロース原料は
平均重合度100以上のセルロースを含む素材であるな
らその種類を問わない。例えば、製紙用パルプ、化学用
溶解パルプ、精製リンター、粉末セルロース、結晶セル
ロース、麦わら、稲わら、古紙、木材チップ、再生セル
ロース繊維等が挙げられる。これらの中でも、粉体であ
る粉末セルロース、結晶セルロースが取り扱い上好まし
い。パルプ古紙、稲わら、麦わら、木材チップ、再生セ
ルロース繊維のような板状、紙状、線状の素材はあらか
じめ切断、粉砕等の前処理をしてから、酸加水分解、爆
砕等を処理を行ってもかまわない。 【0011】本発明における超臨界水とは、374℃以
上、22.1MPa(臨界点)以上の状態にある水と定
義する。また、亜臨界水とは、臨界点近傍のの状態にあ
る熱水のことであり、250℃以上374℃以下、15
MPa以上22.1MPa以下の水と定義する。本発明
では、セルロ−ス素材を、第一段階として、温度250
℃以上450℃以下、圧力15MPa以上450MPa
の超臨界水または亜臨界水と0.01秒以上5秒以下接
触、反応させ、その後、第二段階として、圧力15MP
a以上450MPa以下、温度250℃以上374℃以
下の亜臨界水と1分以上10分以下接触反応させて、セ
ルロース素材を加水分解し、溶解し、冷却する。 【0012】温度条件はセルロースの収率および物性に
大きく影響する。第一段階で温度が250℃未満の場合
には、生成物中に原料が大部分残存するため、グルコー
ス及び/又は水溶性セロオリゴ糖は収率よく得られず、
一方、450℃を越えると、加水分解および熱分解が過
度に進行し、グルコースの二次分解生成物が生成するよ
うになりグルコース及び/又は水溶性セロオリゴ糖の収
率は低下する。好ましくは、温度350℃以上400℃
以下、圧力25MPa以上である。第二段階での亜臨界
水との接触・反応時間も最終製品であるグルコース及び
/又は水溶性セロオリゴ糖の収率に大きく影響する。接
触時間が1秒未満の場合、反応が充分進行せず、生成物
中に水不溶性セルロースが残存する。10分を越えると
加水分解がおよび熱分解が過度に進行し、グルコース分
解物が多くなってやはり収率が低下する。好ましくは1
0秒以上1分以下である。 【0013】超臨界水または亜臨界水処理を行う装置は
特に限定されないが、反応時間を自由に制御できる流通
式のものが好ましい。第一段階の反応の後、そのまま配
管で冷却し、第二段階の反応機にて反応させる方式がよ
い。図1に本発明で好ましく用いられる反応装置の一例
を概略系統図で示す。水容器1中の水を水ポンプ2で所
定の圧力に昇圧する。その後、ヒーター3で加熱し、所
定の温度に昇温させる。これを加熱水Aとする。一方、
原料セルロースは水と混合してスラリー状態として容器
4に入れる。スラリーポンプ5で昇圧する。これを原料
スラリーBとする。加熱水Aと原料スラリーBは混合し
て超臨界水反応管6を通し第一段階の反応をさせる。そ
の後、冷却水Cを混合して第二段階の反応温度にまで冷
却し、亜臨界水反応管9で第二段階の反応をさせる。そ
の後、冷却器10で50℃以下まで冷却し、フィルター
11で未溶解固形分を除去し、背圧弁12を通して処理
水を容器13に集める。反応器から流出したグルコース
及び/又は水溶性セロオリゴ糖は、常法にしたがい分離
し精製することにより、グルコース精製品やセロオリゴ
糖精製品を得ることができる。また、第二段階の反応器
から流出した水溶液をさらにセルラーゼ等の酵素により
処理を行ってもよい。次に実施例を挙げて本発明を更に
詳細に説明するが、本発明はこれら実施例などにより何
ら限定されるものではない。 【0014】 【実施例1】結晶セルロース(旭化成株式会社製、アビ
セル(登録商標)PH−101)を水に分散し、固形分
4.8重量%のスラリーとした。図1に示す流通式超臨
界水反応装置を用い、原料スラリー1部に対して、あら
かじめ加熱・加圧しておいた超臨界水5部を混合した。
0.8重量%原料の原料スラリーを400℃、40MP
aの条件で0.10秒間滞留させ、反応させた。その
後、40MPaのまま室温の水を反応後のスラリーに混
合して280℃まで冷却後、45秒間反応させた。その
後、冷却器で室温まで冷却、フィルターでろ過して固形
分を除去した後、背圧弁で常圧に戻し、処理水溶液を容
器に集めた。得られた処理水溶液を高速液体クイロマト
グラフィーを用いて成分分析を行った。また、この処理
水溶液を12時間静置し、析出物を観察したが、析出物
は全く認められなかった。これらの結果を表1に示す。
グルコース収率は仕込み原料に対して19.9重量%、
水溶性セルロースオリゴマーは同じく34.0重量%
で、合計53.9重量%であった。また、図2に処理水
溶液のMALDI−TOFMS分析結果を示す。MAL
DI−TOFMSとは、レーザーイオン化・飛行時間型
質量分析計(Matrix-Assisted Lazer Desorption Ioniz
ation-Time of Fleight Mass Spectrometer)である。
図2は左から、分子量336.0、528.0、69
0.5、852.6、1015.1、1177.1、1
339.5、1501.1、1663.7、1825.
