JP4330839B2 - Method for producing glucose and / or water-soluble cellooligosaccharide - Google Patents
Method for producing glucose and / or water-soluble cellooligosaccharide Download PDFInfo
- Publication number
- JP4330839B2 JP4330839B2 JP2002009745A JP2002009745A JP4330839B2 JP 4330839 B2 JP4330839 B2 JP 4330839B2 JP 2002009745 A JP2002009745 A JP 2002009745A JP 2002009745 A JP2002009745 A JP 2002009745A JP 4330839 B2 JP4330839 B2 JP 4330839B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- glucose
- cellulose
- mpa
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Saccharide Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、セルロースを含有する材料からグルコース及び/又は水溶性セロオリゴ糖を効率よく製造し得る新規なグルコース及び/又は水溶性セロオリゴ糖の製造方法に関するものである。
【0002】
【従来の技術】
セルロースの構成糖はグルコースであり、セルロースを加水分解することにより、セロオリゴ糖更にはグルコースを得ることができる。グルコースは、それ自身で重要な食品素材であり、また醗酵することによりエタノールが得られ、あるいは微生物若しくは酵素または化学変換することによってフラクトース等の糖類、クエン酸等の有機酸、ソルビトール等の糖アルコール類等の素材を得ることができる。また、水溶性セロオリゴ糖は、各種オリゴ糖と同様に、生理機能が明らかとなりつつあり、機能性食品素材として期待されている。ここで、水溶性セロオリゴ糖とは、グルコースの2〜12程度の重合体を意味する。
【0003】
従来、セルロースから水溶性セロオリゴ糖やグルコースを得るために多くの研究がなされてきた。当初は酸による加水分解が試みられ、例えば、濃硫酸を用いる方法では、前処理によってヘミセルロースを分離・分解後、80%硫酸でセルロースを加水分解し、その後希硫酸で後処理をしてグルコースを得るものである。しかしながら、この方法は、酸によって設備が腐食する、硫酸回収にコストがかかる、酸によりグルコースがさらに分解される等の欠点が明らかとなり、それらの改善が試みられているが、いまだ実用化には至っていない。
【0004】
特開平5−31000号公報では、超臨界また亜臨界状態の水を溶媒として用いて、セルロースのほか、天然または合成高分子を加水分解及び/又は熱分解する方法が開示されている。しかしながら該方法では、グルコースの収率は20%〜30%にとどまっている。その理由は、加水分解を進めるため反応条件を過酷にするとグルコースそのものの熱分解が進んでしまう、一方熱分解を抑制するために反応条件を穏和にすると不溶解セルロースが残存するためである。
【0005】
これらの問題点を解決するため、特開2001−95594号公報には、セルロースを超臨界水または亜臨界水で一時的に可溶化し、セルロースの分解物が反応液中に溶解している間にセルラーゼによる酵素処理を行ってグルコースおよび水溶性セロオリゴ糖を得る方法が開示されている。この方法によるグルコースおよび水溶性セロオリゴ糖収率は75〜85%であり、有用な方法であるが、酵素処理時間に30分〜20時間程度を要しており、生産性はきわめて低い。
【0006】
特開平10−327900号公報には、温度が200〜300℃の亜臨界水にセルロースを接触させて水溶性オリゴ糖を製造し、その後、酵素により糖化分解してグルコースを製造する方法が開示されている。しかし、水溶性セロオリゴ糖を80%以上の収率で得るための反応時間は15分以上を要し、さらにグルコースを得るためには、酵素反応によって1〜2時間必要とするなど、実用上生産性に問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、セルロースを含有する材料から効率よくグルコース及び/又は水溶性セロオリゴ糖を製造する方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、セルロースを含有する材料から効率よくグルコース及び/又は水溶性セロオリゴ糖を製造する方法について鋭意研究した結果、短時間の滞留で超臨界水反応を行わせて、一旦ある程度セルロースを低分子化した後、そのまま、亜臨界水でマイルドに加水分解反応を数分以内で行わせることにより、グルコースの二次分解反応を抑制し、かつ効率よくグルコース及び/又は水溶性セロオリゴ糖が生成することを見出し、本発明を完成した。
【0009】
