JP2006223152A - Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis - Google Patents

Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis Download PDF

Info

Publication number
JP2006223152A
JP2006223152A JP2005039456A JP2005039456A JP2006223152A JP 2006223152 A JP2006223152 A JP 2006223152A JP 2005039456 A JP2005039456 A JP 2005039456A JP 2005039456 A JP2005039456 A JP 2005039456A JP 2006223152 A JP2006223152 A JP 2006223152A
Authority
JP
Japan
Prior art keywords
solvent
hydrolysis
cellulose
biomass
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039456A
Other languages
Japanese (ja)
Inventor
Shiro Saka
志朗 坂
Kenichi Nakamori
研一 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005039456A priority Critical patent/JP2006223152A/en
Publication of JP2006223152A publication Critical patent/JP2006223152A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating biomass to efficiently and easily produce monosaccharides or oligosaccharides, optionally polysaccharides. <P>SOLUTION: The method comprises a combination of the step of dissolving polysaccharide-based biomass in cellulose solvent(s) and the step of hydrolyzing the biomass in the solvent(s), thus producing hydrolyzates including monosaccharides, oligosaccharides and polysaccharides. In this method, the cellulose solvent is at least one of solvents involving no acidolysis in the dissolving step among non-aqueous solvents including aldehyde-based ones, SO<SB>2</SB>-amine-based ones, NO-X-based ones, LiCl-based ones, sulfur-containing ones, nitrogen-containing ones, organic acids, organic salts and organic solvents, and solvents involving no acid hydrolysis in the dissolving step among hydrous solvents including amine oxide-based ones, concentrated inorganic acids, concentrated inorganic salts and alkaline ones. The polysaccharide-based biomass is preferably lignocellulose, and the LiCl-based solvent is preferably LiCl/DMAc (lithium chloride/dimethylacetamide). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多糖類系バイオマスから単糖、もしくはオリゴ糖、場合によっては多糖類などの水解物を製造するにあたり、効率的、かつ簡易な処理方法に関する。さらに詳しくは、多糖類系バイオマスをアルデヒド系、SO-アミン系、NO-X系、LiCl系、含硫黄系、含窒素系、有機酸類、有機塩類、有機系溶媒である非水系溶剤で溶解工程において酸分解を伴なわない溶剤、もしくはアミンオキシド系、濃無機酸類、濃無機塩類、アルカリ系である含水系溶剤に代表されるセルロース溶剤で溶解工程において酸加水分解を伴なわない溶剤のうち少なくとも1つへ溶解する工程と、亜臨界流体による処理、超臨界流体による処理、酸による処理、および酵素糖化法のうちの少なくとも1つからなる加水分解工程を組み合わせた処理方法に関する。 The present invention relates to an efficient and simple treatment method for producing hydrolyzate such as monosaccharides or oligosaccharides, and in some cases polysaccharides, from polysaccharide biomass. More specifically, polysaccharide biomass is dissolved in aldehyde-based, SO 2 -amine-based, NO-X-based, LiCl-based, sulfur-containing, nitrogen-containing, organic acids, organic salts, and non-aqueous solvents such as organic solvents. Among the solvents that do not undergo acid decomposition in the process, or those that do not undergo acid hydrolysis in the dissolution process with cellulose oxides typified by amine oxides, concentrated inorganic acids, concentrated inorganic salts, and alkaline water-containing solvents The present invention relates to a treatment method combining a step of dissolving in at least one and a hydrolysis step comprising at least one of a treatment with a subcritical fluid, a treatment with a supercritical fluid, a treatment with an acid, and an enzymatic saccharification method.

多糖類系バイオマス資源を構成し地球上で最大量を誇るものはセルロースあり、そのセルロースの大部分はリグノセルロース(木質資源)の構成物として存在する。近年未利用のリグノセルロースの構成物であるセルロースおよびヘミセルロースから単糖もしくはオリゴ糖を製造し、エタノール発酵や乳酸への発酵、さらにポリ乳酸などの生分解性高分子への変換が注目されている。しかし、自然界に存在するリグノセルロースは結晶性であるセルロース、非晶性であるヘミセルロース、フェノール性の物質であるリグニンで複雑に構成されているもので、さらに、その構成比率は原料によって様々であるため、有用な成分を得ることは容易でない。リグノセルロースから単糖もしくはオリゴ糖を製造することは、六炭糖(C6糖)で構成されるセルロース、および五炭糖(C5糖)、C6糖で構成されるヘミセルロースを加水分解することに他ならないが、結晶性/非晶性の違いにより各々の加水分解反応速度が異なることに由来する種々の解決すべき課題がある。すなわち、非晶構造のヘミセルロースと結晶構造のセルロースとリグニンの混合物を同時に、すなわちリグノセルロースを加水分解に供した場合、加水分解を受けにくく反応速度の遅いセルロースの分解が進行する一方で、ヘミセルロースは比較的容易に加水分解されるため、ヘミセルロースの分解物、すなわち単糖もしくはオリゴ糖は一次反応でさらに分解が進行し過分解が起きる。これはすなわち目的とする糖類の収率を低下させることであり、さらに一般的にその過分解物、例えばフルフラール、5-ヒドロキシメチルフルフラールは後段に位置する種々の発酵に対しての阻害性を有する欠点がある。近年の技術において、上記課題を解決しつつリグノセルロースから有用な成分を効率的に製造するために数々の複雑な処理方法が考案されている。   Cellulose is the polysaccharide biomass resource that boasts the largest amount on earth, and most of the cellulose exists as a constituent of lignocellulose (woody resource). In recent years, monosaccharides or oligosaccharides are produced from cellulose and hemicellulose, which are constituents of unused lignocellulose, and ethanol fermentation, fermentation to lactic acid, and conversion to biodegradable polymers such as polylactic acid have attracted attention. . However, natural lignocellulose is composed of crystalline cellulose, amorphous hemicellulose, and phenolic substance lignin, and the composition ratio varies depending on the raw materials. Therefore, it is not easy to obtain useful components. Manufacture of monosaccharides or oligosaccharides from lignocellulose includes hydrolysis of cellulose composed of hexose sugars (C6 sugars) and hemicellulose composed of pentose sugars (C5 sugars) and C6 sugars. However, there are various problems to be solved due to the difference in the hydrolysis reaction rate depending on the difference between crystalline and amorphous. That is, when a mixture of amorphous structure hemicellulose and crystal structure cellulose and lignin is used at the same time, that is, lignocellulose is subjected to hydrolysis, decomposition of cellulose that is difficult to be hydrolyzed and slow in reaction rate proceeds, Since it is hydrolyzed relatively easily, the degradation product of hemicellulose, that is, monosaccharide or oligosaccharide is further decomposed in the primary reaction, resulting in excessive decomposition. This means that the yield of the target saccharide is lowered, and moreover, its overdegradation product, for example, furfural, 5-hydroxymethylfurfural has an inhibitory effect on various fermentations located in the latter stage. There are drawbacks. In recent years, many complicated processing methods have been devised in order to efficiently produce useful components from lignocellulose while solving the above problems.

