WO2015005307A1 - Method for producing saccharide solution - Google Patents

Method for producing saccharide solution Download PDF

Info

Publication number
WO2015005307A1
WO2015005307A1 PCT/JP2014/068115 JP2014068115W WO2015005307A1 WO 2015005307 A1 WO2015005307 A1 WO 2015005307A1 JP 2014068115 W JP2014068115 W JP 2014068115W WO 2015005307 A1 WO2015005307 A1 WO 2015005307A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar
producing
acid
sugar solution
solution
Prior art date
Application number
PCT/JP2014/068115
Other languages
French (fr)
Japanese (ja)
Inventor
栗原 宏征
裕子 石塚
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CA2917307A priority Critical patent/CA2917307C/en
Priority to JP2014551868A priority patent/JP6459514B2/en
Priority to BR112015032515A priority patent/BR112015032515A8/en
Priority to US14/903,642 priority patent/US9976160B2/en
Priority to AU2014288309A priority patent/AU2014288309B9/en
Priority to CN201480039216.7A priority patent/CN105452478B/en
Priority to EP14822714.3A priority patent/EP3020820A4/en
Publication of WO2015005307A1 publication Critical patent/WO2015005307A1/en
Priority to US15/954,752 priority patent/US10815501B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/002Purification of sugar juices using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B30/00Crystallisation; Crystallising apparatus; Separating crystals from mother liquors ; Evaporating or boiling sugar juice
    • C13B30/002Evaporating or boiling sugar juice
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B50/00Sugar products, e.g. powdered, lump or liquid sugar; Working-up of sugar
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • C13K1/04Purifying
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K5/00Lactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a sugar liquid from biomass.
  • the fermentation production process of chemicals using sugar as a raw material is used for the production of various industrial raw materials.
  • sugar derived from edible raw materials such as sugar cane, starch and sugar beet is used industrially as sugar for this fermentation raw material, but the price of edible raw materials will rise due to the increase in the world population in the future, or it will compete with edible foods.
  • a process for producing sugar solution more efficiently than renewable non-edible resources, ie cellulose-containing biomass, or a process for efficiently converting the obtained sugar solution as a fermentation raw material into an industrial raw material The future is a future challenge.
  • Non-patent Document 1 a method of producing a sugar solution by acid hydrolysis of cellulose and hemicellulose using concentrated sulfuric acid (Patent Document 1 or 2), hydrolysis of cellulose-containing biomass with dilute sulfuric acid
  • Patent Document 1 a method of producing a sugar solution by further treatment with an enzyme such as cellulase after the treatment is disclosed (Non-patent Document 1).
  • a method that does not use an acid a method of hydrolyzing cellulose-containing biomass by using subcritical water at about 250 to 500 ° C.
  • Patent Document 3 a sugar solution
  • Patent Document 4 a method for producing a sugar solution by further enzyme treatment
  • Patent Document 5 a method for producing a liquid
  • Non-Patent Document 2 As a method for removing such fermentation-inhibiting substances during the sugar liquid production process, a method such as overlining has been disclosed (Non-Patent Document 2).
  • a fermentation inhibitor such as furfural and HMF is retained in the gypsum component while being heated to around 60 ° C. for a certain period of time. It is a method of removing together.
  • the overlining has a problem that the effect of removing organic acids such as formic acid, acetic acid and levulinic acid is small.
  • Patent Document 6 a method of evaporating and removing the fermentation inhibitory substance by blowing water vapor into the sugar solution from the cellulose-containing biomass is disclosed.
  • evaporation and removal methods depend on the boiling point of the fermentation inhibitor, and in particular, the removal efficiency of fermentation inhibitors such as organic acids having a low boiling point is low. To obtain sufficient removal efficiency, a large amount of energy is required. There was a problem that it had to be thrown in.
  • Patent Document 7 there is a method for removing fermentation-inhibiting substances by ion exchange (Patent Document 7), but there is a problem in terms of cost, and there is also a method for adsorption removal using a wood-based carbide, that is, activated carbon. There was a problem that it was limited to a hydrophobic compound (Patent Document 8).
  • Patent Document 9 a method for removing a fermentation inhibitor as a permeate through a membrane using a nanofiltration membrane or a reverse osmosis membrane has been devised, there is a problem that additional separation equipment and energy input are necessary for the removal.
  • the fermentation inhibitor contained in the sugar solution derived from biomass inhibits the growth and metabolic conversion of microorganisms. Therefore, in order to remove these fermentation inhibitors, adsorption treatment, ion exchange, heat evaporation, nanofiltration membrane
  • adsorption treatment, ion exchange, heat evaporation, nanofiltration membrane there has been a problem that the processing cost is high or the removable fermentation inhibitor is limited to a specific compound.
  • the problem to be solved by the present invention is to provide a method for producing a sugar solution including a step of comprehensively removing various fermentation-inhibiting substances at a low cost with a simple treatment.
  • the present inventor is able to reduce the concentration of a fermentation inhibitor contained in a biomass-derived sugar solution by utilizing the metabolic mechanism of a specific microorganism, and that the obtained sugar solution can be used as a fermentation raw material.
  • the headline and the present invention were completed.
  • the present invention includes the following [1] to [15].
  • a method for producing a sugar solution from biomass which is a fermentation inhibitor contained in an aqueous sugar solution obtained from biomass, such as coumaric acid, coumaric acid, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3 -A step of decomposing one or more compounds selected from the group consisting of hydroxymethylfurfural with a microorganism that does not assimilate glucose and / or xylose or a crude enzyme derived from the microorganism; Production method.
  • the glucose and / or xylose non-assimilating microorganism may be selected from Delftia acidovorans, Delftia lacustris, Delftia tsuruhatensis and Delphia d.
  • [8] The method for producing a sugar solution according to any one of [1] to [7], wherein the fermentation inhibiting substance decomposition treatment step is a treatment within a pH range of 6 to 11.
  • a method for producing a sugar solution wherein the sugar concentration obtained by the method for producing a sugar solution according to any one of [1] to [8] is increased by membrane concentration and / or evaporation concentration.
  • a method for producing a sugar solid wherein a sugar solid obtained by the method for producing a sugar solution according to any one of [1] to [8] is obtained by membrane concentration and / or evaporation concentration.
  • a sugar solution or sugar solid derived from cellulose-containing biomass or molasses, which is selected from the group consisting of impurities such as serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine A sugar solution or a sugar solid, wherein the content of the seed or two or more free amino acids is below the detection limit.
  • a step of obtaining a sugar solution by the method for producing a sugar solution according to any one of [1] to [9], and culturing microorganisms using the obtained sugar solution as a fermentation raw material to convert the sugar into a chemical product A method for producing a chemical product, comprising a step of converting.
  • a chemistry process comprising: obtaining a saccharide solid by the method for producing a saccharide solid according to [10]; and culturing a microorganism using the obtained saccharide solid as a fermentation raw material to convert the saccharide into a chemical product.
  • Product manufacturing method comprising: obtaining a saccharide solid by the method for producing a saccharide solid according to [10]; and culturing a microorganism using the obtained saccharide solid as a fermentation raw material to convert the saccharide into a chemical product.
  • the sugar solution obtained in the present invention can be used as a fermentation raw material for microorganisms and can be used as a raw material for various chemical products.
  • FIG. 1 is a flowchart showing the procedure for carrying out the method for producing a sugar liquid of the present invention.
  • FIG. 2 is a flow chart showing a preferred implementation procedure of the method for producing a sugar liquid of the present invention.
  • FIG. 3 is a drawing that traces the time course of ferulamide by Delftia thulhatensis.
  • FIG. 4 is a drawing that traces the time course of ferulamide by Delphthia acidborans.
  • FIG. 5 is a drawing that traces the time course of coumarinamide due to Delftia thurhatensis.
  • FIG. 6 is a drawing that traces the change with time of Kumaramide by Delphthia acidborans.
  • FIG. 7 is a photograph showing the change over time of the sugar solid of the present invention.
  • the present invention is a method for producing a sugar liquid from biomass.
  • Biomass is classified into sugar-producing crops and grains containing sugar or polysaccharides and cellulose-containing biomass.
  • sugar-producing crops / cereals include sugarcane, sweet potato, corn, sugar beet, cassava, rice, wheat, soybean, and the like.
  • Cellulose-containing biomass includes bagasse, corn stover, corn cob, trees, bark, wood chips, waste building materials, EFB (Empty fruits bunch), eggplant gala, elephant grass, napier grass, Eliansus, switch grass, wheat straw, rice straw, Examples include warm bamboo, bamboo, and coffee / tea bowls.
  • the sugar aqueous solution in the present invention is a sugar solution using such biomass as a raw material, and is a sugar aqueous solution obtained from the aforementioned biomass through steps such as extraction, concentration, hydrolysis, and crystallization, and at least described later.
  • Such sugar aqueous solutions include molasses (molasses: mother liquor after sugar crystallization or its concentrate) obtained in the sugar production process from sugar-producing crops and grains, and sugar aqueous solutions obtained by hydrolyzing cellulose-containing biomass. A preferred example is given.
  • the sugar aqueous solution contains a fermentation inhibitor as an impurity.
  • Fermentation inhibitors are compounds derived from the components contained in the aforementioned biomass, or produced by chemical conversion from the aforementioned biomass, and are compounds that cause an inhibitory effect on fermentation production by microorganisms. Refers to that.
  • the term “inhibitory” as used herein means that, due to the presence of a fermentation inhibitor, 1) sugar consumption by microorganisms is delayed, or 2) growth of microorganisms is delayed, and 3) the production of fermentation products of microorganisms is reduced. It means to do. With regard to these 1) to 3), the presence or absence of inhibition can be confirmed by comparing on the basis of a medium containing no fermentation inhibitor.
  • the fermentation inhibitor may be exemplified by furan compounds, aromatic compounds, organic acids, etc.
  • it is reduced by decomposing furan compounds and aromatic compounds.
  • a furan compound refers to a group of compounds having a furan skeleton, and examples thereof include furfural and hydroxymethylfurfural.
  • the former is produced by converting xylose from the latter into glucose.
  • an aromatic compound it is a compound which has an aromatic ring, Comprising: Vanillin, vanillic acid, syringic acid, coumaric acid, coumaramide, ferulic acid, ferulamide, etc. can be illustrated.
  • the aqueous sugar solution used in the present invention is one or two selected from the group consisting of coumaric acid, coumaric amide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3-hydroxymethylfurfural as fermentation inhibitors.
  • HPLC reversed-phase chromatography
  • a chromatograph In reverse phase chromatography, a chromatograph can be obtained by measuring the absorbance of the eluate at 180 to 400 nm for each retention time. A calibration curve is prepared in advance using a preparation of fermentation inhibitor, and the concentration of the fermentation inhibitor contained in the sugar solution is determined based on the peak area or peak height in the sugar solution. be able to. Such analysis may be performed according to the analysis method or apparatus to be used by concentrating or diluting the sugar solution.
  • the aqueous sugar solution contains one or more fermentation inhibitors selected from the group consisting of coumaric acid, coumaric amide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3-hydroxymethylfurfural.
  • these substances are contained in the sugar aqueous solution within a detectable range, and preferably 1 mg / mL or more, more preferably 10 mg / mL or more, and further preferably 100 mg / L or more.
  • two or more of these fermentation inhibitory substances may be contained, and 2 or more types, 3 or more types, and 4 or more types may be contained.
  • the sugar aqueous solution contains at least sugar.
  • a sugar refers to a component that dissolves in water among monosaccharides and polysaccharides, and includes at least a monosaccharide consisting of one such sugar, a disaccharide, or a trisaccharide.
  • Specific examples of the sugar include glucose, xylose, arabinose, xylitol, arabitol, sucrose, fructose, lactose, galactose, mannose, cellobiose, cellotriose, xylobiose, xylotriose, maltose, trehalose, and the like.
  • the sugar concentration in the aqueous sugar solution of the present invention is 0.01 g / L or more, preferably 0.1 g / L or more, more preferably 1 g / L or more, and most preferably 10 g / L or more. Is included.
  • the aqueous sugar solution contains inorganic salts, organic acids, amino acids, vitamins, etc., in addition to the aforementioned fermentation inhibitor and sugar.
  • inorganic salts include potassium salts, calcium salts, sodium salts, magnesium salts, and the like.
  • organic acid include lactic acid, citric acid, acetic acid, formic acid, malic acid, succinic acid and the like.
  • amino acids examples include glutamine, glutamic acid, asparagine, aspartic acid, glycine, alanine, phenylalanine, tyrosine, tryptophan, arginine, methionine, cysteine, histidine, leucine, isoleucine, lysine, proline, serine, threonine, valine, etc. it can.
  • the aqueous sugar solution can be obtained by hydrolyzing the cellulose-containing biomass in one or more treatments selected from the group consisting of acid treatment, alkali treatment, hydrothermal treatment, and enzyme treatment.
  • Hydrolysis is a treatment that hydrolyzes polysaccharides such as cellulose and hemicellulose contained in cellulose-containing biomass into monosaccharides or oligosaccharides, and the hydrolyzate contains fermentation inhibitors in addition to these monosaccharides or oligosaccharides. It is.
  • Acid treatment is performed by adding an acid such as sulfuric acid, acetic acid, hydrochloric acid, or phosphoric acid to the biomass.
  • hydrothermal treatment may be performed.
  • the concentration of sulfuric acid is preferably 0.1 to 15% by weight, and more preferably 0.5 to 5% by weight.
  • the reaction temperature can be set in the range of 100 to 300 ° C., preferably 120 to 250 ° C.
  • the reaction time can be set in the range of 1 second to 60 minutes.
  • the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the above process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
  • Alkali treatment is performed by adding alkali such as ammonia, caustic soda, potassium hydroxide to the biomass.
  • alkali treatment hydrothermal treatment may be performed.
  • the ammonia treatment is in accordance with the method described in JP2008-161125A or JP2008-535664A.
  • the ammonia concentration to be used is added in the range of 0.1 to 15% by weight with respect to the biomass, and the treatment is performed at 4 to 200 ° C., preferably 90 to 150 ° C.
  • Ammonia to be added may be in a liquid state or a gaseous state. Further, the form of addition may be pure ammonia or an aqueous ammonia solution.
  • the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
  • Hydrothermal treatment is a method of treating cellulose-containing biomass by adding only water and heating without adding acid and alkali.
  • hydrothermal treatment after adding water so that the biomass becomes 0.1 to 50% by weight, it is treated at a temperature of 100 to 400 ° C. for 1 second to 60 minutes. By treating at such temperature conditions, hydrolysis of cellulose occurs.
  • the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
  • Enzyme treatment is a hydrolysis treatment by adding saccharifying enzyme to cellulose-containing biomass.
  • the pH for hydrolysis with a saccharifying enzyme is preferably in the range of pH 3 to 9, more preferably pH 4 to 5.5, and even more preferably pH 5.
  • acid or alkali can be added and adjusted so as to have a desired pH.
  • the enzyme treatment it is preferable to carry out stirring and mixing in order to promote contact between cellulose and the enzyme and to make the sugar concentration of the hydrolyzate uniform.
  • the cellulose is preferably added so that the solid content concentration is in the range of 1 to 25% by weight, and more preferably in the range of 5 to 20% by weight.
  • a filamentous fungus-derived cellulase can be preferably used as the saccharifying enzyme.
  • the filamentous fungi include Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humicora, and Humicola.
  • Ilpex (Irpex), Mucor, Mucor, Talaromyces, Phanerochaete, white decay gold, brown decay fungus, and the like can be exemplified.
  • Trichoderma-derived cellulase is an enzyme composition mainly composed of cellulase derived from Trichoderma microorganisms.
  • the microorganism of the genus Trichoderma is not particularly limited, but Trichoderma reesei (Trichoderma reesei) is preferable, and specifically, Trichoderma reesei QM9414 (Trichoderma reesei QM9414), Trichoderma reesei QM9123 (Trichoderma reesei QM9123) reeseiRut C-30), Trichoderma reesei PC3-7 (Trichoderma reesei PC3-7), Trichoderma reesei CL-847 (Trichoderma reeseiCL-847), Trichoderma reesei MCG77 (Trichoderma MCe 77) Ma reesei MCG80 (Trichoderma reeseiMCG80), can be exempl
  • Trichoderma-derived cellulase is an enzyme composition containing a plurality of enzyme components such as cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, and xylosidase and having an activity of hydrolyzing and saccharifying cellulose.
  • Trichoderma-derived cellulase can efficiently hydrolyze cellulose due to the concerted effect or complementary effect of a plurality of enzyme components in cellulose degradation.
  • the cellulase used in the present invention preferably contains Trichoderma-derived cellobiohydrase and xylanase.
  • Cellobiohydrase is a general term for cellulases characterized by hydrolysis from the terminal portion of cellulose.
  • the enzyme group belonging to cellobiohydrase is represented by EC number: EC3.2.1.91. Are listed.
  • Endoglucanase is a general term for cellulases characterized by hydrolysis from the central part of the cellulose molecular chain.
  • Exoglucanase is a general term for cellulases characterized by hydrolysis from the end of a cellulose molecular chain, and is assigned to the exoglucanase as EC numbers: EC3.2.1.74 and EC3.2.1.58. Enzyme groups are described.
  • ⁇ -glucosidase is a general term for cellulases characterized by acting on cellooligosaccharide or cellobiose, and an enzyme group belonging to ⁇ -glucosidase is described as EC number: EC 3.2.1.21.
  • Xylanase is a general term for cellulases characterized by acting on hemicellulose or particularly xylan, and an enzyme group belonging to xylanase is described as EC number: EC3.2.1.8.
  • Xylosidase is a general term for cellulases characterized by acting on xylo-oligosaccharides, and an enzyme group belonging to xylosidase is described as EC number: EC 3.2.1.37.
  • a crude enzyme product is preferably used as the Trichoderma-derived cellulase.
  • the crude enzyme product is derived from a culture supernatant obtained by culturing the microorganism for an arbitrary period in a medium adjusted so that the microorganism of the genus Trichoderma produces cellulase.
  • the medium components to be used are not particularly limited, but in order to promote the production of cellulase, a medium to which cellulose is added can be generally used.
  • the culture supernatant is preferably used as it is, or the culture supernatant from which Trichoderma cells are removed.
  • the weight ratio of each enzyme component in the crude enzyme product is not particularly limited.
  • the culture solution derived from Trichoderma reesei contains 50 to 95% by weight of cellobiohydrase, and the rest.
  • the endoglucanase, ⁇ -glucosidase and the like are included in the components.
  • Trichoderma microorganisms produce strong cellulase components in the culture solution, while ⁇ -glucosidase is retained in the cell or on the cell surface and therefore has low ⁇ -glucosidase activity in the culture solution.
  • a heterogeneous or homologous ⁇ -glucosidase may be further added to the enzyme product.
  • ⁇ -glucosidase derived from Aspergillus can be preferably used.
  • ⁇ -glucosidase derived from the genus Aspergillus include Novozyme 188 commercially available from Novozyme.
  • a method of adding a heterologous or homologous ⁇ -glucosidase to a crude enzyme product a gene is introduced into a Trichoderma microorganism, and the Trichoderma microorganism that has been genetically modified so as to be produced in the culture solution is cultured. A method of isolating the culture solution may also be used.
  • the fermentation inhibitor contained in the aforementioned aqueous sugar solution is decomposed by a microorganism that does not assimilate glucose and / or xylose, preferably a microorganism that does not assimilate glucose and xylose.
  • the decomposition treatment of the fermentation inhibitory substance means that the fermentation inhibitory substance is accompanied by a chemical structural change due to the action of microorganisms or enzymes, and is that microbial toxicity is reduced by reducing the molecular weight of the fermentation inhibitory substance or by hydroxylation.
  • a microorganism that does not assimilate glucose and / or xylose or a crude enzyme product derived from the microorganism is used in the decomposition treatment of the fermentation inhibitor.
  • a wide range of fermentation inhibiting substances can be efficiently decomposed and removed.
  • the microorganism having no assimilation of glucose and / or xylose in the present invention means xylose and / or glucose under the medium and culture conditions (optimum pH, optimum temperature, optimum aeration condition) in which the microorganism is grown. Is a microorganism characterized in that it is not substantially consumed as a carbon source. Also, for example, Pseudomonas aeruginosa known as an obligate aerobic bacterium assimilate glucose and / or xylose under anaerobic conditions and consume under an aerobic condition.
  • Microorganisms that do not assimilate xylose are also included in the “microorganisms that do not assimilate glucose and / or xylose” in the present invention. It may be a microorganism in which the assimilation of glucose and / or xylose has been eliminated by introducing genetic recombination or gene mutation.
  • microorganisms having no assimilation of glucose and / or xylose that can be preferably used in the present invention include Delftia sp., Commamonas sp., Delxomyces sp., Ferromyces sp.
  • microorganisms belonging to sp among which microorganisms belonging to the genus Delftia having an excellent ability to decompose fermentation inhibitors are more preferable.
  • Examples of microorganisms belonging to the genus Delftia include Delftia acidvorans, Delftia lacustris, Delftia tsuruhatensis, and Delftia litupae.
  • Whether or not the microorganism is a Delphtia microorganism is determined by determining the 16S rDNA base sequence of the microorganism to be identified, and the 16S rDNA base sequence of Delftia lacustris 322 (Accession No. EU888308). A sequence comparison is performed, and if the sequence identity is 93% or more, it can be identified as Delphthia.
  • microorganisms that are not attributed to the genus Delphthia and have different genus names as microorganisms identified by the above-described identification method, they have characteristics that do not assimilate glucose and / or xylose, and that decompose degradation of fermentation inhibitors. As long as it has, it can be used for the manufacturing method of the sugar liquid of this invention as what is contained in the Delphia microorganisms in this invention.
  • Specific microbial genus names including microorganisms having the property that the sequence of 16S RNA may be contained as 93% or more of microorganisms and have the property of degrading fermentation inhibitory substances include Comamonas and Acid Borak.
  • a genus (Brachymonas) etc. can be illustrated. These are all microorganisms closely related to the genus Delphthia and may be used in the present invention.
  • the crude enzyme product derived from a microorganism that does not assimilate glucose and / or xylose refers to an enzyme component derived from the microorganism and a component containing two or more enzyme components.
  • a crude enzyme product can be prepared by culturing a microorganism having no assimilation of glucose and xylose in an appropriate medium and extracting the crude enzyme solution from the cultured cells.
  • a gene of a microorganism that does not assimilate glucose and / or xylose can be isolated, introduced into a suitable host, and expressed as a heterologous recombinant protein.
  • a microorganism that does not assimilate glucose and / or xylose is cultured, and an enzyme is extracted from this microorganism. It is preferable that no special purification operation is performed. Since the crude enzyme product contains two or more kinds of enzyme components, a plurality of fermentation-inhibiting substances can be decomposed simultaneously into compounds with reduced inhibition.
  • the aqueous sugar solution containing the fermentation inhibitor described above and the microorganism or the crude enzyme product derived from the microorganism are mixed and incubated at the optimum growth temperature or optimum growth pH of the microorganism. Is done.
  • a range of 20 to 40 ° C. is preferable, and a range of 25 to 32 ° C. is more preferable.
  • the pH condition is preferably in the range of pH 6.5 to 10, and more preferably in the range of pH 7 to 8.5.
  • the fermentation inhibitor to be decomposed is at least one selected from the group consisting of coumaric acid, coumarinamide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural, 3-hydroxymethylfurfural, preferably two or more, More preferably, they are 3 or more types, More preferably, they are 4 or more types.
  • solids contained in the sugar solution may be removed in advance by solid-liquid separation.
  • the method of solid-liquid separation is not particularly limited, but membrane separation by centrifugation such as a screw decanter, filter press or microfiltration membrane (microfiltration) is preferred, and membrane separation is more preferred.
  • the aqueous sugar solution may be subjected to an ultrafiltration membrane (UF membrane) treatment.
  • UF membrane ultrafiltration membrane
  • the method of ultrafiltration membrane treatment is not particularly limited, the ultrafiltration membrane to be used should be an ultrafiltration membrane having a molecular weight cut-off of 500 to 200,000 Da, preferably 10,000 to 50,000 Da. Can do.
  • the sugar solution used contains the enzyme used in hydrolysis of cellulose-containing biomass, it was used for hydrolysis by using an ultrafiltration membrane having a small fractional molecular weight relative to the molecular weight of the enzyme. The enzyme can be separated and recovered.
  • a membrane made of a material such as polyethersulfone (PES), polyvinylidene fluoride (PVDF), or regenerated cellulose can be used.
  • PES polyethersulfone
  • PVDF polyvinylidene fluoride
  • regenerated cellulose a material such as cellulose, cellulose, or regenerated cellulose.
  • the ultrafiltration membrane shape a tubular type, a spiral element, a flat membrane or the like can be preferably used.
  • the filtration of the ultrafiltration membrane includes a cross flow method and a dead end filtration method, but the cross flow filtration method is preferable in terms of membrane fouling and flux.
  • a microorganism having no assimilation of glucose and / or xylose or a crude enzyme product derived from the microorganism may be separated and recovered from the sugar solution after the decomposition treatment of the fermentation inhibitor and reused.
  • the separation and recovery can be performed by appropriately selecting and combining a centrifugal separation, a microfiltration membrane, an ultrafiltration membrane or the like.
  • the microorganism or the crude enzyme product derived from the microorganism may be immobilized in advance on a resin, gel, sponge, support or the like. Immobilization is preferred because it facilitates the separation and reuse of microorganisms and crude enzyme components from the sugar solution.
  • a cellulose sponge having excellent adhesion of microorganisms without assimilation of glucose and / or xylose is preferable.
  • the sugar solution obtained in the present invention is preferably subjected to a membrane concentration and / or evaporation concentration step to increase the sugar concentration.
  • Increasing the sugar concentration is preferable because it can be preferably used for the production of chemicals using the obtained sugar solution as a raw material, and leads to stability in storage and reduction in transportation costs.
  • Membrane concentration is preferably concentration using a nanofiltration membrane and / or a reverse osmosis membrane. Further, as a preferred example of membrane concentration, a concentrated sugar in which a sugar component is concentrated as a non-permeate by filtering through a nanofiltration membrane and / or a reverse osmosis membrane, which is a method described in WO2010 / 067785. A liquid can be obtained.
  • the nanofiltration membrane is also called a nanofilter (nanofiltration membrane, NF membrane), and is a membrane generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”. . It is a membrane that is considered to have a minute gap of about several nanometers, and is mainly used to block minute particles, molecules, ions, salts, and the like in water.
  • the reverse osmosis membrane is also called an RO membrane, and is a membrane generally defined as “a membrane having a desalting function including monovalent ions”. It is a membrane that is thought to have ultrafine pores of several angstroms to several nanometers, and is mainly used for removing ionic components such as seawater desalination and ultrapure water production.
  • a composite membrane (hereinafter also referred to as cellulose acetate-based reverse osmosis membrane) or a polyamide functional layer made of a cellulose acetate-based polymer is used.
  • a composite membrane (hereinafter also referred to as a polyamide-based reverse osmosis membrane).
  • organic acid esters of cellulose such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and the like, or a mixture thereof and those using mixed esters can be mentioned. It is done.
  • the polyamide includes a linear polymer or a crosslinked polymer having an aliphatic and / or aromatic diamine as a monomer. Moreover, it is not limited to the film
  • the spiral membrane element is preferably used for the nanofiltration membrane.
  • preferable nanofiltration membrane elements include, for example, GE Osmonics GEsepa, which is a cellulose acetate nanofiltration membrane element, Alfa Laval nanofiltration membrane element NF99 or NF99HF having a functional layer of polyamide, and crosslinked piperazine Nanofiltration membrane element manufactured by Filmtec with a functional layer of polyamide NF-45, NF-90, NF-200, NF-270 or NF-400, or nanofiltration manufactured by Toray Industries, Inc., which is mainly composed of crosslinked piperazine polyamide
  • the company's nanofiltration membrane element SU-210, SU-220, SU-600 or SU-610, including the membrane UTC60 may be mentioned, more preferably NF99 or NF99HF, NF-45, NF-90, NF-200 or NF -400, yes SU-210, SU-220, a SU-600 or SU-610, more preferably from SU-
  • reverse osmosis membrane examples include, for example, ultra-low pressure type SUL-G10, SUL-G20, low pressure type SU-710, SU-720, SU-720F, which are polyamide-based reverse osmosis membrane modules manufactured by Toray Industries, Inc.
  • SU-710L, SU-720L, SU-720LF, SU-720R, SU-710P, SU-720P high pressure types including UTC80 as a reverse osmosis membrane, SU-810, SU-820, SU-820L, SU- 820FA, Cellulose acetate reverse osmosis membrane SC-L100R, SC-L200R, SC-1100, SC-1200, SC-2100, SC-2200, SC-3100, SC-3200, SC-8100, SC-8200, Nitto NTR-759HR, NTR-729HF, NTR-70SWC, E manufactured by Denko Co., Ltd.
  • UTC80 as a reverse osmosis membrane
  • SU-810, SU-820, SU-820L, SU- 820FA Cellulose acetate reverse osmosis membrane SC-L100R, SC-L200R, SC-1100, SC-1200, SC-2100, SC-2200, SC-3100, SC-3200, SC
  • the sugar solution obtained in the present invention has an advantage that a nanofiltration membrane and / or a reverse osmosis membrane is easy compared to a conventional sugar solution that does not undergo a fermentation inhibitor decomposition treatment. This is presumed to be related to a decrease in fermentation inhibiting substances in the sugar solution, but the detailed factors are unknown.
  • Evaporation concentration is a technique for increasing the concentration of a sugar solution by heating and / or depressurizing the sugar solution to gasify and remove the water in the sugar solution.
  • Examples of common devices include an evaporator, a flash evaporator, a multi-effect can, spray drying, freeze drying, and the like.
  • the sugar solution obtained in the present invention contains monosaccharides or polysaccharides contained in an aqueous sugar solution, and includes glucose, xylose, arabinose, mannose, sucrose, cellobiose, lactose, xylobiose, xylotriose, and the like. .
  • a method for analyzing the sugar component in these sugar solutions it can be quantified by HPLC and comparison with a standard product.
  • the sugar liquid of the present invention may be made into a sugar solid by membrane concentration and / or evaporation concentration.
  • the saccharide solid refers to a solid that has a water content of less than 10%, preferably less than 5%, by removing water from the sugar liquid of the present invention.
  • the sugar solid obtained from the sugar liquid obtained by the method for producing a sugar liquid of the present invention is characterized by low hygroscopicity. Due to its low hygroscopicity, it has a practical advantage that it can be used stably as an industrial raw material because there is little change in quality during storage and transportation.
  • the sugar liquid or sugar solid of the present invention contains one or more free amino acids selected from the group consisting of serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine which are impurities. Is below the detection limit. This is because the free amino acids contained in a small amount in the aqueous sugar solution are decomposed by the microorganisms used in the present invention that do not assimilate glucose and / or xylose or the result of degradation of the fermentation inhibitor by the crude enzyme product derived from the microorganisms.
  • an amino acid contained in a peptide or polypeptide state has a characteristic that a certain amount remains in a sugar solution or a sugar solid. Therefore, when the microorganisms are grown using the sugar solution or sugar solid of the present invention as a fermentation raw material, amino acids in the peptide or polypeptide state can be used as a nutrient source for microbial growth.
  • Quantification of free amino acids contained in the sugar liquid or sugar solid of the present invention is preferably measured using an amino acid analyzer commercially available by the ninhydrin method.
  • an amino acid analyzer commercially available by the ninhydrin method.
  • For free amino acid analysis after adding 250 ⁇ L of 2% sulfosalicylic acid to about 2 mg of saccharide solid or saccharide solid obtained by drying the saccharide solution, stirring, sonicating for 10 minutes, adjusting the measurement sample solution, Separation and quantification can be performed with an amino acid analyzer using 25 ⁇ L of the solution.
  • the amino acid analyzer is preferably manufactured by Hitachi, Ltd., and the amino acid analyzer L-8800A is most preferable.
  • the content of one or more free amino acids selected from the group consisting of serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine is below the detection limit.
  • all these free amino acids are below the detection limit, resulting in a feature that the saccharide solids are significantly less hygroscopic.
  • the sugar solution or sugar solid obtained by the method for producing a sugar solution of the present invention can be produced by culturing microorganisms using these as fermentation raw materials and converting the sugar into a chemical product.
  • chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids.
  • alcohols such as 1,3-propanediol, 1,4-butanediol, glycerol
  • acetic acid lactic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, citric acid and other organic acids, inosine, guanosine, etc.
  • Nucleosides nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine. Furthermore, it can be applied to the production of enzymes, antibiotics, recombinant proteins, and the like.
  • the sugar solution obtained in the present invention When used as a fermentation raw material for the production of chemical products, it contains a nitrogen source, inorganic salts, and if necessary, organic micronutrients such as amino acids and vitamins as necessary. Also good.
  • a nitrogen source such as glucose, sucrose, fructose, galactose, and lactose
  • sugars such as glucose, sucrose, fructose, galactose, and lactose
  • starch saccharified solution containing these sugars sweet potato molasses, sugar beet molasses, high test molasses, or acetic acid
  • An acid or an alcohol such as ethanol, glycerin or the like may be added and used as a fermentation raw material.
  • Nitrogen sources include ammonia gas, aqueous ammonia, ammonium salts, urea, nitrates, and other supplementary organic nitrogen sources such as oil cakes, soybean hydrolysates, casein degradation products, other amino acids, vitamins, Corn steep liquor, yeast or yeast extract, meat extract, peptides such as peptone, various fermented cells and hydrolysates thereof are used.
  • supplementary organic nitrogen sources such as oil cakes, soybean hydrolysates, casein degradation products, other amino acids, vitamins, Corn steep liquor, yeast or yeast extract, meat extract, peptides such as peptone, various fermented cells and hydrolysates thereof are used.
  • inorganic salts phosphates, magnesium salts, calcium salts, iron salts, manganese salts, and the like can be appropriately added.
  • the sugar solution and / or concentrated sugar solution of the present invention has a feature that solids are completely removed by an ultrafiltration membrane or the like, and microorganisms used for fermentation can be subjected to centrifugation, membrane separation, etc. It can be separated and recovered by the method and reused.
  • separation and recovery of microorganisms may be performed by continuously separating and recovering microorganisms while adding a new sugar solution and / or concentrated sugar solution during the culture period. It may be reused for the next batch culture.
  • Acetic acid and formic acid were quantified by comparison with a standard under the following HPLC conditions. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant component was subjected to the following analysis.
  • Reaction solution 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA ⁇ 2Na (flow rate 0.8 mL / min)
  • Detection method electric conductivity temperature: 45 ° C.
  • Trichoderma-derived cellulase was prepared by the following method.
  • PE-M and Tween 80 each autoclaved at 121 ° C. for 15 minutes, were added 0.01% (w / vol).
  • the preculture medium was inoculated with Trichoderma reesei PC3-7 at 1 ⁇ 10 5 cells / mL, and cultured with shaking at 28 ° C. for 72 hours at 180 rpm (shaking apparatus: TAITEC). BIO-SHAKER BR-40LF).
  • Trichoderma-derived cellulase 1/100 amount of ⁇ -glucosidase (Novozyme 188) as a protein weight ratio was added to the culture solution adjusted under the above-mentioned conditions, and this was used as a Trichoderma-derived cellulase in the following examples.
  • Example 1 Preparation of cellulose-containing biomass pretreatment product
  • cellulosic biomass pre-treatment product 1 (ammonia treatment)
  • Rice straw was used as the cellulose-containing biomass.
  • the rice straw was put into a small reactor (manufactured by pressure-resistant glass industry, TVS-N2 30 ml) and cooled with liquid nitrogen. Ammonia gas was flowed into the reactor, and the sample was completely immersed in liquid ammonia.
  • the reactor lid was closed and left at room temperature for about 15 minutes. Subsequently, it processed in the 150 degreeC oil bath for 1 hour. After the treatment, the reactor was taken out from the oil bath, and immediately after ammonia gas leaked in the fume hood, the reactor was further evacuated to 10 Pa and dried. This was used as a biomass pretreatment product 1 in the following examples.
  • cellulose-containing biomass pretreatment product 2 (hydrothermal treatment) Rice straw was used as the cellulose-containing biomass. The rice straw was soaked in water and autoclaved (made by Nitto Koatsu Co., Ltd.) for 20 minutes at 210 ° C. with stirring. After the treatment, the solution component (hereinafter, hydrothermal treatment liquid) and the treated biomass component were subjected to solid-liquid separation using centrifugation (3000 G). The obtained hydrothermal treatment liquid was used as a biomass pretreatment product 2 in the following examples.
  • Example 2 Hydrolysis of cellulose-containing biomass (pretreatment product of Example 1) Trichoderma prepared in Reference Example 3 by adding distilled water to the biomass pretreatment product 1 (0.5 g) prepared in Example 1 Origin cellulase (0.5 mL) was added, distilled water was further added so that the total weight became 10 g, and the pH was adjusted to 4.5 to 5.3 with diluted sulfuric acid or diluted caustic soda.
  • 0.1 mL of Trichoderma-derived cellulase adjusted in Reference Example 3 was added to 10 g of the hydrothermal treatment solution adjusted in Example 1, and the total weight was adjusted to 10.1 g, and the pH was 4.5. It was adjusted with dilute sulfuric acid or dilute caustic soda to be in the range of ⁇ 5.3.
  • compositions adjusted for pH are transferred to a branch test tube (Tokyo Rika Kikai Co., Ltd., ⁇ 30 NS14 / 23), and this composition is transferred to a branching reaction vessel (Tokyo Rika Kikai Co., Ltd., ⁇ 30 NS14 / 23). ), And hydrolyzed by stirring for 24 hours at 50 ° C. (manufactured by Tokyo Rika Kikai Co., Ltd .: small mechanical stirrer CPS-1000, conversion adapter, addition port with three-way cock, heat retaining device MG-2200).
  • the hydrolyzate was subjected to solid-liquid separation by centrifugation (3000 G, 10 minutes), and separated into a solution component (6 mL) and a solid.
  • the obtained solution component is further filtered through a microfiltration membrane (a syringe filter manufactured by GE), and the obtained filtrate is hydrolyzed product 1 (derived from biomass pretreated product 1) and hydrolyzed product 2 (derived from biomass pretreated product 2). ).
  • biomass was hydrolyzed by dilute sulfuric acid treatment.
  • Corn biomass was immersed in sulfuric acid water (0.5% by weight) as biomass, and autoclaved (manufactured by Nitto Koatsu Co., Ltd.) at 180 ° C. for 10 minutes while stirring.
  • the solution component hereinafter, dilute sulfuric acid treatment solution
  • the treatment biomass component were subjected to solid-liquid separation using centrifugation (3000 G).
  • This dilute sulfuric acid treatment liquid was further filtered through a microfiltration membrane (a syringe filter manufactured by GE), and the obtained filtrate was designated as hydrolyzate 3.
  • the sugar concentration (glucose and xylose concentration) and fermentation inhibitor concentration of the hydrolysates 1 to 3 were measured by the methods described in Reference Example 1 and Reference Example 2.
  • the hydrolysis obtained from the pretreated biomass 1 was used as the hydrolyzate 1 and the hydrolyzate obtained from the hydrothermal treatment liquid was used as the hydrolyzate 2 in the following examples.
  • Table 1 summarizes the results of sugar analysis and aromatic compound analysis of hydrolysates 1 to 3.
  • any hydrolyzate contains different components or concentrations, coumaric acid, coumarinamide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone It was confirmed that the composition contained one or more fermentation inhibitors selected from the group consisting of furfural and 3-hydroxymethylfurfural.
  • Example 3 Degradation of fermentation inhibitor by microorganisms without assimilation of glucose and / or xylose Test Bacteria and Preculture As microorganisms having no assimilation of glucose and / or xylose, microorganisms of the genus Delftia (Delfia acidovorans NBRC14950, Delftia tsuruhatensis NBRC16741) were used. Each of the test bacteria was cultured in a TB medium (pH 7), and cultured for 24 hours with shaking. After culturing, the cells were collected by centrifugation.
  • Delftia genus Delftia
  • sugar solutions obtained by decomposing hydrolyzate 1, hydrolyzate 2, and hydrolyzate 3 with Delphthia turhatensis are referred to as “sugar solution 1DT”, “sugar solution 2DT”, and “sugar solution 3DT”.
  • Comparison by glucose and xylose-assimilating microorganisms E. coli JM109 strain (Takara Bio Inc.) and wine yeast OC2 strain were used as glucose and xylose-assimilating microorganisms. Each of the test bacteria was cultured in LB medium (pH 7), and cultured with shaking for 24 hours. After culturing for 24 hours, the cells were collected by centrifugation.
  • Example 4 Ethanol fermentation test Using the sugar solution obtained in Example 3, an ethanol fermentation evaluation, which is one type of chemical product, was carried out.
  • E. coli KO11 strain (ATCC55124 strain) was precultured in a test tube at 30 ° C. for 24 hours in LB medium (2 mL).
  • yeast extract (5 g / L), peptone (10 g / L), sodium chloride 5 g / L, pH 7.
  • the fermentation medium (2 mL) was adjusted to 0.
  • 100 ⁇ L of the precultured preculture was added and cultured at 30 ° C. for 24 hours.
  • Example 5 Metabolic degradation of ferulamide and ferulic acid of Delphtia microorganisms In order to confirm whether degradation of aromatic compounds in the hydrolyzate of Example 3 is due to degradation by Delphtia microorganisms, ferulamide In the model reaction system to which was added, the degradation products were identified and the amount of change was traced.
  • FIG. 3 shows the results of Delftia tsurhatensis
  • FIG. 4 shows the results of Delftia acidborans.
  • the ferulamide concentration decreased rapidly with the start of heat retention, and the amount of ferulic acid produced reached its peak after 6 hours. Further, it was confirmed that ferulic acid disappeared within 36 hours and was converted to vanillic acid. Furthermore, it was confirmed that vanillic acid further decreased with the incubation time. From the above results, it was confirmed that in microorganisms belonging to the genus Delphia, they were sequentially converted to ferulamide, ferulic acid, and vanillic acid, and finally vanillic acid was also decomposed.
  • Example 6 Metabolic degradation of coumarinamide and coumaric acid of Delphthia spp. In order to confirm whether or not the degradation of aromatic compounds in the hydrolyzate of Example 3 is due to degradation by Delphtia spp. In the model reaction system, the degradation products were identified and the amount of production was tracked.
  • FIG. 5 shows the results of Delftia tsurhatensis
  • FIG. 6 shows the results of Delftia acidborans.
  • the concentration of coumarinamide gradually decreased over 48 hours from the start of the incubation.
  • the coumaric acid concentration increased with the decrease of coumarinamide, and reached a peak at 24 hours of heat retention.
  • FIG. 5 in Delftia thulhatensis, it was confirmed that p-hydroxybenzoic acid was produced with a decrease in coumaric acid.
  • Example 7 Effect of pH in degradation of fermentation inhibitor by microorganisms belonging to the genus Delphtia
  • the hydrolysis inhibitor 1 of Example 2 was adjusted to pH 4, pH 8.5, pH 10, and pH 12, and the fermentation inhibitor was subjected to the same procedure as in Example 4.
  • a decomposition treatment was performed.
  • the test bacterium was performed using Delftia tsuruhatensis. The results are shown in Table 8.
  • Example 8 Step of membrane concentration (reverse osmosis membrane) of sugar solution 1300 mL each of sugar solution 1DA, sugar solution 2DA, and sugar solution 3DA described in Example 3, each having a pore size of 0.22 ⁇ m ( The resulting fine particles were removed by subjecting to Stericup-GV (Millipore). Using the reverse osmosis membrane (UTC-80, manufactured by Toray Industries, Inc.), the obtained liquid was measured with a flat membrane small crossflow filtration unit (SEPA CF-II, manufactured by GE Osmonix, effective membrane area 140 cm 2). Filtered at 0 ° C.
  • SEPA CF-II flat membrane small crossflow filtration unit
  • the time required for concentration of the sugar solution by 4 times was shortened in the case of the sugar solution subjected to the step of degrading the fermentation inhibitor by microorganisms having no assimilation ability of glucose and xylose. Further, the filtration rate at the end of concentration was faster when the step of degrading the fermentation inhibitor by a microorganism having no assimilation ability of glucose and xylose was performed. From this, it was found that the filterability at the time of membrane concentration of the sugar solution was improved by subjecting each hydrolyzate to the step of degrading the fermentation inhibitor by a microorganism having no ability to assimilate glucose and xylose.
  • Example 9 Preparation of sugar solid 15 mL each of the sugar solution 1DA after membrane concentration described in Example 8 and the hydrolyzate 1 after membrane concentration described in Example 8 were also taken for comparison. After being transferred to a round bottom glass flask, it was frozen at ⁇ 70 ° C. The frozen sugar solution and hydrolyzate 1 were lyophilized with a freeze dryer (EYLA: Tokyo Science Machine Co., Ltd.) at ⁇ 45 ° C. for 48 hours. The weight after drying was 1.41 g of sugar solution 1DA after membrane concentration and 1.37 g of hydrolyzate 1.
  • saccharide solid 1DA lyophilized sugar liquid 1DA after membrane concentration
  • saccharide solid hydrolyzate 1 lyophilized hydrolyzate 1 after membrane concentration
  • the sugar solid 1DA was still in powder form (left side of Fig. 7A), and the photograph after 24 hours after opening the lid of the vial is shown in Fig. 7B. Absorbs moisture and is no longer powdery, but sticky molasses
  • the sugar solid 1DA a slight decrease in the apparent bulkiness was observed after 24 hours, and it was assumed that moisture absorption occurred, but the powder state was maintained. That is, the sugar solid of the present invention has a low hygroscopic property, and thus has a very high form stability under air release, and has a practical advantage. I was able to confirm.
  • Example 10 Amino acid analysis The amino acid analysis contained in the sugar solid hydrolyzate 1 and sugar solid 1DA obtained in Example 9 was performed according to the following procedure. In the amino acid analysis, the free amino acid concentration was measured.
  • the analyzer used was an amino acid analyzer L-8800A (Hitachi, Ltd.), the measurement conditions were ninhydrin method, detection wavelength: 440 nm (proline, hydroxyproline), 570 nm (amino acids other than proline, hydroxyproline) ).
  • saccharide solid hydrolyzate 1 (1.41 g) and saccharide solid 1DA (1.37 g) obtained in Example 9, 2.05 mg each was collected in a tube and 250 ⁇ L of 2% sulfosalicylic acid was added. -After stirring, sonication was performed for 10 minutes. This solution was filtered with a 0.22 ⁇ m filter to obtain a measurement sample solution. An analysis was performed under the above apparatus conditions using 25 ⁇ L of this sample solution. The analysis values are shown in Table 12.
  • the detected concentration is the concentration (mg) of each free amino acid contained per gram of the saccharide solid weight analyzed.
  • the concentration conversion in the concentrated sugar solution is a value converted into a concentration present in 15 mL of each membrane concentrated sugar solution subjected to freeze-drying.
  • sugar solid hydrolyzate 1 it was confirmed from analytical values that all amino acids were contained.
  • sugar solid 1DA which decomposed the fermentation inhibitor by microorganisms that do not assimilate glucose and xylose, serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine, histidine are released. Amino acids could not be detected (not detected). Therefore, it was confirmed that the free amino acid concentration in the concentrated sugar solution before lyophilization was 0 mg / L. That is, it was confirmed that the sugar solution and sugar solid of the present invention had the above-mentioned free amino acid concentration below the detection limit.
  • the total amount of amino acids contained in each sugar solid includes free amino acids as well as amino acids that exist in the form of peptides or polypeptides. Therefore, 2.05 mg each of lyophilized product, sugar solid hydrolyzate 1 (1.41 g) and sugar solid 1DA (1.37 g) obtained in Example 9 was collected in a tube and 6 mol / L hydrochloric acid 250 ⁇ L. Was added, and after nitrogen substitution and vacuum sealing, hydrolysis was performed at 110 ° C. for 22 hours. 0.02 mol / L hydrochloric acid (200 ⁇ L) was added to the residue obtained by drying under reduced pressure and dissolved. This solution was filtered with a 0.22 ⁇ m centrifugal filtration unit to obtain a measurement sample solution. An analysis was performed under the above-described apparatus conditions using 25 ⁇ L of this sample solution. The analysis results are shown in Table 13.
  • Example 11 Degradation of fermentation inhibitor by microorganisms without assimilation of glucose and xylose 2: Treatment of molasses (molasses) As molasses solution containing fermentation inhibitor, molasses (molasses: Molasses-Agri, Organic Land) Co., Ltd.). The used molasses is a mixture using about 90% sugarcane-derived molasses and about 10% sweet potato molasses as biomass. This waste molasses was diluted 6 times with RO water and autoclaved at 121 ° C. for 20 minutes. After sterilization, sodium hydroxide was added to adjust the pH to 6.7. Used as an aqueous sugar solution containing a fermentation inhibitor (waste molasses aqueous solution).
  • Table 14 shows the analysis results of the aromatic compounds. It was confirmed that the waste molasses aqueous solution contained glucose, fructose, and sucrose as sugars and 3-hydroxymethylfurfural as a fermentation inhibitor. The sugar aqueous solution was treated with Delphthia thulhatensis according to the description in Example 3. The obtained molasses is used as molasses DT, and the analysis values (sugar and aromatic compound) are shown in Table 14. It was confirmed that 3-hydroxymethylfurfural contained as a fermentation inhibitor was completely decomposed and disappeared from the molasses DT.
  • the method for producing a sugar solution according to the present invention can be used for producing a sugar solution with reduced fermentation inhibition from biomass.
  • the sugar liquid or sugar solid produced in the present invention can be used as a fermentation raw material for various chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[Problem] An aqueous saccharide solution obtained from biomass contains various fermentation-inhibiting substances, however, it is possible to easily remove fermentation-inhibiting substances derived from biomass at a low cost by treating the aqueous saccharide solution with microbes that do not utilize glucose or xylose or with a crude enzyme product derived from said microbes.