6、1998.8に対応し、グルコース2量体(セロビ
オース)から規則的にセロドデカオース(グルコースの
12量体)まで検出された。 【0015】 【実施例2】結晶セルロース(旭化成株式会社製、アビ
セルPH−101)を水に分散し、固形分4重量%のス
ラリーとした。図1に示す流通式超臨界水反応装置を用
い、原料スラリー1部に対して、あらかじめ加熱・加圧
しておいた超臨界水5部を混合した。0.67重量%原
料の原料スラリーを400℃、40MPaの条件で0.
05秒間滞留させ反応させた。その後、40MPaのま
ま室温の水を反応後のスラリーに混合して280℃まで
冷却後、30秒間反応させた。その後、冷却器で室温ま
で冷却、フィルターでろ過して固形分を除去した後、背
圧弁で常圧に戻し、処理溶液を容器に集めた。得られた
処理水溶液を高速液体クイロマトグラフィーを用いて成
分分析を行った。また、この処理水溶液を12時間静置
し、析出物を観察したところ、11.8重量%の白色沈
殿が認められ、これは比較的重合度の大きい不溶性のセ
ルロースII型凝集物であった。これらの結果を表1に示
す。グルコース収率は仕込み原料に対して9.5重量
%、水溶性セルロースオリゴマーは同じく55.4重量
%で、合計64.9重量%であった。また、図2に処理
水溶液のMALDI−TOFMS分析結果を示す。 【0016】 【比較例1】結晶セルロース(旭化成株式会社製、アビ
セルPH−101)を水に分散し、固形分4重量%のス
ラリーとした。図1に示す流通式超臨界水反応装置を用
い、原料スラリー1部に対して、あらかじめ加熱・加圧
しておいた超臨界水5部を混合した。0.67重量%原
料の原料スラリーを400℃、40MPaの条件で0.
20秒間滞留させ反応させた。その後、室温の水を反応
後のスラリーに混合して室温まで冷却し、フィルターで
ろ過して固形分を除去した後、背圧弁で常圧に戻し、処
理水溶液を容器に集めた。得られた処理水溶液を高速液
体クイロマトグラフィーを用いて成分分析を行った。ま
た、この処理水溶液を12時間静置し、析出物を観察し
たが、析出物は全く認められなかった。これらの結果を
表1に示す。グルコース収率は仕込み原料に対して1
0.5重量%、水溶性セルロースオリゴマーは同じく3
2.2重量%で、合計42.7重量%であった。また、
図2に処理水溶液のMALDI−TOFMS分析結果を
示す。実施例1と比較して、*部(グルコース環)の断
片化が進行しており、セロオクタオース(グルコースの
8量体)までしか検出されなかった。 【0017】 【比較例2】結晶セルロース(旭化成株式会社製、アビ
セルPH−101)を水に分散し、固形分4重量%のス
ラリーとした。図1に示す流通式超臨界水反応装置を用
い、原料スラリー1部に対して、あらかじめ加熱・加圧
しておいた亜臨界水5部を混合した。0.67重量%原
料の原料スラリーを280℃、40MPaの条件で6分
滞留させた。その後、室温の水を反応後のスラリーに混
合して室温まで冷却、フィルターでろ過して固形分を除
去した後、背圧弁で常圧に戻し、処理水溶液を容器に集
めた。得られた処理水溶液を高速液体クイロマトグラフ
ィーを用いて成分分析を行った。また、この処理水溶液
を12時間静置し、析出物を観察したが、析出物は全く
認められなかった。これらの結果を表1に示す。グルコ
ース収率は仕込み原料に対して14.8重量%、水溶性
セルロースオリゴマーは同じく5.6重量%で、合計2
0.4重量%であった。一方、フィルターでろ過した固
形分(不溶物)は17.3重量%あった。また、図2に
処理水溶液のMALDI−TOFMS分析結果を示す。
セロペンタオース(グルコースの5量体)までしか検出
されなかった。 【0018】 【表1】 【0019】 【発明の効果】本発明により、セルロースを含有する材
料から、効率良くグルコース及び/又は水溶性セロオリ
ゴ糖を製造する方法が提供できた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel glucose and / or water-soluble cellooligosaccharide capable of efficiently producing glucose and / or water-soluble cellooligosaccharide from a cellulose-containing material. The present invention relates to a method for producing sugar. [0002] Cellulose constituting cellulose is glucose, and cellooligosaccharides and further glucose can be obtained by hydrolyzing cellulose. Glucose is an important food material by itself, and ethanol can be obtained by fermentation, or sugars such as fructose, organic acids such as citric acid, and sugar alcohols such as sorbitol can be obtained by fermentation, or microorganisms or enzymes or chemical conversion. And other materials. In addition, water-soluble cellooligosaccharides, like various oligosaccharides, have been revealed in physiological functions and are expected as functional food materials. Here, the water-soluble cellooligosaccharide is glucose 2
Means up to about 12 polymers. Hitherto, many studies have been made to obtain water-soluble cellooligosaccharides and glucose from cellulose.