すなわち、本発明は、平均重合度100以上のセルロースを、温度374℃以上450℃以下、圧力22.1MPa以上450MPa以下の超臨界水と0.01秒以上0.10秒以下接触反応させ、その後冷却して、圧力15MPa以上450MPa以下、温度250℃以上350℃以下の亜臨界水と10秒以上1分以下接触反応させて加水分解することを特徴とするグルコース及び/又は水溶性セロオリゴ糖の製造方法である。
【0010】
【発明の実施の形態】
本発明で用いるセルロース原料は平均重合度100以上のセルロースを含む素材であるならその種類を問わない。例えば、製紙用パルプ、化学用溶解パルプ、精製リンター、粉末セルロース、結晶セルロース、麦わら、稲わら、古紙、木材チップ、再生セルロース繊維等が挙げられる。これらの中でも、粉体である粉末セルロース、結晶セルロースが取り扱い上好ましい。パルプ古紙、稲わら、麦わら、木材チップ、再生セルロース繊維のような板状、紙状、線状の素材はあらかじめ切断、粉砕等の前処理をしてから、酸加水分解、爆砕等を処理を行ってもかまわない。
【0011】
本発明における超臨界水とは、374℃以上、22.1MPa(臨界点)以上の状態にある水と定義する。また、亜臨界水とは、臨界点近傍のの状態にある熱水のことであり、250℃以上374℃以下、15MPa以上22.1MPa以下の水と定義する。
本発明では、セルロ−ス素材を、第一段階として、温度250℃以上450℃以下、圧力15MPa以上450MPaの超臨界水または亜臨界水と0.01秒以上5秒以下接触、反応させ、その後、第二段階として、圧力15MPa以上450MPa以下、温度250℃以上374℃以下の亜臨界水と1分以上10分以下接触反応させて、セルロース素材を加水分解し、溶解し、冷却する。
【0012】
温度条件はセルロースの収率および物性に大きく影響する。第一段階で温度が250℃未満の場合には、生成物中に原料が大部分残存するため、グルコース及び/又は水溶性セロオリゴ糖は収率よく得られず、一方、450℃を越えると、加水分解および熱分解が過度に進行し、グルコースの二次分解生成物が生成するようになりグルコース及び/又は水溶性セロオリゴ糖の収率は低下する。好ましくは、温度350℃以上400℃以下、圧力25MPa以上である。
第二段階での亜臨界水との接触・反応時間も最終製品であるグルコース及び/又は水溶性セロオリゴ糖の収率に大きく影響する。接触時間が1秒未満の場合、反応が充分進行せず、生成物中に水不溶性セルロースが残存する。10分を越えると加水分解がおよび熱分解が過度に進行し、グルコース分解物が多くなってやはり収率が低下する。好ましくは10秒以上1分以下である。
【0013】
超臨界水または亜臨界水処理を行う装置は特に限定されないが、反応時間を自由に制御できる流通式のものが好ましい。第一段階の反応の後、そのまま配管で冷却し、第二段階の反応機にて反応させる方式がよい。
図1に本発明で好ましく用いられる反応装置の一例を概略系統図で示す。水容器1中の水を水ポンプ2で所定の圧力に昇圧する。その後、ヒーター3で加熱し、所定の温度に昇温させる。これを加熱水Aとする。一方、原料セルロースは水と混合してスラリー状態として容器4に入れる。スラリーポンプ5で昇圧する。これを原料スラリーBとする。加熱水Aと原料スラリーBは混合して超臨界水反応管6を通し第一段階の反応をさせる。その後、冷却水Cを混合して第二段階の反応温度にまで冷却し、亜臨界水反応管9で第二段階の反応をさせる。その後、冷却器10で50℃以下まで冷却し、フィルター11で未溶解固形分を除去し、背圧弁12を通して処理水を容器13に集める。
反応器から流出したグルコース及び/又は水溶性セロオリゴ糖は、常法にしたがい分離し精製することにより、グルコース精製品やセロオリゴ糖精製品を得ることができる。
また、第二段階の反応器から流出した水溶液をさらにセルラーゼ等の酵素により処理を行ってもよい。
次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
【0014】
【実施例1】
結晶セルロース(旭化成株式会社製、アビセル(登録商標)PH−101)を水に分散し、固形分4.8重量%のスラリーとした。図1に示す流通式超臨界水反応装置を用い、原料スラリー1部に対して、あらかじめ加熱・加圧しておいた超臨界水5部を混合した。0.8重量%原料の原料スラリーを400℃、40MPaの条件で0.10秒間滞留させ、反応させた。その後、40MPaのまま室温の水を反応後のスラリーに混合して280℃まで冷却後、45秒間反応させた。その後、冷却器で室温まで冷却、フィルターでろ過して固形分を除去した後、背圧弁で常圧に戻し、処理水溶液を容器に集めた。得られた処理水溶液を高速液体クイロマトグラフィーを用いて成分分析を行った。また、この処理水溶液を12時間静置し、析出物を観察したが、析出物は全く認められなかった。これらの結果を表1に示す。グルコース収率は仕込み原料に対して19.9重量%、水溶性セルロースオリゴマーは同じく34.0重量%で、合計53.9重量%であった。また、図2に処理水溶液のMALDI−TOFMS分析結果を示す。