Description

糖液の製造方法Method for producing sugar solution
 本発明は、バイオマスから糖液を製造する方法に関する。 The present invention relates to a method for producing a sugar liquid from biomass.
 糖を原料とした化学品の発酵生産プロセスは、種々の工業原料生産に利用されている。この発酵原料となる糖として、現在、さとうきび、澱粉、テンサイなどの食用原料に由来するものが工業的に使用されているが、今後の世界人口の増加による食用原料価格の高騰、あるいは食用と競合するという倫理的な側面から、再生可能な非食用資源、すなわちセルロース含有バイオマスより効率的に糖液を製造するプロセス、あるいは得られた糖液を発酵原料として、効率的に工業原料に変換するプロセスの構築が今後の課題となっている。 The fermentation production process of chemicals using sugar as a raw material is used for the production of various industrial raw materials. Currently, sugar derived from edible raw materials such as sugar cane, starch and sugar beet is used industrially as sugar for this fermentation raw material, but the price of edible raw materials will rise due to the increase in the world population in the future, or it will compete with edible foods. From the ethical side of the process, a process for producing sugar solution more efficiently than renewable non-edible resources, ie cellulose-containing biomass, or a process for efficiently converting the obtained sugar solution as a fermentation raw material into an industrial raw material The future is a future challenge.
 セルロース含有バイオマスから糖液を製造する方法として、濃硫酸を使用してセルロースおよびヘミセルロースを酸加水分解して糖液を製造する方法(特許文献1あるいは2)、セルロース含有バイオマスを希硫酸で加水分解処理した後に、さらにセルラーゼなどの酵素処理することより糖液を製造する方法が開示されている(非特許文献1)。また酸を使用しない方法として、250~500℃程度の亜臨界水を使用してセルロース含有バイオマスを加水分解して糖液を製造する方法(特許文献3)、またセルロース含有バイオマスを亜臨界水処理したあとに、さらに酵素処理することにより糖液を製造する方法(特許文献4)、またセルロース含有バイオマスを240~280℃の加圧熱水で加水分解処理した後に、さらに酵素処理することにより糖液を製造する方法(特許文献5)が開示されている。 As a method for producing a sugar solution from cellulose-containing biomass, a method of producing a sugar solution by acid hydrolysis of cellulose and hemicellulose using concentrated sulfuric acid (Patent Document 1 or 2), hydrolysis of cellulose-containing biomass with dilute sulfuric acid A method for producing a sugar solution by further treatment with an enzyme such as cellulase after the treatment is disclosed (Non-patent Document 1). In addition, as a method that does not use an acid, a method of hydrolyzing cellulose-containing biomass by using subcritical water at about 250 to 500 ° C. to produce a sugar solution (Patent Document 3), or treating cellulose-containing biomass with subcritical water After that, a method for producing a sugar solution by further enzyme treatment (Patent Document 4), and a cellulose-containing biomass is hydrolyzed with pressurized hot water at 240 to 280 ° C., followed by further enzyme treatment. A method for producing a liquid (Patent Document 5) is disclosed.
 しかしながら、セルロース含有バイオマスの加水分解においてセルロースあるいはヘミセルロース成分などの分解と同時に、生成したグルコース、キシロースなどの糖の分解物反応も進み、フルフラール、ヒドロキシメチルフルフラールなどのフラン化合物、あるいはギ酸、酢酸、レブリン酸など有機酸といった副産物も生成するという課題があった。また、セルロース含有バイオマスは、芳香族ポリマーであるリグニン成分を含むため、酸処理工程において、リグニン成分が分解され、低分子量のフェノール類などの芳香族化合物を同時に副産物として生成する。これらの化合物は、微生物を利用した発酵工程で阻害的に作用し、微生物の増殖阻害を引き起こし、発酵産物の収率を低下させるため、発酵阻害物質と呼ばれ、セルロース含有バイオマス糖液を発酵原料として利用する際に大きな課題であった。 However, in hydrolysis of biomass containing cellulose, the decomposition reaction of sugars such as glucose and xylose proceeds simultaneously with the decomposition of cellulose or hemicellulose components, furan compounds such as furfural and hydroxymethylfurfural, formic acid, acetic acid and levulin. There was a problem of generating by-products such as organic acids such as acids. In addition, since the cellulose-containing biomass contains a lignin component that is an aromatic polymer, the lignin component is decomposed in the acid treatment step, and an aromatic compound such as a low molecular weight phenol is simultaneously generated as a byproduct. These compounds act as inhibitors in the fermentation process using microorganisms, cause microbial growth inhibition, and reduce the yield of fermentation products. It was a big problem when using as.
 このような発酵阻害物質を糖液製造過程で除去する方法として、オーバーライミングといった方法が開示されている(非特許文献2)。この方法では、酸処理後のセルロースあるいは糖化液に対し、石灰を添加し中和する工程において、60℃付近まで加温しながら一定時間保持することで、フルフラール、HMFといった発酵阻害物質を石膏成分とともに除去する方法である。しかしながら、オーバーライミングでは、ギ酸、酢酸、レブリン酸といった有機酸の除去効果が少ないといった課題があった。 As a method for removing such fermentation-inhibiting substances during the sugar liquid production process, a method such as overlining has been disclosed (Non-Patent Document 2). In this method, in the step of adding and neutralizing lime to cellulose or saccharified solution after acid treatment, a fermentation inhibitor such as furfural and HMF is retained in the gypsum component while being heated to around 60 ° C. for a certain period of time. It is a method of removing together. However, the overlining has a problem that the effect of removing organic acids such as formic acid, acetic acid and levulinic acid is small.
 また、発酵阻害物質を除去する別の方法として、セルロース含有バイオマスからの糖液に水蒸気を吹き込むことで、発酵阻害物質を蒸発除去する方法が開示されている(特許文献6)。しかしながらこうした蒸発除去する方法では、発酵阻害物質の沸点に依存しており、特に沸点の低い有機酸などの発酵阻害物質の除去効率は低く、十分な除去効率を得るためには、多大のエネルギーを投入しなければならないといった課題があった。 Further, as another method for removing the fermentation inhibitory substance, a method of evaporating and removing the fermentation inhibitory substance by blowing water vapor into the sugar solution from the cellulose-containing biomass is disclosed (Patent Document 6). However, such evaporation and removal methods depend on the boiling point of the fermentation inhibitor, and in particular, the removal efficiency of fermentation inhibitors such as organic acids having a low boiling point is low. To obtain sufficient removal efficiency, a large amount of energy is required. There was a problem that it had to be thrown in.
 また、発酵阻害物質をイオン交換で除去する方法もあるが(特許文献7)、コスト的に課題があり、木質系炭化物、すなわち活性炭などを使用して吸着除去する方法もあるが、除去対象が疎水性化合物に限定されるという課題があった(特許文献8)。 In addition, there is a method for removing fermentation-inhibiting substances by ion exchange (Patent Document 7), but there is a problem in terms of cost, and there is also a method for adsorption removal using a wood-based carbide, that is, activated carbon. There was a problem that it was limited to a hydrophobic compound (Patent Document 8).
 また、ナノ濾過膜または逆浸透膜を使用して発酵阻害物質を膜の透過液として除去する方法も考案されているが、除去のために追加の分離設備、エネルギー投入が必要であるといった課題があった(特許文献9)。 In addition, although a method for removing a fermentation inhibitor as a permeate through a membrane using a nanofiltration membrane or a reverse osmosis membrane has been devised, there is a problem that additional separation equipment and energy input are necessary for the removal. (Patent Document 9).
特表平11-506934号公報Japanese National Patent Publication No. 11-506934 特開2005-229821号公報JP 2005-229821 A 特開2003-212888号公報Japanese Patent Laid-Open No. 2003-212888 特開2001-95597号公報JP 2001-95597 A 特許3041380号公報Japanese Patent No. 3041380 特開2004-187650号公報JP 2004-187650 A 特表2001-511418号公報JP-T-2001-511418 特開2005-270056号公報JP 2005-270056 A 特許第4770987号公報Japanese Patent No. 4770987
 上述の通り、バイオマス由来の糖液に含まれる発酵阻害物質は微生物の成育、代謝変換を阻害するため、これらの発酵阻害物質を除去するために、吸着処理、イオン交換、加熱蒸発、ナノ濾過膜などが使用されていたが、処理コストが高い、あるいは、除去可能な発酵阻害物質が特定化合物に限定されるという課題があった。 As described above, the fermentation inhibitor contained in the sugar solution derived from biomass inhibits the growth and metabolic conversion of microorganisms. Therefore, in order to remove these fermentation inhibitors, adsorption treatment, ion exchange, heat evaporation, nanofiltration membrane However, there has been a problem that the processing cost is high or the removable fermentation inhibitor is limited to a specific compound.
 すなわち、本発明が解決しようとする課題は、簡便な処理で、低コストに、種々の発酵阻害物質を網羅的に除去する工程を含む糖液の製造方法を提供することである。 That is, the problem to be solved by the present invention is to provide a method for producing a sugar solution including a step of comprehensively removing various fermentation-inhibiting substances at a low cost with a simple treatment.
 本発明者は、バイオマス由来の糖液に含まれる発酵阻害物質を特定の微生物の代謝機構を利用することで、その濃度を低減させることができ、得られた糖液を発酵原料として利用できることを見出し、本発明を完成した。 The present inventor is able to reduce the concentration of a fermentation inhibitor contained in a biomass-derived sugar solution by utilizing the metabolic mechanism of a specific microorganism, and that the obtained sugar solution can be used as a fermentation raw material. The headline and the present invention were completed.
 すなわち、本発明は以下の[1]から[15]で構成される。
[1]バイオマスからの糖液の製造方法であって、バイオマスから得られる糖水溶液に含まれる発酵阻害物質であるクマル酸、クマルアミド、フェルラ酸、フェルラアミド、バニリン、バニリン酸、アセトバニロン、フルフラールおよび3-ヒドロキシメチルフルフラールからなる群から選ばれる1種または2種以上の化合物を、グルコースおよび/またはキシロースの資化性のない微生物あるいは該微生物由来の粗酵素物で分解する工程を含む、糖液の製造方法。
[2]前記グルコースおよび/またはキシロースの資化性のない微生物がデルフチア属微生物(Delftia sp)である、[1]に記載の糖液の製造方法。
[3]前記グルコースおよび/またはキシロースの資化性のない微生物が、デルフチア・アシドボランス(Delftia acidovorans)、デルフチア・ラクストリス(Delftia lacustris)、デルフチア・ツルハテンシス(Delftia tsuruhatensis)およびデルフチア・リトペアエ(Delftia litopenaei)からなる群から選ばれる1種または2種以上である、[1]または[2]に記載の糖液の製造方法。
[4]糖水溶液がセルロース含有バイオマスを加水分解して得られた糖水溶液である、[1]から[3]のいずれかに記載の糖液の製造方法。
[5]セルロース含有バイオマスを酸処理、アルカリ処理、水熱処理および酵素処理からなる群から選ばれる1以上の処理によって糖水溶液を調製する工程を含む、[4]に記載の糖液の製造方法。
[6]糖水溶液が廃糖蜜である、[1]から[3]のいずれかに記載の糖液の製造方法。
[7]発酵阻害物質分解処理工程が単糖濃度100g/L未満での処理である、[1]から[6]のいずれかに記載の糖液の製造方法。
[8]前記発酵阻害物質分解処理工程がpH6~11の範囲での処理である、[1]から[7]のいずれかに記載の糖液の製造方法。
[9]前記[1]から[8]のいずれかに記載の糖液の製造方法で得られた糖液を膜濃縮および/または蒸発濃縮により糖濃度を高める、糖液の製造方法。
[10]前記[1]から[8]のいずれかに記載の糖液の製造方法によって得られた糖液を膜濃縮および/または蒸発濃縮により糖固体を得る、糖固体の製造方法。
[11]前記[1]から[9]のいずれかに記載の糖液の製造方法で得られた糖液。
[12]前記[10]に記載の糖固体の製造方法で得られた糖固体。
[13]セルロース含有バイオマスまたは廃糖蜜由来の糖液または糖固体であって、不純物であるセリン、スレオニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、プロリン、フェニルアラニン、リジンおよびヒスチジンからなる群から選ばれる1種または2種以上の遊離アミノ酸の含量が検出限界以下である、糖液または糖固体。
[14]前記[1]から[9]のいずれかに記載の糖液の製造方法によって糖液を得る工程、および得られた糖液を発酵原料として、微生物を培養して糖を化学品に変換する工程を含む、化学品の製造方法。
[15]前記[10]に記載の糖固体の製造方法によって糖固体を得る工程、および得られた糖固体を発酵原料として、微生物を培養して糖を化学品に変換する工程を含む、化学品の製造方法。
That is, the present invention includes the following [1] to [15].
[1] A method for producing a sugar solution from biomass, which is a fermentation inhibitor contained in an aqueous sugar solution obtained from biomass, such as coumaric acid, coumaric acid, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3 -A step of decomposing one or more compounds selected from the group consisting of hydroxymethylfurfural with a microorganism that does not assimilate glucose and / or xylose or a crude enzyme derived from the microorganism; Production method.
[2] The method for producing a sugar liquid according to [1], wherein the microorganism that does not assimilate glucose and / or xylose is a Delftia sp.
[3] The glucose and / or xylose non-assimilating microorganism may be selected from Delftia acidovorans, Delftia lacustris, Delftia tsuruhatensis and Delphia d. The method for producing a sugar liquid according to [1] or [2], which is one or more selected from the group consisting of:
[4] The method for producing a sugar solution according to any one of [1] to [3], wherein the sugar solution is a sugar solution obtained by hydrolyzing cellulose-containing biomass.
[5] The method for producing a sugar solution according to [4], including a step of preparing an aqueous sugar solution by one or more treatments selected from the group consisting of acid treatment, alkali treatment, hydrothermal treatment and enzyme treatment for cellulose-containing biomass.
[6] The method for producing a sugar liquid according to any one of [1] to [3], wherein the sugar aqueous solution is molasses.
[7] The method for producing a sugar liquid according to any one of [1] to [6], wherein the fermentation inhibiting substance decomposition treatment step is a treatment at a monosaccharide concentration of less than 100 g / L.
[8] The method for producing a sugar solution according to any one of [1] to [7], wherein the fermentation inhibiting substance decomposition treatment step is a treatment within a pH range of 6 to 11.
[9] A method for producing a sugar solution, wherein the sugar concentration obtained by the method for producing a sugar solution according to any one of [1] to [8] is increased by membrane concentration and / or evaporation concentration.
[10] A method for producing a sugar solid, wherein a sugar solid obtained by the method for producing a sugar solution according to any one of [1] to [8] is obtained by membrane concentration and / or evaporation concentration.
[11] A sugar solution obtained by the method for producing a sugar solution according to any one of [1] to [9].
[12] A saccharide solid obtained by the method for producing a saccharide solid according to [10].
[13] A sugar solution or sugar solid derived from cellulose-containing biomass or molasses, which is selected from the group consisting of impurities such as serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine A sugar solution or a sugar solid, wherein the content of the seed or two or more free amino acids is below the detection limit.
[14] A step of obtaining a sugar solution by the method for producing a sugar solution according to any one of [1] to [9], and culturing microorganisms using the obtained sugar solution as a fermentation raw material to convert the sugar into a chemical product A method for producing a chemical product, comprising a step of converting.
[15] A chemistry process comprising: obtaining a saccharide solid by the method for producing a saccharide solid according to [10]; and culturing a microorganism using the obtained saccharide solid as a fermentation raw material to convert the saccharide into a chemical product. Product manufacturing method.
 本発明で得られた糖液は微生物の発酵原料として使用することができ、各種化学品の原料として利用することができる。 The sugar solution obtained in the present invention can be used as a fermentation raw material for microorganisms and can be used as a raw material for various chemical products.
図1は、本発明の糖液の製造方法の実施手順を示したフロー図面である。FIG. 1 is a flowchart showing the procedure for carrying out the method for producing a sugar liquid of the present invention. 図2は、本発明の糖液の製造方法の好ましい実施手順を示したフロー図面である。FIG. 2 is a flow chart showing a preferred implementation procedure of the method for producing a sugar liquid of the present invention. 図3は、デルフチア・ツルハテンシスによるフェルラアミドの経時変化を追跡した図面である。FIG. 3 is a drawing that traces the time course of ferulamide by Delftia thulhatensis. 図4は、デルフチア・アシドボランスによるフェルラアミドの経時変化を追跡した図面である。FIG. 4 is a drawing that traces the time course of ferulamide by Delphthia acidborans. 図5は、デルフチア・ツルハテンシスによるクマルアミドの経時変化を追跡した図面である。FIG. 5 is a drawing that traces the time course of coumarinamide due to Delftia thurhatensis. 図6は、デルフチア・アシドボランスによるクマルアミドの経時変化を追跡した図面である。FIG. 6 is a drawing that traces the change with time of Kumaramide by Delphthia acidborans. 図7は、本発明の糖固体の経時変化を追跡した写真である。FIG. 7 is a photograph showing the change over time of the sugar solid of the present invention.
 本発明は、バイオマスからの糖液の製造方法である。バイオマスとは、糖あるいは多糖を含む製糖作物・穀物とセルロース含有バイオマスに分類される。製糖作物・穀物としては、サトウキビ、甘藷、コーン、甜菜、キャッサバ、米、小麦、大豆、などを例示することができる。セルロース含有バイオマスとしては、バガス、コーンストーバー、コーンコブ、樹木、樹皮、木質チップ、廃建材、EFB(Enmpty fruits bunch)、椰子ガラ、エレファントグラス、ネピアグラス、エリアンサス、スイッチグラス、麦藁、稲藁、暖竹、竹、コーヒー粕・茶粕、などを例示することができる。すなわち、本発明における糖水溶液とは、こうしたバイオマスを原料とする糖液であって、前述バイオマスから抽出、濃縮、加水分解、晶析などの工程を経て得られた糖水溶液であり、また少なくとも後述の糖および発酵阻害物質を含む糖水溶液のことを指す。 The present invention is a method for producing a sugar liquid from biomass. Biomass is classified into sugar-producing crops and grains containing sugar or polysaccharides and cellulose-containing biomass. Examples of sugar-producing crops / cereals include sugarcane, sweet potato, corn, sugar beet, cassava, rice, wheat, soybean, and the like. Cellulose-containing biomass includes bagasse, corn stover, corn cob, trees, bark, wood chips, waste building materials, EFB (Empty fruits bunch), eggplant gala, elephant grass, napier grass, Eliansus, switch grass, wheat straw, rice straw, Examples include warm bamboo, bamboo, and coffee / tea bowls. That is, the sugar aqueous solution in the present invention is a sugar solution using such biomass as a raw material, and is a sugar aqueous solution obtained from the aforementioned biomass through steps such as extraction, concentration, hydrolysis, and crystallization, and at least described later. This refers to an aqueous sugar solution containing the sugar and fermentation inhibitor.
 こうした糖水溶液としては、製糖作物・穀物からの製糖工程で得られる廃糖蜜(モラセス:砂糖晶析後の母液、あるいはその濃縮物)や、セルロース含有バイオマスを加水分解して得られた糖水溶液が好ましい例として挙げられる。 Such sugar aqueous solutions include molasses (molasses: mother liquor after sugar crystallization or its concentrate) obtained in the sugar production process from sugar-producing crops and grains, and sugar aqueous solutions obtained by hydrolyzing cellulose-containing biomass. A preferred example is given.
 糖水溶液には不純物として発酵阻害物質が含まれる。発酵阻害物質とは、前述したバイオマスに含まれる成分に由来する、あるいは前述したバイオマスから化学変換されることで生成する化合物であって、微生物による発酵生産に対し阻害的な作用を引き起こす化合物群のことを指す。ここで言う阻害的とは、発酵阻害物質が存在することによって、1)微生物による糖消費が遅れること、あるいは、2)微生物の増殖が遅れること、3)微生物の発酵生産物の生産量が減少することを意味する。これら、1)~3)については、発酵阻害物質を含まない培地を基準として比較することで、阻害の有無を確認することができる。また、具体的に、発酵阻害物質とは、フラン系化合物、芳香族化合物、有機酸などを例示することができるが、特に本発明では、フラン系化合物、芳香族化合物を分解することで低減させることができる。フラン系化合物とは、フラン骨格を有する化合物群のことを指し、フルフラール、ヒドロキシメチルフルフラールなどを例示することができ、前者はキシロースから後者はグルコースから変換することで生成する。芳香族化合物としては、芳香環を有する化合物であって、バニリン、バニリン酸、シリンガ酸、クマル酸、クマルアミド、フェルラ酸、フェルラアミドなどを例示することができる。 The sugar aqueous solution contains a fermentation inhibitor as an impurity. Fermentation inhibitors are compounds derived from the components contained in the aforementioned biomass, or produced by chemical conversion from the aforementioned biomass, and are compounds that cause an inhibitory effect on fermentation production by microorganisms. Refers to that. The term “inhibitory” as used herein means that, due to the presence of a fermentation inhibitor, 1) sugar consumption by microorganisms is delayed, or 2) growth of microorganisms is delayed, and 3) the production of fermentation products of microorganisms is reduced. It means to do. With regard to these 1) to 3), the presence or absence of inhibition can be confirmed by comparing on the basis of a medium containing no fermentation inhibitor. Further, specifically, the fermentation inhibitor may be exemplified by furan compounds, aromatic compounds, organic acids, etc. In particular, in the present invention, it is reduced by decomposing furan compounds and aromatic compounds. be able to. A furan compound refers to a group of compounds having a furan skeleton, and examples thereof include furfural and hydroxymethylfurfural. The former is produced by converting xylose from the latter into glucose. As an aromatic compound, it is a compound which has an aromatic ring, Comprising: Vanillin, vanillic acid, syringic acid, coumaric acid, coumaramide, ferulic acid, ferulamide, etc. can be illustrated.
 本発明で使用する糖水溶液は、発酵阻害物質として、クマル酸、クマルアミド、フェルラ酸、フェルラアミド、バニリン、バニリン酸、アセトバニロン、フルフラールおよび3-ヒドロキシメチルフルフラールからなる群から選ばれる1種または2種以上の化合物を含む糖水溶液である。これらの発酵阻害物質が糖水溶液に含まれるかどうかは、前述発酵阻害物質の標品を逆相クロマトグラフィー(HPLC)にて分離し、特定分離条件での保持時間により、糖液中に該当する発酵阻害物質が含まれるか否か決定することができる。逆相クロマトグラフィーにおいては、各保持時間における溶出液の180~400nmの吸光度を測定することで、クロマトチャートを得ることができる。また発酵阻害物質の標品を使用して、検量線を予め作製しておき、糖液中の該当するピーク面積、あるいはピーク高さをもって、糖液中に含まれる発酵阻害物質の濃度を決定することができる。こうした分析は、糖液を濃縮あるいは希釈して、使用する分析手法あるいは装置にあわせて実施すればよい。 The aqueous sugar solution used in the present invention is one or two selected from the group consisting of coumaric acid, coumaric amide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3-hydroxymethylfurfural as fermentation inhibitors. An aqueous sugar solution containing the above compound. Whether these fermentation-inhibiting substances are contained in the aqueous sugar solution corresponds to the sugar solution by separating the above-mentioned preparation of fermentation-inhibiting substances by reversed-phase chromatography (HPLC) and holding time under specific separation conditions. It can be determined whether a fermentation inhibitor is included. In reverse phase chromatography, a chromatograph can be obtained by measuring the absorbance of the eluate at 180 to 400 nm for each retention time. A calibration curve is prepared in advance using a preparation of fermentation inhibitor, and the concentration of the fermentation inhibitor contained in the sugar solution is determined based on the peak area or peak height in the sugar solution. be able to. Such analysis may be performed according to the analysis method or apparatus to be used by concentrating or diluting the sugar solution.