近年の技術においては、リグノセルロースからの単糖もしくはオリゴ糖の製造方法としては、酸加水分解法、酵素糖化法、および亜臨界流体もしくは超臨界流体による加溶媒分解(加水分解も含まれる)法の三つの方法が知られている。酸加水分解法に関して、商用ベースでは希硫酸法、濃硫酸法のいずれの場合も、2段階の加水分解とすることにより糖類の収率向上を図っている。これはすなわち第1段の加水分解で比較的分解が容易な非晶性のヘミセルロースの加水分解を行ない、C5糖とC6糖の混合物を過分解することなく分離回収し、第2段の加水分解で結晶性のセルロースをC6糖に変換する2段階加水分解法であり、ここに各段の条件は異なる。ただし、ヘミセルロースからの糖類の回収を無視することにより1段階の加水分解を行なう事例もある。   In recent years, monosaccharides or oligosaccharides produced from lignocellulose include acid hydrolysis, enzymatic saccharification, and solvolysis (including hydrolysis) using subcritical or supercritical fluids. Three methods are known. Regarding the acid hydrolysis method, the yield of saccharides is improved by using a two-stage hydrolysis method for both the dilute sulfuric acid method and the concentrated sulfuric acid method on a commercial basis. In other words, amorphous hemicellulose, which is relatively easily decomposed by the first stage hydrolysis, is hydrolyzed, and the mixture of C5 sugar and C6 sugar is separated and recovered without over-decomposition, and the second stage hydrolysis. In this two-stage hydrolysis method, crystalline cellulose is converted to C6 sugar, and the conditions of each stage are different. However, there are cases where one-stage hydrolysis is performed by ignoring the recovery of saccharides from hemicellulose.

酵素糖化法に関して、本法は反応速度が遅いため、リグノセルロースのアルカリ剤による膨潤化や、蒸煮・爆砕などの前処理を行なうことにより、酵素との反応性を高め、糖化速度の向上を図る。すなわち複雑に構成されたセルロース、およびヘミセルロースが酵素による加水分解を受けやすいように分解もしくは破壊する処理を行なう。前処理により酵素糖化速度の向上は図れるが、酵素の価格が高いことなどにより、工業的な生産技術としての課題が残る。   Regarding the enzymatic saccharification method, this method has a slow reaction rate, so the lignocellulose is swelled with an alkaline agent and pretreated by steaming / explosion to increase the reactivity with the enzyme and increase the saccharification rate. . In other words, the complicatedly structured cellulose and hemicellulose are decomposed or broken so as to be easily hydrolyzed by enzymes. Although pretreatment can improve the enzymatic saccharification rate, the problem of industrial production technology remains due to the high price of the enzyme.

亜臨界および超臨界水による加水分解に関して、秒単位あるいは分単位と処理に係る時間が短いこと、また、硫酸などの強酸を外部から添加する必要が無く石膏などの副産物も発生しないことから注目を浴びている。しかし、前述の酸加水分解法と同様、ヘミセルロースとセルロースの加水分解速度が異なることから、高収率で糖類を得ようとした場合にやはり酸加水分解法と同様に別条件の2段階にする必要があり、操作に煩雑性を帯びてしまう。   With regard to hydrolysis with subcritical and supercritical water, attention is given to the fact that the processing time is short in seconds or minutes, and there is no need to add a strong acid such as sulfuric acid from the outside, and no by-products such as gypsum are generated. I'm bathing. However, similar to the acid hydrolysis method described above, the hydrolysis rate of hemicellulose and cellulose is different, so when trying to obtain a saccharide in a high yield, it is also made in two stages under different conditions as in the acid hydrolysis method. It is necessary and complicated to operate.

上記加水分解における諸問題を解決すべく、結晶質であるセルロースを溶解工程においてリン酸などに代表される酸加水分解を伴う溶剤により予め溶解、非晶化することにより、元来非晶質であるヘミセルロースと同様の反応性とすることにより、後段の加水分解工程を簡易化する方法が提案されているが、溶解工程において酸加水分解を伴う溶剤による溶解は、セルロースだけでなく同時に、非晶であるヘミセルロースをも加水分解し、最終的には過分解を引き起こすために、結果的に目的とする単糖、もしくはオリゴ糖、場合によっては多糖類の収率の低下をまねく。   In order to solve the above-mentioned problems in hydrolysis, crystalline cellulose is dissolved in an amorphous state in advance by using a solvent with acid hydrolysis represented by phosphoric acid or the like in the dissolution step, so that it is amorphous in nature. A method has been proposed that simplifies the subsequent hydrolysis step by making the reactivity similar to that of a certain hemicellulose. However, dissolution by a solvent accompanied by acid hydrolysis in the dissolution step is not limited to cellulose, but at the same time, amorphous. The hemicellulose is also hydrolyzed and eventually causes hyperlysis, resulting in a decrease in the yield of the target monosaccharide or oligosaccharide, and in some cases polysaccharides.

本発明は、こうした状況のもとになされたものであって、結晶性のセルロースと非晶性のヘミセルロースが混在する多糖類系バイオマスから、単糖、もしくはオリゴ糖、場合によっては多糖類を製造するにあたり、結晶性/非晶性成分の分解速度の違いに起因する単糖、オリゴ糖、多糖類の一部過分解による収率低下を防ぐ方法、またそれらの課題を解決するための装置および操作の煩雑さを回避する新規な方法を提供することを目的とする。詳しくは、結晶性のセルロースと非晶性のヘミセルロースが混在する多糖類系バイオマスから、単糖、もしくはオリゴ糖、場合によっては多糖類を製造するにあたり、溶解工程において、元来非晶であるヘミセルロースの過分解を防止しつつ溶解し、一方で結晶性のセルロースを非晶化、溶解させ、ヘミセルロースとセルロースの分解速度を同等にすることにより後段の加水分解工程を簡易で単一な加水分解方法とすることにより高効率に単糖、もしくはオリゴ糖、場合によっては多糖類を製造する方法を提供することを目的とする。さらに詳しくは、多糖類系バイオマスを、溶解工程において酸加水分解(溶媒が水以外の場合には加溶媒分解)を伴わないセルロース溶剤により元来非晶であるヘミセルロースの過分解を防止しつつ溶解し、一方で結晶性のセルロースを非晶化、溶解することと、後段加水分解工程を組み合わせることにより、単糖もしくはオリゴ糖、場合によっては多糖類を効率良くしかも簡易に製造する処理方法を提供することを目的とする。   The present invention has been made under such circumstances, and produces monosaccharides or oligosaccharides, and in some cases polysaccharides, from polysaccharide-based biomass in which crystalline cellulose and amorphous hemicellulose are mixed. In this regard, a method for preventing a decrease in yield due to partial over-decomposition of monosaccharides, oligosaccharides, and polysaccharides due to the difference in decomposition rate of crystalline / amorphous components, and an apparatus for solving these problems and An object of the present invention is to provide a novel method for avoiding complicated operations. Specifically, in producing monosaccharides or oligosaccharides, and in some cases polysaccharides, from polysaccharide-based biomass in which crystalline cellulose and amorphous hemicellulose are mixed, hemicellulose, which is originally amorphous in the dissolution process, is used. A simple and simple hydrolysis method for the subsequent hydrolysis step by dissolving the crystalline cellulose while preventing it from overdegrading, while making the crystalline cellulose amorphous and dissolving, and making the decomposition rate of hemicellulose and cellulose equal. It is an object of the present invention to provide a method for producing monosaccharides or oligosaccharides, and in some cases polysaccharides with high efficiency. More specifically, a polysaccharide-based biomass is dissolved while preventing excessive decomposition of the originally amorphous hemicellulose with a cellulose solvent that does not involve acid hydrolysis (solvolysis when the solvent is other than water) in the dissolution process. On the other hand, it provides a processing method for efficiently and easily producing monosaccharides or oligosaccharides, and in some cases polysaccharides, by combining amorphous cellulose with amorphization and dissolution, and subsequent hydrolysis step. The purpose is to do.

