BR102013006389A2 - Process for simultaneous conversion of sugarcane bagasse using uhtst reactors - Google Patents

Process for simultaneous conversion of sugarcane bagasse using uhtst reactors Download PDF

Info

Publication number
BR102013006389A2
BR102013006389A2 BRBR102013006389-4A BR102013006389A BR102013006389A2 BR 102013006389 A2 BR102013006389 A2 BR 102013006389A2 BR 102013006389 A BR102013006389 A BR 102013006389A BR 102013006389 A2 BR102013006389 A2 BR 102013006389A2
Authority
BR
Brazil
Prior art keywords
uhtst
sugarcane bagasse
bagasse
simultaneous conversion
reactors
Prior art date
Application number
BRBR102013006389-4A
Other languages
Portuguese (pt)
Inventor
Jonas Junior Nolasco
Sindelia Freitas Azzoni
Carlos Eduardo Vaz Rossel
Original Assignee
Cnpem Ct Nac De Pesquisa Em En E Materiais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cnpem Ct Nac De Pesquisa Em En E Materiais filed Critical Cnpem Ct Nac De Pesquisa Em En E Materiais
Priority to BRBR102013006389-4A priority Critical patent/BR102013006389A2/en
Priority to BR132013017839A priority patent/BR132013017839E2/en
Priority to PCT/BR2013/000275 priority patent/WO2014019043A2/en
Publication of BR102013006389A2 publication Critical patent/BR102013006389A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/06Means for pre-treatment of biological substances by chemical means or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/02Pretreatment of the finely-divided materials before digesting with water or steam
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

Processo para conversão simultânea do bagaço de cana-de-açúcar utilizando reatores uhtst. Processo e equipamento para conversão simultânea de bagaço de cana utilizando reatores contínuos uhtst usando água líquida superaquecida para o processo de pré-tratamento e hidrólise do bagaço. O processo de pré-tratamento proposto é conduzido em 2 fases que operam sequencialmente em condições diferenciadas de tempo de residência, temperatura e pressão otimizadas para máxima preservação dos açúcares monômeros ou oligômeros de cada uma das frações hemicelulose e celulose do bagaço e consequentemente, mínima formação de produtos inibidores. Os sistemas de aquecimento e resfriamento, antes e pós o pré-tratamento, foram projetados para serem conduzidos também de forma rápida, com duração de menos de um minuto e meio ou ainda, frações de segundos.Process for simultaneous conversion of sugarcane bagasse using uhtst reactors. Process and equipment for simultaneous conversion of sugarcane bagasse using uhtst continuous reactors using superheated liquid water for the bagasse pre-treatment and hydrolysis process. The proposed pretreatment process is conducted in 2 phases that operate sequentially under different conditions of residence time, temperature and pressure optimized for maximum preservation of the monomer or oligomer sugars of each of the bagasse hemicellulose and cellulose fractions and, consequently, minimal formation inhibitor products. The heating and cooling systems, before and after the pre-treatment, were designed to be carried out also quickly, lasting less than one and a half minutes or even fractions of seconds.

Description

“PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST” CAMPO DE APLICAÇÃO“PROCESS FOR SIMULTANEOUS CONVERSION OF SUGAR CANE PASTA USING UHTST REACTORS” FIELD

Conversão da biomassa, preferencialmente, bagaço de cana, para liberação de monômeros e oligômeros de glicose para produção de biocombustíveis e biossíntese em geral. A presente invenção está relacionada ao processo completo utilizando reatores contínuos UHTST e sistemas de aquecimento e resfriamento_para-a„conversão de bagaço de cana em suas unidades estruturais de açúcares, sejam elas monoméricas ou oligoméricas.Conversion of biomass, preferably sugarcane bagasse, to release glucose monomers and oligomers for biofuel production and biosynthesis in general. The present invention relates to the complete process using UHTST continuous reactors and heating and cooling systems for the conversion of sugarcane bagasse into their sugar or monomeric structural units.

ANTECEDENTES DA INVENÇÃO A desconstrução do bagaço de cana-de-açúcar, por exemplo, por processos de hidrólise, é de difícil execução devido à íntima associação que existe entre os três componentes poliméricos majoritários da biomassa, ou seja, devido ao seu alto grau de associação. Por esse motivo, vários processos de pré-tratamento estão sendo estudados e, dentre os mais promissores, se encontram o de explosão a vapor ou aqueles que utilizam água como reagente (RAMOS, 2003; GÁMES et al., 2006; CUNHA 2001; PITARELO, 2007).BACKGROUND OF THE INVENTION Deconstruction of sugarcane bagasse, for example by hydrolysis processes, is difficult to perform due to the close association that exists between the three major polymeric components of biomass, ie due to its high degree of Association. For this reason, several pretreatment processes are being studied and, among the most promising, are those of steam explosion or those that use water as a reagent (RAMOS, 2003; GÁMES et al., 2006; CUNHA 2001; PITARELO , 2007).

Para se conhecer o estado da técnica da tecnologia de explosão a vapor e outros processos utilizando água como reagente do pré-tratamento, levantamentos foram realizados: Na patente ES8706829 a biomassa é tratada com vapor de água à 200-250°C em um reator hermeticamente fechado durante 2-20 minutos, que após o tratamento, a temperatura do sistema é diminuída gradativamente, até atingir a ambiente. No entanto notou-se que o rompimento abrupto das fibras, o que não ocorria nesse processo, gerava melhores resultados para tratamentos posteriores. Já em 1928 foi patenteado um aparato de explosão a vapor da madeira, US1,655,618. O relatório descreve condições de alta pressão e temperatura com uma conseguinte rápida despressurização. A partir daí, vários outros estudos foram realizados para melhorar esse tipo de processo.To know the state of the art of steam explosion technology and other processes using water as a pretreatment reagent, surveys were performed: In patent ES8706829 biomass is treated with water vapor at 200-250 ° C in a hermetically reactor. closed for 2-20 minutes, which after treatment, the system temperature is gradually decreased until it reaches the environment. However, it was noted that the abrupt rupture of the fibers, which did not occur in this process, generated better results for subsequent treatments. Already in 1928 a wood vapor explosion apparatus, US1,655,618, was patented. The report describes conditions of high pressure and temperature with consequently rapid depressurization. Since then, several other studies have been conducted to improve this type of process.

As patentes CA1096374 e CA141376 descrevem o reator de pré-tratamento e o processo de explosão a vapor da matéria lignocelulósica, no qual em 60 segundos eleva-se a pressão na faixa de 28,1-49,2 kg/cm2 em temperatura de 180-240°C, que posteriormente tem uma rápida despressurização e abaixamento da temperatura, por ser exposto ao ar atmosférico. Ainda no último documento há a etapa de produção de glicose pela impregnação da celulose com solução ácida. O documento US2002164730 protege um processo bastante completo de produção de etanol, que inclui o pré-tratamento por explosão à vapor, de biomassa oriunda de resíduos agrícolas, em condições de baixas temperaturas (200-220°C), altas pressões e maiores tempos de tratamento (5 à 10 minutos). Os inventores alegam que essas condições dão origem à melhores taxas de recuperação da glicose. A patente depositada no Brasil de número PI0801352 traz um equipamento de explosão a vapor, principalmente da madeira. Nele uma centrífuga auxilia o aumento da pressão no reator, o que diminui o consumo enerqético. por que menos vapor é adicionado ao sistema para que haja elevada pressão.Patents CA1096374 and CA141376 describe the pretreatment reactor and the steam explosion process of lignocellulosic matter, which in 60 seconds raises the pressure in the range of 28.1-49.2 kg / cm2 at a temperature of 180 ° C. -240 ° C, which subsequently has a rapid depressurization and lowering of temperature by being exposed to atmospheric air. Also in the last document is the glucose production stage by impregnating the cellulose with acid solution. US2002164730 protects a fairly complete ethanol production process, which includes steam blast pretreatment of biomass from agricultural residues under conditions of low temperatures (200-220 ° C), high pressures and longer lead times. treatment (5 to 10 minutes). The inventors claim that these conditions give rise to better glucose recovery rates. The patent filed in Brazil number PI0801352 brings a steam blasting equipment, mainly of wood. In it a centrifuge helps to increase the pressure in the reactor, which decreases the energy consumption. why less steam is added to the system for high pressure.