 なお、糖水溶液にクマル酸、クマルアミド、フェルラ酸、フェルラアミド、バニリン、バニリン酸、アセトバニロン、フルフラールおよび3-ヒドロキシメチルフルフラールからなる群から選ばれる1種または2種以上の発酵阻害物質が含まれるとは、これらの物質が検出可能な範囲で糖水溶液に含まれることであり、好ましくは1mg/mL以上、より好ましくは10mg/mL以上、さらに好ましくは100mg/L以上含まれることである。また、本発明における糖液の製造方法では、これら発酵阻害物質が複数含まれていてもよく、2種以上、3種以上、4種以上含まれてもよい。 The aqueous sugar solution contains one or more fermentation inhibitors selected from the group consisting of coumaric acid, coumaric amide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3-hydroxymethylfurfural. Means that these substances are contained in the sugar aqueous solution within a detectable range, and preferably 1 mg / mL or more, more preferably 10 mg / mL or more, and further preferably 100 mg / L or more. Moreover, in the manufacturing method of the sugar liquid in this invention, two or more of these fermentation inhibitory substances may be contained, and 2 or more types, 3 or more types, and 4 or more types may be contained.
 糖水溶液には、少なくとも糖が含まれる。糖とは、単糖、多糖の内、水に溶解する成分を指しており、こうした糖1個からなる単糖、あるいは二糖、三糖を少なくとも含んでいる。糖の具体例としては、グルコース、キシロース、アラビノース、キシリトール、アラビトール、スクロース、フルクトース、ラクトース、ガラクトース、マンノース、セロビオース、セロトリオース、キシロビオース、キシロトリオース、マルトース、トレハロース、などを例示することができる。本発明の糖水溶液における糖濃度は、0.01g/L以上、好ましくは0.1g/L以上、さらに好ましくは1g/L以上、最も好ましくは10g/L以上含んだものであり、前述した糖を少なくとも1種以上含んでいる。 The sugar aqueous solution contains at least sugar. A sugar refers to a component that dissolves in water among monosaccharides and polysaccharides, and includes at least a monosaccharide consisting of one such sugar, a disaccharide, or a trisaccharide. Specific examples of the sugar include glucose, xylose, arabinose, xylitol, arabitol, sucrose, fructose, lactose, galactose, mannose, cellobiose, cellotriose, xylobiose, xylotriose, maltose, trehalose, and the like. The sugar concentration in the aqueous sugar solution of the present invention is 0.01 g / L or more, preferably 0.1 g / L or more, more preferably 1 g / L or more, and most preferably 10 g / L or more. Is included.
 さらに糖水溶液には、前述した発酵阻害物質および糖に加え、無機塩、有機酸、アミノ酸、ビタミンなどが含まれる。無機塩としては、カリウム塩、カルシウム塩、ナトリウム塩、マグネシウム塩、などが例示できる。有機酸としては、乳酸、クエン酸、酢酸、ギ酸、リンゴ酸、コハク酸などを例示することができる。アミノ酸としては、グルタミン、グルタミン酸、アスパラギン、アスパラギン酸、グリシン、アラニン、フェニルアラニン、チロシン、トリプトファン、アルギニン、メチオニン、システイン、ヒスチジン、ロイシン、イソロイシン、リジン、プロリン、セリン、スレオニン、バリンなどを例示することができる。 Furthermore, the aqueous sugar solution contains inorganic salts, organic acids, amino acids, vitamins, etc., in addition to the aforementioned fermentation inhibitor and sugar. Examples of inorganic salts include potassium salts, calcium salts, sodium salts, magnesium salts, and the like. Examples of the organic acid include lactic acid, citric acid, acetic acid, formic acid, malic acid, succinic acid and the like. Examples of amino acids include glutamine, glutamic acid, asparagine, aspartic acid, glycine, alanine, phenylalanine, tyrosine, tryptophan, arginine, methionine, cysteine, histidine, leucine, isoleucine, lysine, proline, serine, threonine, valine, etc. it can.
 バイオマスがセルロース含有バイオマスである場合、糖水溶液はセルロース含有バイオマスを、酸処理、アルカリ処理、水熱処理、酵素処理の群から選ばれる1以上の処理において、加水分解を行うことで得られる。加水分解とは、セルロース含有バイオマスに含まれるセルロース、ヘミセルロースなどの多糖を単糖またはオリゴ糖へ加水分解する処理であり、加水分解物にはこれら単糖またはオリゴ糖に加え、発酵阻害物質が含まれる。 When the biomass is cellulose-containing biomass, the aqueous sugar solution can be obtained by hydrolyzing the cellulose-containing biomass in one or more treatments selected from the group consisting of acid treatment, alkali treatment, hydrothermal treatment, and enzyme treatment. Hydrolysis is a treatment that hydrolyzes polysaccharides such as cellulose and hemicellulose contained in cellulose-containing biomass into monosaccharides or oligosaccharides, and the hydrolyzate contains fermentation inhibitors in addition to these monosaccharides or oligosaccharides. It is.
 酸処理とは、硫酸、酢酸、塩酸、リン酸、などの酸をバイオマスに添加することで行う。また酸処理において、水熱処理を行ってもよい。硫酸処理の場合、硫酸の濃度は0.1~15重量%であることが好ましく、0.5~5重量%であることがより好ましい。反応温度は100~300℃の範囲で設定することができ、120~250℃で設定することが好ましい。反応時間は1秒~60分の範囲で設定することができる。処理回数は特に限定されず前記処理を1回以上行えばよい。特に上記処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で実施してもよい。 Acid treatment is performed by adding an acid such as sulfuric acid, acetic acid, hydrochloric acid, or phosphoric acid to the biomass. In the acid treatment, hydrothermal treatment may be performed. In the case of the sulfuric acid treatment, the concentration of sulfuric acid is preferably 0.1 to 15% by weight, and more preferably 0.5 to 5% by weight. The reaction temperature can be set in the range of 100 to 300 ° C., preferably 120 to 250 ° C. The reaction time can be set in the range of 1 second to 60 minutes. The number of processes is not particularly limited, and the process may be performed once or more. In particular, when the above process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
 アルカリ処理とは、アンモニア、苛性ソーダ、水酸化カリウムなどアルカリをバイオマスに添加することで行う。またアルカリ処理において、水熱処理を行ってもよい。アンモニア処理は、特開2008-161125号公報または特開2008-535664号公報に記載の方法に準拠する。例えば、使用するアンモニア濃度はバイオマスに対して0.1~15重量%の範囲で添加し、4~200℃、好ましくは90~150℃で処理する。添加するアンモニアは液体状態、あるいは気体状態のどちらであってもよい。さらに添加する形態は純アンモニアでもアンモニア水溶液の形態でもよい。処理回数は特に限定されず前記処理を1回以上行えばよい。特に前記処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で実施してもよい。 Alkali treatment is performed by adding alkali such as ammonia, caustic soda, potassium hydroxide to the biomass. In the alkali treatment, hydrothermal treatment may be performed. The ammonia treatment is in accordance with the method described in JP2008-161125A or JP2008-535664A. For example, the ammonia concentration to be used is added in the range of 0.1 to 15% by weight with respect to the biomass, and the treatment is performed at 4 to 200 ° C., preferably 90 to 150 ° C. Ammonia to be added may be in a liquid state or a gaseous state. Further, the form of addition may be pure ammonia or an aqueous ammonia solution. The number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
 水熱処理とは、セルロース含有バイオマスに対し、酸およびアルカリを添加せずに水のみを添加して、加熱することで処理する方法である。水熱処理の場合、バイオマスが、0.1~50重量%となるよう水を添加後、100~400℃の温度で、1秒~60分処理する。こうした温度条件において処理することにより、セルロースの加水分解が起こる。処理回数は特に限定されず該処理を1回以上行えばよい。特に該処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で実施してもよい。 Hydrothermal treatment is a method of treating cellulose-containing biomass by adding only water and heating without adding acid and alkali. In the case of hydrothermal treatment, after adding water so that the biomass becomes 0.1 to 50% by weight, it is treated at a temperature of 100 to 400 ° C. for 1 second to 60 minutes. By treating at such temperature conditions, hydrolysis of cellulose occurs. The number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
 酵素処理とは、セルロース含有バイオマスに糖化酵素を添加することで加水分解処理する。糖化酵素による加水分解のpHは、pH3~9の範囲が好ましく、pH4~5.5がより好ましく、pH5がさらに好ましい。pH調整には、酸あるいはアルカリを所望のpHとなるように添加し調整することができる。また、適宜緩衝液を使用してもよい。酵素処理では、セルロースと酵素の接触を促進させるため、また加水分解物の糖濃度を均一にするため攪拌混合を行うことが好ましい。セルロースの固形分濃度は、1~25重量%の範囲となるよう加水をすることが好ましく、5~20重量%の範囲であることがより好ましい。 Enzyme treatment is a hydrolysis treatment by adding saccharifying enzyme to cellulose-containing biomass. The pH for hydrolysis with a saccharifying enzyme is preferably in the range of pH 3 to 9, more preferably pH 4 to 5.5, and even more preferably pH 5. For pH adjustment, acid or alkali can be added and adjusted so as to have a desired pH. Moreover, you may use a buffer solution suitably. In the enzyme treatment, it is preferable to carry out stirring and mixing in order to promote contact between cellulose and the enzyme and to make the sugar concentration of the hydrolyzate uniform. The cellulose is preferably added so that the solid content concentration is in the range of 1 to 25% by weight, and more preferably in the range of 5 to 20% by weight.
 糖化酵素は糸状菌由来セルラーゼが好ましく使用できる。糸状菌としては、トリコデルマ属(Trichoderma)、アスペルギルス属(Aspergillus)、セルロモナス属(Cellulomonas)、クロストリジウム属(Clostridium)、ストレプトマイセス属(Streptomyces)、フミコラ属(Humicola)、アクレモニウム属(Acremonium)、イルペックス属(Irpex)、ムコール属(Mucor)、タラロマイセス属(Talaromyces)、ファネロカエーテ(Phanerochaete)属、白色腐朽金、褐色腐朽菌、などを例示することができる。こうした糸状菌由来セルラーゼの中でも、セルロース分解活性が高いトリコデルマ属由来セルラーゼを使用することが好ましい。 As the saccharifying enzyme, a filamentous fungus-derived cellulase can be preferably used. Examples of the filamentous fungi include Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humicora, and Humicola. Ilpex (Irpex), Mucor, Mucor, Talaromyces, Phanerochaete, white decay gold, brown decay fungus, and the like can be exemplified. Among these filamentous fungus-derived cellulases, it is preferable to use a Trichoderma-derived cellulase having a high cellulose-degrading activity.
 トリコデルマ属由来セルラーゼとは、トリコデルマ属微生物由来のセルラーゼを主成分とする酵素組成物である。トリコデルマ属微生物は特に限定されないが、トリコデルマ・リーセイ(Trichoderma reesei)が好ましく、具体的にはトリコデルマ・リーセイQM9414(Trichoderma reesei QM9414)、トリコデルマ・リーセイQM9123(Trichoderma reeseiQM9123)、トリコデルマ・リーセイRutC-30(Trichoderma reeseiRut C-30)、トリコデルマ・リーセイPC3-7(Trichoderma reesei PC3-7)、トリコデルマ・リーセイCL-847(Trichoderma reeseiCL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reeseiMCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride9123)を例示することができる。また、前述のトリコデルマ属に由来する微生物であって、これらを変異剤あるいは紫外線照射などで変異処理を施し、セルラーゼ生産性が向上した変異株であってもよい。 Trichoderma-derived cellulase is an enzyme composition mainly composed of cellulase derived from Trichoderma microorganisms. The microorganism of the genus Trichoderma is not particularly limited, but Trichoderma reesei (Trichoderma reesei) is preferable, and specifically, Trichoderma reesei QM9414 (Trichoderma reesei QM9414), Trichoderma reesei QM9123 (Trichoderma reesei QM9123) reeseiRut C-30), Trichoderma reesei PC3-7 (Trichoderma reesei PC3-7), Trichoderma reesei CL-847 (Trichoderma reeseiCL-847), Trichoderma reesei MCG77 (Trichoderma MCe 77) Ma reesei MCG80 (Trichoderma reeseiMCG80), can be exemplified Trichoderma viride QM9123 a (Trichoderma viride9123). Further, it may be a microorganism derived from the aforementioned genus Trichoderma, which has been subjected to a mutation treatment with a mutation agent or ultraviolet irradiation to improve cellulase productivity.
 トリコデルマ属由来セルラーゼは、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、βグルコシダーゼ、キシラナーゼ、キシロシダーゼなどの複数の酵素成分を含む、セルロースを加水分解して糖化する活性を有する酵素組成物である。トリコデルマ由来セルラーゼは、セルロース分解において複数の酵素成分の協奏効果あるいは補完効果により効率的なセルロースの加水分解を実施することができる。特に本発明に使用するセルラーゼは、トリコデルマ由来セロビオハイドラーゼおよびキシラナーゼを含むことが好ましい。 Trichoderma-derived cellulase is an enzyme composition containing a plurality of enzyme components such as cellobiohydrase, endoglucanase, exoglucanase, β-glucosidase, xylanase, and xylosidase and having an activity of hydrolyzing and saccharifying cellulose. Trichoderma-derived cellulase can efficiently hydrolyze cellulose due to the concerted effect or complementary effect of a plurality of enzyme components in cellulose degradation. In particular, the cellulase used in the present invention preferably contains Trichoderma-derived cellobiohydrase and xylanase.
 セロビオハイドラーゼとは、セルロースの末端部分から加水分解していくことを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.91としてセロビオハイドラーゼに帰属される酵素群が記載されている。 Cellobiohydrase is a general term for cellulases characterized by hydrolysis from the terminal portion of cellulose. The enzyme group belonging to cellobiohydrase is represented by EC number: EC3.2.1.91. Are listed.
 エンドグルカナーゼとは、セルロース分子鎖の中央部分から加水分解することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.4、EC3.2.1.6、EC3.2.1.39、EC3.2.1.73としてエンドグルカナーゼに帰属される酵素群が記載されている。 Endoglucanase is a general term for cellulases characterized by hydrolysis from the central part of the cellulose molecular chain. EC numbers: EC 3.2.1.4, EC 3.2.1.6, EC 3.2.1 .39, EC 3.2.1.73, an enzyme group belonging to endoglucanase is described.
 エキソグルカナーゼとは、セルロース分子鎖の末端から加水分解することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.74、EC3.2.1.58としてエキソグルカナーゼに帰属される酵素群が記載されている。 Exoglucanase is a general term for cellulases characterized by hydrolysis from the end of a cellulose molecular chain, and is assigned to the exoglucanase as EC numbers: EC3.2.1.74 and EC3.2.1.58. Enzyme groups are described.
 βグルコシダーゼとは、セロオリゴ糖あるいはセロビオースに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.21としてβグルコシダーゼに帰属される酵素群が記載されている。 Β-glucosidase is a general term for cellulases characterized by acting on cellooligosaccharide or cellobiose, and an enzyme group belonging to β-glucosidase is described as EC number: EC 3.2.1.21.
 キシラナーゼとは、ヘミセルロースあるいは特にキシランに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.8としてキシラナーゼに帰属される酵素群が記載されている。 Xylanase is a general term for cellulases characterized by acting on hemicellulose or particularly xylan, and an enzyme group belonging to xylanase is described as EC number: EC3.2.1.8.
 キシロシダーゼとは、キシロオリゴ糖に作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.37としてキシロシダーゼに帰属される酵素群が記載されている。 Xylosidase is a general term for cellulases characterized by acting on xylo-oligosaccharides, and an enzyme group belonging to xylosidase is described as EC number: EC 3.2.1.37.
 トリコデルマ由来セルラーゼとしては、粗酵素物が好ましく使用される。粗酵素物は、トリコデルマ属の微生物がセルラーゼを産生するよう調整した培地中で、任意の期間該微生物を培養した培養上清に由来する。使用する培地成分は特に限定されないが、セルラーゼの産生を促進するために、セルロースを添加した培地が一般的に使用できる。そして、粗酵素物として、培養液をそのまま、あるいはトリコデルマ菌体を除去したのみの培養上清が好ましく使用される。 As the Trichoderma-derived cellulase, a crude enzyme product is preferably used. The crude enzyme product is derived from a culture supernatant obtained by culturing the microorganism for an arbitrary period in a medium adjusted so that the microorganism of the genus Trichoderma produces cellulase. The medium components to be used are not particularly limited, but in order to promote the production of cellulase, a medium to which cellulose is added can be generally used. As the crude enzyme product, the culture supernatant is preferably used as it is, or the culture supernatant from which Trichoderma cells are removed.
 粗酵素物中の各酵素成分の重量比は特に限定されるものではないが、例えば、トリコデルマ・リーセイ由来の培養液には、50~95重量%のセロビオハイドラーゼが含まれており、残りの成分にエンドグルカナーゼ、βグルコシダーゼ等が含まれている。また、トリコデルマ属の微生物は、強力なセルラーゼ成分を培養液中に生産する一方で、βグルコシダーゼに関しては、細胞内あるいは細胞表層に保持しているため培養液中のβグルコシダーゼ活性は低いため、粗酵素物に、さらに異種または同種のβグルコシダーゼを添加してもよい。異種のβグルコシダーゼとしては、アスペルギルス属由来のβグルコシダーゼが好ましく使用できる。アスペルギルス属由来のβグルコシダーゼとして、ノボザイム社より市販されているNovozyme188などを例示することができる。粗酵素物に異種または同種のβグルコシダーゼを添加する方法としては、トリコデルマ属の微生物に遺伝子を導入し、その培養液中に産生されるよう遺伝子組換えされたトリコデルマ属の微生物を培養し、その培養液を単離する方法でもよい。 The weight ratio of each enzyme component in the crude enzyme product is not particularly limited. For example, the culture solution derived from Trichoderma reesei contains 50 to 95% by weight of cellobiohydrase, and the rest. The endoglucanase, β-glucosidase and the like are included in the components. Trichoderma microorganisms produce strong cellulase components in the culture solution, while β-glucosidase is retained in the cell or on the cell surface and therefore has low β-glucosidase activity in the culture solution. A heterogeneous or homologous β-glucosidase may be further added to the enzyme product. As the heterogeneous β-glucosidase, β-glucosidase derived from Aspergillus can be preferably used. Examples of β-glucosidase derived from the genus Aspergillus include Novozyme 188 commercially available from Novozyme. As a method of adding a heterologous or homologous β-glucosidase to a crude enzyme product, a gene is introduced into a Trichoderma microorganism, and the Trichoderma microorganism that has been genetically modified so as to be produced in the culture solution is cultured. A method of isolating the culture solution may also be used.
 前述した酸処理、アルカリ処理、水熱処理、酵素処理を適宜複数組み合わせることが好ましく、酸処理、アルカリ処理または水熱処理を行ったセルロース含有バイオマスに対し、さらに酵素処理を行うことがより好ましい。 It is preferable to appropriately combine a plurality of the acid treatment, alkali treatment, hydrothermal treatment, and enzyme treatment described above, and it is more preferred to further carry out the enzyme treatment on the cellulose-containing biomass that has been subjected to the acid treatment, alkali treatment, or hydrothermal treatment.
 本発明では、前述した糖水溶液に含まれる発酵阻害物質を、グルコースおよび/またはキシロースの資化性のない微生物、好ましくはグルコースおよびキシロースの資化性のない微生物によって分解処理する。発酵阻害物質の分解処理とは、発酵阻害物質が微生物または酵素による作用によって化学的な構造変化を伴うことであり、発酵阻害物質の低分子量化や水酸化により微生物毒性を低減させることである。本発明では、発酵阻害物質の分解処理において、グルコースおよび/またはキシロースの資化性のない微生物あるいは該微生物由来の粗酵素物が使用される。これにより広範囲の発酵阻害物質を効率的に分解除去することができる。 In the present invention, the fermentation inhibitor contained in the aforementioned aqueous sugar solution is decomposed by a microorganism that does not assimilate glucose and / or xylose, preferably a microorganism that does not assimilate glucose and xylose. The decomposition treatment of the fermentation inhibitory substance means that the fermentation inhibitory substance is accompanied by a chemical structural change due to the action of microorganisms or enzymes, and is that microbial toxicity is reduced by reducing the molecular weight of the fermentation inhibitory substance or by hydroxylation. In the present invention, a microorganism that does not assimilate glucose and / or xylose or a crude enzyme product derived from the microorganism is used in the decomposition treatment of the fermentation inhibitor. Thereby, a wide range of fermentation inhibiting substances can be efficiently decomposed and removed.
 本発明でのグルコースおよび/またはキシロースの資化性のない微生物とは、当該微生物が生育する培地および培養条件下(至適pH、至適温度、至適通気条件)において、キシロースおよび/またはグルコースを炭素源として実質消費しないことを特徴とする微生物である。また例えば、偏性好気性菌として知られる緑膿菌(Pseudomonasu aeruginosa)などは、嫌気条件下ではグルコースおよび/またはキシロースを資化し、好気条件下では消費するが、このような条件次第でグルコースおよび/またはキシロースを資化しないような微生物も、本発明でいう「グルコースおよび/またはキシロースの資化性のない微生物」に含まれる。なお、遺伝子組換えや遺伝子変異を導入することでグルコースおよび/またはキシロースの資化性を消失させた微生物であってもよい。 The microorganism having no assimilation of glucose and / or xylose in the present invention means xylose and / or glucose under the medium and culture conditions (optimum pH, optimum temperature, optimum aeration condition) in which the microorganism is grown. Is a microorganism characterized in that it is not substantially consumed as a carbon source. Also, for example, Pseudomonas aeruginosa known as an obligate aerobic bacterium assimilate glucose and / or xylose under anaerobic conditions and consume under an aerobic condition. Microorganisms that do not assimilate xylose are also included in the “microorganisms that do not assimilate glucose and / or xylose” in the present invention. It may be a microorganism in which the assimilation of glucose and / or xylose has been eliminated by introducing genetic recombination or gene mutation.
 本発明で好ましく使用できるグルコースおよび/またはキシロースの資化性のない微生物としては、デルフチア属(Delftia.sp)、コマモナス属(Comamonas.sp)、デルキソマイセス属(Derxomyces.sp)、フェロマイセス属(Fellomyces.sp)に属する微生物を例示することができるが、それらの中でも優れた発酵阻害物質分解能力を有するデルフチア属微生物がより好ましい。 Examples of microorganisms having no assimilation of glucose and / or xylose that can be preferably used in the present invention include Delftia sp., Commamonas sp., Delxomyces sp., Ferromyces sp. Examples include microorganisms belonging to sp), among which microorganisms belonging to the genus Delftia having an excellent ability to decompose fermentation inhibitors are more preferable.
 デルフチア属微生物としては、デルフチア・アシドボランス(Delftia acidovorans)、デルフチア・ラクストリス(Delftia lacustris)、デルフチア・ツルハテンシス(Delftia tsuruhatensis)、デルフチア・リトペアエ(Delftia litopenaei)を例示することができる。 Examples of microorganisms belonging to the genus Delftia include Delftia acidvorans, Delftia lacustris, Delftia tsuruhatensis, and Delftia litupae.
 なお、デルフチア属微生物であるかどうかの特定は、特定の対象となる微生物の16S rDNAの塩基配列を決定し、デルフチア・ラクストリス(Delftia・lacustris322株:Accession No.EU888308)の16S rDNAの塩基配列と配列比較を行い、配列同一性が93%以上あればデルフチア属であると特定することができる。 Whether or not the microorganism is a Delphtia microorganism is determined by determining the 16S rDNA base sequence of the microorganism to be identified, and the 16S rDNA base sequence of Delftia lacustris 322 (Accession No. EU888308). A sequence comparison is performed, and if the sequence identity is 93% or more, it can be identified as Delphthia.
 前述の特定方法により特定される微生物として、デルフチア属として帰属されておらず、属名が異なる微生物も存在するが、グルコースおよび/またはキシロースを資化しない特性、さらに発酵阻害物質を分解する特性を有する限り、本発明においてはデルフチア属微生物に含まれるものとして、本発明の糖液の製造方法に使用することができる。前記16S RNAの配列が、93%以上の微生物として含まれる可能性があり、かつ発酵阻害物質を分解する特性を有する微生物を含む具体的な微生物属名としては、コマモナス属(Comamonas)、アシドボラックス属(Acidovorax)、ギエスベルゲリア属(Giesbergeria)、シンプリシスピエラ属(Simpliciriera)、アリシックリフィラス属(Alicycliphilus)、ジアフォロバクター属(Diaphorobacter)、テピデセラ属(Tepidecella)、ゼノフィラス属(Xenophilus)、ブラキモナス属(Brachymonas)などを例示することができる。これらはいずれも、デルフチア属と近縁の微生物であって、本発明に利用できる可能性がある。 Although there are microorganisms that are not attributed to the genus Delphthia and have different genus names as microorganisms identified by the above-described identification method, they have characteristics that do not assimilate glucose and / or xylose, and that decompose degradation of fermentation inhibitors. As long as it has, it can be used for the manufacturing method of the sugar liquid of this invention as what is contained in the Delphia microorganisms in this invention. Specific microbial genus names including microorganisms having the property that the sequence of 16S RNA may be contained as 93% or more of microorganisms and have the property of degrading fermentation inhibitory substances include Comamonas and Acid Borak. Acidovorax, Giesbergeria, Simpliciera, Alycicliphilus, Diaphorobacter, Tepidocera (Tepideocella) A genus (Brachymonas) etc. can be illustrated. These are all microorganisms closely related to the genus Delphthia and may be used in the present invention.