MALDI−TOFMSとは、レーザーイオン化・飛行時間型質量分析計(Matrix-Assisted Lazer Desorption Ionization-Time of Fleight Mass Spectrometer)である。
図2は左から、分子量366.0、528.0、690.5、852.6、1015.1、1177.1、1339.5、1501.1、1663.7、1825.6、1998.8に対応し、グルコース2量体(セロビオース)から規則的にセロドデカオース(グルコースの12量体)まで検出された。
【0015】
【実施例2】
結晶セルロース(旭化成株式会社製、アビセルPH−101)を水に分散し、固形分4重量%のスラリーとした。図1に示す流通式超臨界水反応装置を用い、原料スラリー1部に対して、あらかじめ加熱・加圧しておいた超臨界水5部を混合した。0.67重量%原料の原料スラリーを400℃、40MPaの条件で0.05秒間滞留させ反応させた。その後、40MPaのまま室温の水を反応後のスラリーに混合して280℃まで冷却後、30秒間反応させた。その後、冷却器で室温まで冷却、フィルターでろ過して固形分を除去した後、背圧弁で常圧に戻し、処理溶液を容器に集めた。得られた処理水溶液を高速液体クイロマトグラフィーを用いて成分分析を行った。また、この処理水溶液を12時間静置し、析出物を観察したところ、11.8重量%の白色沈殿が認められ、これは比較的重合度の大きい不溶性のセルロースII型凝集物であった。これらの結果を表1に示す。グルコース収率は仕込み原料に対して9.5重量%、水溶性セルロースオリゴマーは同じく55.4重量%で、合計64.9重量%であった。また、図2に処理水溶液のMALDI−TOFMS分析結果を示す。
【0016】
【比較例1】
結晶セルロース(旭化成株式会社製、アビセルPH−101)を水に分散し、固形分4重量%のスラリーとした。図1に示す流通式超臨界水反応装置を用い、原料スラリー1部に対して、あらかじめ加熱・加圧しておいた超臨界水5部を混合した。0.67重量%原料の原料スラリーを400℃、40MPaの条件で0.20秒間滞留させ反応させた。その後、室温の水を反応後のスラリーに混合して室温まで冷却し、フィルターでろ過して固形分を除去した後、背圧弁で常圧に戻し、処理水溶液を容器に集めた。得られた処理水溶液を高速液体クイロマトグラフィーを用いて成分分析を行った。また、この処理水溶液を12時間静置し、析出物を観察したが、析出物は全く認められなかった。これらの結果を表1に示す。グルコース収率は仕込み原料に対して10.5重量%、水溶性セルロースオリゴマーは同じく32.2重量%で、合計42.7重量%であった。また、図2に処理水溶液のMALDI−TOFMS分析結果を示す。実施例1と比較して、*部(グルコース環)の断片化が進行しており、セロオクタオース(グルコースの8量体)までしか検出されなかった。
【0017】
【比較例2】
結晶セルロース(旭化成株式会社製、アビセルPH−101)を水に分散し、固形分4重量%のスラリーとした。図1に示す流通式超臨界水反応装置を用い、原料スラリー1部に対して、あらかじめ加熱・加圧しておいた亜臨界水5部を混合した。0.67重量%原料の原料スラリーを280℃、40MPaの条件で6分滞留させた。その後、室温の水を反応後のスラリーに混合して室温まで冷却、フィルターでろ過して固形分を除去した後、背圧弁で常圧に戻し、処理水溶液を容器に集めた。得られた処理水溶液を高速液体クイロマトグラフィーを用いて成分分析を行った。また、この処理水溶液を12時間静置し、析出物を観察したが、析出物は全く認められなかった。これらの結果を表1に示す。グルコース収率は仕込み原料に対して14.8重量%、水溶性セルロースオリゴマーは同じく5.6重量%で、合計20.4重量%であった。一方、フィルターでろ過した固形分(不溶物)は17.3重量%あった。また、図2に処理水溶液のMALDI−TOFMS分析結果を示す。セロペンタオース(グルコースの5量体)までしか検出されなかった。
【0018】
【表1】
【0019】
【発明の効果】
本発明により、セルロースを含有する材料から、効率良くグルコース及び/又は水溶性セロオリゴ糖を製造する方法が提供できた。
【図面の簡単な説明】
【図1】本発明で使用する超臨界水および亜臨界水反応装置の一例を概略系統図で示す。
【図2】本発明の実施例1、2、比較例1、2での処理水溶液のMALDI−TOFMS分析結果である。
【符号の説明】
1 水容器
2 水ポンプ
3 ヒーター
4 セルローススラリー容器
5 セルローススラリーポンプ
6 超臨界水反応管
7 水容器
8 水ポンプ
9 亜臨界水反応管
10 冷却器
11 フィルター
12 背圧弁
13 処理水容器
A 加熱水
B 原料スラリー
C 冷却水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing glucose and / or water-soluble cellooligosaccharide that can efficiently produce glucose and / or water-soluble cellooligosaccharide from a material containing cellulose.