Initially, acid hydrolysis was attempted. For example, in the method using concentrated sulfuric acid, hemicellulose was separated and decomposed by pretreatment, then the cellulose was hydrolyzed with 80% sulfuric acid, and then post-treated with dilute sulfuric acid to remove glucose. What you get.
However, this method has the disadvantages that the equipment is corroded by the acid, the cost of recovering sulfuric acid is high, and the glucose is further decomposed by the acid, and the improvement thereof has been attempted. Not reached. JP-A-5-31000 discloses a method for hydrolyzing and / or pyrolyzing natural or synthetic polymers in addition to cellulose using water in a supercritical or subcritical state as a solvent. . However, in this method, the yield of glucose is limited to 20% to 30%. The reason is that if the reaction conditions are severe to promote hydrolysis, the thermal decomposition of glucose itself will proceed,
On the other hand, if the reaction conditions are moderated to suppress thermal decomposition, insoluble cellulose will remain. To solve these problems, Japanese Patent Laid-Open No.
JP-A-01-95594 discloses that cellulose is temporarily solubilized with supercritical water or subcritical water, and an enzyme treatment with cellulase is carried out while a decomposition product of cellulose is dissolved in a reaction solution, so that glucose and water are dissolved. Methods for obtaining sex cellooligosaccharides are disclosed. The yield of glucose and water-soluble cellooligosaccharides obtained by this method is 75 to 85%, which is a useful method, but requires about 30 minutes to 20 hours for the enzyme treatment time, and the productivity is extremely low. [0006] JP-A-10-327900 discloses a method of producing water-soluble oligosaccharides by contacting cellulose with subcritical water at a temperature of 200 to 300 ° C, and then saccharifying and decomposing them with an enzyme to produce glucose. Is disclosed.
However, the reaction time for obtaining a water-soluble cellooligosaccharide in a yield of 80% or more requires 15 minutes or more, and in order to obtain glucose, it takes 1 to 2 hours by enzymatic reaction. There was a problem with sex. [0007] The present invention provides a method for efficiently producing glucose and / or a water-soluble cellooligosaccharide from a cellulose-containing material. Means for Solving the Problems The present inventors have conducted intensive studies on a method for efficiently producing glucose and / or a water-soluble cellooligosaccharide from a cellulose-containing material, and as a result, have found that the method for producing glucose and / or water-soluble cellooligosaccharides with a short residence time results After performing a critical water reaction and once lowering the molecular weight of cellulose to some extent, as it is, by performing a mild hydrolysis reaction in subcritical water within a few minutes, the secondary decomposition reaction of glucose is suppressed, and The present inventors have found that glucose and / or a water-soluble cellooligosaccharide are efficiently produced, and completed the present invention. That is, in the present invention, cellulose having an average degree of polymerization of 100 or more is contact-reacted with supercritical water or subcritical water at a temperature of 250 to 450 ° C. and a pressure of 15 to 450 MPa for 0.01 to 5 seconds. And then reacting with subcritical water having a pressure of 15 MPa or more and 450 MPa or less and a temperature of 250 ° C. or more and 350 ° C. or less for 1 second or more and 10 minutes or less to hydrolyze glucose and / or
Or a method for producing cellooligosaccharides. The cellulose raw material used in the present invention is not limited as long as it is a material containing cellulose having an average degree of polymerization of 100 or more. Examples include papermaking pulp, chemical dissolving pulp, refined linter, powdered cellulose, crystalline cellulose, straw, rice straw, waste paper, wood chips, regenerated cellulose fibers, and the like. Among these, powdered cellulose and crystalline cellulose, which are powders, are preferable in handling. Plate, paper, and linear materials such as pulp waste paper, rice straw, straw, wood chips, and regenerated cellulose fibers must be cut, crushed, and other pre-processed in advance, and then subjected to acid hydrolysis and explosion. You can go. In the present invention, supercritical water is defined as water in a state of 374 ° C. or more and 22.1 MPa (critical point) or more. The subcritical water is hot water in a state near the critical point, and is 250 ° C. or more and 374 ° C. or less.
It is defined as water of not less than MPa and not more than 22.1 MPa. In the present invention, the cellulose material is used as a first step at a temperature of 250 ° C.