 また、グルコースおよび/またはキシロースの資化性のない微生物由来の粗酵素物とは、前記微生物に由来する酵素成分であって、2種以上の酵素成分を含む成分のことを指す。こうした粗酵素物は、グルコースおよびキシロースの資化性のない微生物を適当な培地にて培養し、培養された菌体より粗酵素液を抽出することで調整することができる。また、グルコースおよび/またはキシロースの資化性のない微生物の遺伝子を単離し、遺伝子を適当な宿主に導入し、遺伝子を発現させることで、異種組み換えタンパク質として生産させることもできる。好ましくは、グルコースおよび/またはキシロースの資化性のない微生物を培養し、この微生物より酵素を抽出したものであることが好ましく、特段の精製操作を行っていないものであることが好ましい。粗酵素物には、2種以上の酵素成分が含まれるため、複数の発酵阻害物質を同時に、かつ阻害の低減した化合物まで分解することができる。 In addition, the crude enzyme product derived from a microorganism that does not assimilate glucose and / or xylose refers to an enzyme component derived from the microorganism and a component containing two or more enzyme components. Such a crude enzyme product can be prepared by culturing a microorganism having no assimilation of glucose and xylose in an appropriate medium and extracting the crude enzyme solution from the cultured cells. Alternatively, a gene of a microorganism that does not assimilate glucose and / or xylose can be isolated, introduced into a suitable host, and expressed as a heterologous recombinant protein. Preferably, a microorganism that does not assimilate glucose and / or xylose is cultured, and an enzyme is extracted from this microorganism. It is preferable that no special purification operation is performed. Since the crude enzyme product contains two or more kinds of enzyme components, a plurality of fermentation-inhibiting substances can be decomposed simultaneously into compounds with reduced inhibition.
 発酵阻害物質の分解処理は、前述した発酵阻害物質を含む糖水溶液と前記微生物または前記微生物由来の粗酵素物を混合して、前記微生物の生育至適温度または生育至適pH条件下でインキュベートされることで行われる。具体的な温度条件としては、20~40℃の範囲が好ましく、25℃~32℃の範囲がより好ましい。また、pH条件はpH6.5~10の範囲であることが好ましく、pH7~8.5の範囲の範囲であることがより好ましい。 In the decomposition treatment of the fermentation inhibitor, the aqueous sugar solution containing the fermentation inhibitor described above and the microorganism or the crude enzyme product derived from the microorganism are mixed and incubated at the optimum growth temperature or optimum growth pH of the microorganism. Is done. As specific temperature conditions, a range of 20 to 40 ° C. is preferable, and a range of 25 to 32 ° C. is more preferable. The pH condition is preferably in the range of pH 6.5 to 10, and more preferably in the range of pH 7 to 8.5.
 分解される発酵阻害物質は、クマル酸、クマルアミド、フェルラ酸、フェルラアミド、バニリン、バニリン酸、アセトバニロン、フルフラール、3-ヒドロキシメチルフルフラールの群から選ばれる1種以上であり、好ましくは2種以上、より好ましくは3種以上、さらに好ましくは4種以上である。 The fermentation inhibitor to be decomposed is at least one selected from the group consisting of coumaric acid, coumarinamide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural, 3-hydroxymethylfurfural, preferably two or more, More preferably, they are 3 or more types, More preferably, they are 4 or more types.
 本発明では糖溶液に含まれる固形物を予め固液分離によって除去してよい。固液分離の方法は特に限定されないが、スクリューデカンタなどの遠心分離、フィルタープレスや精密濾過膜(マイクロフィルトレーション)などによる膜分離が好ましく、膜分離がより好ましい。 In the present invention, solids contained in the sugar solution may be removed in advance by solid-liquid separation. The method of solid-liquid separation is not particularly limited, but membrane separation by centrifugation such as a screw decanter, filter press or microfiltration membrane (microfiltration) is preferred, and membrane separation is more preferred.
 また糖水溶液は、限外濾過膜(UF膜:Ultrafultration)処理されたものでもよい。限外濾過膜処理の方法は特に特に限定されないが、使用する限外濾過膜は、分画分子量は500~200,000Da、好ましくは10,000~50,000Daの限外濾過膜を使用することができる。特に使用する糖水溶液に、セルロース含有バイオマスの加水分解において使用した酵素が含まれる場合、その酵素の分子量に対して、分画分子量が小さな限外濾過膜を使用することで、加水分解に使用した酵素を分離回収することができる。 Further, the aqueous sugar solution may be subjected to an ultrafiltration membrane (UF membrane) treatment. Although the method of ultrafiltration membrane treatment is not particularly limited, the ultrafiltration membrane to be used should be an ultrafiltration membrane having a molecular weight cut-off of 500 to 200,000 Da, preferably 10,000 to 50,000 Da. Can do. In particular, when the sugar solution used contains the enzyme used in hydrolysis of cellulose-containing biomass, it was used for hydrolysis by using an ultrafiltration membrane having a small fractional molecular weight relative to the molecular weight of the enzyme. The enzyme can be separated and recovered.
 限外濾過膜の素材としては、ポリエーテルサルホン(PES)、ポリフッ化ビニルデン(PVDF)、再生セルロースなどの素材の膜を使用することができる。限外濾過膜形状は、チューブラー式、スパイラルエレメント、平膜などが好ましく使用できる。限外濾過膜の濾過は、クロスフロー方式、デッドエンド濾過方式が挙げられるが、膜ファウリング、フラックスの面でクロスフロー濾過方式が好ましい。 As a material for the ultrafiltration membrane, a membrane made of a material such as polyethersulfone (PES), polyvinylidene fluoride (PVDF), or regenerated cellulose can be used. As the ultrafiltration membrane shape, a tubular type, a spiral element, a flat membrane or the like can be preferably used. The filtration of the ultrafiltration membrane includes a cross flow method and a dead end filtration method, but the cross flow filtration method is preferable in terms of membrane fouling and flux.
 グルコースおよび/またはキシロースの資化性のない微生物または該微生物由来の粗酵素物は、発酵阻害物質の分解処理後の糖液から分離回収して再利用してもよい。前記分離回収においては、遠心分離、精密濾過膜、限外濾過膜など適宜選択、組み合わせることで実施することができる。なお、前記微生物または前記微生物由来の粗酵素物は、あらかじめ樹脂、ゲル、スポンジ、支持体などに固定化してあってもよい。固定化することにより、糖液からの微生物および粗酵素成分の分離と再利用が容易になるため好ましい。特に微生物の固定の場合は、グルコースおよび/またはキシロースの資化性のない微生物の付着性が優れるセルローススポンジであることが好ましい。 A microorganism having no assimilation of glucose and / or xylose or a crude enzyme product derived from the microorganism may be separated and recovered from the sugar solution after the decomposition treatment of the fermentation inhibitor and reused. The separation and recovery can be performed by appropriately selecting and combining a centrifugal separation, a microfiltration membrane, an ultrafiltration membrane or the like. The microorganism or the crude enzyme product derived from the microorganism may be immobilized in advance on a resin, gel, sponge, support or the like. Immobilization is preferred because it facilitates the separation and reuse of microorganisms and crude enzyme components from the sugar solution. In particular, in the case of immobilization of microorganisms, a cellulose sponge having excellent adhesion of microorganisms without assimilation of glucose and / or xylose is preferable.
 本発明で得られる糖液は、膜濃縮および/または蒸発濃縮工程に供して糖濃度を高めることが好ましい。糖濃度を高めることで、得られた糖液を原料とした化学品の製造に好ましく使用できるとともに、保存における安定性、輸送コストの削減などに繋がるため好ましい。 The sugar solution obtained in the present invention is preferably subjected to a membrane concentration and / or evaporation concentration step to increase the sugar concentration. Increasing the sugar concentration is preferable because it can be preferably used for the production of chemicals using the obtained sugar solution as a raw material, and leads to stability in storage and reduction in transportation costs.
 膜濃縮は、ナノ濾過膜および/または逆浸透膜による濃縮であることが好ましい。さらに膜濃縮の好ましい例として、WO2010/067785号に記載される方法である、ナノ濾過膜および/または逆浸透膜に通じて濾過することにより、非透過液として、糖成分が濃縮された濃縮糖液を得ることができる。 Membrane concentration is preferably concentration using a nanofiltration membrane and / or a reverse osmosis membrane. Further, as a preferred example of membrane concentration, a concentrated sugar in which a sugar component is concentrated as a non-permeate by filtering through a nanofiltration membrane and / or a reverse osmosis membrane, which is a method described in WO2010 / 067785. A liquid can be obtained.
 ナノ濾過膜とは、ナノフィルター(ナノフィルトレーション膜、NF膜)とも呼ばれるものであり、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される膜である。数ナノメートル程度の微小空隙を有していると考えられる膜で、主として、水中の微小粒子や分子、イオン、塩類等を阻止するために用いられる。 The nanofiltration membrane is also called a nanofilter (nanofiltration membrane, NF membrane), and is a membrane generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”. . It is a membrane that is considered to have a minute gap of about several nanometers, and is mainly used to block minute particles, molecules, ions, salts, and the like in water.
 逆浸透膜とは、RO膜とも呼ばれるものであり、「一価のイオンを含めて脱塩機能を有する膜」と一般に定義される膜である。数オングストロームから数ナノメートル程度の超微小空隙を有していると考えられる膜で、主として海水淡水化や超純水製造などイオン成分除去に用いられる。 The reverse osmosis membrane is also called an RO membrane, and is a membrane generally defined as “a membrane having a desalting function including monovalent ions”. It is a membrane that is thought to have ultrafine pores of several angstroms to several nanometers, and is mainly used for removing ionic components such as seawater desalination and ultrapure water production.
 本発明で使用されるナノ濾過膜および/または逆浸透膜の素材としては、酢酸セルロース系のポリマーを機能層とした複合膜(以下、酢酸セルロース系の逆浸透膜ともいう)またはポリアミドを機能層とした複合膜(以下、ポリアミド系の逆浸透膜ともいう)が挙げられる。ここで、酢酸セルロース系のポリマーとしては、酢酸セルロース、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース等のセルロースの有機酸エステルの単独もしくはこれらの混合物並びに混合エステルを用いたものが挙げられる。ポリアミドとしては、脂肪族および/または芳香族のジアミンをモノマーとする線状ポリマーまたは架橋ポリマーが挙げられる。また、前記1種類の素材で構成される膜に限定されず、複数の膜素材を含む膜であってもよい。 As a material of the nanofiltration membrane and / or reverse osmosis membrane used in the present invention, a composite membrane (hereinafter also referred to as cellulose acetate-based reverse osmosis membrane) or a polyamide functional layer made of a cellulose acetate-based polymer is used. And a composite membrane (hereinafter also referred to as a polyamide-based reverse osmosis membrane). Here, as the cellulose acetate-based polymer, organic acid esters of cellulose such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and the like, or a mixture thereof and those using mixed esters can be mentioned. It is done. The polyamide includes a linear polymer or a crosslinked polymer having an aliphatic and / or aromatic diamine as a monomer. Moreover, it is not limited to the film | membrane comprised by the said 1 type of raw material, The film | membrane containing a some film | membrane raw material may be sufficient.
 ナノ濾過膜は、スパイラル型の膜エレメントが好ましく使用される。好ましいナノ濾過膜エレメントの具体例としては、例えば、酢酸セルロース系のナノ濾過膜エレメントであるGE Osmonics社製GEsepa、ポリアミドを機能層とするアルファラバル社製ナノ濾過膜エレメントのNF99またはNF99HF、架橋ピペラジンポリアミドを機能層とするフィルムテック社製ナノ濾過膜エレメントのNF-45、NF-90、NF-200、NF-270またはNF-400、あるいは架橋ピペラジンポリアミドを主成分とする東レ株式会社製ナノ濾過膜のUTC60を含む同社製ナノ濾過膜エレメントSU-210、SU-220、SU-600またはSU-610が挙げられ、より好ましくはNF99またはNF99HF、NF-45、NF-90、NF-200またはNF-400、あるいはSU-210、SU-220、SU-600またはSU-610であり、さらに好ましくはSU-210、SU-220、SU-600またはSU-610である。 The spiral membrane element is preferably used for the nanofiltration membrane. Specific examples of preferable nanofiltration membrane elements include, for example, GE Osmonics GEsepa, which is a cellulose acetate nanofiltration membrane element, Alfa Laval nanofiltration membrane element NF99 or NF99HF having a functional layer of polyamide, and crosslinked piperazine Nanofiltration membrane element manufactured by Filmtec with a functional layer of polyamide NF-45, NF-90, NF-200, NF-270 or NF-400, or nanofiltration manufactured by Toray Industries, Inc., which is mainly composed of crosslinked piperazine polyamide The company's nanofiltration membrane element SU-210, SU-220, SU-600 or SU-610, including the membrane UTC60, may be mentioned, more preferably NF99 or NF99HF, NF-45, NF-90, NF-200 or NF -400, yes SU-210, SU-220, a SU-600 or SU-610, more preferably from SU-210, SU-220, SU-600 or SU-610.
 逆浸透膜の具体例としては、例えば、東レ株式会社製ポリアミド系逆浸透膜モジュールである超低圧タイプのSUL-G10、SUL-G20、低圧タイプのSU-710、SU-720、SU-720F、SU-710L、SU-720L、SU-720LF、SU-720R、SU-710P、SU-720Pの他、逆浸透膜としてUTC80を含む高圧タイプのSU-810、SU-820、SU-820L、SU-820FA、同社酢酸セルロース系逆浸透膜SC-L100R、SC-L200R、SC-1100、SC-1200、SC-2100、SC-2200、SC-3100、SC-3200、SC-8100、SC-8200、日東電工株式会社製NTR-759HR、NTR-729HF、NTR-70SWC、ES10-D、ES20-D、ES20-U、ES15-D、ES15-U、LF10-D、アルファラバル製RO98pHt、RO99、HR98PP、CE4040C-30D、GE製GE Sepa、Filmtec製BW30-4040、TW30-4040、XLE-4040、LP-4040、LE-4040、SW30-4040、SW30HRLE-4040、KOCH製TFC-HR、TFC-ULP、TRISEP製ACM-1、ACM-2、ACM-4などが挙げられる。 Specific examples of the reverse osmosis membrane include, for example, ultra-low pressure type SUL-G10, SUL-G20, low pressure type SU-710, SU-720, SU-720F, which are polyamide-based reverse osmosis membrane modules manufactured by Toray Industries, Inc. In addition to SU-710L, SU-720L, SU-720LF, SU-720R, SU-710P, SU-720P, high pressure types including UTC80 as a reverse osmosis membrane, SU-810, SU-820, SU-820L, SU- 820FA, Cellulose acetate reverse osmosis membrane SC-L100R, SC-L200R, SC-1100, SC-1200, SC-2100, SC-2200, SC-3100, SC-3200, SC-8100, SC-8200, Nitto NTR-759HR, NTR-729HF, NTR-70SWC, E manufactured by Denko Co., Ltd. 10-D, ES20-D, ES20-U, ES15-D, ES15-U, LF10-D, Alfa Laval RO98pHt, RO99, HR98PP, CE4040C-30D, GE GE Sepa, Filmtec BW30-4040, TW30- 4040, XLE-4040, LP-4040, LE-4040, SW30-4040, SW30HRLE-4040, KOCH TFC-HR, TFC-ULP, TRISEP ACM-1, ACM-2, and ACM-4.
 本発明で得られる糖液は、発酵阻害物質分解処理を行わない従来の糖液に比べ、ナノ濾過膜および/または逆浸透膜が容易であるという利点を有する。これは糖液中の発酵阻害物質が低減していることと関連するものと推察されるが詳細要因は不明である。 The sugar solution obtained in the present invention has an advantage that a nanofiltration membrane and / or a reverse osmosis membrane is easy compared to a conventional sugar solution that does not undergo a fermentation inhibitor decomposition treatment. This is presumed to be related to a decrease in fermentation inhibiting substances in the sugar solution, but the detailed factors are unknown.
 蒸発濃縮とは、糖液を加熱および/または減圧状態とすることで、糖液中の水分を気体化させて除去することで、糖液の濃度を高める手法である。一般的な装置として、エバポレーター、フラッシュエバポレーター、多重効用缶、スプレードライ、凍結乾燥、などを例示することができる。 Evaporation concentration is a technique for increasing the concentration of a sugar solution by heating and / or depressurizing the sugar solution to gasify and remove the water in the sugar solution. Examples of common devices include an evaporator, a flash evaporator, a multi-effect can, spray drying, freeze drying, and the like.
 本発明で得られる糖液には、糖水溶液に含まれていた単糖あるいは多糖を含んでおり、グルコース、キシロース、アラビノース、マンノース、シュクロース、セロビオース、ラクトース、キシロビオース、キシロトリオースなどが含まれる。これら糖液中の糖成分の分析方法としては、HPLCにより、標品との比較により定量することができる。 The sugar solution obtained in the present invention contains monosaccharides or polysaccharides contained in an aqueous sugar solution, and includes glucose, xylose, arabinose, mannose, sucrose, cellobiose, lactose, xylobiose, xylotriose, and the like. . As a method for analyzing the sugar component in these sugar solutions, it can be quantified by HPLC and comparison with a standard product.
 本発明の糖液は、膜濃縮および/または蒸発濃縮を行うことにより糖固体としてもよい。糖固体とは、本発明の糖液中の水分を除去することで、水分量10%未満、好ましくは5%未満にした固体状のものを指す。糖固体とすることにより、糖中の水分あるいは水分活性が低下し、微生物による汚染を低減できるという利点、さらに糖の輸送コストを削減できるという利点を有している。また本発明の糖液の製造方法で得られた糖液から得られた糖固体は吸湿性が低いという特徴を有している。吸湿性が低いことにより、保管・運搬時における品質変化が少ないため、工業原料としては安定して使用できるといった実用上の利点を有している。 The sugar liquid of the present invention may be made into a sugar solid by membrane concentration and / or evaporation concentration. The saccharide solid refers to a solid that has a water content of less than 10%, preferably less than 5%, by removing water from the sugar liquid of the present invention. By using a sugar solid, the water or water activity in the sugar is reduced, and there is an advantage that contamination by microorganisms can be reduced, and further, the cost of transporting sugar can be reduced. In addition, the sugar solid obtained from the sugar liquid obtained by the method for producing a sugar liquid of the present invention is characterized by low hygroscopicity. Due to its low hygroscopicity, it has a practical advantage that it can be used stably as an industrial raw material because there is little change in quality during storage and transportation.
 本発明の糖液または糖固体は、不純物であるセリン、スレオニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、プロリン、フェニルアラニン、リジンおよびヒスチジンからなる群から選ばれる1種または2種以上の遊離アミノ酸の含量が検出限界以下である特徴を有する。これは本発明で使用するグルコースおよび/またはキシロースの資化性のない微生物または該微生物由来の粗酵素物で発酵阻害物質を分解する結果によって、糖水溶液中に微量含まれていた遊離アミノ酸が微生物の増殖および/または代謝に使用されたためと考えられる。一方、ペプチドあるいはポリペプチド状態で含まれるアミノ酸に関しては、糖液あるいは糖固体中にある程度の量が残存しているという特徴を有している。このことから、本発明の糖液あるいは糖固体を発酵原料として、微生物を増殖させる際、ペプチドあるいはポリペプチド状態のアミノ酸が微生物増殖の栄養源として利用できる。 The sugar liquid or sugar solid of the present invention contains one or more free amino acids selected from the group consisting of serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine which are impurities. Is below the detection limit. This is because the free amino acids contained in a small amount in the aqueous sugar solution are decomposed by the microorganisms used in the present invention that do not assimilate glucose and / or xylose or the result of degradation of the fermentation inhibitor by the crude enzyme product derived from the microorganisms. It is thought that it was used for the growth and / or metabolism of On the other hand, an amino acid contained in a peptide or polypeptide state has a characteristic that a certain amount remains in a sugar solution or a sugar solid. Therefore, when the microorganisms are grown using the sugar solution or sugar solid of the present invention as a fermentation raw material, amino acids in the peptide or polypeptide state can be used as a nutrient source for microbial growth.
 本発明の糖液あるいは糖固体中に含まれる遊離アミノ酸の定量は、ニンヒドリン法にて市販されているアミノ酸分析計を用いて測定することが好ましい。また遊離アミノ酸分析に際しては、糖固体あるいは糖液を乾燥した糖固体約2mgに対して、2%スルホサリチル酸250μLを添加・攪拌後、超音波処理を10分行い測定試料溶液を調整したあと、試料溶液25μLを用いてアミノ酸分析計にて分離定量することができる。アミノ酸分析計は、株式会社日立製作所製のものが好ましく、アミノ酸分析計L-8800A形が最も好ましい。 Quantification of free amino acids contained in the sugar liquid or sugar solid of the present invention is preferably measured using an amino acid analyzer commercially available by the ninhydrin method. For free amino acid analysis, after adding 250 μL of 2% sulfosalicylic acid to about 2 mg of saccharide solid or saccharide solid obtained by drying the saccharide solution, stirring, sonicating for 10 minutes, adjusting the measurement sample solution, Separation and quantification can be performed with an amino acid analyzer using 25 μL of the solution. The amino acid analyzer is preferably manufactured by Hitachi, Ltd., and the amino acid analyzer L-8800A is most preferable.
 特に糖固体については、セリン、スレオニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、プロリン、フェニルアラニン、リジンおよびヒスチジンからなる群から選ばれる1種または2種以上の遊離アミノ酸の含量が検出限界以下であることにより、好ましくはこれら全ての遊離アミノ酸が検出限界以下であることにより、糖固体の吸湿性が顕著に少ないといった特徴がもたらされる。 Particularly for sugar solids, the content of one or more free amino acids selected from the group consisting of serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine is below the detection limit. Thus, preferably all these free amino acids are below the detection limit, resulting in a feature that the saccharide solids are significantly less hygroscopic.
 本発明の糖液の製造方法で得られる糖液、あるいは糖固体は、これらを発酵原料として微生物を培養して、糖を化学品に変換することで、化学品を製造することができる。化学品の具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。例えば、エタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロールなどのアルコール、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。さらに、酵素、抗生物質、組換えタンパク質などの生産に適用することも可能である。 The sugar solution or sugar solid obtained by the method for producing a sugar solution of the present invention can be produced by culturing microorganisms using these as fermentation raw materials and converting the sugar into a chemical product. Specific examples of chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids. For example, ethanol, alcohol such as 1,3-propanediol, 1,4-butanediol, glycerol, acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, citric acid and other organic acids, inosine, guanosine, etc. Nucleosides, nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine. Furthermore, it can be applied to the production of enzymes, antibiotics, recombinant proteins, and the like.
 本発明で得られる糖液を化学品製造のための発酵原料に使用する場合、必要に応じて、窒素源、無機塩類、及び必要に応じてアミノ酸、ビタミンなどの有機微量栄養素を適宜含有させてもよい。さらに場合によっては、キシロースに加え、炭素源として、グルコース、スクロース、フラクトース、ガラクトース、ラクトース等の糖類、これら糖類を含有する澱粉糖化液、甘藷糖蜜、甜菜糖蜜、ハイテストモラセス、あるいは酢酸等の有機酸、あるいはエタノールなどのアルコール類、グリセリンなどを追加して、発酵原料として使用してもよい。窒素源としては、アンモニアガス、アンモニア水、アンモニウム塩類、尿素、硝酸塩類、その他補助的に使用される有機窒素源、例えば油粕類、大豆加水分解液、カゼイン分解物、その他のアミノ酸、ビタミン類、コーンスティープリカー、酵母または酵母エキス、肉エキス、ペプトン等のペプチド類、各種発酵菌体およびその加水分解物などが使用される。無機塩類としては、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等を適宜添加することができる。 When the sugar solution obtained in the present invention is used as a fermentation raw material for the production of chemical products, it contains a nitrogen source, inorganic salts, and if necessary, organic micronutrients such as amino acids and vitamins as necessary. Also good. In some cases, in addition to xylose, as a carbon source, sugars such as glucose, sucrose, fructose, galactose, and lactose, starch saccharified solution containing these sugars, sweet potato molasses, sugar beet molasses, high test molasses, or acetic acid An acid or an alcohol such as ethanol, glycerin or the like may be added and used as a fermentation raw material. Nitrogen sources include ammonia gas, aqueous ammonia, ammonium salts, urea, nitrates, and other supplementary organic nitrogen sources such as oil cakes, soybean hydrolysates, casein degradation products, other amino acids, vitamins, Corn steep liquor, yeast or yeast extract, meat extract, peptides such as peptone, various fermented cells and hydrolysates thereof are used. As inorganic salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts, and the like can be appropriately added.