[0002]
[Prior art]
The constituent sugar of cellulose is glucose, and cellooligosaccharide and further glucose can be obtained by hydrolyzing cellulose. Glucose is an important food material by itself, and ethanol is obtained by fermentation, or sugars such as fructose, organic acids such as citric acid, sugar alcohols such as sorbitol, etc. by microbial or enzymatic or chemical conversion. A material such as a kind can be obtained. In addition, water-soluble cellooligosaccharides, like various oligosaccharides, are becoming more and more physiological and are expected as functional food materials. Here, the water-soluble cellooligosaccharide means about 2 to 12 polymers of glucose.
[0003]
Conventionally, many studies have been made to obtain water-soluble cellooligosaccharides and glucose from cellulose. At first, hydrolysis with acid was tried. For example, in the method using concentrated sulfuric acid, hemicellulose was separated and decomposed by pretreatment, cellulose was hydrolyzed with 80% sulfuric acid, and then post-treated with dilute sulfuric acid. To get. However, this method has revealed drawbacks such as corrosion of equipment by acid, cost of sulfuric acid recovery, and further degradation of glucose by acid, and attempts have been made to improve them. Not reached.
[0004]
JP-A-5-31000 discloses a method of hydrolyzing and / or thermally decomposing natural or synthetic polymers in addition to cellulose using supercritical or subcritical water as a solvent. However, in this method, the yield of glucose is only 20% to 30%. The reason for this is that if the reaction conditions are harsh in order to proceed with hydrolysis, the pyrolysis of glucose itself proceeds, whereas if the reaction conditions are moderated to suppress thermal decomposition, insoluble cellulose remains.
[0005]
In order to solve these problems, Japanese Patent Application Laid-Open No. 2001-95594 discloses that cellulose is temporarily solubilized with supercritical water or subcritical water, and a decomposition product of cellulose is dissolved in the reaction solution. Discloses a method for obtaining glucose and a water-soluble cellooligosaccharide by performing an enzyme treatment with cellulase. The yield of glucose and water-soluble cellooligosaccharide by this method is 75 to 85%, which is a useful method, but the enzyme treatment time requires about 30 minutes to 20 hours, and the productivity is extremely low.
[0006]
Japanese Patent Application Laid-Open No. 10-327900 discloses a method of producing glucose by bringing cellulose into contact with subcritical water at a temperature of 200 to 300 ° C. to produce water-soluble oligosaccharides, and then saccharifying and digesting with enzymes. ing. However, the reaction time for obtaining water-soluble cellooligosaccharides with a yield of 80% or more requires 15 minutes or more, and in order to obtain glucose further, it takes 1-2 hours by an enzymatic reaction. There was a problem with sex.
[0007]
[Problems to be solved by the invention]
The present invention provides a method for efficiently producing glucose and / or water-soluble cellooligosaccharide from a material containing cellulose.
[0008]
[Means for Solving the Problems]
As a result of earnest research on a method for efficiently producing glucose and / or water-soluble cellooligosaccharides from a material containing cellulose, the inventors have made supercritical water reaction in a short residence time, and once a certain amount of cellulose After lowering the molecular weight, mild hydrolysis with subcritical water is carried out within a few minutes to suppress glucose secondary decomposition and efficiently produce glucose and / or water-soluble cellooligosaccharides. The present invention has been completed.