ここで、特開平8−299000号公報(植物系繊維材料からのグルコースを製造する方法)において、リン酸のオキソ酸を包含する溶媒を用いた植物系繊維材料からグルコースを製造する方法が申請されており、「リンのオキソ酸が、いわゆるプロトン供与体としての酸として作用するというよりも、セルロース等の溶媒として作用するものである。(中略)セルロースなどの植物系繊維材料は、実質的に分解を受けることなく本発明のリンのオキソ酸系溶媒に溶解しえる」という記述があるが、文献(セルロースの材料科学/磯貝明著)、(セルロースの科学/磯貝明著)や論文(リン酸を用いた低分子セルロース調製/磯貝明ら)によると、溶解工程におけるリン酸によるセルロースの溶解は酸加水分解によるもので全体分子量低下および糖類の過分解が起きることは明らかである。さらに付け加えると、リン酸に代表される酸加水分解を伴う溶剤によるリグノセルロースの溶解過程でセルロースは分子量低下を伴いながら溶解するが、同時に元来非晶質であるヘミセルロースも酸加水分解を受けて過分解し、最終的には単糖の過分解物(フルフラールや5−ヒドロキシメチルフルフラールなど)となり好ましくない。   Here, in Japanese Patent Application Laid-Open No. 8-299000 (method for producing glucose from plant fiber material), a method for producing glucose from plant fiber material using a solvent containing oxo acid of phosphoric acid was applied. “Phosphorus oxoacids act as solvents such as cellulose rather than so-called proton donors. (Omitted) Plant fiber materials such as cellulose are substantially Although there is a description that it can be dissolved in the oxoacid solvent of phosphorus of the present invention without being decomposed, it is described in literatures (Material Science of Cellulose / Akira Isogai), (Science of Cellulose / Akira Isogai) According to the preparation of low molecular weight cellulose using acid / Akira Kaikai et al.), The dissolution of cellulose by phosphoric acid in the dissolution process is due to acid hydrolysis, which reduces the overall molecular weight and That excessive decomposition of the kind will happen is clear. In addition, cellulose dissolves with a decrease in molecular weight in the process of dissolving lignocellulose by a solvent with acid hydrolysis, typically phosphoric acid, but at the same time, hemicellulose, which is originally amorphous, undergoes acid hydrolysis. It is excessively decomposed and eventually becomes a monosaccharide hyperdegradation product (furfural, 5-hydroxymethylfurfural, etc.), which is not preferable.

本発明では、溶解工程におけるリン酸に見られるような過分解に起因する大幅な全体分子量低下および糖類の過分解を伴う酸加水分解によるセルロース溶解ではなく、溶解工程において全体の分子量を大幅に、または場合によってはほとんど低下させることなく、かつ糖類の過分解もすることなく溶解することを特徴とし、非晶質であるヘミセルロースを保護しながら、最終的に得られる単糖、オリゴ糖、多糖類の収率を向上させるものである。   In the present invention, rather than cellulose dissolution by acid hydrolysis accompanied by a significant decrease in the overall molecular weight and excessive hydrolysis of saccharides as seen in phosphoric acid in the dissolution process, the overall molecular weight is greatly increased in the dissolution process. Or, in some cases, it is dissolved without almost degrading and without excessive decomposition of saccharides, and finally the monosaccharide, oligosaccharide, polysaccharide obtained while protecting amorphous hemicellulose The yield is improved.

本発明は、上記目的を達成すべくなされたもので、多糖類系バイオマスからの単糖類、オリゴ糖、場合によっては多糖類などの水解物を製造するにあたり、同バイオマスを溶剤に溶解する工程と、該溶剤中において同バイオマスを加水分解する工程を組み合わせることにより単糖、オリゴ糖および多糖類などの水解物を製造する方法において、上記セルロース溶剤が、溶解工程において酸加水分解を伴わない特定の溶剤である処理方法に関するものである。   The present invention has been made to achieve the above object, and in the production of hydrolyzate such as monosaccharides, oligosaccharides, and in some cases polysaccharides from polysaccharide biomass, a step of dissolving the biomass in a solvent; In the method for producing hydrolyzate such as monosaccharides, oligosaccharides and polysaccharides by combining the steps of hydrolyzing the biomass in the solvent, the cellulose solvent is a specific one that does not involve acid hydrolysis in the dissolution step. It is related with the processing method which is a solvent.

本発明で対象となる多糖類系バイオマスは、セルロースおよび/またはヘミセルロースからなる多糖類がリグニンにより木化したものであり、針葉樹、広葉樹、ササ、タケ、稲わら、もみ殻、麦わら、その他農林産物資源およびそれらの廃棄物、これらに由来する木材繊維、木材チップ、単板くず、パルプ類、古紙類などであり、さらにはさとうきび、てんさいなどの糖質資源、ばれいしょ、かんしょ、さといもなどのでんぷん資源などリグニン含量が少ないもしくは含まないバイオマスであってもよく、キチン・キトサン等の多糖類を含むバイオマス及びそれらの廃棄物をも含む。これらのバイオマス資源は2以上の組み合わせであっても良い。   The polysaccharide-based biomass targeted by the present invention is obtained by converting a polysaccharide consisting of cellulose and / or hemicellulose into a tree by lignin, and is a conifer, broadleaf, bamboo grass, bamboo, rice straw, rice husk, wheat straw, and other agricultural and forestry products. Resources and their wastes, wood fibers derived from these, wood chips, veneer scraps, pulps, waste paper, etc., as well as sugar resources such as sugar cane, sugar beet, starch resources such as potato, sugar cane, sweet potato It may be a biomass with little or no lignin content, and also includes biomass containing polysaccharides such as chitin and chitosan and wastes thereof. These biomass resources may be a combination of two or more.

好ましい多糖類系バイオマスはリグノセルロース、例えばスギ木粉である。   A preferred polysaccharide biomass is lignocellulose, such as cedar wood flour.

本発明で用いるセルロース溶剤は、アルデヒド系、SO-アミン系、NO-X系、LiCl系、含硫黄系、含窒素系、有機酸類、有機塩類、有機系溶媒などの非水系溶剤のうち溶解工程において酸分解を伴なわない溶剤、もしくはアミンオキシド系、濃無機酸類、濃無機塩類、アルカリ系などの含水系溶剤のうち溶解工程において酸加水分解を伴なわない溶剤のいずれでも良く、2以上の組み合わせであっても良い。 Cellulose solvents used in the present invention are soluble among non-aqueous solvents such as aldehyde, SO 2 -amine, NO-X, LiCl, sulfur-containing, nitrogen-containing, organic acids, organic salts, and organic solvents. Either a solvent that does not undergo acid decomposition in the process, or a solvent that does not undergo acid hydrolysis in the dissolution process among water-containing solvents such as amine oxides, concentrated inorganic acids, concentrated inorganic salts, and alkalis may be used. A combination of these may be used.