℃ to 450 ° C, pressure 15MPa to 450MPa
And contact with supercritical water or subcritical water of 0.01 seconds or more and 5 seconds or less, and then, as a second step, pressure 15MPa
The cellulose material is hydrolyzed, dissolved, and cooled by contacting with subcritical water having a temperature of 250 to 374 ° C. for 1 to 10 minutes. Temperature conditions greatly affect the yield and physical properties of cellulose. If the temperature is less than 250 ° C. in the first step, most of the raw material remains in the product, so that glucose and / or water-soluble cellooligosaccharide cannot be obtained in good yield.
On the other hand, when the temperature exceeds 450 ° C., hydrolysis and thermal decomposition proceed excessively, and secondary decomposition products of glucose are generated, and the yield of glucose and / or water-soluble cellooligosaccharide decreases. Preferably, the temperature is 350 ° C. or more and 400 ° C.
Hereinafter, the pressure is 25 MPa or more. The contact / reaction time with subcritical water in the second stage also has a significant effect on the yield of glucose and / or water-soluble cellooligosaccharide as the final product. If the contact time is less than 1 second, the reaction does not proceed sufficiently and water-insoluble cellulose remains in the product. If the time exceeds 10 minutes, hydrolysis and thermal decomposition proceed excessively, and the amount of decomposed glucose increases, and the yield also decreases. Preferably 1
0 seconds or more and 1 minute or less. The apparatus for performing the supercritical water or subcritical water treatment is not particularly limited, but a flow-type apparatus capable of freely controlling the reaction time is preferable. After the reaction in the first stage, a system in which the reaction is cooled in a pipe as it is and the reaction is performed in a reactor in the second stage is preferable. FIG. 1 is a schematic system diagram showing an example of a reaction apparatus preferably used in the present invention. The water in the water container 1 is raised to a predetermined pressure by the water pump 2. Then, it is heated by the heater 3 and raised to a predetermined temperature. This is designated as heated water A. on the other hand,
The raw material cellulose is mixed with water and put into a container 4 in a slurry state. The pressure is increased by the slurry pump 5. This is designated as raw material slurry B. The heated water A and the raw material slurry B are mixed and passed through the supercritical water reaction tube 6 to cause a first-stage reaction. Thereafter, the cooling water C is mixed and cooled to the reaction temperature of the second stage, and the reaction of the second stage is performed in the subcritical water reaction tube 9. Thereafter, the mixture is cooled to 50 ° C. or lower by the cooler 10, undissolved solids are removed by the filter 11, and the treated water is collected in the container 13 through the back pressure valve 12. The glucose and / or water-soluble cellooligosaccharide flowing out of the reactor can be separated and purified according to a conventional method to obtain a purified glucose product or a purified cellooligosaccharide product. Further, the aqueous solution flowing out of the reactor in the second stage may be further treated with an enzyme such as cellulase. Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples and the like. Example 1 Crystalline cellulose (Avicel (registered trademark) PH-101, manufactured by Asahi Kasei Corporation) was dispersed in water to obtain a slurry having a solid content of 4.8% by weight. Using a flow-type supercritical water reactor shown in FIG. 1, 5 parts of pre-heated and pressurized supercritical water was mixed with 1 part of the raw material slurry.
Raw material slurry of 0.8 wt% raw material at 400 ° C, 40MP
The reaction was allowed to stay for 0.10 seconds under the condition of a. Thereafter, room temperature water was mixed with the slurry after the reaction at 40 MPa, cooled to 280 ° C., and reacted for 45 seconds. Thereafter, the mixture was cooled to a room temperature with a cooler, filtered to remove solids by a filter, and then returned to normal pressure with a back pressure valve, and the treated aqueous solution was collected in a container. The resulting treated aqueous solution was subjected to component analysis using high performance liquid chromatography. Further, the treated aqueous solution was allowed to stand for 12 hours, and a precipitate was observed, but no precipitate was observed. Table 1 shows the results.
The glucose yield was 19.9% by weight based on the charged raw material,
Water-soluble cellulose oligomer is also 34.0% by weight.
And a total of 53.9% by weight. FIG. 2 shows the results of MALDI-TOFMS analysis of the treatment aqueous solution. MAL
DI-TOFMS is a laser ionization and time-of-flight mass spectrometer (Matrix-Assisted Lazer Desorption Ioniz)
ation-Time of Fleight Mass Spectrometer).
FIG. 2 shows, from the left, molecular weights 336.0, 528.0, 69.
0.5, 852.6, 1015.1, 1177.1, 1
339.5, 1501.1, 1663.7, 1825.
6, 19988.8, and was regularly detected from glucose dimer (cellobiose) to cellododecaose (glucose 12-mer). Example 2 Crystalline cellulose (Avicel PH-101, manufactured by Asahi Kasei Corporation) was dispersed in water to obtain a slurry having a solid content of 4% by weight. Using a flow-type supercritical water reactor shown in FIG. 1, 5 parts of pre-heated and pressurized supercritical water was mixed with 1 part of the raw material slurry. A raw material slurry of 0.67% by weight of raw material was added at 400 ° C. and 40 MPa to form a slurry.