 微生物の培養方法は、バッチ培養、フェドバッチ培養、連続培養など公知の発酵培養方法が利用できる。特に本発明の糖液および/または濃縮糖液は、限外濾過膜等によって固形物が完全に除去されているという特徴を有しており、発酵に使用した微生物を遠心分離、膜分離などの手法により分離回収し、再利用を行うことができる。こうした微生物の分離回収および再利用は、培養期間中に新たな糖液および/または濃縮糖液を添加しながら、連続的に微生物を分離回収してもよく、また、培養終了後に微生物を分離回収し、次バッチの培養に再利用してもよい。 As a method for culturing microorganisms, known fermentation culture methods such as batch culture, fed-batch culture, and continuous culture can be used. In particular, the sugar solution and / or concentrated sugar solution of the present invention has a feature that solids are completely removed by an ultrafiltration membrane or the like, and microorganisms used for fermentation can be subjected to centrifugation, membrane separation, etc. It can be separated and recovered by the method and reused. Such separation and recovery of microorganisms may be performed by continuously separating and recovering microorganisms while adding a new sugar solution and / or concentrated sugar solution during the culture period. It may be reused for the next batch culture.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 (参考例1)糖濃度の測定
 糖液に含まれるグルコースおよびキシロース濃度は、下記に示すHPLC条件で、標品との比較により定量した。
カラム:Luna NH(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75(流速0.6mL/分)
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。
(Reference Example 1) Measurement of sugar concentration Glucose and xylose concentrations contained in a sugar solution were quantified by comparison with a sample under the HPLC conditions shown below.
Column: Luna NH 2 (Phenomenex)
Mobile phase: Milli Q: Acetonitrile = 25: 75 (flow rate 0.6 mL / min)
Reaction solution: None Detection method: RI (differential refractive index)
Temperature: 30 ° C.
 (参考例2)発酵阻害物質の分析
 加水分解物に含まれる芳香族化合物・フラン系化合物は下記に示すHPLC条件で、標品との比較により定量した。なお各分析サンプルは、3500Gで10分間遠心分離を行い、その上清成分を下記分析に供した。
カラム:Synergi HidroRP 4.6mm×250mm(Phenomenex製)
移動相:アセトニトリル-0.1% HPO(流速1.0mL/min)
検出方法:UV(283nm)
温度:40℃。
(Reference Example 2) Analysis of Fermentation Inhibitory Substance Aromatic compounds and furan compounds contained in the hydrolyzate were quantified by comparison with a sample under the HPLC conditions shown below. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant component was subjected to the following analysis.
Column: Synergi HideRP 4.6 mm × 250 mm (Phenomenex)
Mobile phase: Acetonitrile-0.1% H 3 PO 4 (flow rate 1.0 mL / min)
Detection method: UV (283 nm)
Temperature: 40 ° C.
 酢酸、ギ酸は下記に示すHPLC条件で、標品との比較により定量した。なおなお各分析サンプルは、3500Gで10分間遠心分離を行い、その上清成分を下記分析に供した。
カラム:Shim-PackとShim-Pack SCR101H(株式会社島津製作所製)の直列
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。
Acetic acid and formic acid were quantified by comparison with a standard under the following HPLC conditions. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant component was subjected to the following analysis.
Column: Shim-Pack and Shim-Pack SCR101H (manufactured by Shimadzu Corporation) mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA · 2Na (flow rate 0.8 mL / min)
Detection method: electric conductivity temperature: 45 ° C.
 (参考例3)トリコデルマ由来セルラーゼの調整
 トリコデルマ由来セルラーゼは以下の方法で調整した。
(Reference Example 3) Preparation of Trichoderma-derived cellulase Trichoderma-derived cellulase was prepared by the following method.
 [前培養]
 コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるよう蒸留水に添加し、100mLを500mLバッフル付き三角フラスコに張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80をそれぞれ0.01%(w/vol)添加した。この前培養培地にトリコデルマ・リーセイPC3-7を1×10個/mLになるように植菌し、28℃、72時間、180rpmで振とう培養し、前培養とした(振とう装置:TAITEC社製 BIO-SHAKER BR-40LF)。
[Pre-culture]
Corn steep liquor 5% (w / vol), glucose 2% (w / vol), ammonium tartrate 0.37% (w / vol), ammonium sulfate 0.14 (w / vol), potassium dihydrogen phosphate 0.2 % (W / vol), calcium chloride dihydrate 0.03% (w / vol), magnesium sulfate heptahydrate 0.03% (w / vol), zinc chloride 0.02% (w / vol) , Iron (III) chloride hexahydrate 0.01% (w / vol), copper (II) sulfate pentahydrate 0.004% (w / vol), manganese chloride tetrahydrate 0.0008% ( w / vol), boric acid 0.0006% (w / vol), hexamolybdenum hexamolybdate tetrahydrate 0.0026% (w / vol) and added to distilled water, 100 mL is a triangle with 500 mL baffle Stick to flask, 121 Autoclaved at 15 ° C for 15 minutes. After allowing to cool, PE-M and Tween 80, each autoclaved at 121 ° C. for 15 minutes, were added 0.01% (w / vol). The preculture medium was inoculated with Trichoderma reesei PC3-7 at 1 × 10 5 cells / mL, and cultured with shaking at 28 ° C. for 72 hours at 180 rpm (shaking apparatus: TAITEC). BIO-SHAKER BR-40LF).
 [本培養]
 コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、セルロース(アビセル)10%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるよう蒸留水に添加し、2.5Lを5L容撹拌ジャー(ABLE社製 DPC-2A)容器に張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80をそれぞれ0.1%添加し、あらかじめ前記の方法にて液体培地で前培養したトリコデルマ・リーセイPC3-7を250mL接種した。その後、28℃、87時間、300rpm、通気量1vvmにて培養を行い、遠心分離後、上清を膜濾過(ミリポア社製 ステリカップ-GV 材質:PVDF)した。この前述条件で調整した培養液に対し、βグルコシダーゼ(Novozyme188)をタンパク質重量比として、1/100量添加し、これをトリコデルマ由来セルラーゼとして、以下、実施例に使用した。
[Main culture]
Corn steep liquor 5% (w / vol), glucose 2% (w / vol), cellulose (Avicel) 10% (w / vol), ammonium tartrate 0.37% (w / vol), ammonium sulfate 0.14% ( w / vol), potassium dihydrogen phosphate 0.2% (w / vol), calcium chloride dihydrate 0.03% (w / vol), magnesium sulfate heptahydrate 0.03% (w / vol) ), Zinc chloride 0.02% (w / vol), iron (III) chloride hexahydrate 0.01% (w / vol), copper (II) sulfate pentahydrate 0.004% (w / vol) ), Manganese chloride tetrahydrate 0.0008% (w / vol), boric acid 0.0006% (w / vol), hexamolybdate hexaammonium tetrahydrate 0.0026% (w / vol) Added to distilled water, 2.5L is stirred for 5L The mixture was placed in a stirring jar (DPC-2A manufactured by ABLE) and autoclaved at 121 ° C. for 15 minutes. After standing to cool, 0.1% each of PE-M and Tween 80 autoclaved at 121 ° C. for 15 minutes, respectively, was added, and Trichoderma reesei PC3-7 pre-cultured in a liquid medium by the above-described method in advance was added. 250 mL was inoculated. Thereafter, the cells were cultured at 28 ° C., 87 hours, 300 rpm, and aeration volume of 1 vvm. After centrifugation, the supernatant was subjected to membrane filtration (Millipore-made Stericup-GV material: PVDF). 1/100 amount of β-glucosidase (Novozyme 188) as a protein weight ratio was added to the culture solution adjusted under the above-mentioned conditions, and this was used as a Trichoderma-derived cellulase in the following examples.
 (実施例1)セルロース含有バイオマス前処理物の調製
 1.セルルース含有バイオマス前処理物1の調製(アンモニア処理)
 セルロース含有バイオマスとして稲藁を使用した。稲藁を小型反応器(耐圧硝子工業製、TVS-N2 30ml)に投入し、液体窒素で冷却した。この反応器にアンモニアガスを流入し、試料を完全に液体アンモニアに浸漬させた。リアクターの蓋を閉め、室温で15分ほど放置した。次いで、150℃のオイルバス中にて1時間処理した。処理後、反応器をオイルバスから取り出し、ドラフト中で直ちにアンモニアガスをリーク後、さらに真空ポンプで反応器内を10Paまで真空引きし乾燥させた。これをバイオマス前処理物1として以下実施例に使用した。
(Example 1) Preparation of cellulose-containing biomass pretreatment product Preparation of cellulosic biomass pre-treatment product 1 (ammonia treatment)
Rice straw was used as the cellulose-containing biomass. The rice straw was put into a small reactor (manufactured by pressure-resistant glass industry, TVS-N2 30 ml) and cooled with liquid nitrogen. Ammonia gas was flowed into the reactor, and the sample was completely immersed in liquid ammonia. The reactor lid was closed and left at room temperature for about 15 minutes. Subsequently, it processed in the 150 degreeC oil bath for 1 hour. After the treatment, the reactor was taken out from the oil bath, and immediately after ammonia gas leaked in the fume hood, the reactor was further evacuated to 10 Pa and dried. This was used as a biomass pretreatment product 1 in the following examples.
 2.セルロース含有バイオマス前処理物2の調製(水熱処理)
 セルロース含有バイオマスとして稲藁を使用した。稲藁を水に浸し、撹拌しながら210℃で20分間オートクレーブ処理(日東高圧株式会社製)した。処理後は溶液成分(以下、水熱処理液)と処理バイオマス成分に遠心分離(3000G)を用いて固液分離した。得られた水熱処理液をバイオマス前処理物2として以下実施例に使用した。
2. Preparation of cellulose-containing biomass pretreatment product 2 (hydrothermal treatment)
Rice straw was used as the cellulose-containing biomass. The rice straw was soaked in water and autoclaved (made by Nitto Koatsu Co., Ltd.) for 20 minutes at 210 ° C. with stirring. After the treatment, the solution component (hereinafter, hydrothermal treatment liquid) and the treated biomass component were subjected to solid-liquid separation using centrifugation (3000 G). The obtained hydrothermal treatment liquid was used as a biomass pretreatment product 2 in the following examples.
 (実施例2)セルロース含有バイオマス(実施例1の各前処理物)の加水分解
 実施例1で調製したバイオマス前処理物1(0.5g)に蒸留水を加え、参考例3で調製したトリコデルマ由来セルラーゼ0.5mLを添加し、総重量が10gとなるようさらに蒸留水を添加し、pHが4.5~5.3の範囲となるよう希釈硫酸あるいは希釈苛性ソーダで調整した。また、実施例1で調整した水熱処理液10gに対して、参考例3で調整したトリコデルマ由来セルラーゼ0.1mLを添加し、総重量が10.1gとなるように調整し、pHが4.5~5.3の範囲となるよう希釈硫酸あるいは希釈苛性ソーダで調整した。
(Example 2) Hydrolysis of cellulose-containing biomass (pretreatment product of Example 1) Trichoderma prepared in Reference Example 3 by adding distilled water to the biomass pretreatment product 1 (0.5 g) prepared in Example 1 Origin cellulase (0.5 mL) was added, distilled water was further added so that the total weight became 10 g, and the pH was adjusted to 4.5 to 5.3 with diluted sulfuric acid or diluted caustic soda. In addition, 0.1 mL of Trichoderma-derived cellulase adjusted in Reference Example 3 was added to 10 g of the hydrothermal treatment solution adjusted in Example 1, and the total weight was adjusted to 10.1 g, and the pH was 4.5. It was adjusted with dilute sulfuric acid or dilute caustic soda to be in the range of ˜5.3.
 pHを調整した上記2種組成物を枝付試験管に移し(東京理化器械株式会社製 φ30 NS14/23)、本組成物を枝付反応容器に移し(東京理化器械株式会社製 φ30 NS14/23)、50℃にて24時間保温および攪拌し加水分解を行った(東京理化器械株式会社製:小型メカニカルスターラー CPS-1000、変換アダプター、三方コック付添加口、保温装置 MG-2200)。加水分解物を遠心分離(3000G、10分)にて固液分離し、溶液成分(6mL)と固形物に分離した。得られた溶液成分をさらに精密濾過膜(GE社製シリンジフィルター)で濾過し、得られた濾液を加水分解物1(バイオマス前処理物1由来)および加水分解物2(バイオマス前処理物2由来)とした。 The above-mentioned two kinds of compositions adjusted for pH are transferred to a branch test tube (Tokyo Rika Kikai Co., Ltd., φ30 NS14 / 23), and this composition is transferred to a branching reaction vessel (Tokyo Rika Kikai Co., Ltd., φ30 NS14 / 23). ), And hydrolyzed by stirring for 24 hours at 50 ° C. (manufactured by Tokyo Rika Kikai Co., Ltd .: small mechanical stirrer CPS-1000, conversion adapter, addition port with three-way cock, heat retaining device MG-2200). The hydrolyzate was subjected to solid-liquid separation by centrifugation (3000 G, 10 minutes), and separated into a solution component (6 mL) and a solid. The obtained solution component is further filtered through a microfiltration membrane (a syringe filter manufactured by GE), and the obtained filtrate is hydrolyzed product 1 (derived from biomass pretreated product 1) and hydrolyzed product 2 (derived from biomass pretreated product 2). ).
 また、希硫酸処理によるバイオマスの加水分解を実施した。バイオマスとしてコーンコブを硫酸水(0.5重量%)に浸し、撹拌しながら180℃で10分間オートクレーブ処理(日東高圧株式会社製)した。処理後は溶液成分(以下、希硫酸処理液)と処理バイオマス成分に遠心分離(3000G)を用いて固液分離した。この希硫酸処理液をさらに精密濾過膜(GE社製シリンジフィルター)で濾過し、得られた濾液を加水分解物3とした。 Also, biomass was hydrolyzed by dilute sulfuric acid treatment. Corn biomass was immersed in sulfuric acid water (0.5% by weight) as biomass, and autoclaved (manufactured by Nitto Koatsu Co., Ltd.) at 180 ° C. for 10 minutes while stirring. After the treatment, the solution component (hereinafter, dilute sulfuric acid treatment solution) and the treatment biomass component were subjected to solid-liquid separation using centrifugation (3000 G). This dilute sulfuric acid treatment liquid was further filtered through a microfiltration membrane (a syringe filter manufactured by GE), and the obtained filtrate was designated as hydrolyzate 3.
 前記加水分解物1~3の糖濃度(グルコースおよびキシロース濃度)および発酵阻害物質濃度は、参考例1および参考例2記載の方法で測定した。前処理バイオマス1から得られた加水分解を加水分解物1、水熱処理液から得られた加水分解物を加水分解物2、として以下実施例に使用した。また、加水分解物1~3の糖分析、芳香族化合物の分析結果を表1にまとめる。 The sugar concentration (glucose and xylose concentration) and fermentation inhibitor concentration of the hydrolysates 1 to 3 were measured by the methods described in Reference Example 1 and Reference Example 2. The hydrolysis obtained from the pretreated biomass 1 was used as the hydrolyzate 1 and the hydrolyzate obtained from the hydrothermal treatment liquid was used as the hydrolyzate 2 in the following examples. Table 1 summarizes the results of sugar analysis and aromatic compound analysis of hydrolysates 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 加水分解物1~3の芳香族化合物の分析において、いずれの加水分解物も含まれている成分あるいは濃度に違いがあるものの、クマル酸、クマルアミド、フェルラ酸、フェルラアミド、バニリン、バニリン酸、アセトバニロン、フルフラールおよび3-ヒドロキシメチルフルフラールの群から選ばれる1種または2種以上の発酵阻害物質を含んでいることが確認できた。 In the analysis of the aromatic compounds of hydrolysates 1 to 3, although any hydrolyzate contains different components or concentrations, coumaric acid, coumarinamide, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone It was confirmed that the composition contained one or more fermentation inhibitors selected from the group consisting of furfural and 3-hydroxymethylfurfural.
 (実施例3)グルコースおよび/またはキシロースの資化性のない微生物による発酵阻害物質の分解
 1.供試菌および前培養
 グルコースおよび/またはキシロースの資化性のない微生物として、デルフチア属微生物(デルフチア・アシドボランス(Delftia acidovorans)NBRC14950、デルフチア・ツルハテンシス(Delftia tsuruhatensis)NBRC16741)を使用した。供試菌は、それぞれTB培地(pH7)にて培養し、24h振とう培養を行った。培養後、菌体は遠心分離にて回収した。
(Example 3) Degradation of fermentation inhibitor by microorganisms without assimilation of glucose and / or xylose Test Bacteria and Preculture As microorganisms having no assimilation of glucose and / or xylose, microorganisms of the genus Delftia (Delfia acidovorans NBRC14950, Delftia tsuruhatensis NBRC16741) were used. Each of the test bacteria was cultured in a TB medium (pH 7), and cultured for 24 hours with shaking. After culturing, the cells were collected by centrifugation.
 2.発酵阻害物質分解処理 
 実施例2で得られた加水分解物1、加水分解物2、加水分解物3をpH7に調整し、前記前培養した菌体をO.D.600=10となるよう添加した。30℃で、24時間保温した後、得られた糖液を遠心分離(15,000rpm、10min)し、得られた糖液上清中の糖濃度および発酵阻害物質濃度を測定した。測定結果を表2および表3に示す。なお加水分解物1、加水分解物2、加水分解物3、をデルフチア・アシドボランスで分解処理した糖液を、「糖液1DA」、「糖液2DA」、「糖液3DA」、として後述実施例に使用した。また加水分解物1、加水分解物2、加水分解物3をデルフチア・ツルハテンシスで分解処理した糖液を、「糖液1DT」、「糖液2DT」、「糖液3DT」とする。
2. Fermentation inhibitor decomposition treatment
The hydrolyzate 1, hydrolyzate 2 and hydrolyzate 3 obtained in Example 2 were adjusted to pH 7, and the pre-cultured cells were treated with O.D. D. It added so that it might be set to 600 = 10. After incubating at 30 ° C. for 24 hours, the obtained sugar solution was centrifuged (15,000 rpm, 10 min), and the sugar concentration and fermentation inhibitor concentration in the obtained sugar solution supernatant were measured. The measurement results are shown in Table 2 and Table 3. Examples of the sugar solutions obtained by decomposing hydrolyzate 1, hydrolyzate 2, and hydrolyzate 3 with Delphthia acidborans are described below as “sugar solution 1DA”, “sugar solution 2DA”, and “sugar solution 3DA”. Used for. Also, the sugar solutions obtained by decomposing hydrolyzate 1, hydrolyzate 2, and hydrolyzate 3 with Delphthia turhatensis are referred to as “sugar solution 1DT”, “sugar solution 2DT”, and “sugar solution 3DT”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示すように、デルフチア属微生物によって、発酵阻害物質であるフルフラール、ヒドロキシメチルフルフラール、バニリン、クマル酸、クマルアミド、フェルラアミド、フェルラ酸の量が減少することが確認された。その一方で、糖液中のグルコースおよびキシロースについては減少しないことが確認できた。 As shown in Tables 2 and 3, it was confirmed that the amount of furfural, hydroxymethylfurfural, vanillin, coumaric acid, coumarinamide, ferulamide, ferulic acid, which are fermentation inhibitors, was reduced by Delphthia microorganisms. On the other hand, it was confirmed that glucose and xylose in the sugar solution did not decrease.
 (比較例1)グルコースおよびキシロース資化性のある微生物による比較
 グルコースおよびキシロース資化性のある微生物として、大腸菌JM109株(タカラバイオ株式会社)、ワイン酵母OC2株を使用した。供試菌は、それぞれLB培地(pH7)にて培養し、24時間振とう培養を行った。24時間培養後、遠心分離にて菌体を回収した。
(Comparative example 1) Comparison by glucose and xylose-assimilating microorganisms E. coli JM109 strain (Takara Bio Inc.) and wine yeast OC2 strain were used as glucose and xylose-assimilating microorganisms. Each of the test bacteria was cultured in LB medium (pH 7), and cultured with shaking for 24 hours. After culturing for 24 hours, the cells were collected by centrifugation.
 実施例2および実施例3で得られた加水分解物1、加水分解物2、加水分解物3に前記前培養した菌体をO.D.600=10となるよう添加した。30℃で、24時間保温した後、得られた糖液を遠心分離(15,000rpm、10min)し、上清中の糖濃度および発酵阻害物質濃度を測定した。測定結果を表4および表5に示す。 The cells cultured in the hydrolyzate 1, hydrolyzate 2 and hydrolyzate 3 obtained in Example 2 and Example 3 were subjected to O. D. It added so that it might be set to 600 = 10. After incubating at 30 ° C. for 24 hours, the obtained sugar solution was centrifuged (15,000 rpm, 10 min), and the sugar concentration and fermentation inhibitor concentration in the supernatant were measured. The measurement results are shown in Tables 4 and 5.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 大腸菌を使用した場合、芳香族化合物のほとんどが減少しないことが確認された。またワイン酵母においては、フルフラール、ヒドロキシメチルフルフラールが若干減少することが確認されたが、クマルアミド、クマル酸、フェルラ酸、フェルラアミド、バニリンはほとんど減少しないことがわかった。また加水分解物1~3に含まれるグルコースおよびキシロースについても大幅に減少することが確認できた。 It was confirmed that most of the aromatic compounds did not decrease when E. coli was used. In wine yeast, it was confirmed that furfural and hydroxymethylfurfural were slightly reduced, but coumarinamide, coumaric acid, ferulic acid, ferulamide and vanillin were hardly reduced. It was also confirmed that glucose and xylose contained in the hydrolysates 1 to 3 were significantly reduced.
 (実施例4)エタノール発酵試験
 実施例3にて得られた糖液を使用して、化学品の1種であるエタノール発酵評価を実施した。大腸菌KO11株(ATCC55124株)をLB培地(2mL)にて、30℃、24h、試験管にて前培養を行った。糖液1DA、糖液2DA、糖液3DA、糖液1DT、糖液2DT、糖液3DT、に対し、酵母エキス(5g/L)、ペプトン(10g/L)、塩化ナトリウム5g/L、pH7.0に調整し、発酵培地(2mL)を調整した。各発酵培地に対して、前記前培養した前培養液を100μL添加し、30℃で24時間培養を行った。24時間培養後、各糖液中に生成したエタノール蓄積濃度を、ガスクロマトグラフ法(Shimadzu GC-2010キャピラリーGC TC-1(GL science) 15 meter L.*0.53mm I.D.,df1.5μmを用いて、水素炎イオン化検出器により検出・算出して評価。)で測定した。
(Example 4) Ethanol fermentation test Using the sugar solution obtained in Example 3, an ethanol fermentation evaluation, which is one type of chemical product, was carried out. E. coli KO11 strain (ATCC55124 strain) was precultured in a test tube at 30 ° C. for 24 hours in LB medium (2 mL). For sugar solution 1DA, sugar solution 2DA, sugar solution 3DA, sugar solution 1DT, sugar solution 2DT, and sugar solution 3DT, yeast extract (5 g / L), peptone (10 g / L), sodium chloride 5 g / L, pH 7. The fermentation medium (2 mL) was adjusted to 0. To each fermentation medium, 100 μL of the precultured preculture was added and cultured at 30 ° C. for 24 hours. After culturing for 24 hours, the ethanol accumulation concentration produced in each sugar solution was measured by gas chromatography (Shimadzu GC-2010 capillary GC TC-1 (GL science) 15 meter L. * 0.53 mm ID, df1.5 μm Was measured and evaluated with a flame ionization detector.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (比較例2)エタノール発酵試験
 加水分解物1~3(実施例2)を使用して、化学品の1種であるエタノール発酵評価を実施した。
(Comparative Example 2) Ethanol Fermentation Test Using the hydrolysates 1 to 3 (Example 2), ethanol fermentation evaluation, which is one type of chemical product, was performed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例4のエタノール発酵の結果(表6)と比較例2のエタノール発酵結果(表7)を比較すると、工程(2)で発酵阻害物質が低減したことにより実施例4のエタノール発酵の方がエタノール生産量が顕著に高い結果となった。 Comparing the results of ethanol fermentation of Example 4 (Table 6) and the results of ethanol fermentation of Comparative Example 2 (Table 7), the ethanol fermentation of Example 4 was more reduced due to the reduction of fermentation inhibitors in step (2). The ethanol production was significantly higher.
 (実施例5)デルフチア属微生物のフェルラアミドおよびフェルラ酸の代謝分解
 実施例3の加水分解物中の芳香族化合物の分解がデルフチア属微生物による分解によるものなのかどうかを確認するために、フェルラアミドを添加したモデル反応系にて、その分解産物の特定と生成量の変化を追跡した。
(Example 5) Metabolic degradation of ferulamide and ferulic acid of Delphtia microorganisms In order to confirm whether degradation of aromatic compounds in the hydrolyzate of Example 3 is due to degradation by Delphtia microorganisms, ferulamide In the model reaction system to which was added, the degradation products were identified and the amount of change was traced.