Ainda no depósito US20120111514 há a descrição de um processo que não necessita da presença de catalisadores ácidos no tratamento por explosão a vapor do bagaço, pois o próprio ácido acético gerado durante o pré-tratamento, através da degradação da glicose, auxilia a reação. São condições especificas de temperatura (170-220°C), pressão (100-320 psíg) e tempo (5 a 90 minutos) que permitem a retirada do catalisador. Como etapa adicional há a existência de uma purga que remove compostos solúveis em água e químicos voláteis. O documento US 6,419,788 conduz um processo de explosão a vapor da matéria lignocelulósica, principalmente madeira, em condições já conhecidas, mas que é posteriormente tratada com água quente em pH alcalino (8-13) que contém oxigênio dissolvido. A água de lavagem retira lignina, hemicelulose e inibidores da etapa de hidrólise. Há também uma variedade de patentes (US 5,125,977, US 5,424,417, US 5,503,996, US 5,705,369, PI9005762, W02000019004, US20100276093, CA1267407 e CA1282777) que utilizam a explosão à vapor do bagaço para a produção de outros produtos, que não o etanol, como por exemplo papel. Na maioria dos processos descritos em referidos documentos durante ou após a explosão do material o mesmo é tratado com soluções alcalinas, para gerar a polpa que dará origem ao papel.Also in US20120111514 there is a description of a process that does not require the presence of acid catalysts in the bagasse steam blast treatment, as the acetic acid itself generated during pretreatment, through glucose degradation, assists the reaction. Specific conditions of temperature (170-220 ° C), pressure (100-320 psig) and time (5 to 90 minutes) allow catalyst removal. As an additional step there is a purge that removes water soluble compounds and volatile chemicals. US 6,419,788 conducts a vapor explosion process of lignocellulosic matter, primarily wood, under known conditions, but which is subsequently treated with alkaline pH (8-13) hot water containing dissolved oxygen. Wash water removes lignin, hemicellulose and inhibitors from the hydrolysis step. There are also a variety of patents (US 5,125,977, US 5,424,417, US 5,503,996, US 5,705,369, PI9005762, W02000019004, US20100276093, CA1267407 and CA1282777) that use bagasse blast to produce products other than ethanol such as for example paper. In most of the processes described in said documents during or after the explosion of the material it is treated with alkaline solutions to generate the pulp that will give rise to the paper.

Dos processos que envolvem a utilização de água quente, uma das novidades é a presença do resfriamento rápido, que diminui a quantidade de inibidores no processo e preserva os açúcares extraídos, com relação aos tratamentos por explosão a vapor. Há diversas anterioridades referentes ao processo UHTST em biomassas e celulose sintética, no entanto, não foram encontrados equipamentos em escala industrial que realizassem tal atividade, no pré-tratamento e hidrólise do bagaço de cana-de-açúcar.Of the processes involving the use of hot water, one of the novelties is the presence of rapid cooling, which decreases the amount of inhibitors in the process and preserves the sugars extracted from steam blast treatments. There are several priorities regarding the UHTST process in biomass and synthetic cellulose, however, no industrial scale equipment was found to perform such activity in the pretreatment and hydrolysis of sugarcane bagasse.

Sasaki et al., 2003, surgiu com um estudo da degradação do bagaço de cana-de-açúcar, por tratamento hidrotérmico. Segundo os autores esse tipo de fracionamento da biomassa era “mais limpo”, com relação aos outros tratamentos existentes, pois o solvente utilizado era água. O experimento foi conduzido em escala laboratorial, em que bagaço alimentava um tubo de aço e se misturava a água introduzida através de duas bombas de HPLC. As condições experimentais eram de temperaturas de 200-230°C, para extração da hemicelulose e lignina e 230-280°C para retirada da celulose, em uma pressão de 15MPa. A fase líquida era rapidamente resfriada e analisada. O processo permitiu que aoroximadamente 90% da biomassa fosse solubilizada. Nota-se, portanto, que desde o ano da publicação do artigo, estudos eram conduzidos com relação a esse tipo de tratamento. O estudo não faz menção aos tempos de residência nem a recuperação e preservação dos açúcares.Sasaki et al., 2003, came up with a study of the degradation of sugarcane bagasse by hydrothermal treatment. According to the authors, this type of biomass fractionation was “cleaner” than other existing treatments, as the solvent used was water. The experiment was conducted on a laboratory scale, in which bagasse fed a steel tube and mixed the water introduced through two HPLC pumps. The experimental conditions were temperatures of 200-230 ° C for hemicellulose and lignin extraction and 230-280 ° C for cellulose removal at a pressure of 15MPa. The liquid phase was rapidly cooled and analyzed. The process allowed approximately 90% of the biomass to be solubilized. It is noted, therefore, that since the year of publication of the article, studies were conducted with regard to this type of treatment. The study makes no mention of residence times or the recovery and preservation of sugars.

Posteriormente em 2004, Sasaki et al., surgiu com um novo artigo sobre a conversão de celulose sintética, através da utilização de água supercrítica a temperatura de 320-400°C, pressão de 25MPa e tempos de residência entre 0,02-13,1 segundos. Água destilada alimentava uma bomba de HPLC, que era pré-aquecida e posteriormente se misturava a celulose, as quais eram introduzidas no reator. Após a reação, a mistura era rapidamente resfriada a 60°C. Os reatores utilizados nesse experimento possuíam de 0,03 a 5,27 cm3 e o substrato utilizado era celulose pura, ou seja, estava longe das condições encontradas na indústria.Later in 2004, Sasaki et al. Came up with a new article on converting synthetic cellulose, using supercritical water at a temperature of 320-400 ° C, a pressure of 25MPa and residence times between 0.02-13, 1 sec. Distilled water fed a preheated HPLC pump, which was later mixed with cellulose, which was introduced into the reactor. After the reaction, the mixture was rapidly cooled to 60 ° C. The reactors used in this experiment had from 0.03 to 5.27 cm3 and the substrate used was pure cellulose, that is, it was far from the conditions found in the industry.