The mixture was allowed to stay for 05 seconds to react. Thereafter, room temperature water was mixed with the slurry after the reaction at 40 MPa, cooled to 280 ° C., and reacted for 30 seconds. Thereafter, the mixture was cooled to a room temperature with a cooler, and filtered to remove a solid content by a filter. The resulting treated aqueous solution was subjected to component analysis using high performance liquid chromatography. The treated aqueous solution was allowed to stand for 12 hours, and the precipitate was observed. As a result, 11.8% by weight of a white precipitate was observed, which was an insoluble cellulose type II aggregate having a relatively high degree of polymerization. Table 1 shows the results. The glucose yield was 9.5% by weight and the water-soluble cellulose oligomer was 55.4% by weight based on the charged raw materials, for a total of 64.9% by weight. FIG. 2 shows the results of MALDI-TOFMS analysis of the treatment aqueous solution. Comparative Example 1 Crystalline cellulose (Avicel PH-101, manufactured by Asahi Kasei Corporation) was dispersed in water to obtain a slurry having a solid content of 4% by weight. Using a flow-type supercritical water reactor shown in FIG. 1, 5 parts of pre-heated and pressurized supercritical water was mixed with 1 part of the raw material slurry. A raw material slurry of 0.67% by weight of raw material was added at 400 ° C. and 40 MPa to form a slurry.
The reaction was allowed to stay for 20 seconds. Then, water at room temperature was mixed with the slurry after the reaction, cooled to room temperature, filtered to remove solids, then returned to normal pressure with a back pressure valve, and the treated aqueous solution was collected in a container. The resulting treated aqueous solution was subjected to component analysis using high performance liquid chromatography. Further, the treated aqueous solution was allowed to stand for 12 hours, and a precipitate was observed, but no precipitate was observed. Table 1 shows the results. The glucose yield is 1 for the raw material charged.
0.5% by weight, water-soluble cellulose oligomer
2.2 wt%, for a total of 42.7 wt%. Also,
FIG. 2 shows the result of MALDI-TOFMS analysis of the treatment aqueous solution. Compared with Example 1, fragmentation of the * part (glucose ring) was in progress, and only cellooctaose (octameric glucose) was detected. Comparative Example 2 Crystalline cellulose (Avicel PH-101, manufactured by Asahi Kasei Corporation) was dispersed in water to obtain a slurry having a solid content of 4% by weight. Using the flow-type supercritical water reactor shown in FIG. 1, 5 parts of pre-heated and pressurized subcritical water was mixed with 1 part of the raw material slurry. The raw material slurry of the 0.67% by weight raw material was retained at 280 ° C. and 40 MPa for 6 minutes. Thereafter, water at room temperature was mixed with the slurry after the reaction, cooled to room temperature, filtered to remove solids, and then returned to normal pressure with a back pressure valve, and the treated aqueous solution was collected in a container. The resulting treated aqueous solution was subjected to component analysis using high performance liquid chromatography. Further, the treated aqueous solution was allowed to stand for 12 hours, and a precipitate was observed, but no precipitate was observed. Table 1 shows the results. The glucose yield was 14.8% by weight and the water-soluble cellulose oligomer was 5.6% by weight based on the charged raw materials.
0.4% by weight. On the other hand, the solid content (insoluble matter) filtered by the filter was 17.3% by weight. FIG. 2 shows the results of MALDI-TOFMS analysis of the treatment aqueous solution.
Only up to cellopentaose (a pentamer of glucose) was detected. [Table 1] According to the present invention, a method for efficiently producing glucose and / or a water-soluble cellooligosaccharide from a cellulose-containing material can be provided.

【図面の簡単な説明】 【図1】本発明で使用する超臨界水および亜臨界水反応
装置の一例を概略系統図で示す。 【図2】本発明の実施例1、2、比較例1、2での処理
水溶液のMALDI−TOFMS分析結果である。 【符号の説明】 1 水容器 2 水ポンプ 3 ヒーター 4 セルローススラリー容器 5 セルローススラリーポンプ 6 超臨界水反応管 7 水容器 8 水ポンプ 9 亜臨界水反応管 10 冷却器 11 フィルター 12 背圧弁 13 処理水容器 A 加熱水 B 原料スラリー C 冷却水
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic system diagram showing an example of a supercritical water and subcritical water reactor used in the present invention. FIG. 2 shows the results of MALDI-TOFMS analysis of the treatment aqueous solutions in Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention. [Description of Signs] 1 Water container 2 Water pump 3 Heater 4 Cellulose slurry container 5 Cellulose slurry pump 6 Supercritical water reaction tube 7 Water container 8 Water pump 9 Subcritical water reaction tube 10 Cooler 11 Filter 12 Back pressure valve 13 Treated water Container A Heated water B Raw material slurry C Cooling water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松江 雄二 宮崎県延岡市旭町6丁目4100番地 旭化成 株式会社内 Fターム(参考) 4C057 AA30 BB02 BB04 4C090 AA05 BA24 BD03 BD37 CA20   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yuji Matsue             Asahi Kasei, 6-4100 Asahicho, Nobeoka City, Miyazaki Prefecture             Inside the company F term (reference) 4C057 AA30 BB02 BB04                 4C090 AA05 BA24 BD03 BD37 CA20

Claims (1)

【特許請求の範囲】 【請求項1】 平均重合度100以上のセルロースを、
温度250℃以上450℃以下、圧力15MPa以上4
50MPa以下の超臨界水または亜臨界水と0.01秒
以上5秒以下接触反応させ、その後冷却して、圧力15
MPa以上450MPa以下、温度250℃以上350
℃以下の亜臨界水と1秒以上10分以下接触反応させて
加水分解することを特徴とするグルコース及び/又は水
溶性セロオリゴ糖の製造方法。
Claims: 1. A cellulose having an average degree of polymerization of 100 or more,
Temperature 250 ° C or higher and 450 ° C or lower, pressure 15MPa or higher 4
Contact reaction with supercritical water or subcritical water of 50 MPa or less for 0.01 second or more and 5 seconds or less, and then cooling, and
MPa to 450 MPa, temperature 250 ° C to 350
A process for producing glucose and / or a water-soluble cellooligosaccharide, which is carried out by contact-reacting with subcritical water at a temperature of not more than 1 ° C. for 1 second to 10 minutes for hydrolysis.