 デルフチア・アシドボランス(Delftia・acidovorans)NBRC14950およびデルフチア・ツルハテンシス(Delftia・tsuruhatensis)NBRC16741をTB培地(pH7)で培養し、64時間侵とう培養を行った。培養後、各菌体は遠心分離にて回収した。フェルラアミドをN,N-ジメチルホルムアミドに溶解した溶液を、10mM Tris-HClバッファーで希釈し1g/Lフェルラアミド溶液を調整し、水酸化ナトリウムでpH10に調整した。前記前回収した各菌体をO.D.600=10となるよう添加し、30℃で72時間保温し、経時的に反応液を回収した。得られた反応液を遠心分離(15,000rpm、10min)し、得られた反応液上清中の参考例1の方法で芳香族化合物濃度を測定した。デルフチア・ツルハテンシスの結果を図3に、デルフチア・アシドボランスの結果を図4に示す。図3および図4に示すように、どちらのデルフチア属においても、保温開始とともにフェルラアミド濃度が急激減少するとともに、6時間後にフェルラ酸の生成量がピークに達した。また、さらにフェルラ酸はその後、36時間以内に消失し、バニリン酸に変換されていることが確認された。さらにバニリン酸はさらに保温時間とともに減少することが確認された。以上の結果よりデルフィア属の微生物においては、フェルラアミド、フェルラ酸、バニリン酸に順に変換され、最終的にバニリン酸も分解されていくことが確認された。 Delftia acidvorans NBRC14950 and Delftia tsuruhatensis NBRC16741 were cultured in TB medium (pH 7) and invasive culture was performed for 64 hours. After culturing, each bacterial cell was collected by centrifugation. A solution obtained by dissolving ferramide in N, N-dimethylformamide was diluted with 10 mM Tris-HCl buffer to prepare a 1 g / L ferramide solution, and the pH was adjusted to 10 with sodium hydroxide. Each pre-collected microbial cell is O.D. D. It added so that it might become 600 = 10, and it heat-retained at 30 degreeC for 72 hours, The reaction liquid was collect | recovered with time. The obtained reaction liquid was centrifuged (15,000 rpm, 10 min), and the aromatic compound concentration was measured by the method of Reference Example 1 in the obtained reaction liquid supernatant. FIG. 3 shows the results of Delftia tsurhatensis, and FIG. 4 shows the results of Delftia acidborans. As shown in FIG. 3 and FIG. 4, in both Delphthia genera, the ferulamide concentration decreased rapidly with the start of heat retention, and the amount of ferulic acid produced reached its peak after 6 hours. Further, it was confirmed that ferulic acid disappeared within 36 hours and was converted to vanillic acid. Furthermore, it was confirmed that vanillic acid further decreased with the incubation time. From the above results, it was confirmed that in microorganisms belonging to the genus Delphia, they were sequentially converted to ferulamide, ferulic acid, and vanillic acid, and finally vanillic acid was also decomposed.
 (実施例6)デルフチア属微生物のクマルアミドおよびクマル酸の代謝分解
 実施例3の加水分解物中の芳香族化合物の分解がデルフチア属微生物による分解によるものなのかどうかを確認するために、クマルアミドを添加したモデル反応系にて、その分解産物の特定と生成量の変化を追跡した。
(Example 6) Metabolic degradation of coumarinamide and coumaric acid of Delphthia spp. In order to confirm whether or not the degradation of aromatic compounds in the hydrolyzate of Example 3 is due to degradation by Delphtia spp. In the model reaction system, the degradation products were identified and the amount of production was tracked.
 実施例5と同じ手順で、フェルラアミドをクマルアミドに変更して、代謝経路の特定を行った。デルフチア・ツルハテンシスの結果を図5に、デルフチア・アシドボランスの結果を図6に示す。図5および図6に示すようにいずれのデルフチア属においても、保温開始からクマルアミドは48時間以上かけて徐々に濃度が減少していくことが判明した。またクマルアミドの減少に伴いクマル酸濃度が上昇していき保温24時間でピークに達した。また、図5に示すようにデルフチア・ツルハテンシスにおいては、クマル酸の減少に伴いp-ヒドロキシ安息香酸の生成が確認された。同じく、デルフチア・アシドボランスにおいてもp-ヒドロキシ安息香酸の生成が微量ながら確認された。以上の結果よりデルフィア属の微生物においては、クマルアミド、クマル酸、p-ヒドロキシ安息香酸の順に変換され、最終的にp-ヒドロキシ安息香酸も分解されていくことが確認された。 In the same procedure as in Example 5, ferulamide was changed to coumarinamide and the metabolic pathway was identified. FIG. 5 shows the results of Delftia tsurhatensis, and FIG. 6 shows the results of Delftia acidborans. As shown in FIG. 5 and FIG. 6, it was found that in any Delphthia genus, the concentration of coumarinamide gradually decreased over 48 hours from the start of the incubation. Further, the coumaric acid concentration increased with the decrease of coumarinamide, and reached a peak at 24 hours of heat retention. In addition, as shown in FIG. 5, in Delftia thulhatensis, it was confirmed that p-hydroxybenzoic acid was produced with a decrease in coumaric acid. Similarly, the production of p-hydroxybenzoic acid was confirmed in Delphthia acid boranes in a trace amount. From the above results, it was confirmed that in microorganisms belonging to the genus Delphia, coumarinamide, coumaric acid, and p-hydroxybenzoic acid were converted in this order, and finally p-hydroxybenzoic acid was also decomposed.
 (実施例7)デルフチア属微生物による発酵阻害物質分解におけるpHの影響
 実施例2の加水分解物1をpH4、pH8.5、pH10、pH12に調整して、実施例4と同じ手順で発酵阻害物質分解処理を実施した。供試菌はデルフチア・ツルハテンシス(Delftia・tsuruhatensis)を使用して実施した。結果を表8に示す。
(Example 7) Effect of pH in degradation of fermentation inhibitor by microorganisms belonging to the genus Delphtia The hydrolysis inhibitor 1 of Example 2 was adjusted to pH 4, pH 8.5, pH 10, and pH 12, and the fermentation inhibitor was subjected to the same procedure as in Example 4. A decomposition treatment was performed. The test bacterium was performed using Delftia tsuruhatensis. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 pH5、pH12においては、芳香族化合物の減少が少ないことが確認された。一方、pH8、pH10においては、pH7(実施例3)よりも芳香族化合物の量が減少していることが確認され、特にクマルアミド、フェルラアミドにおいて顕著な減少が確認された。参考例5に示すように、デルフチア属微生物はpH10では生育しないことが確認されており、pH10ではデルフチア属微生物は増殖しないものの、デルフチア属微生物が保有する芳香族変換酵素は機能しており、芳香族化合物の分解が進んだものと推定された。 At pH 5 and pH 12, it was confirmed that there was little decrease in aromatic compounds. On the other hand, at pH 8 and pH 10, it was confirmed that the amount of the aromatic compound was decreased compared to pH 7 (Example 3), and in particular, a marked decrease was observed in coumarinamide and ferulamide. As shown in Reference Example 5, it has been confirmed that Delphthia microorganisms do not grow at pH 10, and at pH 10, Delphthia microorganisms do not grow, but the aromatic converting enzyme possessed by Delphthia microorganisms functions, and fragrance It was presumed that the decomposition of group compounds progressed.
 (参考例4)デルフチア属微生物の生育最適温度
 デルフチア属の生育最適温度を検討した。実施例3のデルフチア・ツルハテンシスを供試菌として使用し、本菌をLB培地(5mL)にて、30℃、180rpm、24時間、試験管にて前培養を行った。その後、TB培地(5mL、pH7)に対して、前記前培養した前培養液を50μL添加し、30℃から50℃、180rpm、24時間培養を行った。24時間培養後、OD600を測定した。結果を表9に示す。
(Reference Example 4) Optimum growth temperature of Delphtia microorganisms Optimum growth temperature of Delphtia was examined. The Delphtia tsuruhatensis of Example 3 was used as a test bacterium, and the bacterium was precultured in a test tube in an LB medium (5 mL) at 30 ° C. and 180 rpm for 24 hours. Thereafter, 50 μL of the precultured preculture was added to TB medium (5 mL, pH 7), and cultured at 30 ° C. to 50 ° C., 180 rpm, for 24 hours. After culturing for 24 hours, OD 600 was measured. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 温度20℃~35℃の範囲では増殖することが確認できた。但し、40℃を超えると増殖しないことが確認された。 It was confirmed that the cells proliferated in the temperature range of 20 ° C to 35 ° C. However, it was confirmed that the cells did not grow above 40 ° C.
 (参考例5)デルフチア属微生物の生育最適pH
 デルフチア属微生物の生育最適pHを検討した。デルフチア・ツルハテンシスを供試菌として使用し、本菌をLB培地(5mL)にて、30℃、180rpm、24時間、試験管にて前培養を行った。その後、TB培地(5mL、pH7)および塩酸および水酸化ナトリウムでpHを4.0、8.5、10にそれぞれ調整したTB培地に対して、前記前培養した前培養液を50μL添加し、30℃で、180rpm、24時間培養を行った。24時間培養後、OD600を測定した。結果を表10に示す。
(Reference Example 5) Optimum growth pH of Delphtia microorganism
The optimum pH for growth of Delphtia microorganisms was examined. Delphthia tsuruhatensis was used as a test bacterium, and this bacterium was precultured in a test tube in an LB medium (5 mL) at 30 ° C. and 180 rpm for 24 hours. Thereafter, 50 μL of the precultured preculture was added to TB medium (5 mL, pH 7) and TB medium adjusted to pH 4.0, 8.5, and 10 with hydrochloric acid and sodium hydroxide, respectively. Incubation was carried out at 180 rpm for 24 hours. After culturing for 24 hours, OD 600 was measured. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 pH8.5まではデルフチア属は増殖するものの、pH10では全く生育しないことが確認できた。また、pH4でも同じく増殖は確認できなかった。 It was confirmed that Delphthia spp. Grew up to pH 8.5 but did not grow at pH 10 at all. Similarly, no growth was observed at pH 4.
 (実施例8)糖液を膜濃縮(逆浸透膜)する工程
 実施例3に記載の糖液1DA、糖液2DA、糖液3DAをそれぞれ1300mLずつ、0.22μmの孔径を有する精密濾過膜(ステリカップ-GV、ミリポア社製)に供することにより、含まれる微粒子を除去した。得られた液を、逆浸透膜(UTC-80、東レ株式会社製)を用いて、平膜小型クロスフロー濾過ユニット(SEPA CF-II、GEオスモニクス社製、有効膜面積140cm2)にて、30℃で濾過した。濾過は、クロスフロー濾過にて膜間差圧が常時4MPaとなるよう随時調節して行い、液量がおよそ1/4まで膜濃縮(4倍濃縮)した。濃縮に要した時間、濃縮終了時点の濾過速度、濃縮後の糖濃度を測定した結果を表8に示す。また、比較例として(比較例3)、実施例3記載の加水分解物1~3を使用(グルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解する工程を実施しない)して、前記方法により膜濃縮を前述と同様の手順により膜濃縮を行った結果を同じく表11に示す。
(Example 8) Step of membrane concentration (reverse osmosis membrane) of sugar solution 1300 mL each of sugar solution 1DA, sugar solution 2DA, and sugar solution 3DA described in Example 3, each having a pore size of 0.22 μm ( The resulting fine particles were removed by subjecting to Stericup-GV (Millipore). Using the reverse osmosis membrane (UTC-80, manufactured by Toray Industries, Inc.), the obtained liquid was measured with a flat membrane small crossflow filtration unit (SEPA CF-II, manufactured by GE Osmonix, effective membrane area 140 cm 2). Filtered at 0 ° C. Filtration was carried out by cross-flow filtration, adjusting as needed so that the transmembrane pressure difference was always 4 MPa, and the liquid volume was concentrated to about 1/4 (4-fold concentration). Table 8 shows the results of measuring the time required for concentration, the filtration rate at the end of concentration, and the sugar concentration after concentration. In addition, as a comparative example (Comparative Example 3), the hydrolyzate 1 to 3 described in Example 3 was used (the step of decomposing the fermentation inhibitor by a microorganism having no assimilation ability of glucose and xylose was not performed) Table 11 also shows the results of membrane concentration by the same method as described above.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、グルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解する工程を行った糖液の方が糖液を4倍濃縮に要する時間が短縮された。また、濃縮終了時点の濾過速度もグルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解する工程を行った場合の方が速かった。このことから各加水分解物をグルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解する工程に供することにより糖液の膜濃縮時の濾過性が改善されることが判明した。 As shown in Table 11, the time required for concentration of the sugar solution by 4 times was shortened in the case of the sugar solution subjected to the step of degrading the fermentation inhibitor by microorganisms having no assimilation ability of glucose and xylose. Further, the filtration rate at the end of concentration was faster when the step of degrading the fermentation inhibitor by a microorganism having no assimilation ability of glucose and xylose was performed. From this, it was found that the filterability at the time of membrane concentration of the sugar solution was improved by subjecting each hydrolyzate to the step of degrading the fermentation inhibitor by a microorganism having no ability to assimilate glucose and xylose.
 (実施例9)糖固体の調製
 実施例8に記載の膜濃縮後の糖液1DA、および、比較のため、同じく実施例8に記載の膜濃縮後の加水分解物1を各15mL分取し、丸底ガラスフラスコに移した後、-70℃で冷凍した。冷凍した前記糖液および加水分解物1は、凍結乾燥機(EYLA:東京理科機械株式会社)にて、-45℃設定で48時間凍結乾燥した。乾燥後の重量は、膜濃縮後の糖液1DAが1.41g、加水分解物1が1.37gであった。
(Example 9) Preparation of sugar solid 15 mL each of the sugar solution 1DA after membrane concentration described in Example 8 and the hydrolyzate 1 after membrane concentration described in Example 8 were also taken for comparison. After being transferred to a round bottom glass flask, it was frozen at −70 ° C. The frozen sugar solution and hydrolyzate 1 were lyophilized with a freeze dryer (EYLA: Tokyo Science Machine Co., Ltd.) at −45 ° C. for 48 hours. The weight after drying was 1.41 g of sugar solution 1DA after membrane concentration and 1.37 g of hydrolyzate 1.
 得られた糖固体0.5g(糖固体1DA:膜濃縮後の糖液1DAを凍結乾燥したもの、糖固体加水分解物1(膜濃縮後の加水分解物1を凍結乾燥したもの)をガラスバイアル瓶(13.5mL容量)にそれぞれ回収した。その後、バイアル瓶の蓋を開放したまま、室温(およそ25℃)にて24時間放置し、外観変化を比較した。結果を図7に示す。糖固体加水分解物1では、凍結乾燥物を丸底フラスコからバイアル瓶への分取過程で吸湿が開始し、開放直後の写真では、色調が濃くなり塊状態になっている(図7A右側)。一方、糖固体1DAでは、粉体のままであった(図7A左側)。その後、バイアル瓶の蓋を開放して24時間後の写真を図7Bに示すが、糖固体加水分解物1では完全に吸湿し、粉体ではなくなり、粘着質の糖蜜に変化した(図7B左側)。一方で、糖固体1DAでは、24時間後も、若干の見た目上の嵩高さの低下は見られ、吸湿が起きたことが推察されるが、粉体状態を保っているという顕著な差が確認された。すなわち、本発明の糖固体は、吸湿性が低いため、空気開放下での形態安定性が極めて高いことが示され、実用上利点を有していることが確認できた。 0.5 g of the obtained saccharide solid (sugar solid 1DA: lyophilized sugar liquid 1DA after membrane concentration, saccharide solid hydrolyzate 1 (lyophilized hydrolyzate 1 after membrane concentration) in a glass vial Each bottle was collected in a bottle (13.5 mL capacity) and then left at room temperature (approximately 25 ° C.) for 24 hours with the vial lid open, and the change in appearance was compared, and the results are shown in FIG. In the solid hydrolyzate 1, moisture absorption started in the process of separating the freeze-dried product from the round bottom flask into the vial, and in the photograph immediately after opening, the color tone becomes dark and is in a lump state (right side of FIG. 7A). On the other hand, the sugar solid 1DA was still in powder form (left side of Fig. 7A), and the photograph after 24 hours after opening the lid of the vial is shown in Fig. 7B. Absorbs moisture and is no longer powdery, but sticky molasses On the other hand, in the sugar solid 1DA, a slight decrease in the apparent bulkiness was observed after 24 hours, and it was assumed that moisture absorption occurred, but the powder state was maintained. That is, the sugar solid of the present invention has a low hygroscopic property, and thus has a very high form stability under air release, and has a practical advantage. I was able to confirm.
 (実施例10)アミノ酸分析
 実施例9で得られた糖固体加水分解物1および糖固体1DAに含まれるアミノ酸分析を下記手順で実施した。アミノ酸分析において遊離アミノ酸濃度の測定を行った。分析装置は、アミノ酸分析計L-8800A形(株式会社日立製作所)を使用し、測定条件はニンヒドリン法を用いて、検出波長:440nm(プロリン、ヒドロキシプロリン)、570nm(プロリン、ヒドロキシプロリン以外のアミノ酸)で実施した。
(Example 10) Amino acid analysis The amino acid analysis contained in the sugar solid hydrolyzate 1 and sugar solid 1DA obtained in Example 9 was performed according to the following procedure. In the amino acid analysis, the free amino acid concentration was measured. The analyzer used was an amino acid analyzer L-8800A (Hitachi, Ltd.), the measurement conditions were ninhydrin method, detection wavelength: 440 nm (proline, hydroxyproline), 570 nm (amino acids other than proline, hydroxyproline) ).
 実施例9で得られた凍結乾燥物、糖固体加水分解物1(1.41g)および糖固体1DA(1.37g)から、それぞれ2.05mgをチューブに採取し、2%スルホサリチル酸250μLを添加・攪拌後、超音波処理を10分行なった。この溶液を0.22μmフィルターでろ過し、測定用試料溶液とした。この試料溶液の25μLを用いて前記装置条件で分析を行なった。分析値を表12に示す。 From the freeze-dried product, saccharide solid hydrolyzate 1 (1.41 g) and saccharide solid 1DA (1.37 g) obtained in Example 9, 2.05 mg each was collected in a tube and 250 μL of 2% sulfosalicylic acid was added. -After stirring, sonication was performed for 10 minutes. This solution was filtered with a 0.22 μm filter to obtain a measurement sample solution. An analysis was performed under the above apparatus conditions using 25 μL of this sample solution. The analysis values are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 検出濃度は、分析した糖固体重量g当たりに含まれる各遊離アミノ酸濃度(mg)である。濃縮糖液中濃度換算とは、凍結乾燥に供した各膜濃縮糖液15mL中に存在する濃度に換算した値である。糖固体加水分解物1においては、すべてのアミノ酸が含まれていることが分析値より確認できた。一方で、グルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解を行った糖固体1DAにおいては、セリン、スレオニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、プロリン、フェニルアラニン、リジン、ヒスチジンの遊離アミノ酸が検出できなかった(検出できず)。したがって、凍結乾燥する前の濃縮糖液中の遊離アミノ酸濃度は0mg/Lであることが確認できた。すなわち本発明の糖液および糖固体は、前述した遊離アミノ酸濃度が検出限界以下であることが確認できた。 The detected concentration is the concentration (mg) of each free amino acid contained per gram of the saccharide solid weight analyzed. The concentration conversion in the concentrated sugar solution is a value converted into a concentration present in 15 mL of each membrane concentrated sugar solution subjected to freeze-drying. In the sugar solid hydrolyzate 1, it was confirmed from analytical values that all amino acids were contained. On the other hand, in sugar solid 1DA which decomposed the fermentation inhibitor by microorganisms that do not assimilate glucose and xylose, serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine, histidine are released. Amino acids could not be detected (not detected). Therefore, it was confirmed that the free amino acid concentration in the concentrated sugar solution before lyophilization was 0 mg / L. That is, it was confirmed that the sugar solution and sugar solid of the present invention had the above-mentioned free amino acid concentration below the detection limit.
 次に、各糖固体に含まれるアミノ酸総量について同じく分析を行った。アミノ酸総量については、遊離アミノ酸に加え、ペプチドあるいはポリペプチドの状態で存在しているアミノ酸も含む。したがって、実施例9で得られた凍結乾燥物、糖固体加水分解物1(1.41g)および糖固体1DA(1.37g)から、それぞれ2.05mgをチューブに採取し、6mol/L塩酸250μLを添加、窒素置換・減圧封管後110℃で22時間加水分解を行なった。これを減圧乾固した残渣に0.02mol/L塩酸200μLを添加し溶解した。この溶液を0.22μm遠心ろ過ユニットでろ過し、測定用試料溶液とした。この試料溶液の25μLを用いて前述装置条件にて分析を行なった。分析結果を表13に示す。 Next, the same analysis was performed on the total amount of amino acids contained in each sugar solid. The total amount of amino acids includes free amino acids as well as amino acids that exist in the form of peptides or polypeptides. Therefore, 2.05 mg each of lyophilized product, sugar solid hydrolyzate 1 (1.41 g) and sugar solid 1DA (1.37 g) obtained in Example 9 was collected in a tube and 6 mol / L hydrochloric acid 250 μL. Was added, and after nitrogen substitution and vacuum sealing, hydrolysis was performed at 110 ° C. for 22 hours. 0.02 mol / L hydrochloric acid (200 μL) was added to the residue obtained by drying under reduced pressure and dissolved. This solution was filtered with a 0.22 μm centrifugal filtration unit to obtain a measurement sample solution. An analysis was performed under the above-described apparatus conditions using 25 μL of this sample solution. The analysis results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 糖固体加水分解物1およびグルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解を行った糖固体1DAのいずれにおいても、すべてのアミノ酸が含まれていることが分析値より確認できた。但し、糖固体1DAの方が、少ないことが確認された。すなわち、グルコースおよびキシロースの資化性のない微生物によって消費されているのは、遊離アミノ酸が主体であり、ペプチドあるいはポリペプチドの状態で存在しているアミノ酸については未消費で糖液中に残されていることが確認できた。こうしたペプチドあるいはポリペプチドで存在するアミノ酸が含まれるということは微生物での発酵生産において重要であり、微生物増殖の窒素源として利用される。 It was confirmed from the analytical values that all of the amino acids are contained in any of the sugar solid hydrolyzate 1 and sugar solid 1DA in which the fermentation inhibitor was decomposed by microorganisms having no assimilation ability of glucose and xylose. . However, it was confirmed that the sugar solid 1DA was less. That is, free amino acids are mainly consumed by microorganisms that do not assimilate glucose and xylose, and amino acids present in the form of peptides or polypeptides remain unconsumed in the sugar solution. It was confirmed that The inclusion of amino acids present in such peptides or polypeptides is important in microbial fermentation production and is used as a nitrogen source for microbial growth.
 (実施例11)グルコースおよびキシロースの資化性のない微生物による発酵阻害物質の分解2:廃糖蜜(モラセス)の処理
 発酵阻害物質を含む糖水溶液として、廃糖蜜(モラセス:Molasses-Agri、オーガニックランド株式会社)を使用して調整した。使用した廃糖蜜は、バイオマスとしてサトウキビ由来廃糖蜜約90%、甘藷約10%廃糖蜜を使用した混合物である。本廃糖蜜をRO水で6倍希釈し、121℃で20分間オートクレーブ滅菌した。滅菌後水酸化ナトリウムを添加し、pH6.7に調整した。発酵阻害物質を含む糖水溶液として使用した(廃糖蜜糖水溶液)。芳香族化合物の分析結果を、表14に示す。廃糖蜜糖水溶液中には、グルコース、フルクトース、スクロースを糖として含み、発酵阻害物質として、3-ヒドロキシメチルフルフラールを含むことが確認できた。本糖水溶液を、実施例3記載に準じて、デルフチア・ツルハテンシスにて処理を行った。得られた糖液を廃糖蜜DTとして、その分析値(糖および芳香族化合物)を表14に示す。発酵阻害物質として含まれていた3-ヒドロキシメチルフルフラールが完全に分解して廃糖蜜DT中から消失したことが確認できた。
(Example 11) Degradation of fermentation inhibitor by microorganisms without assimilation of glucose and xylose 2: Treatment of molasses (molasses) As molasses solution containing fermentation inhibitor, molasses (molasses: Molasses-Agri, Organic Land) Co., Ltd.). The used molasses is a mixture using about 90% sugarcane-derived molasses and about 10% sweet potato molasses as biomass. This waste molasses was diluted 6 times with RO water and autoclaved at 121 ° C. for 20 minutes. After sterilization, sodium hydroxide was added to adjust the pH to 6.7. Used as an aqueous sugar solution containing a fermentation inhibitor (waste molasses aqueous solution). Table 14 shows the analysis results of the aromatic compounds. It was confirmed that the waste molasses aqueous solution contained glucose, fructose, and sucrose as sugars and 3-hydroxymethylfurfural as a fermentation inhibitor. The sugar aqueous solution was treated with Delphthia thulhatensis according to the description in Example 3. The obtained molasses is used as molasses DT, and the analysis values (sugar and aromatic compound) are shown in Table 14. It was confirmed that 3-hydroxymethylfurfural contained as a fermentation inhibitor was completely decomposed and disappeared from the molasses DT.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明における糖液の製造方法は、バイオマスから発酵阻害が低減した糖液を製造することに使用できる。また本発明で製造した糖液あるいは糖固体は、各種化学品の発酵原料として使用することができる。 The method for producing a sugar solution according to the present invention can be used for producing a sugar solution with reduced fermentation inhibition from biomass. The sugar liquid or sugar solid produced in the present invention can be used as a fermentation raw material for various chemicals.