Os documentos WO2012060767 e JP2003212888 tem o intuito de separar celulose e/ou oligossacarídeos da biomassa sólida, com água em condições severas, como por exemplo, temperaturas maiores do que 250°C e tempos de residência de 1,5 e 1,0 segundo respectivamente e as fases extraídas são rapidamente resfriadas. O primeiro processo apresenta uma descrição de possível equipamento a ser empregado, no entanto, não trás o desenho do sistema, sendo que os experimentos ocorrem em escala laboratorial, utilizando como biomassa o pinho e rendimentos de 35% de recuperação de glicose. No segundo caso é mostrado um diagrama com a configuração necessária para se realizar o processo, no entanto, os exemplos disponibilizados envolvem a degradação de celulose cristalina, situação que não representa as condições encontradas na indústria. E ainda a PI0706024, descreve processo e equipamento de hidrólise da biomassa, previamente triturada e colocada em contato com água, opcionalmente contendo etanol (2 a 10%) em condições de alta temperatura (140-180°C e 240-280°C para degradação da hemicelulose e celulose, respectivamente) e pressão em um número de reatores de pressão de 4+n ou 3+n, em que os diversos processos de aquecimento, resfriamento, entre outros, podem ocorrer simultaneamente. A etapa de resfriamento se dá pela evaporação da água. O processo pode economizar até 60% de energia com um rendimento de sacarídeos de aproximadamente 40%. Nesse caso um equipamento para o tratamento da biomassa é esquematizado, no entanto, muito se difere daquele que se pretende proteger e ainda não traz um sistema de resfriamento rápido da mistura. A patente CN101613377 esquematiza um sistema de degradação da biomassa através do pré-tratamento e hidrolise da mesma, principalmente madeira, em reatores com água em condições supercríticas (350-400°C), primeiramente, e subcríticas (200-300°C), em sequência. Em ambas as situações os respectivos resfriadores (100-200°C e 15-50°C), de cada reator, abaixam a temperatura do sistema. No presente caso não há discussão quanto ao tempo de residência da biomassa no reator e ainda foca na desestruturação da biomassa para retirada de glicose e não de xilose/glicose. O documento JP2009261275 traz um sistema de pré-aquecimento, reação e resfriamento, através da utilização de três reatores para cada etapa, os quais, segundos os inventores, permitem haver uma diminuição de temperatura não tão abrupta em cada unidade, o que diminui os seus custos. Na primeira etapa, a mistura biomassa e água são pré-aquecidos a 70-120°C, com vapor reciclado da etapa de resfriamento, e é transportada para a segunda etapa, onde ocorre o tratamento com água quente a 140-200°C para extração das C5 ou a 240-280°C para extração da celulose. Nos três últimos tanques ocorre a diminuição da temperatura para 140-180°C, por evaporação. A biomassa e solução são separadas e a matéria sólida pode retornar novamente para o sistema. É obtido um rendimento de sacarídeos de aproximadamente 40%. A patente descreve um processo que levará, pelo menos, 1 minuto para cada etapa ocorrer e não apresenta um equipamento específico para separação da fase sólida e líquida. O processo CA2750754 apresenta um tratamento hidrotérmico em que água e biomassa são extrudadas em contracorrente e a fase líquida é enviada para uma unidade de hidrólise enzimática, enquanto a fase sólida é resfriada com água líquida em menor temperatura, para parar a degradação da hemicelulose, e que posteriormente também é enviada a unidade de hidrólise enzimática. O processo envolve uma etapa de separação da fase sólida e líquida, para ambas extrações e uma de recuperação da água do processo, para economia energética. Nesse sistema o reator está em posição vertical, o que pode causar perdas de matéria, já que o bagaço, por exemplo, é uma biomassa leve, tornando difícil o controle de sua ascensão. Ainda o processo demora minutos para ocorrer, por exemplo, na primeira etapa de pré-tratamento, a extrusão ocorre de 3-10 minutos. O processo WO2011091044 reivindica um processo de tratamento da biomassa lignocelulósica onde, em um primeiro reator de pré-tratamento, água quente e matéria celulósica são colocadas em contato na temperatura de 180-260°C, pressão de 50-110 bar e no tempo de 1-10 min. Após essa etapa a separação líquido/sólido ocorre e xilose em solução é resfriada. A outra fase é submetida a hidrólise em condições de 275-450 °C de temperatura, 200-250 bar de pressão e 1-45 s de tempo de residência. Os produtos são separados e resfriados. Nas duas etapas de alimentação pode haver adição de C02, assim como em ambas as etapas de resfriamento ácido pode ser opcionalmente inserido. A recuperação da celulose da biomassa chega a rendimentos de 60%, com conversões para glicose de até 90%. O processo se assemelha com muitos outros apresentados aqui, com exceção da adição de C02 e água em condições supercríticas, e ácido no início do experimento, no entanto o documento não apresenta um equipamento próprio para a realização do processo. As condições da tecnologia encarecem o processo, que justificam sua utilização para produção de produtos de alto valor agregado. O conceito de processo UHTST também pode ser aplicado aos caldos utilizados na fermentação para obtenção de etanol e é largamente utilizado na indústria de alimentos porem com finalidade de inativar termicamente contaminantes e ao mesmo tempo preservar o máximo de nutrientes.WO2012060767 and JP2003212888 are intended to separate cellulose and / or oligosaccharides from solid biomass with water under severe conditions, such as temperatures greater than 250 ° C and residence times of 1.5 and 1.0 seconds respectively. and the extracted phases are rapidly cooled. The first process presents a description of possible equipment to be used, however, does not bring the system design, and the experiments take place on a laboratory scale, using pine as biomass and yields of 35% glucose recovery. In the second case is shown a diagram with the necessary configuration to perform the process, however, the available examples involve the degradation of crystalline cellulose, a situation that does not represent the conditions found in the industry. In addition, PI0706024 describes a biomass hydrolysis process and equipment previously ground and in contact with water, optionally containing ethanol (2 to 10%) under high temperature conditions (140-180 ° C and 240-280 ° C for hemicellulose and cellulose degradation, respectively) and pressure in a number of 4 + n or 3 + n pressure reactors, where the various heating, cooling, and other processes can occur simultaneously. The cooling step is by evaporation of water. The process can save up to 60% energy with a saccharide yield of approximately 40%. In this case an equipment for the treatment of biomass is outlined, however, much differs from that intended to protect and does not yet bring a rapid cooling system of the mixture. Patent CN101613377 outlines a system of biomass degradation by pretreatment and hydrolysis thereof, mainly wood, in reactors with water under supercritical (350-400 ° C), and subcritical (200-300 ° C) conditions, in sequence. In both situations the respective coolers (100-200 ° C and 15-50 ° C) from each reactor lower the system temperature. In the present case there is no discussion about the residence time of the biomass in the reactor and still focuses on the biomass disruption to glucose rather than xylose / glucose removal. The document JP2009261275 brings a preheating, reaction and cooling system through the use of three reactors for each step, which, according to the inventors, allow a not so abrupt temperature decrease in each unit, which decreases its temperatures. costs. In the first stage, the biomass and water mixture is preheated to 70-120 ° C, with recycled steam from the cooling stage, and is transported to the second stage, where hot water treatment at 140-200 ° C takes place. C5 extraction or at 240-280 ° C for cellulose extraction. In the last three tanks the temperature decreases to 140-180 ° C by evaporation. The biomass and solution are separated and solid matter can be returned to the system again. A saccharide yield of approximately 40% is obtained. The patent describes a process that will take at least 1 minute for each step to occur and has no specific equipment for solid and liquid phase separation. Process CA2750754 features a hydrothermal treatment in which water and biomass are extruded countercurrent and the liquid phase is sent to an enzymatic hydrolysis unit, while the solid phase is cooled with lower temperature liquid water to stop hemicellulose degradation, and which is also subsequently sent to the enzymatic hydrolysis unit. The process involves a solid and liquid phase separation step for both extractions and a process water recovery step for energy saving. In this system the reactor is in a vertical position, which can cause matter loss, since the bagasse, for example, is a light biomass, making it difficult to control its rise. Although the process takes minutes to occur, for example, in the first pretreatment step, the extrusion takes 3-10 minutes. Process WO2011091044 claims a lignocellulosic biomass treatment process where, in a first pretreatment reactor, hot water and cellulosic matter are brought into contact at a temperature of 180-260 ° C, a pressure of 50-110 bar and a 1-10 min. After this step liquid / solid separation occurs and xylose in solution is cooled. The other phase is subjected to hydrolysis under conditions of 275-450 ° C temperature, 200-250 bar pressure and 1-45 s residence time. The products are separated and cooled. In both feeding steps there may be addition of CO2 as well as in both acid cooling steps can be optionally inserted. Cellulose recovery from biomass reaches 60% yields, with glucose conversions up to 90%. The process resembles many others presented here, except for the addition of CO 2 and water under supercritical conditions, and acid at the beginning of the experiment, however the document does not provide proper equipment for carrying out the process. Technology conditions make the process more expensive, which justifies its use for the production of high added value products. The UHTST process concept can also be applied to broths used in fermentation to obtain ethanol and is widely used in the food industry but with the purpose of thermally inactivating contaminants while preserving maximum nutrients.

Fica claro, portanto, que o conceito de tratamento UHTST é bastante estudado e almejado para a indústria, no entanto, nenhum equipamento capaz de trazer os resultados esperados foi efetivamente introduzido no mercado, para conversão de biomassa.It is clear, therefore, that the concept of UHTST treatment is well studied and targeted for the industry, however, no equipment capable of bringing the expected results has been effectively introduced in the market for biomass conversion.