JP2002009745A 2002-01-18 2002-01-18 Method for producing glucose and / or water-soluble cellooligosaccharide Expired - Lifetime JP4330839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009745A JP4330839B2 (en) 2002-01-18 2002-01-18 Method for producing glucose and / or water-soluble cellooligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009745A JP4330839B2 (en) 2002-01-18 2002-01-18 Method for producing glucose and / or water-soluble cellooligosaccharide

Publications (2)

Publication Number Publication Date
JP2003212888A true JP2003212888A (en) 2003-07-30
JP4330839B2 JP4330839B2 (en) 2009-09-16

Family

ID=27647669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009745A Expired - Lifetime JP4330839B2 (en) 2002-01-18 2002-01-18 Method for producing glucose and / or water-soluble cellooligosaccharide

Country Status (1)

Country Link
JP (1) JP4330839B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270056A (en) * 2004-03-26 2005-10-06 Hitachi Zosen Corp Method for removing fermentation inhibitory material in hydrolysate
WO2006011479A1 (en) * 2004-07-27 2006-02-02 Asahi Kasei Chemicals Corporation Processes for producing cellooligosaccharide
JP2006223152A (en) * 2005-02-16 2006-08-31 Hitachi Zosen Corp Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis
WO2008050740A1 (en) * 2006-10-26 2008-05-02 Kawasaki Plant Systems Kabushiki Kaisha Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device
CN101886143A (en) * 2010-07-13 2010-11-17 大连理工大学 Method for preparing reducing sugar by hydrolyzing biomass with super-critical/sub-critical water in two steps
CN101899537A (en) * 2010-03-31 2010-12-01 华南理工大学 Method for preparing reducing sugar by supercritical hydrolysis of plant fibers and semi-continuous reactor thereof
EP2157086A4 (en) * 2007-06-21 2010-12-15 J Oil Mills Inc Method for producing glycoside aglycone
JP2010539194A (en) * 2007-09-18 2010-12-16 陳培豪 Method for producing main hydrolyzate for hydrolyzing plant fiber raw material using concentrated sulfuric acid
WO2011016591A1 (en) * 2009-08-06 2011-02-10 강원대학교 산학협력단 Two-stage complex pretreatment process of agricultural byproducts for producing bioethanol under high temperature and high pressure
JP2011136943A (en) * 2009-12-28 2011-07-14 Hitachi Plant Technologies Ltd Synthesis method of acrolein
WO2011111451A1 (en) 2010-03-10 2011-09-15 東レ株式会社 Method for producing pure sugar solution, and method for producing chemical product
WO2011115039A1 (en) 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same
WO2011115040A1 (en) 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same
WO2011162009A1 (en) 2010-06-24 2011-12-29 東レ株式会社 Process for production of aqueous refined sugar solution
WO2012042841A1 (en) * 2010-09-30 2012-04-05 川崎重工業株式会社 Method for saccharifying/breaking down cellulosic biomass and saccharification/breakdown apparatus
WO2012042840A1 (en) 2010-09-30 2012-04-05 川崎重工業株式会社 Method for producing ethanol with cellulosic biomass as starting material
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
WO2013105651A1 (en) 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
WO2013105653A1 (en) 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
WO2013105652A1 (en) 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8568533B2 (en) 2011-05-04 2013-10-29 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
WO2014019043A2 (en) 2012-08-01 2014-02-06 Centro Nacional De Pesquisa Em Energia Em Materias - Cnpem Simultaneous conversion method for sugar cane bagasse using uhtst reactors
US8747561B2 (en) 2011-05-04 2014-06-10 Renmatix, Inc. Cellulose hydrolysis with pH adjustment
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US8765405B2 (en) 2008-12-09 2014-07-01 Toray Industries, Inc. Method for producing sugar liquid
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
WO2015005307A1 (en) 2013-07-09 2015-01-15 東レ株式会社 Method for producing saccharide solution
US8968479B2 (en) 2010-01-19 2015-03-03 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
JP5696310B1 (en) * 2014-07-15 2015-04-08 国立大学法人東北大学 Sludge nutrient recovery method, algae culture method, and algae culture system
WO2015076279A1 (en) 2013-11-22 2015-05-28 東レ株式会社 Method for producing 2,3-butanediol
WO2015098070A1 (en) 2013-12-26 2015-07-02 川崎重工業株式会社 Saccharified solution production method using biomass as raw material, saccharified solution production device, and continuous reactor