Claims (15)

  1.  バイオマスからの糖液の製造方法であって、バイオマスから得られる糖水溶液に含まれる発酵阻害物質であるクマル酸、クマルアミド、フェルラ酸、フェルラアミド、バニリン、バニリン酸、アセトバニロン、フルフラールおよび3-ヒドロキシメチルフルフラールからなる群から選ばれる1種または2種以上の化合物を、グルコースおよび/またはキシロースの資化性のない微生物あるいは該微生物由来の粗酵素物で分解する工程を含む、糖液の製造方法。 A method for producing a sugar solution from biomass, which is a fermentation inhibitor contained in an aqueous sugar solution obtained from biomass, such as coumaric acid, coumaric acid, ferulic acid, ferulamide, vanillin, vanillic acid, acetovanillone, furfural and 3-hydroxymethyl A method for producing a sugar solution, comprising the step of decomposing one or more compounds selected from the group consisting of furfural with a microorganism that does not assimilate glucose and / or xylose or a crude enzyme derived from the microorganism.
  2.  前記グルコースおよび/またはキシロースの資化性のない微生物がデルフチア属微生物(Delftia sp)である、請求項1に記載の糖液の製造方法。 The method for producing a sugar liquid according to claim 1, wherein the microorganism having no assimilation property of glucose and / or xylose is a Delphia sp.
  3.  前記グルコースおよび/またはキシロースの資化性のない微生物が、デルフチア・アシドボランス(Delftia acidovorans)、デルフチア・ラクストリス(Delftia lacustris)、デルフチア・ツルハテンシス(Delftia tsuruhatensis)およびデルフチア・リトペアエ(Delftia litopenaei)からなる群から選ばれる1種または2種以上である、請求項1または2に記載の糖液の製造方法。 The non-assimilable microorganism of glucose and / or xylose is composed of Delftia acidvorans, Delftia lacustris, Delftia tsuruhatensis and Delphia litia litia litia. The manufacturing method of the sugar liquid of Claim 1 or 2 which is 1 type, or 2 or more types chosen.
  4.  糖水溶液がセルロース含有バイオマスを加水分解して得られた糖水溶液である、請求項1から3のいずれかに記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 3, wherein the sugar aqueous solution is a sugar aqueous solution obtained by hydrolyzing cellulose-containing biomass.
  5.  セルロース含有バイオマスを酸処理、アルカリ処理、水熱処理および酵素処理からなる群から選ばれる1以上の処理によって糖水溶液を調製する工程を含む、請求項4に記載の糖液の製造方法。 The method for producing a sugar solution according to claim 4, comprising a step of preparing an aqueous sugar solution by one or more treatments selected from the group consisting of acid treatment, alkali treatment, hydrothermal treatment and enzyme treatment of cellulose-containing biomass.
  6.  糖水溶液が廃糖蜜である、請求項1から3のいずれかに記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 3, wherein the aqueous sugar solution is molasses.
  7.  発酵阻害物質分解処理工程が単糖濃度100g/L未満での処理である、請求項1から6のいずれかに記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 6, wherein the fermentation inhibiting substance decomposition treatment step is a treatment at a monosaccharide concentration of less than 100 g / L.
  8.  発酵阻害物質分解処理工程がpH6~11の範囲での処理である、請求項1から7のいずれかに記載の糖液の製造方法。 The method for producing a sugar solution according to any one of claims 1 to 7, wherein the fermentation inhibiting substance decomposition treatment step is treatment within a pH range of 6 to 11.
  9.  請求項1~8のいずれかに記載の製造方法によって得られた糖液を膜濃縮および/または蒸発濃縮により糖濃度を高める、請求項1から8のいずれかに記載の糖液の製造方法。 The method for producing a sugar solution according to any one of claims 1 to 8, wherein the sugar concentration obtained by the production method according to any one of claims 1 to 8 is increased by membrane concentration and / or evaporation concentration.
  10.  請求項1~8のいずれかに記載の製造方法によって得られた糖液を膜濃縮および/または蒸発濃縮により糖固体を得る、糖固体の製造方法。 A method for producing a sugar solid, wherein a sugar solid is obtained by membrane concentration and / or evaporation concentration of the sugar solution obtained by the production method according to any one of claims 1 to 8.
  11.  請求項1~9のいずれかに記載の糖液の製造方法で得られた糖液。 A sugar solution obtained by the method for producing a sugar solution according to any one of claims 1 to 9.
  12.  請求項10に記載の糖固体の製造方法で得られた糖固体。 A sugar solid obtained by the method for producing a sugar solid according to claim 10.
  13.  セルロース含有バイオマスまたは廃糖蜜由来の糖液または糖固体であって、不純物であるセリン、スレオニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、プロリン、フェニルアラニン、リジンおよびヒスチジンからなる群から選ばれる1種または2種以上の遊離アミノ酸の含量が検出限界以下である、糖液または糖固体。 One or two selected from the group consisting of cellulose-containing biomass or molasses-derived molasses or sugar solids, which are impurities such as serine, threonine, asparagine, aspartic acid, glutamine, glutamic acid, proline, phenylalanine, lysine and histidine A sugar solution or a sugar solid in which the content of free amino acids of species or more is below the detection limit.
  14.  請求項1から9のいずれかに記載の糖液の製造方法によって糖液を得る工程、および得られた糖液を発酵原料として、微生物を培養して糖を化学品に変換する工程を含む、化学品の製造方法。 A step of obtaining a sugar solution by the method for producing a sugar solution according to any one of claims 1 to 9, and a step of culturing microorganisms and converting the sugar into a chemical product using the obtained sugar solution as a fermentation raw material, Manufacturing method of chemical products.
  15.  請求項10に記載の糖固体の製造方法によって糖固体を得る工程、および得られた糖固体を発酵原料として、微生物を培養して糖を化学品に変換する工程を含む、化学品の製造方法。 A method for producing a chemical product, comprising the steps of obtaining a sugar solid by the method for producing a sugar solid according to claim 10, and culturing microorganisms and converting the sugar into a chemical product using the obtained sugar solid as a fermentation raw material. .
PCT/JP2014/068115 2013-07-09 2014-07-08 Method for producing saccharide solution WO2015005307A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2917307A CA2917307C (en) 2013-07-09 2014-07-08 Method of producing sugar liquid, and sugar liquid and solid sugar
JP2014551868A JP6459514B2 (en) 2013-07-09 2014-07-08 Method for producing sugar solution
BR112015032515A BR112015032515A8 (en) 2013-07-09 2014-07-08 method for the production of a liquid sugar, method for the production of a solid sugar, liquid sugar, solid sugar and methods for the production of a chemical substance
US14/903,642 US9976160B2 (en) 2013-07-09 2014-07-08 Method of producing sugar liquid
AU2014288309A AU2014288309B9 (en) 2013-07-09 2014-07-08 Method for producing saccharide solution
CN201480039216.7A CN105452478B (en) 2013-07-09 2014-07-08 The manufacturing method of liquid glucose
EP14822714.3A EP3020820A4 (en) 2013-07-09 2014-07-08 Method for producing saccharide solution
US15/954,752 US10815501B2 (en) 2013-07-09 2018-04-17 Method of producing sugar liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-143403 2013-07-09
JP2013143403 2013-07-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/903,642 A-371-Of-International US9976160B2 (en) 2013-07-09 2014-07-08 Method of producing sugar liquid
US15/954,752 Division US10815501B2 (en) 2013-07-09 2018-04-17 Method of producing sugar liquid