[0009]
That is, in the present invention, cellulose having an average degree of polymerization of 100 or more is contact-reacted with supercritical water having a temperature of 374 ° C. or more and 450 ° C. or less and a pressure of 22.1 MPa or more and 450 MPa or less for 0.01 seconds or more and 0.10 seconds or less. Production of glucose and / or water-soluble cellooligosaccharide, which is cooled and hydrolyzed by contact reaction with subcritical water having a pressure of 15 MPa to 450 MPa and a temperature of 250 ° C. to 350 ° C. for 10 seconds to 1 minute. Is the method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The cellulose raw material used in the present invention is not limited as long as it is a raw material containing cellulose having an average degree of polymerization of 100 or more. Examples include pulp for papermaking, dissolving pulp for chemicals, refined linter, powdered cellulose, crystalline cellulose, wheat straw, rice straw, waste paper, wood chips, and regenerated cellulose fibers. Among these, powdered cellulose and crystalline cellulose which are powders are preferable in handling. Waste paper, rice straw, straw, wood chips, regenerated cellulose fibers, and other plate-like, paper-like, and linear materials are pre-treated by cutting, crushing, etc. before being subjected to acid hydrolysis, explosion, etc. You can go.
[0011]
The supercritical water in the present invention is defined as water in a state of 374 ° C. or higher and 22.1 MPa (critical point) or higher. Subcritical water is hot water in the vicinity of the critical point, and is defined as water at 250 ° C. to 374 ° C. and 15 MPa to 22.1 MPa.
In the present invention, as a first step, the cellulose material is contacted and reacted with supercritical water or subcritical water at a temperature of 250 ° C. to 450 ° C. and a pressure of 15 MPa to 450 MPa for 0.01 seconds to 5 seconds, In the second stage, the cellulose material is hydrolyzed, dissolved, and cooled by contact reaction with subcritical water having a pressure of 15 MPa to 450 MPa and a temperature of 250 ° C. to 374 ° C. for 1 minute to 10 minutes.
[0012]
Temperature conditions greatly affect the yield and physical properties of cellulose. When the temperature is less than 250 ° C. in the first stage, most of the raw material remains in the product, so that glucose and / or water-soluble cellooligosaccharides cannot be obtained in good yield, whereas when it exceeds 450 ° C., Hydrolysis and thermal decomposition proceed excessively to produce a secondary decomposition product of glucose, and the yield of glucose and / or water-soluble cellooligosaccharide is reduced. Preferably, the temperature is 350 ° C. or more and 400 ° C. or less, and the pressure is 25 MPa or more.
The contact / reaction time with subcritical water in the second stage also greatly affects the yield of the final product, glucose and / or water-soluble cellooligosaccharide. When the contact time is less than 1 second, the reaction does not proceed sufficiently and water-insoluble cellulose remains in the product. If it exceeds 10 minutes, hydrolysis and thermal decomposition proceed excessively, resulting in an increase in glucose degradation products and a decrease in yield. Preferably, it is 10 seconds or more and 1 minute or less.
[0013]
The apparatus for performing the supercritical water or subcritical water treatment is not particularly limited, but a flow-type apparatus capable of freely controlling the reaction time is preferable. After the first stage reaction, a method of cooling with piping as it is and reacting in a second stage reactor is preferable.
FIG. 1 is a schematic system diagram showing an example of a reaction apparatus preferably used in the present invention. The water in the
Glucose purified product and cellooligosaccharide purified product can be obtained by separating and purifying glucose and / or water-soluble cellooligosaccharide discharged from the reactor according to a conventional method.
Further, the aqueous solution flowing out from the second-stage reactor may be further treated with an enzyme such as cellulase.
EXAMPLES Next, although an Example is given and this invention is demonstrated still in detail, this invention is not limited at all by these Examples.
[0014]
[Example 1]
Crystalline cellulose (Avicel (registered trademark) PH-101, manufactured by Asahi Kasei Corporation) was dispersed in water to obtain a slurry having a solid content of 4.8% by weight. Using the flow-type supercritical water reactor shown in FIG. 1, 5 parts of supercritical water that had been heated and pressurized in advance were mixed with 1 part of the raw slurry. A raw material slurry of 0.8% by weight of raw material was allowed to react for 0.10 seconds under conditions of 400 ° C. and 40 MPa. Thereafter, room temperature water was mixed with the slurry after the reaction while maintaining 40 MPa, cooled to 280 ° C., and reacted for 45 seconds. Then, after cooling to room temperature with a cooler and filtering through a filter to remove solids, the pressure was returned to normal pressure with a back pressure valve, and the treated aqueous solution was collected in a container. The obtained treated aqueous solution was subjected to component analysis using high-speed liquid chromatography. Further, this treated aqueous solution was allowed to stand for 12 hours, and precipitates were observed, but no precipitates were observed. These results are shown in Table 1. The glucose yield was 19.9% by weight with respect to the charged raw materials, and the water-soluble cellulose oligomer was also 34.0% by weight, for a total of 53.9% by weight. FIG. 2 shows the MALDI-TOFMS analysis result of the treated aqueous solution.