US9273329B2 (en) 2011-09-30 2016-03-01 Kawasaki Jukogyo Kabushiki Kaisha Method for producing ethanol using cellulosic biomass as raw material
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270056A (en) * 2004-03-26 2005-10-06 Hitachi Zosen Corp Method for removing fermentation inhibitory material in hydrolysate
WO2006011479A1 (en) * 2004-07-27 2006-02-02 Asahi Kasei Chemicals Corporation Processes for producing cellooligosaccharide
US7947656B2 (en) 2004-07-27 2011-05-24 Asahi Kasei Chemicals Corporation Processes for producing cellooligosaccharide
JP2006223152A (en) * 2005-02-16 2006-08-31 Hitachi Zosen Corp Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis
WO2008050740A1 (en) * 2006-10-26 2008-05-02 Kawasaki Plant Systems Kabushiki Kaisha Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device
JP4990271B2 (en) * 2006-10-26 2012-08-01 川崎重工業株式会社 Method and apparatus for saccharification and decomposition of cellulosic biomass
US8562747B2 (en) 2006-10-26 2013-10-22 Kawasaki Plant Systems Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
EP2520673A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
EP2520671A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
EP2520672A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
CN101715445B (en) * 2007-06-21 2012-01-25 J-制油株式会社 Method for producing glycoside aglycone
EP2157086A4 (en) * 2007-06-21 2010-12-15 J Oil Mills Inc Method for producing glycoside aglycone
US8273906B2 (en) 2007-06-21 2012-09-25 J-Oil Mills, Inc. Method for producing glycoside aglycone
JP2010539194A (en) * 2007-09-18 2010-12-16 陳培豪 Method for producing main hydrolyzate for hydrolyzing plant fiber raw material using concentrated sulfuric acid
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
KR101768561B1 (en) 2008-12-09 2017-08-16 도레이 카부시키가이샤 Method for producing sugar liquid
US10093747B2 (en) 2008-12-09 2018-10-09 Toray Industries, Inc. Method for production sugar liquid
US8765405B2 (en) 2008-12-09 2014-07-01 Toray Industries, Inc. Method for producing sugar liquid
EP2840150A1 (en) 2008-12-09 2015-02-25 Toray Industries, Inc. Method for producing sugar liquid
WO2011016591A1 (en) * 2009-08-06 2011-02-10 강원대학교 산학협력단 Two-stage complex pretreatment process of agricultural byproducts for producing bioethanol under high temperature and high pressure
JP2011136943A (en) * 2009-12-28 2011-07-14 Hitachi Plant Technologies Ltd Synthesis method of acrolein
US9359651B2 (en) 2010-01-19 2016-06-07 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
CN112159869A (en) * 2010-01-19 2021-01-01 瑞恩麦特克斯股份有限公司 Production of fermentable sugars and lignin from biomass using supercritical fluids
CN112159869B (en) * 2010-01-19 2024-04-19 瑞恩麦特克斯股份有限公司 Use of supercritical fluid to produce fermentable sugars and lignin from biomass
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US8968479B2 (en) 2010-01-19 2015-03-03 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
WO2011111451A1 (en) 2010-03-10 2011-09-15 東レ株式会社 Method for producing pure sugar solution, and method for producing chemical product
WO2011115040A1 (en) 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same
US9624516B2 (en) 2010-03-15 2017-04-18 Toray Industries, Inc. Manufacturing method for sugar solution and device for same
US9150895B2 (en) 2010-03-15 2015-10-06 Toray Industries, Inc. Manufacturing method for sugar solution and device for same
WO2011115039A1 (en) 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same
US10266860B2 (en) 2010-03-15 2019-04-23 Toray Industries, Inc. Apparatus that produces sugar solutions from cellulose
CN101899537A (en) * 2010-03-31 2010-12-01 华南理工大学 Method for preparing reducing sugar by supercritical hydrolysis of plant fibers and semi-continuous reactor thereof
WO2011162009A1 (en) 2010-06-24 2011-12-29 東レ株式会社 Process for production of aqueous refined sugar solution
CN101886143A (en) * 2010-07-13 2010-11-17 大连理工大学 Method for preparing reducing sugar by hydrolyzing biomass with super-critical/sub-critical water in two steps
WO2012042841A1 (en) * 2010-09-30 2012-04-05 川崎重工業株式会社 Method for saccharifying/breaking down cellulosic biomass and saccharification/breakdown apparatus
WO2012042840A1 (en) 2010-09-30 2012-04-05 川崎重工業株式会社 Method for producing ethanol with cellulosic biomass as starting material
JPWO2012042841A1 (en) * 2010-09-30 2014-02-03 川崎重工業株式会社 Method and apparatus for saccharification and decomposition of cellulosic biomass
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