セルロース溶剤は、具体例として下記のものが挙げられるが、これらに限定されない。   Specific examples of the cellulose solvent include, but are not limited to, the following.

非水系溶媒
アルデヒド系:パラホルムアルデヒド+〔DMSO等〕、ホルムアルデヒド+〔DMSO等〕、クロラール+ピリジン+〔DMSO,DMF等〕
SO2-アミン系:SO2+ジエチルアミン+〔DMSO等〕、SO2+トリエチルアミン+〔DMSO等〕
NO-X系:N2O4+〔DMF,DMSO等〕、NOCl+〔DMF,DMSO等〕
LiCl系:LiCl+〔DMAc(ジメチルアセトアミド)、DMI等〕
含硫黄系:SO3+〔DMSO〕、SOCl+アミン+〔DMSO〕、SOCl+アミン+〔DMSO〕、CS+〔DMSO〕
含窒素系:CH3NH2(メチルアミン)+〔DMSO〕、N+〔DMSO〕、N−エチルピリジニウム塩+〔DMSO〕
その他:CFCOOH+〔CHCl等〕
有機酸類:ジクロロ酢酸
含水系溶媒
アミンオキシド系:N-メチルモルフォリン-N-オキシドの含水塩、N-メチルピペリジン-N-オキシドの含水塩、N-メチルピロリジン-N-オキシドの含水塩
濃無機酸類:濃硫酸、例えば72%硫酸、濃リン酸、例えば85%リン酸
濃無機塩類:ZnCl2水溶液、例えば64%ZnCl2水溶液、Ca(SCN)水溶液、例えば58%Ca(SCN)水溶液、チオシアン酸ナトリウム塩水溶液
アルカリ系:Cu(エチレンジアミン)(OH)2+〔水〕、Cd(エチレンジアミン)(OH)2+〔水〕、Co(エチレンジアミン)(OH)2+〔水〕、Ni(エチレンジアミン)(OH)2+〔水〕、Zn(エチレンジアミン)(OH)2+〔水〕、Cu(NH3)4(OH)2+〔水〕、(C4H3O6)FeNa6+〔水〕、NaOH+CS2+〔水〕、NaOH+〔水〕
なお、〔 〕内のものは主溶剤でである。〔主溶剤〕の前に記載されたものは添加剤である。
Non-aqueous solvent aldehyde system: paraformaldehyde + [DMSO etc.], formaldehyde + [DMSO etc.], chloral + pyridine + [DMSO, DMF etc.]
SO 2 -amine system: SO 2 + diethylamine + [DMSO etc.], SO 2 + triethylamine + [DMSO etc.]
NO-X system: N 2 O 4 + [DMF, DMSO, etc.], NOCl + [DMF, DMSO, etc.]
LiCl system: LiCl + [DMAc (dimethylacetamide), DMI, etc.]
Sulfur-containing system: SO 3 + [DMSO], SOCl 2 + amine + [DMSO], SO 2 Cl 2 + amine + [DMSO], CS 2 + [DMSO]
Nitrogen-containing system: CH 3 NH 2 (methylamine) + [DMSO], N 2 H 2 + [DMSO], N-ethylpyridinium salt + [DMSO]
Others: CF 3 COOH + [CH 2 Cl 2 etc.]
Organic acids: Dichloroacetic acid hydrous solvent Amine oxides: N-methylmorpholine-N-oxide hydrous salt, N-methylpiperidine-N-oxide hydrous salt, N-methylpyrrolidine-N-oxide hydrous salt Acids: concentrated sulfuric acid such as 72% sulfuric acid, concentrated phosphoric acid such as 85% phosphoric acid concentrated inorganic salts: ZnCl 2 aqueous solution such as 64% ZnCl 2 aqueous solution, Ca (SCN) 2 aqueous solution such as 58% Ca (SCN) 2 aqueous solution , Alkali thiocyanate aqueous solution: Cu (ethylenediamine) 2 (OH) 2 + [water], Cd (ethylenediamine) 3 (OH) 2 + [water], Co (ethylenediamine) 3 (OH) 2 + [water] , Ni (ethylenediamine) 3 (OH) 2 + [water], Zn (ethylenediamine) 3 (OH) 2 + [water], Cu (NH 3 ) 4 (OH) 2 + [water], (C 4 H 3 O 6 ) 3 FeNa 6 + [water], NaOH + CS 2 + [water], NaOH + [water]
In addition, the thing in [] is a main solvent. Those described before [Main solvent] are additives.

セルロース溶剤に関して、例えば特開平7-189019号公報にも開示されているとおり、溶剤を用いた再生セルロース紡糸の製造方法に関するものがある。特にN-メチルモルフォリン−N−オキシドなどセルロース溶剤を用いた再生セルロースの製造法に関して、数種類のパルプをN-メチルモルフォリン−N−オキシドにより溶解させた後紡糸した繊維は既にコートルズ社などにより商品化されている。しかし、N-メチルモルフォリン−N−オキシドはその危険性から実用化の際に厳密な温度管理が必要であるため容易に扱うことのできる溶剤を選定することが重要であり、例えばLiCl/DMAc(塩化リチウム/ジメチルアセトアミド)が好ましい。溶解工程における本溶剤によるセルロースの非晶化は、溶剤の双極子とセルロース中のOH基の相互作用によりセルロース分子の分子内および分子間の水素結合が切断されるために生じ、セルロースは過分解、つまり全体の分子量が低下することなく誘導体として存在することができるものと考えられている。ヘミセルロースについても同様に本溶剤により可溶化が可能であり、なおかつ酸加水分解を伴わない溶解であるために過分解することもない。   Regarding the cellulose solvent, for example, as disclosed in JP-A-7-89019, there is a method for producing regenerated cellulose spinning using a solvent. In particular, with regard to a method for producing regenerated cellulose using a cellulose solvent such as N-methylmorpholine-N-oxide, fibers that have been spun after dissolving several types of pulp with N-methylmorpholine-N-oxide have already been obtained by Coatles Co., Ltd. It has been commercialized. However, it is important to select a solvent that can be easily handled because N-methylmorpholine-N-oxide requires strict temperature control at the time of practical use because of its danger. For example, LiCl / DMAc (Lithium chloride / dimethylacetamide) is preferred. Amorphization of cellulose by this solvent in the dissolution process occurs because hydrogen bonds are broken within and between cellulose molecules due to the interaction between solvent dipoles and OH groups in cellulose. In other words, it is considered that it can exist as a derivative without lowering the overall molecular weight. Similarly, hemicellulose can be solubilized with the present solvent, and is not excessively decomposed because it is dissolved without acid hydrolysis.