SUMÁRIO DA INVENÇÃO A presente invenção descreve o processo para conversão de bagaço de cana utilizando reatores contínuos UHTST usando água líquida superaquecida para o processo de pré-tratamento e hidrólise do bagaço. O processo de pré-tratamento proposto é conduzido em 2 fases que operam sequencialmente em condições diferenciadas de tempo de residência, temperatura e pressão otimizados para máxima preservação dos açúcares monoméricos ou oligoméricos de cada uma das frações hemicelulose e celulose do bagaço e consequentemente, mínima formação de produtos inibidores. Os sistemas de aquecimento e resfriamento, antes e após o pré-tratamento, foram projetados para serem conduzidos igualmente de forma rápida, com duração de menos de um minuto e meio ou ainda, frações de segundos.SUMMARY OF THE INVENTION The present invention describes the process for converting sugarcane bagasse using UHTST continuous reactors using superheated liquid water for the bagasse pretreatment and hydrolysis process. The proposed pretreatment process is conducted in 2 phases that operate sequentially under different conditions of residence time, temperature and pressure optimized for maximum preservation of monomeric or oligomeric sugars of each of the bagasse hemicellulose and cellulose fractions and, consequently, minimal formation. inhibitor products. The pre-treatment and pre-treatment heating and cooling systems are designed to be conducted equally quickly, lasting less than one and a half minutes or even fractions of seconds.

A faixa de temperatura é ampla chegando até a 350°C dependendo do uso ou não de produtos químicos capazes de criar sinergia com o tratamento térmico. Os tempos de residência efetivos durante o pré-tratamento são inferiores a 1 minuto podendo chegar a frações de segundos. Todo o processo envolvendo a reação, o resfriamento e a transferência para as etapas subsequentes é conduzido de forma asséptica, mediante o não contato da matéria com ar exterior para evitar contaminação. O consumo de vapor de processo é inferior a 20kg/TC enquanto o consumo de água é inferior a 4kg/kg de bagaço tratado, sendo que com este consumo de água a concentração da fração C-5 proveniente da hidrólise da hemicelulose é 75,5g/L enquanto a concentração da fração C-6 proveniente da hidrólise da celulose é 120g/L. O sistema de resfriamento evaporativo adotado confere regeneração térmica, concentração e resfriamento rápido a fim de preservar os açúcares liberados.The temperature range is wide up to 350 ° C depending on the use or not of chemicals capable of creating synergy with heat treatment. Effective residence times during pretreatment are less than 1 minute and may reach fractions of seconds. The entire process involving reaction, cooling and transfer to subsequent steps is conducted aseptically, by not contacting the material with outside air to avoid contamination. Process steam consumption is less than 20kg / TC while water consumption is less than 4kg / kg of treated bagasse, and with this water consumption the concentration of fraction C-5 from hemicellulose hydrolysis is 75.5g. / L whereas the concentration of the C-6 fraction from cellulose hydrolysis is 120g / L. The evaporative cooling system adopted provides thermal regeneration, concentration and rapid cooling in order to preserve the released sugars.

Um inconveniente da técnica anterior é que os processos de pré-tratamento geram hidrolisados com baixa concentração (< 20g/L) e são intensivos em energia para concentração nos níveis obtidos por essa tecnologia.A drawback of the prior art is that the pretreatment processes generate low concentration hydrolysates (<20g / L) and are energy intensive for concentration at the levels obtained by this technology.

Outro inconveniente da técnica anterior, superado pela presente invenção, é que os módulos utilizados para o pré-tratamento não apresentam uma boa dinâmica de transferência de matéria quando se pretende aumentar o tempo de residência da biomassa no reator, não possuindo, igualmente em sua maioria, uma flexibilidade tão variada de ditos tempos de residência.Another drawback of the prior art, overcome by the present invention, is that the modules used for the pretreatment do not have a good matter transfer dynamics when it is intended to increase the residence time of the biomass in the reactor. such a varied flexibility of said times of residence.

DESCRIÇÃO DA INVENÇÃO O processo aqui descrito utiliza água superaquecida numa faixa de temperatura e pressão de 280°C/ 64,5barg a 350°C/161,5barg sem uso de produtos químicos, ácidos ou enzimas, realizado em 2 fases. A água superaquecida nas condições desse projeto apresenta ótimas propriedades, como alta capacidade de solvatação, inclusive de substâncias orgânicas, alta reatividade e muito baixa viscosidade. O processo foi projetado para ocorrer em 2 fases onde os reatores foram projetados para, separadamente, extrair e hidrolisar a hemicelulose liberando os açúcares de 5 átomos de carbono e hidrolisar a celulose liberando os açúcares de 6 átomos de carbono. Ambas as etapas do processo são conduzidas com o conceito UHTST, siglas em inglês que significam Ultra High Temperature Short Time, processos térmicos ultrarrápidos que são conduzidos a temperaturas elevadas. Essa classe de processo é largamente utilizada na indústria de alimentos em processos de esterilização e pasteurização com o objetivo mútuo de eliminar contaminantes microbiológicos e de preservar os nutrientes do alimento. No caso do pré-tratamento do bagaço as etapas tís aquecimento s resfriamento também sêo extremamente ráoidas para evitar que os açúcares sorram reações de degradação térmica, proservantíc-os, dessa forma evitando a liberação tís ácidos orgânicos e outros produtos inibidores para as etapas subsequentes do processo.DESCRIPTION OF THE INVENTION The process described herein utilizes superheated water in a temperature and pressure range of 280 ° C / 64.5 barg to 350 ° C / 161.5 barg without use of chemicals, acids or enzymes, carried out in 2 phases. Overheated water under the conditions of this project has excellent properties, such as high solvency capacity, including organic substances, high reactivity and very low viscosity. The process is designed to occur in 2 phases where reactors are designed to separately extract and hydrolyze hemicellulose by releasing sugars of 5 carbon atoms and hydrolyze cellulose by releasing sugars of 6 carbon atoms. Both process steps are conducted with the UHTST concept, meaning Ultra High Temperature Short Time, ultra-fast thermal processes that are conducted at elevated temperatures. This process class is widely used in the food industry in sterilization and pasteurization processes with the mutual goal of eliminating microbiological contaminants and preserving food nutrients. In the case of bagasse pretreatment, the heating and cooling steps are also extremely rapid to prevent sugars from sortering, thereby preserving the thermal degradation reactions, thus preventing the release of these organic acids and other inhibitor products to the subsequent steps. process.

Cs caldos hidroiisados sêo enviados para vasos de resfriamento evaporaíivcs o que garante resfriamento instantâneo à temperaturas seguras para evitar tais reações de degradação térmica. Os vasos de resfriamento ovaperativo garantem ainda regeneração térmica e concentração dc caitíc hidrcl:satíc e são dimensionados para mínimo arraste de açúcares. Quantidade ótima de água superaquecida para o processe de pré-tratamento pode ser utilizada sem preocupação com diluição excessiva dos açúcares nos caldos hidroiisados resultantes, pois a água adicionada será removida durante o resfriamento evaporaíivo e reutilizada com.o vapor.Hydro-broth broths are sent to evaporative cooling vessels ensuring instant cooling to safe temperatures to prevent such thermal degradation reactions. The ovaperative cooling vessels also guarantee thermal regeneration and concentration of caitic hydrcl: satic and are sized for minimum sugar carryover. Optimum amount of overheated water for the pretreatment process can be used without concern for excessive dilution of sugars in the resulting hydroisised broths as the added water will be removed during evaporative cooling and reused with steam.

Gs reatores utilizados sêo módulos tíe tubos conectáveis que permitem, em conjunto ccm variação da rotação da bomba, variar o tempo de residência no pré-tratamento numa ampla faixa conforme a necessidade tíe otimização. Por apresentar altas pressões, a tíescompressão na saída tío 2° conjunto tíe reator confere tíesestruturação mecânica tía biomassa com consequente aumento tíe sua superfície específica, o que contribui para aumentar a eficiência tía reação enzimática subsequente em caso dessa reação ser necessária.The reactors used are modules with pluggable tubing which, together with varying pump speed, vary the pre-treatment residence time over a wide range as the need arises. Because it presents high pressures, the pressure at the output of the 2 nd set of the reactor gives the mechanical structuring of the biomass with consequent increase in its specific surface, which contributes to increase the efficiency of the subsequent enzymatic reaction in case this reaction is necessary.