JP2014513962A (en) * 2011-05-04 2014-06-19 レンマティックス,インコーポレイテッド Multi-stage cellulose hydrolysis and quench with or without acid
US8747561B2 (en) 2011-05-04 2014-06-10 Renmatix, Inc. Cellulose hydrolysis with pH adjustment
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8568533B2 (en) 2011-05-04 2013-10-29 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
US9273329B2 (en) 2011-09-30 2016-03-01 Kawasaki Jukogyo Kabushiki Kaisha Method for producing ethanol using cellulosic biomass as raw material
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
WO2013105652A1 (en) 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
US10378029B2 (en) 2012-01-13 2019-08-13 Toray Industries, Inc. Method of producing chemical substance
WO2013105653A1 (en) 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
WO2013105651A1 (en) 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
WO2014019043A2 (en) 2012-08-01 2014-02-06 Centro Nacional De Pesquisa Em Energia Em Materias - Cnpem Simultaneous conversion method for sugar cane bagasse using uhtst reactors
US10815501B2 (en) 2013-07-09 2020-10-27 Toray Industries, Inc. Method of producing sugar liquid
US9976160B2 (en) 2013-07-09 2018-05-22 Toray Industries, Inc. Method of producing sugar liquid
WO2015005307A1 (en) 2013-07-09 2015-01-15 東レ株式会社 Method for producing saccharide solution
WO2015076279A1 (en) 2013-11-22 2015-05-28 東レ株式会社 Method for producing 2,3-butanediol
WO2015098070A1 (en) 2013-12-26 2015-07-02 川崎重工業株式会社 Saccharified solution production method using biomass as raw material, saccharified solution production device, and continuous reactor
US10344342B2 (en) 2013-12-26 2019-07-09 Kawasaki Jukogyo Kabushiki Kaisha Method of and apparatus for producing saccharified solution by using biomass as raw material, and continuous reactor
EP3456835A1 (en) 2013-12-26 2019-03-20 Kawasaki Jukogyo Kabushiki Kaisha Continuous reactor for hydrothermally treating cellulosic biomass
JP5696310B1 (en) * 2014-07-15 2015-04-08 国立大学法人東北大学 Sludge nutrient recovery method, algae culture method, and algae culture system
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose

Also Published As

Publication number Publication date
JP4330839B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4330839B2 (en) Method for producing glucose and / or water-soluble cellooligosaccharide
AU2008264871B2 (en) A process for separating biomass components
US4281063A (en) Process for treating cellulosic materials and obtaining glucose therefrom
US6692578B2 (en) Hydrolysis of biomass material
JP7149332B2 (en) Method for producing cellulose, low-dispersion hemicellulose and lignin-dissociated polyphenols from fibrous biomass
US20100048884A1 (en) Solvo-thermal hydrolysis of cellulose
WO2001032715A1 (en) Process for the production of organic products from lignocellulose containing biomass sources
HU197774B (en) Organic solvent process for the hydrolytic saccharification of vegetable materials of starch type
EP3094734B1 (en) Process for fractionation of oligosaccharides from agri-waste
NO334479B1 (en) Use of flocculants to separate the solid residue into hydrolyzed fermentation substrates
US10106862B2 (en) Mixed super critical fluid hydrolysis and alcoholysis of cellulosic materials to form alkyl glycosides and alkyl pentosides
CN112321652B (en) Method for efficiently separating high-quality lignin from biomass
CN105463040A (en) Method for raising yield of xylooligosaccharide
JP2007074993A (en) Method for saccharifying biomass containing hemicellulose and saccharide given by the same
CN105483184A (en) Production method of high-yield xylooligosaccharide
CN113907367A (en) Preparation method of shaddock soluble dietary fiber
CN106748750A (en) A kind of method that lactic acid is prepared by hemicellulose in maize straw
JP2005206468A (en) Method for producing saccharides and solid fuel using biomass as raw material
JPS5953040B2 (en) Manufacturing method of sugar solution
CN115594778B (en) Method for extracting chitin by using acidic eutectic solvent
JPH02117400A (en) Production of xylose
TW201821499A (en) Organosolv pretreatment method of lignocellulosic biomass with low water footprint feature
JP2010083850A (en) Saccharification of lignocellulose and ethanol fermentation method
Moniz et al. Rice straw hemicelluloses: Fractionation processes and potential added-value products
JP5413720B2 (en) Method for producing polysaccharide depolymerized product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term