加水分解工程における多糖類系バイオマスの処理方法は、亜臨界状態、または超臨界状態の水(流体)による加水分解処理、酸による加水分解処理、および酵素糖化法のうちの1つであってもよいし、これらの2つ以上の組み合わせであってもよい。加水分解装置は、バッチ式、固定床反応式、連続式などであってもよい。   The polysaccharide biomass treatment method in the hydrolysis step may be one of subcritical or supercritical water (fluid) hydrolysis treatment, acid hydrolysis treatment, and enzymatic saccharification method. It may be a combination of two or more of these. The hydrolysis apparatus may be a batch system, a fixed bed reaction system, a continuous system, or the like.

本発明によれば、従来であれば多糖類系バイオマスから単糖、もしくはオリゴ糖、場合によっては多糖類を高収率に製造するためには結晶性のセルロースと非晶性のヘミセルロースを、別工程、別条件にて加水分解処理する2段階の加水分解法を取らざるを得なかったのに対し、多糖類系バイオマスをセルロース溶剤により溶解する工程と、該溶剤中において、同バイオマスを加水分解する工程を組合せることにより、非晶化されたセルロースと非晶のヘミセルロースを同条件に扱うことができる。   According to the present invention, conventionally, in order to produce monosaccharides or oligosaccharides from polysaccharide-based biomass, and in some cases polysaccharides in high yield, crystalline cellulose and amorphous hemicellulose are separated. Whereas we had to take a two-stage hydrolysis method that hydrolyzes the process under different conditions, the process of dissolving polysaccharide-based biomass with a cellulose solvent, and hydrolysis of the biomass in the solvent By combining the steps, the amorphous cellulose and the amorphous hemicellulose can be handled under the same conditions.

その溶解工程において、リン酸に代表される酸加水分解による溶解に見られるような全体の大幅な分子量低下および糖類の過分解を行なわない溶剤系、つまりアルデヒド系、SO-アミン系、NO-X系、LiCl系、含硫黄系、含窒素系、有機酸類、有機塩類、有機系溶媒である非水系溶剤のうち溶解工程において酸分解を伴なわない溶剤、もしくはアミンオキシド系、濃無機酸類、濃無機塩類、アルカリ系である含水系溶剤のうち溶解工程において酸加水分解を伴なわない溶剤を用いることにより、セルロースのみならず、ヘミセルロースの低分子化を抑え、それによってヘミセルロースの過分解を抑えることができ、目的とする単糖、もしくはオリゴ糖、場合によっては多糖類を高収率に製造しうる。 In the dissolution process, a solvent system which does not cause a drastic reduction in molecular weight and excessive decomposition of sugars as seen in dissolution by acid hydrolysis typified by phosphoric acid, that is, aldehyde system, SO 2 -amine system, NO- X-based, LiCl-based, sulfur-containing, nitrogen-containing, organic acids, organic salts, non-aqueous solvents that are organic solvents that do not undergo acid decomposition in the dissolving process, or amine oxides, concentrated inorganic acids, Concentrated inorganic salts and alkaline water-containing solvents that do not involve acid hydrolysis in the dissolution process are used to suppress not only cellulose but also hemicellulose molecular weight, thereby suppressing hemicellulose overdegradation. The desired monosaccharide or oligosaccharide, and in some cases polysaccharides can be produced in high yield.

さらに、セルロース、ヘミセルロースを非晶化することにより、後段の加水分解工程における装置および操作の簡易化、単一化が可能となる。加えて、非晶化されたセルロースと非晶のヘミセルロースの加水分解反応速度が同等であることから適切な加水分解条件を選択することにより、各々の過分解物、例えばフルフラール、5-ヒドロキシメチルフルフラールなどの発酵阻害物質の生成を抑制することが可能となる。過分解を抑制することはすなわち単糖、もしくはオリゴ糖、場合によっては多糖類を高収率に製造することに他ならない。 Furthermore, by making cellulose and hemicellulose amorphous, it is possible to simplify and unify the apparatus and operation in the subsequent hydrolysis step. In addition, since the hydrolysis reaction rate of amorphous cellulose and amorphous hemicellulose is equivalent, by selecting appropriate hydrolysis conditions, each hyperdegradation product such as furfural, 5-hydroxymethylfurfural, etc. It becomes possible to suppress the production | generation of fermentation inhibiting substances, such as. Inhibiting hyperdegradation is nothing but producing a high yield of monosaccharides or oligosaccharides, and in some cases polysaccharides.

本発明によれば、例えば加水分解工程が酸加水分解法である場合、溶解工程でセルロース溶剤を用いて予めセルロース成分が非晶化されることにより、加水分解反応速度が同等となることから2段の加水分解工程を必要としない。また、非晶化することにより酸による加水分解を受けやすい状態となるため、濃酸を必要とせず希酸により十分な加水分解が可能となる。すなわち希酸、例えば希硫酸をもちいた1段階の加水分解だけでC5糖およびC6糖を高収率に製造可能となる。加えて、加水分解における圧力、温度を下げることが可能となるために、過分解を抑制でき、例えばフルフラール、5-ヒドロキシメチルフルフラールなどの発酵阻害物質の生成を抑制することが可能となる。ならびに、加水分解条件を緩やかにできることから装置および材質の低廉化が図れる。   According to the present invention, for example, when the hydrolysis step is an acid hydrolysis method, the cellulose component is amorphousized in advance using a cellulose solvent in the dissolution step, so that the hydrolysis reaction rate becomes equal. No stage hydrolysis step is required. Moreover, since it will be in the state which is easy to receive the hydrolysis by an acid by making it amorphous, sufficient hydrolysis will be attained by a dilute acid without requiring a concentrated acid. That is, it becomes possible to produce C5 sugar and C6 sugar in a high yield only by one-step hydrolysis using dilute acid, for example, dilute sulfuric acid. In addition, since it is possible to reduce the pressure and temperature in hydrolysis, it is possible to suppress excessive decomposition, and it is possible to suppress the production of fermentation inhibitors such as furfural and 5-hydroxymethylfurfural. In addition, since the hydrolysis conditions can be moderated, the cost of the apparatus and the material can be reduced.

本発明によれば、例えば加水分解工程が酵素糖化法である場合、本来酵素糖化は上述の酸加水分解とは異なり2段階の加水分解を必要としないが、溶解工程においてセルロース溶剤を用いて予めセルロース成分が非晶化されることにより、セルロースが酵素により糖化を受けやすい状態となるため、酵素糖化速度を向上することが可能となる。   According to the present invention, for example, when the hydrolysis step is an enzymatic saccharification method, enzyme saccharification originally does not require two-stage hydrolysis unlike the above-mentioned acid hydrolysis, but in the dissolution step, a cellulose solvent is used in advance. Since the cellulose component is amorphized, the cellulose is easily subjected to saccharification by the enzyme, so that the enzymatic saccharification rate can be improved.