As etapas tíe processo tíe pré-tratamento e hitírólise tía hamicelüiose e ceiulos© foram projetadas para ocorrer em reatores separados extraindo também separadamente os caldos hidroiisados ricos em C-5 e C-S com o objetivo tíe conferir mais flexibilidade ao processo subsequente. Com esta configuração essas correntes podem ser processadas em separado ou previamente misturadas para processamento conjunto dependendo da tecnologia disponível, que não é objeto desta invenção. O sistema da presente invenção, portanto, traz as vantagens de máxima superfície específica para a reação enzimática em conjunto com uma máxima remoção da hemiceiuiose, máxima preservação da celuiose (>8S%), máxima preservação das pentoses (>88%) e mínima produção de produtos inibidores.The pre-treatment process steps and the hamicelluiosis and cell © pretyrolysis and cell steps are designed to occur in separate reactors and also separately extracting the C-5 and C-S rich hydrolyzed broths in order to provide more flexibility to the subsequent process. With this configuration these streams may be processed separately or premixed for joint processing depending on available technology which is not the subject of this invention. The system of the present invention therefore has the advantages of maximum specific surface area for the enzymatic reaction together with maximum hemiceyiosis removal, maximum celluiosis preservation (> 8S%), maximum pentose preservation (> 88%) and minimal production. inhibitor products.

G.SCE1CÃC GAS E1G GIBASG.SCE1CÃC GAS E1G GIBAS

Figura 1 - Sistema de FIBÉ-TRAFAIVIEXVG "H7S7 E COXVE1BSÂO SHV1G17AXEA GO BAGAÇO GE CAXA nas configurações de extração das C-5, C-S sem utilização tíe enzimas.Figure 1 - FIBÉ-TRAFAIVIEXVG "H7S7 AND SHV1G17AXEA GO GE CAXA PACKAGING SYSTEM in the extraction configurations of C-5, C-S without the use of enzymes.

Figura 2 - Esquema de montagem dos reatores individual, para cada etapa do processe.Figure 2 - Diagram of assembly of individual reactors for each step of the process.