Publications (1)

Publication Number Publication Date
WO2015005307A1 true WO2015005307A1 (en) 2015-01-15

Family

ID=52279987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068115 WO2015005307A1 (en) 2013-07-09 2014-07-08 Method for producing saccharide solution

Country Status (9)

Country Link
US (2) US9976160B2 (en)
EP (1) EP3020820A4 (en)
JP (1) JP6459514B2 (en)
CN (2) CN105452478B (en)
AU (1) AU2014288309B9 (en)
BR (1) BR112015032515A8 (en)
CA (1) CA2917307C (en)
MY (1) MY180037A (en)
WO (1) WO2015005307A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029799A1 (en) * 2015-08-18 2017-02-23 日東電工株式会社 Method for producing compound derived from herbaceous plant of family gramineae or cucurbitaceae
WO2017170919A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Method for producing xylo-oligosaccharide
CN107635412A (en) * 2015-05-13 2018-01-26 株式会社三养社 Mix sugar particulate powder and preparation method thereof
WO2021193581A1 (en) * 2020-03-24 2021-09-30 三菱ケミカル株式会社 Method for treating drainage water

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619796B (en) * 2016-07-13 2020-05-08 中国石油天然气股份有限公司 Method for increasing number of saccharomyces cerevisiae thalli in fermented mash
CN107365724B (en) * 2017-07-25 2020-04-28 华南理工大学 Comamonas testosteroni and application thereof in synthesis of 5-hydroxymethyl furoic acid
CL2019003454A1 (en) * 2019-11-26 2020-06-19 Power Roots Spa Agricultural energizing fertilizer composed of sucrose, humic acid and protein
CN112481321B (en) * 2020-09-14 2023-08-29 齐齐哈尔龙江阜丰生物科技有限公司 Process for producing granular threonine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506934A (en) 1995-06-07 1999-06-22 アーケノール,インコーポレイテッド Strong acid hydrolysis method
JP3041380B2 (en) 1997-06-02 2000-05-15 工業技術院長 Process for producing water-soluble oligosaccharides and monosaccharides
JP2001095597A (en) 1999-07-27 2001-04-10 Shiseido Co Ltd Detection of steroid 5 alpha-reductase-inhibiting activity
JP2001511418A (en) 1997-08-04 2001-08-14 コントロールド エンバイロメンタル システムズ コーポレイション Method of separating acid from sugar
JP2003212888A (en) 2002-01-18 2003-07-30 Asahi Kasei Corp Method for producing glucose and/or water-soluble cellooligosaccharide
JP2004187650A (en) 2002-10-17 2004-07-08 Tsukishima Kikai Co Ltd Method for producing alcohol or organic acid from waste construction material
JP2005229821A (en) 2004-02-17 2005-09-02 Jgc Corp Method for producing monosaccharide from biomass and apparatus for producing monosaccharide
JP2005270056A (en) 2004-03-26 2005-10-06 Hitachi Zosen Corp Method for removing fermentation inhibitory material in hydrolysate
JP2008161125A (en) 2006-12-28 2008-07-17 Univ Of Tokyo Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzyme saccharification used for them and method for producing the same
JP2008535664A (en) 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Biomass processing to obtain fermentable sugar
WO2010067785A1 (en) 2008-12-09 2010-06-17 東レ株式会社 Method for producing sugar liquid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769734B2 (en) 2003-04-07 2006-04-26 アサヒビール株式会社 Process for producing sugar and useful substances
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US8551758B2 (en) * 2007-04-09 2013-10-08 University Of Georgia Research Foundation, Inc. Substrate-selective co-fermentation process
US20130004994A1 (en) * 2010-03-10 2013-01-03 Masayuki Hanakawa Method for producing pure sugar solution, and method for producing chemical product
JP5728817B2 (en) 2010-03-30 2015-06-03 東レ株式会社 Method for producing xylose sugar solution
EP2616481A4 (en) * 2010-09-15 2014-04-02 Aligna Technologies Inc Bioproduction of aromatic chemicals from lignin-derived compounds
US20120202258A1 (en) * 2010-09-16 2012-08-09 Ranjini Chatterjee Lige-type transformants for bioconversion of lignin-derived compounds
JP2012110321A (en) * 2010-11-02 2012-06-14 Toray Ind Inc Production method of ethanol
CN103429750B (en) * 2011-03-03 2015-08-05 东丽株式会社 The manufacture method of liquid glucose
WO2013162478A1 (en) * 2012-04-27 2013-10-31 Agency For Science, Technology And Research (A*Star) A method of degrading organic compounds

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506934A (en) 1995-06-07 1999-06-22 アーケノール,インコーポレイテッド Strong acid hydrolysis method
JP3041380B2 (en) 1997-06-02 2000-05-15 工業技術院長 Process for producing water-soluble oligosaccharides and monosaccharides
JP2001511418A (en) 1997-08-04 2001-08-14 コントロールド エンバイロメンタル システムズ コーポレイション Method of separating acid from sugar
JP2001095597A (en) 1999-07-27 2001-04-10 Shiseido Co Ltd Detection of steroid 5 alpha-reductase-inhibiting activity
JP2003212888A (en) 2002-01-18 2003-07-30 Asahi Kasei Corp Method for producing glucose and/or water-soluble cellooligosaccharide
JP2004187650A (en) 2002-10-17 2004-07-08 Tsukishima Kikai Co Ltd Method for producing alcohol or organic acid from waste construction material
JP2005229821A (en) 2004-02-17 2005-09-02 Jgc Corp Method for producing monosaccharide from biomass and apparatus for producing monosaccharide
JP2005270056A (en) 2004-03-26 2005-10-06 Hitachi Zosen Corp Method for removing fermentation inhibitory material in hydrolysate
JP2008535664A (en) 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Biomass processing to obtain fermentable sugar
JP2008161125A (en) 2006-12-28 2008-07-17 Univ Of Tokyo Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzyme saccharification used for them and method for producing the same
WO2010067785A1 (en) 2008-12-09 2010-06-17 東レ株式会社 Method for producing sugar liquid
JP4770987B2 (en) 2008-12-09 2011-09-14 東レ株式会社 Method for producing sugar solution

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. ADEN ET AL.: "Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover", NREL TECHNICAL REPORT, 2002
LOPEZ,M.J. ET AL.: "Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates.", APPL. MICROBIOL. BIOTECHNOL., vol. 64, no. 1, March 2004 (2004-03-01), pages 125 - 131, XP055306448 *
M. ALFRED ET AL.: "Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccaromyces cerevisiase", PROCESS BIOCHEMISTRY, vol. 38, 2002, pages 515 - 522
NICHOLS,N.N. ET AL.: "Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.", APPL. BIOCHEM. BIOTECHNOL., vol. 121, March 2005 (2005-03-01), pages 379 - 390, XP055306450 *
NICHOLS,N.N. ET AL.: "Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors.", BIORESOUR. TECHNOL., vol. 101, no. 19, October 2010 (2010-10-01), pages 7545 - 7550, XP027089401 *
NICHOLS,N.N. ET AL.: "Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate.", ENZYME MICROB. TECHNOL., vol. 42, no. 7, pages 624 - 630, XP022635377 *
See also references of EP3020820A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107635412A (en) * 2015-05-13 2018-01-26 株式会社三养社 Mix sugar particulate powder and preparation method thereof
US10851429B2 (en) * 2015-05-13 2020-12-01 Samyang Corporation Mixed sugar granular powder and method for preparing same
CN107635412B (en) * 2015-05-13 2021-09-24 株式会社三养社 Mixed sugar granular powder and preparation method thereof
WO2017029799A1 (en) * 2015-08-18 2017-02-23 日東電工株式会社 Method for producing compound derived from herbaceous plant of family gramineae or cucurbitaceae
WO2017170919A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Method for producing xylo-oligosaccharide
JPWO2017170919A1 (en) * 2016-03-31 2018-04-05 東レ株式会社 Method for producing xylooligosaccharide
US11279960B2 (en) 2016-03-31 2022-03-22 Toray Industries, Inc. Method of producing xylo-oligosaccharide
EP3438272B1 (en) * 2016-03-31 2022-06-22 Toray Industries, Inc. Method for producing xylo-oligosaccharide
WO2021193581A1 (en) * 2020-03-24 2021-09-30 三菱ケミカル株式会社 Method for treating drainage water

Also Published As

Publication number Publication date
AU2014288309B9 (en) 2018-04-26
BR112015032515A2 (en) 2017-07-25
CN105452478A (en) 2016-03-30
MY180037A (en) 2020-11-20
EP3020820A4 (en) 2017-06-14
US9976160B2 (en) 2018-05-22
JPWO2015005307A1 (en) 2017-03-02
CA2917307C (en) 2023-07-25
JP6459514B2 (en) 2019-01-30
CN110499396A (en) 2019-11-26
US10815501B2 (en) 2020-10-27
EP3020820A1 (en) 2016-05-18
US20160145651A1 (en) 2016-05-26
AU2014288309B2 (en) 2018-04-05
AU2014288309A1 (en) 2016-01-28
CA2917307A1 (en) 2015-01-15
US20180237805A1 (en) 2018-08-23
BR112015032515A8 (en) 2020-01-07
CN105452478B (en) 2019-10-08

Similar Documents

Publication Publication Date Title
JP6459514B2 (en) Method for producing sugar solution
JP5246379B2 (en) Method for producing sugar solution
AU2015322688B2 (en) Method of preparing sugar solution
EP2860269B1 (en) Method for producing a sugar solution
AU2015337881B2 (en) Method for producing sugar solution and xylooligosaccharide
CA2831543C (en) Method for producing sugar solution
US10563238B2 (en) Method of producing a sugar liquid
WO2013187385A1 (en) Method for producing sugar solution
AU2014219823A1 (en) Sugar-solution production method
CN105637094B (en) Method for hydrolyzing biomass

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039216.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014551868

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014822714

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2917307

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032515

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14903642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014288309

Country of ref document: AU

Date of ref document: 20140708

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600830

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112015032515

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151223