本発明によれば、例えば加水分解工程が亜臨界、もしくは超臨界状態の水(流体)による処理である場合、溶解工程においてセルロース溶剤を用いて予めセルロース成分が非晶化されることにより加水分解反応速度がヘミセルロースと同等となることから2段の加水分解工程を必要としない。また、非晶化することにより亜臨界状態もしくは超臨界状態の水(流体)により加水分解を受けやすい状態となる。加えて、加水分解における圧力、温度を下げることが可能となるために、過分解を抑制でき、例えばフルフラール、5-ヒドロキシメチルフルフラールなどの発酵阻害物質の生成を抑制することが可能となる。ならびに、加水分解条件を緩やかにできることから装置および材質の低廉化が図れる。特にこの場合、亜臨界状態もしくは超臨界状態での水(流体)の水素結合が解裂しており誘電率が小さくなっていることからイオン性の溶剤の溶解度が小さくなり、単糖、もしくはオリゴ糖、場合によっては多糖類と溶剤の分離が可能となる。   According to the present invention, for example, when the hydrolysis step is a treatment with water (fluid) in a subcritical or supercritical state, the cellulose component is previously amorphousized using a cellulose solvent in the dissolution step, thereby hydrolyzing. Since the reaction rate is equivalent to that of hemicellulose, a two-stage hydrolysis step is not required. Further, by being amorphous, it becomes susceptible to hydrolysis by subcritical or supercritical water (fluid). In addition, since it is possible to reduce the pressure and temperature in hydrolysis, it is possible to suppress excessive decomposition, and it is possible to suppress the production of fermentation inhibitors such as furfural and 5-hydroxymethylfurfural. In addition, since the hydrolysis conditions can be moderated, the cost of the apparatus and the material can be reduced. In particular, in this case, the hydrogen bond of water (fluid) in the subcritical state or supercritical state is broken and the dielectric constant is reduced, so that the solubility of the ionic solvent is reduced, and the monosaccharide or oligosaccharide is reduced. Separation of sugars and, in some cases, polysaccharides and solvents is possible.

いずれの加水分解工程を後段に設置するにせよ、溶解工程において酸加水分解を伴わない溶剤による溶解をおこなうことにより、溶解時のセルロース、ヘミセルロースの過分解に起因する単糖、もしくはオリゴ糖、場合によっては多糖類の収率低下を抑制することが可能である。   Regardless of which hydrolysis step is installed later, by dissolving in a solvent that does not involve acid hydrolysis in the dissolution step, cellulose, monosaccharides or oligosaccharides resulting from excessive decomposition of hemicellulose, In some cases, it is possible to suppress a decrease in the yield of polysaccharides.

本発明において、多糖類系バイオマスを加水分解し、単糖もしくはオリゴ糖、場合によっては多糖類を生成するにあたり、その方法および装置は特に制限はなく、公知の方法や装置が適応できる。多糖類系バイオマスの加水分解法には、酸加水分解、酵素糖化法、亜臨界による加水分解法、および超臨界による加水分解法が適用でき、これらの1つであってもよいし、これらの2以上の組み合わせであってもよい。加水分解装置は、バッチ式、固定床反応式、連続式などであってもよい。   In the present invention, when hydrolyzing polysaccharide biomass to produce monosaccharides or oligosaccharides, and in some cases, polysaccharides, there are no particular limitations on the method and apparatus, and known methods and apparatuses can be applied. For hydrolysis of polysaccharide biomass, acid hydrolysis, enzymatic saccharification method, subcritical hydrolysis method, and supercritical hydrolysis method can be applied. Two or more combinations may be used. The hydrolysis apparatus may be a batch system, a fixed bed reaction system, a continuous system, or the like.

次に、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をあげるが、本発明はこれらの例によって何ら限定されるものではない。   Next, in order to specifically describe the present invention, examples of the present invention and comparative examples for showing comparison with the examples will be given, but the present invention is not limited to these examples.

実施例1
図1に、破砕部、セルロース溶解部、加水分解部からなる基本的なシステムを示す。多糖類系バイオマスとしてスギを破砕部にて破砕処理し、セルロース溶解部にてLiCl/DMAcを用いて溶解し、セルロース成分、ヘミセルロース成分を非晶化させる。溶解液は加水分解部にて亜臨界水による加水分解を行なう。
Example 1
FIG. 1 shows a basic system including a crushing part, a cellulose dissolving part, and a hydrolysis part. As a polysaccharide-based biomass, cedar is crushed in the crushing part, and dissolved using LiCl / DMAc in the cellulose dissolving part to make the cellulose component and hemicellulose component amorphous. The solution is hydrolyzed with subcritical water in the hydrolysis section.

処理液はC5糖、C6糖からなる単糖、もしくはオリゴ糖、場合によっては多糖類を含む液体である。これら糖類の回収された残液には、硫酸のような後処理の必要なものは含まれず、その処理が容易である。   The treatment liquid is a liquid containing monosaccharides or oligosaccharides composed of C5 sugar, C6 sugar, and in some cases polysaccharides. The residual liquid from which these saccharides are collected does not include those that require post-treatment such as sulfuric acid, and the treatment is easy.

比較例1
図2に、従来の方法である破砕部、加水分解部I、分離部、加水分解部IIからなる基本的なシステムを示す。多糖類系バイオマスとしてスギを破砕部にて破砕処理したあと、加水分解部Iにて濃硫酸加水分解を行いヘミセルロース成分を加水分解する。加水分解部Iを通過した処理物は分離部にて固液分離される。分離部にて分離された液はヘミセルロース由来のC5糖、C6糖からなる単糖、もしくはオリゴ糖、場合によっては多糖類、並びに過分解を受けた水解物を含む液体である。分離部にて分離された固体は加水分解部IIにて希硫酸加水分解を行ないセルロース成分を加水分解する。処理液はセルロース由来のC6糖からなる単糖、もしくはオリゴ糖、場合によっては多糖類並びに過分解を受けた水解物を含む液体である。
Comparative Example 1
In FIG. 2, the basic system which consists of the crushing part which is the conventional method, the hydrolysis part I, the isolation | separation part, and the hydrolysis part II is shown. After crushing cedar as a polysaccharide-based biomass in the crushing part, concentrated sulfuric acid hydrolysis is carried out in hydrolysis part I to hydrolyze the hemicellulose component. The processed material that has passed through the hydrolysis section I is subjected to solid-liquid separation in the separation section. The liquid separated in the separation unit is a liquid containing a hemicellulose-derived C5 sugar, a monosaccharide consisting of C6 sugar, or an oligosaccharide, in some cases a polysaccharide, and a hydrolyzate that has undergone excessive decomposition. The solid separated in the separation part is hydrolyzed with dilute sulfuric acid in hydrolysis part II to hydrolyze the cellulose component. The treatment liquid is a liquid containing a monosaccharide composed of C6 sugar derived from cellulose, or an oligosaccharide, in some cases a polysaccharide, and a hydrolyzate subjected to excessive decomposition.

実施例1の操作を示すフローシートである。3 is a flow sheet showing the operation of the first embodiment. 比較例1の操作を示すフローシートである。10 is a flow sheet showing the operation of Comparative Example 1.