MALDI-TOFMS is a laser ionization time-of-flight mass spectrometer (Matrix-Assisted Lazer Desorption Ionization-Time of Fleight Mass Spectrometer).
FIG. 2 shows molecular weights 366.0 , 528.0, 690.5, 852.6, 1015.1, 1177.1, 1339.5, 1501.1, 1663.7, 1825.6, 19988.8 from the left. In contrast, glucose dimer (cellobiose) to cellododekaose (glucose 12-mer) were regularly detected.
[0015]
[Example 2]
Crystalline cellulose (Avicel PH-101, manufactured by Asahi Kasei Co., Ltd.) was dispersed in water to obtain a slurry having a solid content of 4% by weight. Using the flow-type supercritical water reactor shown in FIG. 1, 5 parts of supercritical water that had been heated and pressurized in advance were mixed with 1 part of the raw slurry. A raw material slurry of 0.67% by weight raw material was allowed to react for 0.05 seconds under conditions of 400 ° C. and 40 MPa. Thereafter, water at room temperature was mixed with the slurry after the reaction while maintaining 40 MPa, cooled to 280 ° C., and reacted for 30 seconds. Then, after cooling to room temperature with a cooler and filtering through a filter to remove solids, the pressure was returned to normal pressure with a back pressure valve, and the treatment solution was collected in a container. The obtained treated aqueous solution was subjected to component analysis using high-speed liquid chromatography. When this treated aqueous solution was allowed to stand for 12 hours and the precipitate was observed, a 11.8 wt% white precipitate was observed, which was an insoluble cellulose II type aggregate having a relatively high degree of polymerization. These results are shown in Table 1. The glucose yield was 9.5% by weight based on the charged raw materials, and the water-soluble cellulose oligomer was also 55.4% by weight, for a total of 64.9% by weight. FIG. 2 shows the MALDI-TOFMS analysis result of the treated aqueous solution.
[0016]
[Comparative Example 1]
Crystalline cellulose (Avicel PH-101, manufactured by Asahi Kasei Co., Ltd.) was dispersed in water to obtain a slurry having a solid content of 4% by weight. Using the flow-type supercritical water reactor shown in FIG. 1, 5 parts of supercritical water that had been heated and pressurized in advance were mixed with 1 part of the raw slurry. The raw material slurry of 0.67 wt% raw material was allowed to react for 0.20 seconds at 400 ° C. and 40 MPa. Thereafter, water at room temperature was mixed with the slurry after reaction, cooled to room temperature, filtered through a filter to remove solids, and then returned to normal pressure with a back pressure valve, and the treated aqueous solution was collected in a container. The obtained treated aqueous solution was subjected to component analysis using high-speed liquid chromatography. Further, this treated aqueous solution was allowed to stand for 12 hours, and precipitates were observed, but no precipitates were observed. These results are shown in Table 1. The glucose yield was 10.5% by weight based on the charged raw materials, and the water-soluble cellulose oligomer was also 32.2% by weight, for a total of 42.7% by weight. FIG. 2 shows the MALDI-TOFMS analysis result of the treated aqueous solution. Compared to Example 1, fragmentation of the * part (glucose ring) was progressing, and only cellooctaose (glucose octamer) was detected.
[0017]
[Comparative Example 2]
Crystalline cellulose (Avicel PH-101, manufactured by Asahi Kasei Co., Ltd.) was dispersed in water to obtain a slurry having a solid content of 4% by weight. Using the flow supercritical water reactor shown in FIG. 1, 5 parts of subcritical water that had been heated and pressurized in advance were mixed with 1 part of the raw slurry. A raw material slurry of 0.67% by weight raw material was retained for 6 minutes under the conditions of 280 ° C. and 40 MPa. Thereafter, water at room temperature was mixed with the slurry after the reaction, cooled to room temperature, filtered through a filter to remove solids, returned to normal pressure with a back pressure valve, and the treated aqueous solution was collected in a container. The obtained treated aqueous solution was subjected to component analysis using high-speed liquid chromatography. Further, this treated aqueous solution was allowed to stand for 12 hours, and precipitates were observed, but no precipitates were observed. These results are shown in Table 1. The glucose yield was 14.8% by weight with respect to the charged raw materials, and the water-soluble cellulose oligomer was also 5.6% by weight, which was 20.4% by weight in total. On the other hand, the solid content (insoluble matter) filtered through the filter was 17.3% by weight. FIG. 2 shows the MALDI-TOFMS analysis result of the treated aqueous solution. Only cellopentaose (a pentamer of glucose) was detected.