DESCRIÇÃO DETALHADA DA INVENÇÃODETAILED DESCRIPTION OF THE INVENTION

Bagaço (1) é alimentado a um moinho (2) em que é processado, aqui vale ressaltar que processado caracteriza a redução e uniformização de sua distribuição granulométrica. Dito bagaço (1) tratado é descarregado num transportador helicoidal (3) onde recebe pequena quantidade de água quente (4) para entumescimento e formação do lodo de bagaço (5), tornando o bagaço bombeável. O transportador helicoidal descarrega esse lodo de bagaço (5) na sucção da bomba (6) queJrá_alimeritar_o_primeirjo_mó.dulo_de_rjeator.e.s_f.Qrmado__pQr_conjunto_de_tubos_de. espera (7, 8, 9, 10) conectáveis em painel através das conexões (11 ,12, 13 , 14) projetados para atingir tempos de residência dentro da faixa de 0,5 segundo a 80 segundos. Os ditos tubos permitem que, caso a reação não ocorra por completo em um determinado tempo de residência, previamente estipulado, a matéria-prima, preferencialmente bagaço, ainda possa permanecer por mais tempo em contato com água quente. Água superaquecida a 250-300°C e 40-90barg (15) alimenta esse primeiro módulo em co-corrente com o lodo de bagaço. Ao final da secção tubular do tubo de saída (10) o lodo (43) encontra uma tela perfurada de 400 a 600 mesh (44) que será responsável pela separação da hemicelulose liquefeita (licor rico em açúcares C-5) do sólido lignocelulósico. O licor rico em açúcares C-5 (45) é enviado a um conjunto de resfriadores evaporativos (16-21) cuja função é promover resfriamento instantâneo, em que instantâneo se refere ao resfriamento realizado preferencialmente em milésimos de segundos; concentração do licor; e regeneração térmica e de água. Isso pode ser conseguido utilizando vários estágios em série. Aqui é mostrado um conjunto com 6 estágios. A temperatura de resfriamento irá variar conforme o número de estágios utilizados no sistema. Quanto maior o número de estágios maior será a regeneração térmica. Ao final do resfriamento o licor de saída (46) será rico em C-5. Ademais a corrente (22) pode idealmente ser usada em integração energética em processos paralelos como, por exemplo, a planta de produção de açúcar e etanol 1G. A corrente (23) representa água de reposição para o processo. O material lignocelulósico (24) proveniente da tela perfurada (44) segue para a sucção da bomba (25) que alimenta o segundo módulo de reatores. O segundo módulo de reatores também é formado por conjunto de tubos de espera conectáveis (26-29) conectáveis em painel através das conexões (48 a 51), projetado para atingir tempos de residência dentro da faixa de 0,5 segundo a 80 segundos. Água superaquecida (30) a 300-370°C e 90-220 barg alimenta o segundo módulo em co-corrente com o lodo lignocelulósico (24). Ao final da secção tubular do tubo de saída (29) o lodo (31) lignocelulósico encontra uma tela perfurada de 400-600 mesh (32) que será responsável pela separação do licor rico em açúcares C-6 (33), do material sólido insolúvel rico em lignina lignocelulósico (34). O licor rico em açúcares C-6 (33) é enviado o um sistema de resfriadores evaporativos (35-40) cuja função é promover resfriamento instantâneo, em que instantâneo se refere a milésimos de segundo, concentração do licor e regeneração térmica e de água. Isso pode ser conseguido utilizando vários estágios em série. Quanto maior o número de estágios maior será a regeneração térmica. Aqui é mostrado um conjunto com 6 estágios. Ao final do rejsfriamento_o_li.c.or_de_saída_(4-Z)_será_rico_em_C-6._Ademais_a_corr.ente_(4_1^_pode_ idealmente ser usada em integração energética em processos paralelos como, por exemplo, a planta de produção de açúcar e etanol 1G. Acorrente (42) representa água de reposição para o processo. O reator é projetado com módulos com tempos de espera de 1,5s, 4s, 12s e 40s. Esses módulos podem ser usados combinados ou separados e variando-se a vazão de alimentação do reator se consegue a ampla faixa de tempos de tratamento que vão de 0,5 a 80 segundos. A Figura 2 representa cada módulo que é formado por conjunto de reatores em forma de tubos de espera com diferentes tempos de residência, os quais podem ser facilmente configurados através da escolha de conexões em painel, onde estão disponibilizadas as entradas (52, 53, 54, 55) e saídas (56, 57, 58, 59) de cada reator. Adicionalmente o reator tubular apresenta excelentes características para reações envolvendo sólidos porque possibilita limpeza fácil e não há consumo de energia na mistura. EXEMPLO 1 40 kg de Bagaço cru com 50% de umidade/ 80 kg de água (1) é alimentado a um moinho (2) e é processado até atingir granulometria menor que 1 mm. Dito bagaço é descarregado num transportador helicoidal (3) onde recebe pequena quantidade de água quente (4) a aproximadamente 100°C. O transportador helicoidal descarrega esse lodo de bagaço (5) na sucção da bomba (6) que irá alimentar o primeiro módulo de reatores formado por conjunto de tubos de espera (7, 8, 9 e 10) com tempo de residência de 0,5 a 80 segundos. 80 kg de água superaquecida a 300°C e 88barg (15) alimenta esse primeiro módulo em co-corrente com o lodo de bagaço. Ao final da secção tubular do tubo de saída (10) o lodo encontra uma tela perfurada de 400 mesh (44) que será responsável pela separação da hemicelulose liquefeita (licor rico em açúcares C-5) do sólido lignocelulósico. O licor rico em açúcares C-5 (43) é enviado ao um conjunto de 6 resfriadores evaporativos (16 a 21) cuja função é promover resfriamento instantâneo a 70-80°C e 75,7g/L em milésimos de segundos. Adicionalmente a corrente (22) disponibiliza 38 kg de água a 286°C. A corrente (23) representa 42 kg de água de reposição para o processo. O licor na saída do ultimo estágio (45) apresenta concentração de açúcares C-5 na ordem de 75,4 g/L e temperatura de 80°C. O material lignocelulósico (24) proveniente da tela perfurada segue para a sucção da bomba (25) que alimenta o segundo módulo de reatores (26, 27, 28, 29) com tempo de residência de 0,5 a 80 segundos. 80kg de água superaquecida-(30)-a-350-C-e—t70barg-alimenta-o-segundo-módulo-em-co=corrente-com o lodo lignocelulósico (24). Ao final da secção tubular do tubo de saída (31) o lodo lignocelulósico encontra uma tela perfurada de 400 mesh (32) que será responsável pela separação do licor rico em açúcares C-6 (33), do material sólido insolúvel rico em lignina lignocelulósico (34). O licor rico em açúcares C-6 é enviado ao um conjunto de 6 resfriadores evaporativos (35 a 40) cuja função é promover resfriamento instantâneo a 65-80°C e 119,5g/l em milésimos de segundo, concentração do licor e regeneração térmica e de água. A corrente (41) disponibiliza 46 kg de água a 300°C. A corrente (42) representa 34 kg de água de reposição para o processo. O licor na saída do ultimo estágio (46) apresenta concentração de açúcares C-6 da ordem de 119,5 g/L e 75°C. O consumo de vapor do processo é 0,1 kg de vapor/kg de bagaço pré-tratado o que resulta em 24 kg de vapor/TC. Esse baixo consumo de vapor pode ser absorvido pelas unidades processadoras de cana de açúcar sem grandes esforços de otimização energética nas unidades. O uso do resfriamento evaporativo múltiplo efeito em conjunto com a integração energética dos módulos 1 e 2, proporciona consumo de vapor nulo, no primeiro módulo. Esse fato resulta em possibilidades adicionais de otimização energética quando na implantação de um processo de conversão de biomassa em unidades processadoras de cana de açúcar, já que essas duas correntes ricas em energia podem ser utilizadas no processo das unidades processadoras e contribuir para a redução do consumo de vapor de processo global. O consumo total de água é 3,8 kg de água/kg de bagaço pré-tratado, sendo 2,1 kg/kg no primeiro módulo e 1,7 kg/kg no segundo módulo.Bagasse (1) is fed to a mill (2) in which it is processed, here it is noteworthy that processed characterizes the reduction and uniformity of its particle size distribution. Said treated bagasse (1) is discharged into a helical conveyor (3) where it receives a small amount of hot water (4) for swelling and formation of the bagasse sludge (5), making the bagasse pumpable. The helical conveyor discharges this bagasse sludge (5) into the suction of the pump (6) which will_immitter_the_first_module_of_rjeator.e.s_f.Frame__pQr_set_of_tubes_de. panel pluggable standby (7, 8, 9, 10) through the connections (11, 12, 13, 14) designed to achieve residence times within the range of 0.5 second to 80 seconds. Said tubes allow that, if the reaction does not occur completely within a certain residence time, previously stipulated, the raw material, preferably bagasse, may still remain in contact with hot water for a longer time. Overheated water at 250-300 ° C and 40-90barg (15) feeds this first module in co-current with the bagasse sludge. At the end of the tubular section of the outlet tube (10) the sludge (43) finds a perforated mesh of 400 to 600 mesh (44) which will be responsible for separating the liquefied hemicellulose (C-5 sugar rich liquor) from the lignocellulosic solid. The C-5 high sugar liquor (45) is sent to a set of evaporative coolers (16-21) whose function is to promote instant cooling, where instantaneous refers to cooling performed preferably in milliseconds; liquor concentration; and thermal and water regeneration. This can be achieved by using multiple stages in series. Shown here is a set of 6 stages. The cooling temperature will vary depending on the number of stages used in the system. The greater the number of stages, the greater the thermal regeneration. At the end of cooling the outlet liquor (46) will be rich in C-5. In addition, stream 22 can ideally be used for energy integration in parallel processes such as the 1G sugar and ethanol production plant. Stream 23 represents replacement water for the process. The lignocellulosic material (24) from the perforated screen (44) proceeds to the suction of the pump (25) which feeds the second reactor module. The second reactor module is also comprised of panel pluggable standpipe assemblies (26-29) through connections (48 to 51) designed to achieve residence times within the range of 0.5 second to 80 seconds. Overheated water (30) at 300-370 ° C and 90-220 barg feeds the second module in co-current with lignocellulosic sludge (24). At the end of the tubular section of the outlet tube (29) the lignocellulosic sludge (31) encounters a 400-600 mesh perforated mesh (32) which will be responsible for separating the C-6 sugar rich liquor (33) from the solid material. insoluble in lignocellulosic lignin (34). The C-6 high sugar liquor (33) is shipped to an evaporative cooler system (35-40) whose function is to promote instant cooling, where instantaneous refers to milliseconds, liquor concentration and thermal and water regeneration. . This can be achieved by using multiple stages in series. The greater the number of stages, the greater the thermal regeneration. Shown here is a set of 6 stages. At the end of cooling_the_li.c.out_out_ (4-Z) _seric_in_C-6._Additional_to_current._ (4_1 ^ _can ideally be used for energy integration in parallel processes such as the 1G sugar and ethanol production plant. 42) represents replacement water for the process.The reactor is designed with modules with lead times of 1.5s, 4s, 12s and 40s.These modules can be used in combination or separately and by varying the reactor feed rate if achieves the wide range of treatment times ranging from 0.5 to 80 seconds Figure 2 represents each module which is formed by a set of standby reactors with different residence times which can be easily configured through the choice of panel connections, where the inputs (52, 53, 54, 55) and outputs (56, 57, 58, 59) of each reactor are available, and the tubular reactor has excellent characteristics for reactions involving read because it allows easy cleaning and there is no power consumption in the mix. EXAMPLE 1 40 kg of 50% moisture raw bagasse / 80 kg of water (1) is fed to a mill (2) and processed to a particle size of less than 1 mm. Said bagasse is discharged into a helical conveyor (3) where it receives a small amount of hot water (4) at approximately 100 ° C. The helical conveyor discharges this bagasse sludge (5) into the pump suction (6) which will feed the first reactor module formed by standby tube assembly (7, 8, 9 and 10) with residence time of 0.5 at 80 seconds. 80 kg of overheated water at 300 ° C and 88barg (15) feeds this first module in co-current with the pomace sludge. At the end of the tubular section of the outlet tube (10) the sludge meets a perforated 400 mesh screen (44) which will be responsible for separating the liquefied hemicellulose (C-5 sugar rich liquor) from the lignocellulosic solid. The sugar-rich C-5 liqueur (43) is sent to a set of 6 evaporative coolers (16 to 21) whose function is to provide instant cooling to 70-80 ° C and 75.7g / L in milliseconds. Additionally, stream 22 provides 38 kg of water at 286 ° C. Stream 23 represents 42 kg of replacement water for the process. The liquor at the exit of the last stage (45) has a C-5 sugar concentration of 75.4 g / L and a temperature of 80 ° C. Lignocellulosic material (24) from the perforated web is fed to the pump suction (25) feeding the second reactor module (26, 27, 28, 29) with residence time of 0.5 to 80 seconds. 80kg of overheated water (30) -a-350-C-e-t70barg-feeds-the second-module-in-co = current-with lignocellulosic sludge (24). At the end of the tubular section of the outlet tube (31) the lignocellulosic sludge encounters a 400 mesh perforated mesh (32) which will be responsible for separating the C-6 sugar rich liquor (33) from the lignocellulosic lignin rich insoluble solid material (34). The C-6 high sugar liquor is shipped to a set of 6 evaporative coolers (35 to 40) whose function is to provide instant cooling to 65-80 ° C and 119.5g / l in milliseconds, liquor concentration and regeneration. thermal and water Stream 41 provides 46 kg of water at 300 ° C. Stream 42 represents 34 kg of replacement water for the process. The liquor at the end of the last stage (46) has a C-6 sugar concentration of 119,5 g / l and 75 ° C. The process steam consumption is 0.1 kg steam / kg pretreated bagasse resulting in 24 kg steam / TC. This low steam consumption can be absorbed by sugarcane processing units without major energy optimization efforts at the units. The use of multiple effect evaporative cooling in conjunction with the energy integration of modules 1 and 2, provides zero vapor consumption in the first module. This fact results in additional possibilities for energy optimization when implementing a biomass conversion process in sugarcane processing units, as these two energy-rich streams can be used in the process of processing units and contribute to the reduction of consumption. process steam generator. Total water consumption is 3.8 kg water / kg pretreated bagasse, 2.1 kg / kg in the first module and 1.7 kg / kg in the second module.