Claims (4)

多糖類系バイオマスをセルロース溶剤に溶解する工程と、該溶剤中において、同バイオマスを加水分解する工程とを組合せることにより、単糖、オリゴ糖および多糖類などの水解物を製造する方法において、上記セルロース溶剤が、アルデヒド系、SO-アミン系、NO-X系、LiCl系、含硫黄系、含窒素系、有機酸類、有機塩類、有機系溶媒である非水系溶剤のうち溶解工程において酸分解を伴なわない溶剤、もしくはアミンオキシド系、濃無機酸類、濃無機塩類、アルカリ系である含水系溶剤のうち溶解工程において酸加水分解を伴なわない溶剤の少なくとも1つであることを特徴とするバイオマス処理方法。 In a method for producing hydrolyzate such as monosaccharides, oligosaccharides and polysaccharides by combining a step of dissolving polysaccharide-based biomass in a cellulose solvent and a step of hydrolyzing the biomass in the solvent. the cellulose solvent, aldehyde, SO 2 - amine, NO-X system, LiCl system, sulfur-containing, nitrogen-containing, organic acids, organic salts, acids in the dissolution process of the non-aqueous solvent is an organic solvent It is a solvent that does not involve decomposition, or is an amine oxide, concentrated inorganic acid, concentrated inorganic salt, or at least one solvent that does not undergo acid hydrolysis in the dissolution process among hydrous solvents that are alkaline. Biomass processing method to do. 多糖類系バイオマスがリグノセルロースである、請求項1に記載の処理方法。 The processing method according to claim 1, wherein the polysaccharide-based biomass is lignocellulose. LiCl系溶剤がLiCl/DMAc(塩化リチウム/ジメチルアセトアミド)である請求項1に記載の処理方法。 The processing method according to claim 1, wherein the LiCl solvent is LiCl / DMAc (lithium chloride / dimethylacetamide). 加水分解工程が、亜臨界流体による処理、超臨界流体による処理、酸による処理、および酵素糖化法のうちの少なくとも1つである、請求項1に記載の処理方法。
The treatment method according to claim 1, wherein the hydrolysis step is at least one of a treatment with a subcritical fluid, a treatment with a supercritical fluid, a treatment with an acid, and an enzymatic saccharification method.
JP2005039456A 2005-02-16 2005-02-16 Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis Pending JP2006223152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039456A JP2006223152A (en) 2005-02-16 2005-02-16 Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039456A JP2006223152A (en) 2005-02-16 2005-02-16 Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis

Publications (1)

Publication Number Publication Date
JP2006223152A true JP2006223152A (en) 2006-08-31

Family

ID=36985071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039456A Pending JP2006223152A (en) 2005-02-16 2005-02-16 Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis

Country Status (1)

Country Link
JP (1) JP2006223152A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050740A1 (en) * 2006-10-26 2008-05-02 Kawasaki Plant Systems Kabushiki Kaisha Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device
WO2009096062A1 (en) * 2008-02-01 2009-08-06 Mitsubishi Heavy Industries, Ltd. Apparatus and method for hydrothermally decomposing biomass
WO2010013324A1 (en) * 2008-07-30 2010-02-04 株式会社 ケー・イー・エム Method of treating substance containing lignocellulose or cellulose
JP2010083850A (en) * 2008-10-02 2010-04-15 Kri Inc Saccharification of lignocellulose and ethanol fermentation method
JP2010537661A (en) * 2007-09-06 2010-12-09 ザ クイーンズ ユニバーシティ オブ ベルファスト Conversion method
JP2010537662A (en) * 2007-09-06 2010-12-09 ザ クイーンズ ユニバーシティ オブ ベルファスト Conversion method
EP2303825A4 (en) * 2008-06-17 2011-11-23 Wisconsin Alumni Res Found Chemical transformation of lignocellulosic biomass into fuels and chemicals
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8674152B1 (en) * 2009-08-19 2014-03-18 Savannah River Nuclear Solutions, Llc Coal liquefaction by base-catalyzed hydrolysis with CO2 capture
US8722878B2 (en) 2009-07-01 2014-05-13 Wisconsin Alumni Research Foundation Biomass hydrolysis
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
CN103882159A (en) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 Method for hydrolysis of cellulose until obtaining monosaccharide by adopting nitrogen oxide to carry out oxidation treatment
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
JP2015503559A (en) * 2011-12-30 2015-02-02 レンマティックス, インコーポレイテッドRenmatix, Inc. Composition comprising C5 and C6 oligosaccharides
US8980060B2 (en) 2008-02-01 2015-03-17 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
US9102965B2 (en) 2011-01-13 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US9404135B2 (en) 2010-09-03 2016-08-02 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass decomposition apparatus and method thereof, and sugar-solution production system using biomass material
US9422519B2 (en) 2010-07-09 2016-08-23 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
US9845514B2 (en) 2011-10-10 2017-12-19 Virdia, Inc. Sugar compositions
US9850511B2 (en) 2010-07-09 2017-12-26 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass processing system and saccharide-solution production method using biomass material
US9868932B2 (en) 2010-03-10 2018-01-16 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10760138B2 (en) 2010-06-28 2020-09-01 Virdia, Inc. Methods and systems for processing a sucrose crop and sugar mixtures
US10792588B2 (en) 2008-02-01 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Organic material production system using biomass material and method
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
CN111979820A (en) * 2020-08-28 2020-11-24 扬州交石新材料科技有限公司 Method for preparing straw nano cellulose dispersion liquid by supercritical-high pressure homogenization technology
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
US11091815B2 (en) 2015-05-27 2021-08-17 Virdia, Llc Integrated methods for treating lignocellulosic material
US11236369B2 (en) 2010-07-06 2022-02-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Fermentation system and fermentation method using saccharide solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299000A (en) * 1995-05-10 1996-11-19 Shokubutsu Kagaku Kenkyusho:Kk Production of glucose from vegetable fiber material
JPH08308589A (en) * 1995-05-12 1996-11-26 Nippon Paper Ind Co Ltd Production of cellooligosaccharide using cellulase-containing regenerated cellulose
JPH09255701A (en) * 1996-03-22 1997-09-30 Daicel Chem Ind Ltd Production of cellulose ester
JP2001095594A (en) * 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd Production of glucose and cellooligosaccharide
JP2001205070A (en) * 2000-01-25 2001-07-31 Japan Science & Technology Corp Composition by supercritical solvent treatment of biomass and its production method
JP2002020401A (en) * 2000-07-11 2002-01-23 Toyota Motor Corp Process for formation of cellulose
JP2002302502A (en) * 2001-04-04 2002-10-18 Toto Ltd Method for producing cellulose derivative
JP2003212888A (en) * 2002-01-18 2003-07-30 Asahi Kasei Corp Method for producing glucose and/or water-soluble cellooligosaccharide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299000A (en) * 1995-05-10 1996-11-19 Shokubutsu Kagaku Kenkyusho:Kk Production of glucose from vegetable fiber material
JPH08308589A (en) * 1995-05-12 1996-11-26 Nippon Paper Ind Co Ltd Production of cellooligosaccharide using cellulase-containing regenerated cellulose
JPH09255701A (en) * 1996-03-22 1997-09-30 Daicel Chem Ind Ltd Production of cellulose ester
JP2001095594A (en) * 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd Production of glucose and cellooligosaccharide
JP2001205070A (en) * 2000-01-25 2001-07-31 Japan Science & Technology Corp Composition by supercritical solvent treatment of biomass and its production method
JP2002020401A (en) * 2000-07-11 2002-01-23 Toyota Motor Corp Process for formation of cellulose
JP2002302502A (en) * 2001-04-04 2002-10-18 Toto Ltd Method for producing cellulose derivative
JP2003212888A (en) * 2002-01-18 2003-07-30 Asahi Kasei Corp Method for producing glucose and/or water-soluble cellooligosaccharide