[0018]
[Table 1]
[0019]
【The invention's effect】
According to the present invention, a method for efficiently producing glucose and / or water-soluble cellooligosaccharides from a material containing cellulose can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing an example of a supercritical water and subcritical water reactor used in the present invention.
FIG. 2 is a MALDI-TOFMS analysis result of treated aqueous solutions in Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.
[Explanation of symbols]
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002009745A JP4330839B2 (en) | 2002-01-18 | 2002-01-18 | Method for producing glucose and / or water-soluble cellooligosaccharide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002009745A JP4330839B2 (en) | 2002-01-18 | 2002-01-18 | Method for producing glucose and / or water-soluble cellooligosaccharide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003212888A JP2003212888A (en) | 2003-07-30 |
JP4330839B2 true JP4330839B2 (en) | 2009-09-16 |
Family
ID=27647669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002009745A Expired - Lifetime JP4330839B2 (en) | 2002-01-18 | 2002-01-18 | Method for producing glucose and / or water-soluble cellooligosaccharide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4330839B2 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005270056A (en) * | 2004-03-26 | 2005-10-06 | Hitachi Zosen Corp | Method for removing fermentation inhibitory material in hydrolysate |
CN1989254B (en) * | 2004-07-27 | 2013-07-10 | 旭化成化学株式会社 | Processes for producing cellooligosaccharide |
JP2006223152A (en) * | 2005-02-16 | 2006-08-31 | Hitachi Zosen Corp | Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis |
EP2520672B1 (en) * | 2006-10-26 | 2015-07-15 | Kawasaki Jukogyo Kabushiki Kaisha | Method and system for hydrolytic saccharification of a cellulosic biomass |
EP2157086B1 (en) * | 2007-06-21 | 2012-10-10 | J-Oil Mills, Inc. | Method for producing glycoside aglycone |
CN101161666B (en) * | 2007-09-18 | 2010-07-14 | 陈培豪 | Method for preparing main hydrolysate by hydrolyzing plant fiber material with concentrated sulfuric acid |
US8546561B2 (en) | 2008-07-16 | 2013-10-01 | Renmatix, Inc. | Nano-catalytic-solvo-thermal technology platform bio-refineries |
US8546560B2 (en) | 2008-07-16 | 2013-10-01 | Renmatix, Inc. | Solvo-thermal hydrolysis of cellulose |
CN102639722B (en) | 2008-12-09 | 2017-09-29 | 东丽株式会社 | The manufacture method of liquid glucose |
WO2011016591A1 (en) * | 2009-08-06 | 2011-02-10 | 강원대학교 산학협력단 | Two-stage complex pretreatment process of agricultural byproducts for producing bioethanol under high temperature and high pressure |
JP5706611B2 (en) * | 2009-12-28 | 2015-04-22 | 株式会社日立製作所 | Acrolein synthesis method |
CN112159869B (en) | 2010-01-19 | 2024-04-19 | 瑞恩麦特克斯股份有限公司 | Use of supercritical fluid to produce fermentable sugars and lignin from biomass |
CN102791872A (en) | 2010-03-10 | 2012-11-21 | 东丽株式会社 | Method for producing pure sugar solution, and method for producing chemical product |
KR101778115B1 (en) | 2010-03-15 | 2017-09-13 | 도레이 카부시키가이샤 | Manufacturing method for sugar solution and device for same |
BR112012023159B1 (en) | 2010-03-15 | 2019-05-07 | Toray Industries, Inc. | METHOD FOR PRODUCING SUGAR LIQUID |
CN101899537B (en) * | 2010-03-31 | 2013-03-20 | 华南理工大学 | Method for preparing reducing sugar by supercritical hydrolysis of plant fibers and semi-continuous reactor thereof |
EP2586871A1 (en) | 2010-06-24 | 2013-05-01 | Toray Industries, Inc. | Process for production of aqueous refined sugar solution |
CN101886143B (en) * | 2010-07-13 | 2012-12-26 | 大连理工大学 | Method for preparing reducing sugar by hydrolyzing biomass with super-critical/sub-critical water in two steps |
JPWO2012042841A1 (en) * | 2010-09-30 | 2014-02-03 | 川崎重工業株式会社 | Method and apparatus for saccharification and decomposition of cellulosic biomass |
JP2012075357A (en) | 2010-09-30 | 2012-04-19 | Kawasaki Heavy Ind Ltd | Method for producing ethanol using cellulosic biomass as raw material |
US8747561B2 (en) | 2011-05-04 | 2014-06-10 | Renmatix, Inc. | Cellulose hydrolysis with pH adjustment |
US8801859B2 (en) | 2011-05-04 | 2014-08-12 | Renmatix, Inc. | Self-cleaning apparatus and method for thick slurry pressure control |