Claims (11)

1. PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST caracterizado por conter um transportador (3), em que jdito transportador será alimentado com biomassa processada e água superaquecida; Bomba de Sucção (6 e 25) que será alimentada com lodo de bagaço; Tubos de Espera Conectáveis (7, 8, 9, 10, 26, 27, 28 e 29) alimentados por dita bomba de sucção, em que ditos tubos permitem tempo de residência entre 0,5 a 80 segundos; Tela Perfurada (44 e 32), em que ditas Telas tem Perfuração de 400-600 Mesh, preferencialmente de 400 Mesh e em que separam licor dos sólido, provindos de ditos tubos conectáveis; Conjunto de pelo menos 2 Resfriadores Evaporativos, preferencialmenté de 6 Resfriadores Evaporativos, (16, 17, 18, 19, 20 e 21) (35, 36, 37, 38, 39 e 4Ò) para cada etapa do processo, em que ditos resfriadores compreendem reciclo de vapor para o processo, resfriamento e concentração do licor, em que dita cada etapa compreende 2 etapas, em que uma etapa compreende recuperação dos açúcares C-5 e em que outra etapa compreende a recuperação dos açúcares C-6.1. A process for the simultaneous conversion of sugarcane bagasse using UHTST REACTORS characterized by a carrier (3), wherein said carrier will be fed with processed biomass and overheated water; Suction Pump (6 and 25) that will be fed with bagasse sludge; Connectable Standby Tubes (7, 8, 9, 10, 26, 27, 28 and 29) fed by said suction pump, wherein said pipes allow residence time between 0.5 to 80 seconds; Perforated Screen (44 and 32), wherein said Screens have a Perforation of 400-600 Mesh, preferably 400 Mesh, and separate liquor from solids, derived from said connectable tubes; Set of at least 2 Evaporative Chillers, preferably 6 Evaporative Chillers, (16, 17, 18, 19, 20 and 21) (35, 36, 37, 38, 39 and 4Ò) for each process step, wherein said chillers comprise vapor recycling for process, cooling and liquor concentration, wherein each step comprises 2 steps, wherein one step comprises C-5 sugar recovery and another step comprises C-6 sugar recovery. 2. PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com reivindicação 1, caracterizado por biomassa processada compreender bagaço de cana-de-açúcar com distribuição granulométrica reduzida e uniformizada por moinho (2).Process for the simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 1, characterized in that the processed biomass comprises sugarcane bagasse with reduced and uniform mill size distribution (2). 3. PROCESSO PÁRA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 1 e 2, caracterizado pelo bagaço de cana-de-açúcar que alimentará o moinho (2) ser bagaço cru com 50% de umidade.Process for the simultaneous conversion of the sugarcane bagasse using UHTST REACTORS according to claims 1 and 2, characterized in that the sugarcane bagasse that will feed the mill (2) is 50% raw bagasse. moisture. 4. PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 1, caracterizado pelo transportador (3), ser preferencialmente do tipo helicoidal.Process for the simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 1, characterized in that the conveyor (3) is preferably of the helical type. 5. PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 1, caracterizado pela bomba de sucção (6) e (25), receber lodo de matéria lignocelulósica do transportador (3) e de tela perfurada (44), respectivamente.Process for simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 1, characterized in that the suction pump (6) and (25) receive lignocellulosic sludge from the conveyor (3) and perforated screen (44), respectively. 6. PROCESSO ΡφΑ CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 1, caracterizado pelos tubos de espera conectáveis (7, 8, 9 e 10), receberem lodo de matéria lignocelulósica e água superaquecida em condições de 300sc e 88barg6. Process ULT Simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 1, characterized in that the connectable standby pipes (7, 8, 9 and 10) receive lignocellulosic sludge and overheated water. 300sc and 88barg conditions 7. PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST de acordo com reivindicação 1, caracterizado pelos tubos de espera conectáveis (26, 27, 28 e 29), receberem lodo de matéria lignocelulósica e água superaquecida em condições de 350SC e 170barg.A process for the simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 1, characterized in that the connectable standby tubes (26, 27, 28 and 29) receive lignocellulosic sludge and overheated water. 350SC and 170barg. 8. PROCESSO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 1, caracterizado pelos resfriadores evaporativos (16, 17, 18, 19, 20, 21, 35, 36, 37, 38, 39 e 40), compreenderem resfriamento instantâneo, em que dito resfriamento instantâneo ocorre preferencialmente em milésimos de segundos.Process for simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 1, characterized by the evaporative coolers (16, 17, 18, 19, 20, 21, 35, 36, 37, 38, 39 and 40) comprise instantaneous cooling, wherein said instantaneous cooling preferably occurs within milliseconds. 9. EQUIPAMENTO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, caracterizado por conter um transportador (3); Bomba de Sucção (6 e 25); Tubos de Espera Conectáveis (7, 8, 9, 10, 26, 27, 28 e 29); Tela Perfurada (44 e 32); Conjunto de pelo menos 2 Resfriadores Evaporativos, préferencialmente de 6 Resfriadores Evaporativos, (16, 17, 18, 19, 20, 21) (35, 36, 37, 38, 39 e 40).9. Simultaneous conversion of sugarcane bagasse using UHTST REACTORS, characterized in that it contains a conveyor (3); Suction Pump (6 and 25); Attachable Hold Tubes (7, 8, 9, 10, 26, 27, 28 and 29); Perforated Screen (44 and 32); Set of at least 2 Evaporative Chillers, preferably 6 Evaporative Chillers, (16, 17, 18, 19, 20, 21) (35, 36, 37, 38, 39 and 40). 10. EQUIPAMENTO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 9, caracterizado pelo transportador (3), ser preferencialmente do tipo helicoidal.Equipment for simultaneous conversion of sugarcane bagasse using UHTST REACTORS according to claim 9, characterized in that the conveyor (3) is preferably of the helical type. 11. QUIPAMENTO PARA CONVERSÃO SIMULTÂNEA DO BAGAÇO DE CANA-DE-AÇÚCAR UTILIZANDO REATORES UHTST, de acordo com a reivindicação 9, caracterizado pelos resfriadores evaporativos (16, 17, 18, 19, 20, 21, 35, 36, 37, 38, 39 e 40), compreenderem resfriamento instantâneo.A SIMULAR CONVERSION FOR SUGAR CANE PICKUP USING UHTST REACTORS according to claim 9, characterized by evaporative coolers (16, 17, 18, 19, 20, 21, 35, 36, 37, 38, 39 and 40) comprise instant cooling.
BRBR102013006389-4A 2012-08-01 2013-03-18 Process for simultaneous conversion of sugarcane bagasse using uhtst reactors BR102013006389A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRBR102013006389-4A BR102013006389A2 (en) 2012-08-01 2013-03-18 Process for simultaneous conversion of sugarcane bagasse using uhtst reactors
BR132013017839A BR132013017839E2 (en) 2013-03-18 2013-07-11 process and equipment for simultaneous biomass conversion using uhtst reactors
PCT/BR2013/000275 WO2014019043A2 (en) 2012-08-01 2013-07-31 Simultaneous conversion method for sugar cane bagasse using uhtst reactors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012019280 2012-08-01
BRBR102013006389-4A BR102013006389A2 (en) 2012-08-01 2013-03-18 Process for simultaneous conversion of sugarcane bagasse using uhtst reactors

Publications (1)

Publication Number Publication Date
BR102013006389A2 true BR102013006389A2 (en) 2015-03-17

Family

ID=49447896

Family Applications (1)

Application Number Title Priority Date Filing Date
BRBR102013006389-4A BR102013006389A2 (en) 2012-08-01 2013-03-18 Process for simultaneous conversion of sugarcane bagasse using uhtst reactors

Country Status (2)

Country Link
BR (1) BR102013006389A2 (en)
WO (1) WO2014019043A2 (en)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1655618A (en) 1928-01-10 Assighoe
CA141376A (en) 1912-02-06 1912-06-25 John Heberling Rope tie
CA1096374A (en) 1977-07-11 1981-02-24 Edward A. Delong Method of rendering lignin separable from cellulose and hemicellulose in lignocellulosic material and the product so produced
CA1267407B (en) 1981-11-12 1990-04-03 Edward A. Delong Method of rendering lignin separable from cellulose and hemicellulose and the product so produced
DE3225074A1 (en) * 1982-07-05 1984-01-12 Josef Erne & Co, Rohrbogenwerk, 6824 Schlins Process and device for separating hemicellulose and lignin from cellulose in lignocellulosic plant materials, for obtaining cellulose, optionally sugars and optionally soluble lignin
EP0187422A3 (en) 1985-01-08 1988-07-13 Shell Internationale Researchmaatschappij B.V. Process for the treatment of biomass with steam, product thereby obtained and its use and reactor
CA1282777C (en) 1987-09-17 1991-04-09 Edward A. De Long Process to dissociate and extract the lignin and optionally the xylan from the primary wall and middle lamella of lignocellulosic material which retains the structural integrity of the fibre core, and the product so produced
BR9005762A (en) 1990-11-08 1992-06-30 Rhodia PROCESS OF OBTAINING CELLULOSE FROM VEGETABLE WASTE, CELLULOSE OBTAINED AS WELL AS ACETRATED FROM IT
US5125977A (en) 1991-04-08 1992-06-30 The United States Of America As Represented By The United States Department Of Energy Two-stage dilute acid prehydrolysis of biomass
US5424417A (en) 1993-09-24 1995-06-13 Midwest Research Institute Prehydrolysis of lignocellulose
US5705369A (en) 1994-12-27 1998-01-06 Midwest Research Institute Prehydrolysis of lignocellulose
WO2000019004A1 (en) 1998-09-25 2000-04-06 Stake Technology Ltd. Semi alkaline steam explosion treatment of fibrous material for the production of cellulose pulp
ES2166316B1 (en) 2000-02-24 2003-02-16 Ct Investig Energeticas Ciemat PROCEDURE FOR THE PRODUCTION OF ETHANOL FROM LIGNOCELLULOSIC BIOMASS USING A NEW THERMOTOLERING YEAST.
US6419788B1 (en) 2000-08-16 2002-07-16 Purevision Technology, Inc. Method of treating lignocellulosic biomass to produce cellulose
JP4330839B2 (en) 2002-01-18 2009-09-16 旭化成ケミカルズ株式会社 Method for producing glucose and / or water-soluble cellooligosaccharide
US20080277082A1 (en) 2007-05-07 2008-11-13 Andritz Inc. High pressure compressor and steam explosion pulping method
US8529731B2 (en) 2007-09-07 2013-09-10 Council Of Scientific & Industrial Research Process for fractionating sugarcane bagasse into high α-cellulose pulp, xylan and lignin
JP5103260B2 (en) 2008-04-23 2012-12-19 川崎重工業株式会社 Method and apparatus for saccharification and decomposition of cellulosic biomass
CN101613377B (en) 2009-07-21 2012-06-27 清华大学 Biomass supercritical and subcritical combined continuous type pretreatment and hydrolysis equipment and method
AP3563A (en) * 2009-09-29 2016-01-27 Nova Pangaea Technologies Ltd Method and system for fractionation of lignocellulosic biomass
CN105525043B (en) 2010-01-19 2021-03-19 瑞恩麦特克斯股份有限公司 Production of fermentable sugars and lignin from biomass using supercritical fluids
BRPI1009203B1 (en) 2010-07-09 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. BIOMASS HYDROTHERMAL DECOMPOSITION SYSTEM AND SACARIDE SOLUTION PRODUCTION METHOD USING BIOMASS MATERIAL
US9738943B2 (en) 2010-11-01 2017-08-22 Renmatix, Inc. Process for controlled liquefaction of a biomass feedstock by treatment in hot compressed water
BR112013010479A2 (en) 2010-11-05 2016-08-02 Greenfield Ethanol Inc continuous process for fractionation of sugarcane bagasse biomass

Also Published As

Publication number Publication date
WO2014019043A2 (en) 2014-02-06
WO2014019043A3 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
ES2898874T3 (en) Hydrothermal-mechanical conversion of lignocellulosic biomass into ethanol or other fermentation products
US8512512B2 (en) System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process
ES2630053T3 (en) Method and system for fractionation of lignocellulosic biomass
US9631316B2 (en) Biomass fractionation processes employing sulfur dioxide
PT106039A (en) PROCESSES AND SYSTEMS FOR PROCESSING LENHOCELLULOSIC MATERIALS AND RELATED COMPOSITIONS
BR112014007067B1 (en) method to produce ethanol using cellulosic biomass as raw material
BRPI1009205B1 (en) biomass processing system and method of producing saccharide solution using biomass material
WO2012042840A1 (en) Method for producing ethanol with cellulosic biomass as starting material
AU2008264871A1 (en) A process for separating biomass components
US20170121906A1 (en) Methods for the production of high alpha-cellulose pulp
BR112016019156B1 (en) PROCESS FOR SEPARATION OF FERMENTATION INHIBITORS FROM A HYDROLYSATE DERIVED FROM BIOMASS
US20140065682A1 (en) Processes and apparatus for producing fermentable sugars, cellulose solids, and lignin from lignocellulosic biomass
Madadi et al. Efficient co-production of xylooligosaccharides and glucose from lignocelluloses by acid/pentanol pretreatment: Synergetic role of lignin removal and inhibitors
CA3078833A1 (en) Low temperature pretreatment with sulfur dioxide
US20140186898A1 (en) Processes for fractionating whole plants to produce fermentable sugars and co-products
Li et al. Lignocellulose pretreatment by deep eutectic solvents and related technologies: a review
US20200339761A1 (en) Lignocellulosic biomass treatment method
Chin et al. Two-staged acid hydrolysis on ethylene glycol pretreated degraded oil palm empty fruit bunch for sugar based substrate recovery
CZ281504B6 (en) Process of treating ligno-cellulosic materials by continuous pressure hydrolysis and apparatus for making the same
US20140187759A1 (en) Biorefining processes and apparatus for separating cellulose hemicellulose, and lignin from biomass
BR102013006389A2 (en) Process for simultaneous conversion of sugarcane bagasse using uhtst reactors
US11485988B2 (en) Method for cooling and detoxifying biomass
US11485989B2 (en) Method for cooling and detoxifying biomass
Lévêque et al. Effective Biomass Valorization Procedures Using Ultrasound and Hydrodynamic Cavitation
BR112016017762B1 (en) METHOD OF TREATMENT OF A FERMENTATION FLOW TO REMOVE DISSOLVED GASES AND CONTINUOUS METHOD OF TREATMENT OF A FERMENTATION FLOW TO REMOVE CARBON DIOXIDE

Legal Events

Date Code Title Description
B03A Publication of an application: publication of a patent application or of a certificate of addition of invention
B06F Objections, documents and/or translations needed after an examination request according art. 34 industrial property law
B15K Others concerning applications: alteration of classification

Free format text: AS CLASSIFICACOES ANTERIORES ERAM: C12P 7/10 , C13K 1/02 , C08H 8/00 , C07H 3/02 , C07H 1/00

Ipc: C13K 1/02 (1968.09)

B06U Preliminary requirement: requests with searches performed by other patent offices: suspension of the patent application procedure
B11B Dismissal acc. art. 36, par 1 of ipl - no reply within 90 days to fullfil the necessary requirements