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990271B2 (en) * 2006-10-26 2012-08-01 川崎重工業株式会社 Method and apparatus for saccharification and decomposition of cellulosic biomass
WO2008050740A1 (en) * 2006-10-26 2008-05-02 Kawasaki Plant Systems Kabushiki Kaisha Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device
US8562747B2 (en) 2006-10-26 2013-10-22 Kawasaki Plant Systems Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
US8574368B2 (en) 2007-09-06 2013-11-05 Petroliam Nasional Berhard (Petronas) Conversion method
JP2010537662A (en) * 2007-09-06 2010-12-09 ザ クイーンズ ユニバーシティ オブ ベルファスト Conversion method
JP2010537661A (en) * 2007-09-06 2010-12-09 ザ クイーンズ ユニバーシティ オブ ベルファスト Conversion method
US9238827B2 (en) 2008-02-01 2016-01-19 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus and method
WO2009096062A1 (en) * 2008-02-01 2009-08-06 Mitsubishi Heavy Industries, Ltd. Apparatus and method for hydrothermally decomposing biomass
US8980060B2 (en) 2008-02-01 2015-03-17 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
US10792588B2 (en) 2008-02-01 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Organic material production system using biomass material and method
US8680264B2 (en) 2008-06-17 2014-03-25 Wisconsin Alumni Research Foundation Chemical transformation of lignocellulosic biomass into fuels and chemicals
EP2303825A4 (en) * 2008-06-17 2011-11-23 Wisconsin Alumni Res Found Chemical transformation of lignocellulosic biomass into fuels and chemicals
US8324376B2 (en) 2008-06-17 2012-12-04 Wisconsin Alumni Research Foundation Chemical transformation of lignocellulosic biomass into fuels and chemicals
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
JP5300846B2 (en) * 2008-07-30 2013-09-25 株式会社ケー・イー・エム Method for treating lignocellulose or a substance containing cellulose
WO2010013324A1 (en) * 2008-07-30 2010-02-04 株式会社 ケー・イー・エム Method of treating substance containing lignocellulose or cellulose
JP2010083850A (en) * 2008-10-02 2010-04-15 Kri Inc Saccharification of lignocellulose and ethanol fermentation method
US8722878B2 (en) 2009-07-01 2014-05-13 Wisconsin Alumni Research Foundation Biomass hydrolysis
US8674152B1 (en) * 2009-08-19 2014-03-18 Savannah River Nuclear Solutions, Llc Coal liquefaction by base-catalyzed hydrolysis with CO2 capture
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US9868932B2 (en) 2010-03-10 2018-01-16 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US10760138B2 (en) 2010-06-28 2020-09-01 Virdia, Inc. Methods and systems for processing a sucrose crop and sugar mixtures
US11236369B2 (en) 2010-07-06 2022-02-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Fermentation system and fermentation method using saccharide solution
US9567558B2 (en) 2010-07-09 2017-02-14 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
US9422519B2 (en) 2010-07-09 2016-08-23 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
US9850511B2 (en) 2010-07-09 2017-12-26 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass processing system and saccharide-solution production method using biomass material
US9404135B2 (en) 2010-09-03 2016-08-02 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass decomposition apparatus and method thereof, and sugar-solution production system using biomass material
US9102965B2 (en) 2011-01-13 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
US9434971B2 (en) 2011-01-13 2016-09-06 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US9976194B2 (en) 2011-10-10 2018-05-22 Virdia, Inc. Sugar compositions
US9845514B2 (en) 2011-10-10 2017-12-19 Virdia, Inc. Sugar compositions
US10041138B1 (en) 2011-10-10 2018-08-07 Virdia, Inc. Sugar compositions
JP2015503559A (en) * 2011-12-30 2015-02-02 レンマティックス, インコーポレイテッドRenmatix, Inc. Composition comprising C5 and C6 oligosaccharides
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
US9783860B2 (en) 2011-12-30 2017-10-10 Renmatix, Inc. Compositions comprising C5 and C6 oligosaccharides
US10487369B2 (en) 2011-12-30 2019-11-26 Renmatix, Inc. Compositions comprising C5 and C6 oligosaccarides
JP2015503558A (en) * 2011-12-30 2015-02-02 レンマティックス, インコーポレイテッドRenmatix, Inc. Composition comprising C5 and C6 monosaccharides
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US9797021B2 (en) 2011-12-30 2017-10-24 Renmatix, Inc. Compositions comprising C5 and C6 oligosaccharides
CN103882159A (en) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 Method for hydrolysis of cellulose until obtaining monosaccharide by adopting nitrogen oxide to carry out oxidation treatment
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
US11091815B2 (en) 2015-05-27 2021-08-17 Virdia, Llc Integrated methods for treating lignocellulosic material
CN111979820A (en) * 2020-08-28 2020-11-24 扬州交石新材料科技有限公司 Method for preparing straw nano cellulose dispersion liquid by supercritical-high pressure homogenization technology

Similar Documents

Publication Publication Date Title
JP2006223152A (en) Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis
EP2956465B1 (en) Process for the treatment of lignocellulosic biomass
US10072099B2 (en) Process for the organosolv treatment of lignocellulosic biomass
JP5190858B2 (en) Production method of low molecular weight carbohydrates from materials containing polysaccharides
US20140322763A1 (en) C1-C2 Organic Acid Treatment of Lignocellulosic Biomass to Produce Acylated Cellulose Pulp, Hemicellulose, Lignin and Sugars and Fermentation of the Sugars
JP4928254B2 (en) Method for saccharification of cellulose-containing materials
JP2012504935A (en) Two-stage enzymatic hydrolysis method for treating lignocellulosic materials
WO2006099029A2 (en) Chemical oxidation for cellulose separation
AU2012266335A1 (en) Methods for converting lignocellulosic material to useful products
CN111087491B (en) Method for preparing hemicellulose, carboxylated cellulose nano crystal, fibril and citrate multi-component product from fiber by using citric acid
US20210285155A1 (en) Methods of making specialized cellulose and other products from biomass
MX2011001387A (en) Process for the production of sugars from biomass.
JP2009189291A (en) Saccharifying method for cellulose-containing biomass
JP2009125050A (en) Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
CN104136466A (en) Integrated biorefinery
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
Stankovska et al. Effect of alkaline extrusion pretreatment of wheat straw on filtrate composition and enzymatic hydrolysis
CN104981545A (en) Process for enzymatic hydrolysis of cellulose
JP4619831B2 (en) Pretreatment method of lignocellulose
US20150299751A1 (en) Method of enzymatic treatment of a solid lignocellulosic material
US8497097B2 (en) Chlorine dioxide treatment of biomass feedstock
JP2010083850A (en) Saccharification of lignocellulose and ethanol fermentation method
Anggorowati et al. Hydrolysis of Corn Stalk Enzymatics using Cellulation Enzyme as an Efforts to Increase Reducing Sugar Levels
NL2010305C2 (en) Process for the treatment of lignocellulosic biomass.
CN114032257A (en) Method for co-production of lactic acid, xylitol and lignin from lignocellulose raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018