US8568533B2 (en) | 2011-05-04 | 2013-10-29 | Renmatix, Inc. | Multistage cellulose hydrolysis and quench with or without acid |
US8663800B2 (en) | 2011-05-04 | 2014-03-04 | Renmatix, Inc. | Lignin production from lignocellulosic biomass |
WO2013046624A1 (en) | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
US8759498B2 (en) | 2011-12-30 | 2014-06-24 | Renmatix, Inc. | Compositions comprising lignin |
MY173716A (en) | 2012-01-13 | 2020-02-18 | Toray Industries | Method for producing chemical substance |
RU2595388C2 (en) | 2012-01-13 | 2016-08-27 | Торэй Индастриз, Инк. | Method for producing chemical substance |
AU2013208441B2 (en) | 2012-01-13 | 2016-12-01 | Toray Industries, Inc. | Method for producing chemical substance |
BR102013006389A2 (en) | 2012-08-01 | 2015-03-17 | Cnpem Ct Nac De Pesquisa Em En E Materiais | Process for simultaneous conversion of sugarcane bagasse using uhtst reactors |
WO2015005307A1 (en) | 2013-07-09 | 2015-01-15 | 東レ株式会社 | Method for producing saccharide solution |
WO2015076279A1 (en) | 2013-11-22 | 2015-05-28 | 東レ株式会社 | Method for producing 2,3-butanediol |
EP3088529B1 (en) | 2013-12-26 | 2019-07-24 | Kawasaki Jukogyo Kabushiki Kaisha | Saccharified solution production method using biomass as raw material, saccharified solution production device |
JP5696310B1 (en) * | 2014-07-15 | 2015-04-08 | 国立大学法人東北大学 | Sludge nutrient recovery method, algae culture method, and algae culture system |
CN107074981A (en) | 2014-09-26 | 2017-08-18 | 瑞恩麦特克斯股份有限公司 | The composition of containing cellulose and its manufacture method |
-
2002
- 2002-01-18 JP JP2002009745A patent/JP4330839B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003212888A (en) | 2003-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4330839B2 (en) | Method for producing glucose and / or water-soluble cellooligosaccharide | |
AU2008264871B2 (en) | A process for separating biomass components | |
US20100048884A1 (en) | Solvo-thermal hydrolysis of cellulose | |
HU197774B (en) | Organic solvent process for the hydrolytic saccharification of vegetable materials of starch type | |
EP3094734B1 (en) | Process for fractionation of oligosaccharides from agri-waste | |
CN108411044B (en) | Ultrasonic-assisted purification method for xylose in eucalyptus hot water prehydrolysis liquid | |
Zhang et al. | Efficient hydrolysis of chitosan in ionic liquids | |
WO2001032715A1 (en) | Process for the production of organic products from lignocellulose containing biomass sources | |
CN110616237A (en) | Method for preparing xylo-oligosaccharide from steam-exploded plant fiber raw material | |
AU2013257301A1 (en) | Two step optimization for liquefaction of biomass | |
EP3368580B1 (en) | Alternative post treatment for stabilizing highly disordered celluloses | |
US20120095204A1 (en) | Method to prepare d-glucosamine hydrochloride | |
JP2005040025A (en) | Method for hydrolyzing polysaccharide substance | |
JP5861413B2 (en) | Continuous production method of furfural from biomass | |
EP2635590A2 (en) | Mixed super critical fluid hydrolysis and alcoholysis of cellulose to form glucose and glucose derivatives | |
CN105483184A (en) | Production method of high-yield xylooligosaccharide | |
GB2612082A (en) | Process of production of xylooligosaccharides from peels of orange fruit | |
CN106748750A (en) | A kind of method that lactic acid is prepared by hemicellulose in maize straw | |
CN107406866B (en) | Method for producing sugar solution | |
JP2005206468A (en) | Method for producing saccharides and solid fuel using biomass as raw material | |
WO2010012124A1 (en) | A method for preparing a product containing silicon from plant | |
JP2010083850A (en) | Saccharification of lignocellulose and ethanol fermentation method | |
JP5413720B2 (en) | Method for producing polysaccharide depolymerized product | |
CN102154410B (en) | Method for producing L-arabinose by using peach gum as raw material | |
JP2014103921A (en) | Treatment method of lignocellulosic biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081010 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081212 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090617 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4330839 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140626 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |