JP2005206468A - Method for producing saccharides and solid fuel using biomass as raw material - Google Patents

Method for producing saccharides and solid fuel using biomass as raw material Download PDF

Info

Publication number
JP2005206468A
JP2005206468A JP2004011560A JP2004011560A JP2005206468A JP 2005206468 A JP2005206468 A JP 2005206468A JP 2004011560 A JP2004011560 A JP 2004011560A JP 2004011560 A JP2004011560 A JP 2004011560A JP 2005206468 A JP2005206468 A JP 2005206468A
Authority
JP
Japan
Prior art keywords
biomass
slurry
concentration
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004011560A
Other languages
Japanese (ja)
Other versions
JP4726035B2 (en
Inventor
Masahiro Matsunaga
正弘 松永
Hiroaki Matsui
宏昭 松井
Takahiro Shimizu
孝浩 清水
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Kobe Steel Ltd
Original Assignee
Forestry and Forest Products Research Institute
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute, Kobe Steel Ltd filed Critical Forestry and Forest Products Research Institute
Priority to JP2004011560A priority Critical patent/JP4726035B2/en
Publication of JP2005206468A publication Critical patent/JP2005206468A/en
Application granted granted Critical
Publication of JP4726035B2 publication Critical patent/JP4726035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing saccharides and a solid fuel from biomass with high efficiency and low energy. <P>SOLUTION: The method for producing the saccharides or the solid fuel from the biomass as a raw material comprises the following steps. a slurry concentration increasing step of preparing a low-concentration slurry in which the biomass is suspended in high-pressure water heated at 100-250°C, further adding the biomass to the slurry and preparing a high-concentration slurry, a hydrolyzing step of heating the high-concentration slurry at 250-350°C, increasing the pressure to not lower than the vapor pressure of water at the temperature, degrading the biomass and producing the saccharides, a cooling step of cooling the high-concentration slurry passing through the hydrolyzing step, a recovering step of recovering an aqueous solution from the high-concentration slurry cooled in the cooling step and a recovering step of separating the saccharides from the aqueous solution or recovering water-insoluble ingredients from the high-concentration slurry passing through the hydrolyzing step. The water-insoluble ingredients are dehydrated to produce the solid fuel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、バイオマスを原料として、糖類および固形燃料を製造する方法に関するものである。   The present invention relates to a method for producing saccharides and solid fuel using biomass as a raw material.

林地残材、建築廃材、稲わら、籾殻、家畜屎尿、厨芥、下水汚泥などの廃棄物系バイオマスを原料としてエネルギー転換利用する技術は、処分場不足対策、循環型社会構築の観点から多数提案されている。   Many technologies that use energy from waste biomass such as forest land residues, construction waste, rice straw, rice husk, livestock waste, sewage, and sewage sludge as raw materials have been proposed from the viewpoint of disposal site shortage countermeasures and the establishment of a recycling-oriented society. ing.

上記バイオマスを利用したエネルギー転換技術の一つに、植物由来のバイオマスを原料として糖類や燃料を取り出す技術があり、例えば、(1)酸加水分解法、(2)酵素糖化法、(3)亜臨界水および超臨界水処理法などが提案されている。   One of the energy conversion technologies using biomass is a technology for extracting sugars and fuel from plant-derived biomass. For example, (1) acid hydrolysis, (2) enzymatic saccharification, (3) The critical water and supercritical water treatment methods have been proposed.

上記(1)酸加水分解法は、硫酸、塩酸、有機酸、亜硫酸などを用いて、バイオマスを可溶化および加水分解し糖類を得る方法である。この酸加水分解法は、150〜200℃と比較的低温度で反応が進行し、また反応装置も単純であるというメリットを有しているが、酸を用いる反応であるため装置の腐食が著しく、反応後、酸の回収が困難であるといった問題が存在する。   The (1) acid hydrolysis method is a method in which a saccharide is obtained by solubilizing and hydrolyzing biomass using sulfuric acid, hydrochloric acid, organic acid, sulfurous acid or the like. This acid hydrolysis method has the merit that the reaction proceeds at a relatively low temperature of 150 to 200 ° C. and the reaction apparatus is simple. However, since the reaction uses an acid, the apparatus is significantly corroded. After the reaction, there is a problem that it is difficult to recover the acid.

また、(2)酵素糖化法は、酵素によってバイオマスを加水分解して糖類を得る方法である。かかる方法は薬品を使用しないため環境に対する負荷が小さく有用であるが、反応が完了するまでに長時間を要するといった問題がある。   The (2) enzymatic saccharification method is a method for obtaining saccharides by hydrolyzing biomass with enzymes. This method is useful because it does not use chemicals and has a low environmental load, but it takes a long time to complete the reaction.

上記(3)亜臨界水および超臨界水処理法は、バイオマスを、亜臨界あるいは超臨界状態の水に接触させることにより加水分解を行い、糖類などを得る方法である。例えば特許文献1には、セルロース粉末を亜臨界状態の水と接触させて加水分解して水溶性オリゴ糖類を得た後、さらにこのオリゴ糖を酵素分解することにより単糖類を得る方法が開示されている。このように、亜臨界水および超臨界水処理法は、溶媒に水を使用するため環境に対する負荷が小さく、また、短時間で糖類を得ることが可能な優れた方法である。
特開平10−327900号
The (3) subcritical water and supercritical water treatment method is a method for obtaining saccharides and the like by hydrolyzing biomass by bringing it into contact with subcritical or supercritical water. For example, Patent Document 1 discloses a method in which cellulose powder is contacted with water in a subcritical state to hydrolyze to obtain a water-soluble oligosaccharide, and then the oligosaccharide is further enzymatically decomposed to obtain a monosaccharide. ing. As described above, the subcritical water and supercritical water treatment methods are excellent methods capable of obtaining saccharides in a short period of time because of the use of water as a solvent and a low environmental load.
JP-A-10-327900

しかしながら、亜臨界水および超臨界状態の水の性質を利用するには、まず、水にバイオマスを懸濁させスラリー化する必要がある。このとき、使用するバイオマスの種類によっては多量の水が必要となることがあり、この水を亜臨界あるいは超臨界状態とするために多大なエネルギーを投入しなければならなくなって、バイオマス処理コストが上昇するといった問題があった。   However, in order to utilize the properties of subcritical water and supercritical water, it is first necessary to suspend biomass in water to make a slurry. At this time, depending on the type of biomass to be used, a large amount of water may be required. In order to make this water into a subcritical or supercritical state, a large amount of energy must be input, and the biomass processing cost is reduced. There was a problem of rising.

本発明は、上記事情に着目してなされたものであり、その目的は、高効率且つ低エネルギーでバイオマスから糖類および固形燃料を製造するための方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and an object thereof is to provide a method for producing saccharides and solid fuel from biomass with high efficiency and low energy.

本発明のバイオマスを原料とする糖類および固形燃料の製造方法とは、100〜250℃に加熱した高圧水にバイオマスが懸濁した低濃度スラリーを調製し、このスラリーにさらにバイオマスを加えて高濃度スラリーを調製するスラリーの高濃度化工程、および
(a)前記高濃度スラリーを250〜350℃に加熱し、且つ、圧力を前記温度における水の蒸気圧以上にしてバイオマスを分解し糖類を生成する加水分解工程、前記加水分解工程を経た高濃度スラリーを冷却する冷却工程、前記冷却工程で冷却した高濃度スラリーから水溶液を回収する回収工程、および、前記水溶液から糖類を分離する分離工程を設けたところ、あるいは、
(b)前記高濃度スラリーを250〜350℃に加熱し、且つ、圧力を前記温度における水の蒸気圧以上にしてバイオマスの加水分解を行う加水分解工程、前記冷却工程で冷却した高濃度スラリーから水不溶成分を回収する回収工程、および、前記水不溶成分を脱水し、固形燃料とする工程を設けたところにそれぞれ要旨を有するものである。
The method for producing saccharides and solid fuel using the biomass of the present invention as a raw material is to prepare a low-concentration slurry in which biomass is suspended in high-pressure water heated to 100 to 250 ° C., and further adding biomass to this slurry to obtain a high concentration (A) heating the high-concentration slurry to 250-350 ° C., and decomposing biomass to produce a saccharide by decomposing biomass above the vapor pressure of water at the temperature A hydrolysis step, a cooling step for cooling the high-concentration slurry that has undergone the hydrolysis step, a recovery step for recovering the aqueous solution from the high-concentration slurry cooled in the cooling step, and a separation step for separating saccharides from the aqueous solution are provided. However, or
(B) From the high-concentration slurry cooled in the cooling step, wherein the high-concentration slurry is heated to 250 to 350 ° C., and the biomass is hydrolyzed by setting the pressure to be equal to or higher than the vapor pressure of water at the temperature. The present invention is summarized in that a recovery step of recovering a water-insoluble component and a step of dehydrating the water-insoluble component to obtain a solid fuel are provided.

前記高濃度化工程は、大気圧下、100℃未満で、水にバイオマスを懸濁させて低濃度スラリーとし、加圧下、この低濃度スラリーを攪拌しながら温度100〜250℃に加熱した後、さらにバイオマスを加えて前記スラリーを高濃度化するものであるのが好ましい。   In the high concentration step, the biomass is suspended in water at atmospheric pressure and less than 100 ° C. to form a low concentration slurry, and the low concentration slurry is heated to a temperature of 100 to 250 ° C. with stirring under pressure, Furthermore, it is preferable that biomass is added to increase the concentration of the slurry.

また、前記バイオマスとしては木材を用いることが推奨される。   In addition, it is recommended to use wood as the biomass.

本発明の方法によれば、従来レベル以上の多量のバイオマスを懸濁させた高濃度スラリーを調製することが可能となったため、これを原料としてエネルギー転換利用する際の投入エネルギー量を顕著に低下させることが可能となった。   According to the method of the present invention, it becomes possible to prepare a high-concentration slurry in which a large amount of biomass above the conventional level is suspended, so that the amount of input energy when using energy conversion as a raw material is significantly reduced. It became possible to make it.

また、これまでその大部分が廃棄物として扱われていたバイオマス、特に木質系バイオマスを原料として、効率良く糖類および固形燃料を得ることが可能となった。   In addition, it has become possible to efficiently obtain saccharides and solid fuel from biomass that has been treated as waste, most of which is woody biomass.

本発明者等は、高温・高圧水を利用してバイオマスを分解しエネルギー等へ転換するに当たって、所定の条件下において、多段階でバイオマスを添加・混合すれば、多量のバイオマスを含む高濃度スラリーを調製することが可能となり、その結果、従来のバイオマスの処理技術に比べて、少ないエネルギー投入量で有用物を生成し得ることを見出し、本発明を完成した。以下、本発明について詳細に説明する。   When the present inventors decompose biomass using high-temperature / high-pressure water and convert it into energy, etc., under a predetermined condition, if biomass is added / mixed in multiple stages, a high-concentration slurry containing a large amount of biomass As a result, it has been found that useful materials can be produced with a small amount of energy input compared to conventional biomass processing technology, and the present invention has been completed. Hereinafter, the present invention will be described in detail.

本発明に係る糖類の製造方法とは、バイオマスを原料とし、100〜250℃に加熱した高圧水にバイオマスが懸濁した低濃度スラリーを調製し、このスラリーにさらにバイオマスを加えて高濃度スラリーを調製するスラリーの高濃度化工程、前記高濃度スラリーを250〜350℃に加熱し、且つ、圧力を前記温度における水の蒸気圧以上にしてバイオマスを分解し糖類を生成する加水分解工程、前記加水分解工程を経た高濃度スラリーを冷却する冷却工程、前記冷却工程で冷却した高濃度スラリーから水溶液を回収する回収工程、および、前記水溶液から糖類を分離する分離工程を含むところに最大の特徴を有するものである。   The method for producing saccharides according to the present invention comprises preparing a low-concentration slurry in which biomass is suspended in high-pressure water heated to 100 to 250 ° C. using biomass as a raw material, and further adding biomass to this slurry to form a high-concentration slurry. A step of increasing the concentration of the slurry to be prepared, a hydrolysis step of heating the high-concentration slurry to 250 to 350 ° C. and decomposing biomass by setting the pressure to be equal to or higher than the vapor pressure of water at the temperature to generate saccharides, It has the greatest features in that it includes a cooling step for cooling the high-concentration slurry that has undergone the decomposition step, a recovery step for recovering the aqueous solution from the high-concentration slurry cooled in the cooling step, and a separation step for separating saccharides from the aqueous solution. Is.

このようにバイオマスを加水分解するに当たって、バイオマス含量の多い高濃度スラリーを予め調製しておくことで、多量のバイオマスを一時に処理することが可能となるのに加えて、スラリーの媒体である水を亜臨界または超臨界状態へ加熱加圧する際に必要なエネルギー量を顕著に低減することが可能となったのである。   When hydrolyzing biomass in this way, a high concentration slurry having a high biomass content is prepared in advance, so that a large amount of biomass can be treated at one time, and water that is the medium of the slurry. This makes it possible to significantly reduce the amount of energy required for heating and pressurizing to a subcritical or supercritical state.

本発明に係る方法で、原料として使用できるバイオマスは特に限定されるものではなく、木材粉、木材片、チップダスト、のこくず、おがくずなどの木質系バイオマス、ヤシガラ、サトウキビバガス、麦わら、籾殻などの農業系バイオマス、生ごみなどの廃棄物系バイオマスなど様々なバイオマスを用いることができる。上記バイオマスの中でも、資源の有効利用の観点からは木質系バイオマスを使用するのが好ましい。なお、上記木材片としては、例えば建築解体廃棄物や森林伐採時に生じる間伐材、あるいは、公園や街路樹などの剪定枝などが挙げられる。このように本発明によれば、通常であれば廃棄処分されるバイオマスを有効活用できるため、処理場等の問題を解決すると共に、エネルギー問題の解決にもつながる。以下、バイオマスとして木質系バイオマスを使用する場合を例にして説明する。   The biomass that can be used as a raw material in the method according to the present invention is not particularly limited, and woody biomass, wood fragments, chip dust, sawdust, sawdust, etc., woody biomass, coconut shell, sugarcane bagasse, straw, rice husk, etc. Various biomass such as agricultural biomass and waste biomass such as garbage can be used. Among the above biomass, it is preferable to use woody biomass from the viewpoint of effective use of resources. Examples of the timber pieces include building demolition waste, thinned wood generated during forest cutting, or pruned branches such as parks and roadside trees. As described above, according to the present invention, normally discarded biomass can be effectively used, so that problems such as treatment plants are solved and energy problems are also solved. Hereinafter, a case where woody biomass is used as biomass will be described as an example.

上記バイオマスは、粉砕して用いるのが好ましい。大きさは、タイラー社の標準篩で5メッシュ(4000μm:JIS Z8801の規定)と200メッシュ(74μm)の範囲のものが好ましく、より好ましくは10メッシュ(1680μm)と150メッシュ(105μm)の範囲のもの、さらに好ましくは20メッシュ(840μm)と100メッシュ(149μm)の範囲のものである。本発明者らの知見によれば、バイオマスの大きさが上記に下限として示した篩を通過してしまう程小さい場合には、機械的な粉砕が困難になる傾向があり、一方上記上限よりも大きい場合には、バイオマスと水との接触面積が小さくなり、結果として糖類の収率が低下する傾向がある。   The biomass is preferably used after being pulverized. The size is preferably in the range of 5 mesh (4000 μm: JIS Z8801) and 200 mesh (74 μm), more preferably in the range of 10 mesh (1680 μm) and 150 mesh (105 μm) with a standard sieve of Tyler. And more preferably in the range of 20 mesh (840 μm) and 100 mesh (149 μm). According to the knowledge of the present inventors, when the size of the biomass is so small that it passes through the sieve shown above as the lower limit, mechanical pulverization tends to be difficult, while the upper limit is exceeded. When it is large, the contact area between the biomass and water tends to be small, and as a result, the yield of saccharides tends to decrease.

本発明法では、まず、上記バイオマスと水とを混合して低濃度スラリーを調製する。このときに用いる木材の使用量は、木材の種類、また使用する水の量など、処理時の条件によって適宜決定すればよい。しかし、上述したように一時に多量の木材をスラリー化することは困難であるため、スラリーの状態を見ながら、攪拌可能な範囲で添加するのが好ましく、一応の目安としては、使用する水の量に対して1質量%以上、より好ましくは5質量%以上である。   In the method of the present invention, first, the biomass and water are mixed to prepare a low-concentration slurry. What is necessary is just to determine the usage-amount of the wood used at this time suitably by the conditions at the time of processing, such as the kind of wood, and the quantity of the water to be used. However, as described above, since it is difficult to slurry a large amount of wood at a time, it is preferable to add it within a stirrable range while observing the state of the slurry. It is 1 mass% or more with respect to quantity, More preferably, it is 5 mass% or more.

低濃度スラリーを調製する際に用いる水は、後述するような高温・高圧状態であってもよく、また、常温・常圧状態であってもよい。バイオマスの添加作業が簡便であり、省エネの点からは、100℃未満の常圧下で低濃度スラリーを調製するのが好ましい。   The water used in preparing the low-concentration slurry may be in a high temperature / high pressure state as described later, or in a normal temperature / normal pressure state. From the viewpoint of energy saving, it is preferable to prepare a low-concentration slurry under normal pressure of less than 100 ° C.

次いで、上記低濃度スラリーにさらにバイオマスを添加して高濃度スラリーを調製する(高濃度化工程)。バイオマスの添加は、低濃度スラリーを昇温・昇圧した後に行うのが好ましい。この際、前記低濃度スラリーの温度は、100℃以上、250℃以下とするのが好ましい。より好ましくは、150℃以上、200℃以下である。上記温度未満では、バイオマスと水との反応が有効に生じず、スラリーの高濃度化が進行し難いからである。一方、上記温度より高い場合には、原料であるバイオマスの分解が進みすぎて、最終的に糖類の回収率が低下する傾向がある。   Next, biomass is further added to the low concentration slurry to prepare a high concentration slurry (high concentration step). The addition of biomass is preferably performed after raising the temperature and pressure of the low-concentration slurry. At this time, the temperature of the low concentration slurry is preferably 100 ° C. or higher and 250 ° C. or lower. More preferably, it is 150 degreeC or more and 200 degrees C or less. This is because if the temperature is lower than the above temperature, the reaction between the biomass and water does not effectively occur, and it is difficult to increase the concentration of the slurry. On the other hand, when the temperature is higher than the above temperature, the decomposition of the biomass as the raw material proceeds excessively, and the saccharide recovery rate tends to eventually decrease.

スラリーを高濃度化する際の圧力は、処理温度における水の蒸気圧以上とするのが好ましい。圧力が蒸気圧未満では液相部が形成されず、バイオマスの分散および可溶化が進まないからである。例えば、前記スラリーの温度を100℃とする場合であれば、圧力は0.11MPa以上とするのが好ましく,150℃であれば0.5MPa以上,200℃であれば1.6MPa以上,250℃であれば4.0MPa以上とするのが好ましい。尚、圧力の上限は特に限定されず、使用する設備等を考慮して適宜設定すればよい。なお、ポンプなどの装置に対する負荷を低減する観点からは、上記それぞれの温度における下限値に近い圧力を採用するのが好ましい。   The pressure for increasing the concentration of the slurry is preferably not less than the vapor pressure of water at the treatment temperature. This is because when the pressure is lower than the vapor pressure, a liquid phase portion is not formed, and dispersion and solubilization of biomass does not proceed. For example, if the temperature of the slurry is 100 ° C., the pressure is preferably 0.11 MPa or more, if it is 150 ° C., 0.5 MPa or more, if 200 ° C., 1.6 MPa or more, 250 ° C. If it is, it is preferable to set it as 4.0 Mpa or more. The upper limit of the pressure is not particularly limited, and may be set as appropriate in consideration of the equipment used. From the viewpoint of reducing the load on a device such as a pump, it is preferable to employ a pressure close to the lower limit value at each temperature.

このとき添加するバイオマスの量は、使用する水の量に対して1質量%以上、より好ましくは5質量%以上である。   The amount of biomass added at this time is 1% by mass or more, more preferably 5% by mass or more, based on the amount of water used.

上述のようにして高濃度化された高濃度スラリー中のバイオマス含有量は、10質量%以上であるのが好ましく、より好ましくは13質量%以上、さらに好ましくは15質量%以上、さらに20質量%以上であるのが望ましい。バイオマス含有量が上記下限より少ない場合には、従来の方法での処理が可能であり、また、高効率且つ低コストで糖を得るといった本発明を適用する意義が見出せないからである。なお、バイオマスの含有量の上限は、スラリー状態を保てる程度であれば特に限定されない。   The biomass content in the high-concentration slurry having a high concentration as described above is preferably 10% by mass or more, more preferably 13% by mass or more, further preferably 15% by mass or more, and further 20% by mass. The above is desirable. This is because, when the biomass content is less than the above lower limit, it is possible to perform processing by a conventional method, and it is impossible to find the significance of applying the present invention to obtain sugar at high efficiency and low cost. In addition, the upper limit of biomass content will not be specifically limited if it is a grade which can maintain a slurry state.

なお、上記説明では、2段階でバイオマスを添加しスラリーを高濃度化する方法について述べたが、本発明は上記記載には限定されず、3段階以上の多段階でバイオマスを増量し、高濃度スラリーとする場合にも適用することができる。   In the above description, the method of adding biomass in two stages and increasing the concentration of the slurry has been described. However, the present invention is not limited to the above description, and the biomass is increased in three or more stages to increase the concentration. It can also be applied to a slurry.

ついで、上述のようにして調製した高濃度スラリーを高温・高圧状態とし、バイオマスの加水分解を行う(加水分解工程)。加水分解処理は、加圧下、250℃以上、350℃以下で行うのが好ましい。温度が上記上限値よりも高い場合には、バイオマスの分解よりも、加水分解反応により生成した糖類などの熱分解が主となり、目的物である糖類の収量が低減するからである。一方、温度が前記下限値よりも低い場合には、加水分解反応が進行し難い傾向がある。   Next, the high-concentration slurry prepared as described above is brought to a high temperature / high pressure state to hydrolyze biomass (hydrolysis step). The hydrolysis treatment is preferably performed at 250 ° C. or higher and 350 ° C. or lower under pressure. This is because, when the temperature is higher than the above upper limit value, thermal decomposition of saccharides and the like produced by the hydrolysis reaction is predominant rather than biomass decomposition, and the yield of the target saccharide is reduced. On the other hand, when the temperature is lower than the lower limit, the hydrolysis reaction tends to hardly proceed.

加水分解時の圧力は、反応時の温度における蒸気圧以上とするのが好ましい。圧力が、当該温度における上記蒸気圧に満たない場合には、液相を保持することが困難だからである。例えば、反応時の水の温度が250℃であれば、圧力を4.0MPa以上とすればよく、また350℃であれば、圧力を16.6MPa以上とすればよい。   The pressure at the time of hydrolysis is preferably not less than the vapor pressure at the temperature at the time of reaction. This is because it is difficult to maintain the liquid phase when the pressure is less than the vapor pressure at the temperature. For example, if the temperature of the water during the reaction is 250 ° C., the pressure may be 4.0 MPa or more, and if it is 350 ° C., the pressure may be 16.6 MPa or more.

上記加水分解反応は、30分未満で行うのが好ましい。   The hydrolysis reaction is preferably performed in less than 30 minutes.

前記高濃度スラリーは加水分解反応の終了後、100℃以下(好ましくは30〜70℃)に急冷するのが好ましい(冷却工程)。高温状態のスラリーを急冷することによって、前記加水分解工程で生成した糖類が、予熱でさらに分解されるのを防ぐことができる。   The high-concentration slurry is preferably rapidly cooled to 100 ° C. or less (preferably 30 to 70 ° C.) after the hydrolysis reaction (cooling step). By rapidly cooling the slurry in a high temperature state, the saccharide produced in the hydrolysis step can be prevented from being further decomposed by preheating.

次いで、冷却された高濃度スラリーから水溶液を回収する(回収工程)。回収された水溶液には、前記加水分解工程で生成された糖などの成分が含まれている。ここで回収された水溶液は、さらに固体成分と液体成分とに分離され、液体成分から糖類が得られる。   Next, the aqueous solution is recovered from the cooled high-concentration slurry (recovery step). The recovered aqueous solution contains components such as sugar produced in the hydrolysis step. The aqueous solution recovered here is further separated into a solid component and a liquid component, and saccharides are obtained from the liquid component.

以上、本発明に係る糖類を製造する方法について述べたが、本発明は、糖類を得ると同時に、固形燃料を得ることも目的としている。すなわち、本発明に係る固形燃料の製造方法とは、上記糖類の製造方法の場合と同様、バイオマスを原料とし、これを水に懸濁させた高濃度スラリーを調製した後に、加水分解反応を行う。そして、加水分解工程を経た高濃度スラリーから水不溶成分を回収し、これを固形燃料とするものである。この水不溶成分は、その後、脱水工程へと送られ、含水量を十分に低減した後に、固形燃料として用いることができる。このとき得られる水不溶成分は、原料であるバイオマスに比べて含水量が低下されており、高い発熱量を有するため、石炭代替材料としても使用可能なものであり、高炉への吹き込み用の固形燃料や、発電などに使用する水蒸気ボイラー用の固形燃料としても有用である。   As mentioned above, although the method to manufacture the saccharide | sugar which concerns on this invention was described, this invention also aims at obtaining a solid fuel simultaneously with obtaining saccharide | sugar. That is, the solid fuel production method according to the present invention is similar to the above-described saccharide production method, in which a hydrolysis reaction is performed after preparing a high-concentration slurry using biomass as a raw material and suspending it in water. . And a water-insoluble component is collect | recovered from the high concentration slurry which passed through the hydrolysis process, and this is made into a solid fuel. This water-insoluble component is then sent to the dehydration step, where it can be used as a solid fuel after sufficiently reducing the water content. The water-insoluble component obtained at this time has a lower water content than the raw material biomass and has a high calorific value, so it can also be used as a coal substitute material, and is a solid for blowing into a blast furnace. It is also useful as a solid fuel for steam boilers used for fuel and power generation.

次に、本発明の方法を実施する装置について説明する。図1に、本発明に係る糖類または固形燃料の製造方法を実施する装置の一例を示す装置図を示す。   Next, an apparatus for carrying out the method of the present invention will be described. FIG. 1 shows an apparatus diagram showing an example of an apparatus for carrying out a method for producing a saccharide or solid fuel according to the present invention.

まず、図1中、スラリー製造器11において、上記バイオマスと水とを混合し、低濃度スラリーを調製した後、さらにバイオマスを添加して高濃度スラリーを調製する。得られた高濃度スラリーは、スラリー製造器11から排出され、高圧ポンプ12により加熱反応器13へと供給される。このとき、高濃度スラリーは、高濃度化工程における温度・圧力を保持したまま、加熱反応器13へと供給してもよく、また、一度冷却した後、加熱反応器13へと供給してもよい。しかしながら、より少ないエネルギー投入量で糖類などを得る観点からは、高濃度化工程における温度を保持したまま、加水分解を行う加熱反応器へと供給するのが好ましい。   First, in FIG. 1, in the slurry maker 11, the biomass and water are mixed to prepare a low-concentration slurry, and then biomass is further added to prepare a high-concentration slurry. The obtained high-concentration slurry is discharged from the slurry production device 11 and supplied to the heating reactor 13 by the high-pressure pump 12. At this time, the high-concentration slurry may be supplied to the heating reactor 13 while maintaining the temperature and pressure in the high-concentration step, or may be supplied to the heating reactor 13 after being cooled once. Good. However, from the viewpoint of obtaining saccharides and the like with a smaller amount of energy input, it is preferable to supply to a heating reactor in which hydrolysis is performed while maintaining the temperature in the high concentration step.

加熱反応器13はスラリーの導入および排出が可能に構成されており、また、加水分解処理に適した温度にまで高めるためのヒーター14が備えられている。この加熱反応器13に供給された高濃度スラリーは、加熱反応器13内で所定の温度・圧力にまで高められ、バイオマスの加水分解反応が行われる。なお、反応時の温度制御は、前記ヒーター14により行い、圧力の制御は、前記スラリー製造器11と加熱反応器13との間に設けられた高圧ポンプ12と、後述する固液分離フィルター18と気液分離器20との間に設けられた圧力保持バルブ19により行う。すなわち、加水分解反応を行う場合には、圧力保持バルブ19で反応圧力を設定すると共に、高圧ポンプ12によって加熱反応器13内を昇圧し、高濃度スラリーをヒーター14で加熱し、加熱反応器13内が、上記温度における水の蒸気圧以上となるように制御すればよい。   The heating reactor 13 is configured to be able to introduce and discharge slurry, and is provided with a heater 14 for raising the temperature to a temperature suitable for the hydrolysis treatment. The high-concentration slurry supplied to the heating reactor 13 is increased to a predetermined temperature and pressure in the heating reactor 13, and a hydrolysis reaction of biomass is performed. The temperature during the reaction is controlled by the heater 14, and the pressure is controlled by a high-pressure pump 12 provided between the slurry producing device 11 and the heating reactor 13, and a solid-liquid separation filter 18 described later. This is performed by a pressure holding valve 19 provided between the gas-liquid separator 20. That is, when the hydrolysis reaction is performed, the reaction pressure is set by the pressure holding valve 19, the inside of the heating reactor 13 is increased by the high-pressure pump 12, and the high-concentration slurry is heated by the heater 14. What is necessary is just to control so that the inside becomes more than the vapor pressure of the water in the said temperature.

反応終了後、高濃度スラリーは加熱反応器13から排出され、冷却ユニット17が取り付けられた熱交換器16へと送られ、100℃以下にまで冷却される。加水分解処理直後に急冷することにより、加水分解生成物(オリゴ糖や単糖)が予熱によってさらに分解されるのを抑制することができる。またこのとき回収された熱は、前記加熱反応器13や、スラリー製造器11における昇温過程で再利用することができる。   After completion of the reaction, the high-concentration slurry is discharged from the heating reactor 13, sent to the heat exchanger 16 to which the cooling unit 17 is attached, and cooled to 100 ° C. or lower. By quenching immediately after the hydrolysis treatment, hydrolysis products (oligosaccharides and monosaccharides) can be prevented from being further decomposed by preheating. Further, the heat recovered at this time can be reused in the heating process in the heating reactor 13 and the slurry producing device 11.

次いで、冷却された前記高濃度スラリーを、熱交換器16の下流側に設けられた固液分離フィルター18で、水溶液と水不溶成分とに分離する。このとき使用するフィルターは、複数個、並列して配置してもよい。複数個のフィルターを使用する場合、一方のフィルターには生成液を流して水不溶成分を分離すると共に、他方のフィルターでは分離した水不溶成分を回収するようにすれば、連続的に処理を行うことができる。   Next, the cooled high-concentration slurry is separated into an aqueous solution and a water-insoluble component by a solid-liquid separation filter 18 provided on the downstream side of the heat exchanger 16. A plurality of filters used at this time may be arranged in parallel. When using multiple filters, the product solution is passed through one filter to separate the water-insoluble components, and the other filter collects the separated water-insoluble components for continuous processing. be able to.

尚、上述のフィルターは、本発明の方法を実施する上で必須のものではなく、上記フィルターに代えて、圧力保持バルブ19の下流側にタンク(図示せず)を備え、ここで、加水分解工程を経た高濃度スラリーを脱水機(例えば、ろ過機、フィルタープレス、ベルトプレス、遠心脱水機など)などを使って、液体成分と脱水された水不溶成分とに分離することもできる。   The above-mentioned filter is not essential for carrying out the method of the present invention. Instead of the filter, a tank (not shown) is provided on the downstream side of the pressure holding valve 19, and the hydrolysis is performed here. The high-concentration slurry that has undergone the process can be separated into a liquid component and a dehydrated water-insoluble component using a dehydrator (for example, a filter, a filter press, a belt press, a centrifugal dehydrator, or the like).

水不溶成分と分離された水溶液は、圧力保持バルブ19を通過して、気液分離器20へと送られる。上記水溶液は、圧力保持バルブ19を通過する際、大気圧にまで急激に減圧されるため、それまで水溶液中に溶存していた低沸点成分が気化しガスとして表れる。これらの水溶液とガス成分とは、気液分離器20において、分離され、ガスはガスバッグ22に、液体成分は液回収部21にそれぞれ回収される。   The aqueous solution separated from the water-insoluble component passes through the pressure holding valve 19 and is sent to the gas-liquid separator 20. When the aqueous solution passes through the pressure holding valve 19, it is rapidly depressurized to the atmospheric pressure, and thus the low boiling point component dissolved in the aqueous solution is vaporized and appears as a gas. These aqueous solutions and gas components are separated in the gas-liquid separator 20, and the gas is recovered in the gas bag 22 and the liquid component is recovered in the liquid recovery unit 21.

尚、液回収部21に回収された液体成分は、加水分解生成物が水で希釈された状態であるので、逆浸透膜などにより、有用成分を濃縮するのが好ましい。   In addition, since the liquid component collect | recovered by the liquid collection | recovery part 21 is the state which the hydrolysis product diluted with water, it is preferable to concentrate useful components with a reverse osmosis membrane etc.

一方、上記固液分離フィルター18で分離された水不溶成分は、脱水された後、固体燃料として使用することができる。この固体燃料は、原料であるバイオマスに比べて、含水率が低く、また、発熱量が高くなっているため、石炭のように発電などの水蒸気ボイラーや高炉吹込み用の燃料として利用することができる。   On the other hand, the water-insoluble component separated by the solid-liquid separation filter 18 can be used as a solid fuel after being dehydrated. Since this solid fuel has a lower moisture content and higher calorific value than biomass, which is a raw material, it can be used as a steam boiler for power generation and blast furnace injection like coal. it can.

以下、実験例によって本発明をさらに詳述するが、下記実験例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することはすべて本発明の技術範囲に包含される。以下、「部」とあるのは、質量部を意味する。
〔実験例1〕
温度25℃の条件下、図1に示した装置のスラリー製造器11に、水:100部、バイオマスとして木粉:6部(60〜80メッシュの範囲、種類:スギ)を混合し低濃度スラリーを調製した(バイオマス濃度:5.6質量%)。この低濃度スラリーを、加圧下(2MPa)、温度200℃まで昇温し10分間加熱処理した。その後、さらに木粉6部をスラリー製造器11へ加え、スラリーを高濃度化した(バイオマス濃度:10.7質量%)。
Hereinafter, the present invention will be described in more detail with reference to experimental examples. However, the following experimental examples are not intended to limit the present invention, and modifications and implementations without departing from the spirit of the present invention are all included in the technical scope of the present invention. The Hereinafter, “parts” means parts by mass.
[Experimental Example 1]
Low temperature slurry by mixing 100 parts of water and 6 parts of wood flour as biomass (range of 60-80 mesh, type: cedar) in the slurry maker 11 of the apparatus shown in FIG. (Biomass concentration: 5.6% by mass). This low-concentration slurry was heated to 200 ° C. under pressure (2 MPa) and heat-treated for 10 minutes. Thereafter, 6 parts of wood flour was further added to the slurry maker 11 to increase the concentration of the slurry (biomass concentration: 10.7% by mass).

次いで、上記高濃度スラリーを加圧下(圧力:10MPa)、温度300℃に保持した管型反応器13に連続的に供給し、木粉の加水分解を行った(平均滞留時間:10分)。   Next, the high-concentration slurry was continuously supplied under pressure (pressure: 10 MPa) to the tubular reactor 13 maintained at a temperature of 300 ° C. to hydrolyze the wood flour (average residence time: 10 minutes).

次いで、上記糖類を含有するスラリーを熱交換器16により60℃まで冷却した後、該スラリーを固液分離フィルター18によって、糖類を溶解した水溶液と水不溶成分に分離した。得られた水溶液を少量採取し、高速液体クロマトグラフィーによって分析したところ、木材の構成成分であるセルロースおよび/またはヘミセルロースが加水分解され、グルコースやセロビオースなどの糖類が生成していることが確認できた。   Next, the saccharide-containing slurry was cooled to 60 ° C. by the heat exchanger 16, and then the slurry was separated into an aqueous solution in which the saccharide was dissolved and a water-insoluble component by the solid-liquid separation filter 18. When a small amount of the obtained aqueous solution was collected and analyzed by high performance liquid chromatography, it was confirmed that cellulose and / or hemicellulose, which are wood constituents, were hydrolyzed and sugars such as glucose and cellobiose were produced. .

グルコース 1.1部
セロビオース 0.5部
セロトリオース 0.4部
また、得られた水不溶成分を脱水し、成型して固形燃料とした。得られた固形燃料の発熱量を以下の方法で測定した。
Glucose 1.1 parts Cellobiose 0.5 parts Cellotriose 0.4 parts The obtained water-insoluble component was dehydrated and molded into a solid fuel. The calorific value of the obtained solid fuel was measured by the following method.

熱量測定装置を使用した。酸素を圧入した耐圧製の密閉容器の中で、秤量した固形燃料を燃焼させ、その際に発生する熱量を一定量の水に伝え、その水の温度上昇を測定し、固形燃料1kg当たりの発熱量(J)を求めた。
(処理温度:300℃、固形燃料発熱量:2.80×107J/kg)。
〔実験例2〕
上記実施例1と同様にして調製した高濃度スラリー(バイオマス濃度:10.7質量%)を、加圧下(圧力:17MPa)、温度350℃に保持した管型反応器13に連続的に供給し、木粉の加水分解を行った(平均滞留時間3分間)。
A calorimeter was used. The weighed solid fuel is burned in a pressure-resistant airtight container filled with oxygen, the amount of heat generated is transferred to a certain amount of water, the temperature rise of the water is measured, and the heat generated per kg of solid fuel The amount (J) was determined.
(Processing temperature: 300 ° C., calorific value of solid fuel: 2.80 × 10 7 J / kg).
[Experiment 2]
A high-concentration slurry (biomass concentration: 10.7% by mass) prepared in the same manner as in Example 1 was continuously supplied to the tubular reactor 13 maintained at a temperature of 350 ° C. under pressure (pressure: 17 MPa). The wood flour was hydrolyzed (average residence time 3 minutes).

反応終了後、得られた反応液を熱交換器16により60℃まで冷却した後、該スラリーを固液分離フィルター18によって、糖類を溶解した水溶液と水不溶成分に分離した。得られた水溶液を少量採取し上記実験例1と同様の方法で分析した。結果を以下に示す。   After completion of the reaction, the obtained reaction solution was cooled to 60 ° C. by the heat exchanger 16, and then the slurry was separated into an aqueous solution in which saccharides were dissolved and a water-insoluble component by the solid-liquid separation filter 18. A small amount of the obtained aqueous solution was collected and analyzed in the same manner as in Experimental Example 1 above. The results are shown below.

グルコース 1.3部
セロビオース 0.4部
セロトリオース 0.2部
また、得られた水不溶成分を、脱水し、成型して固形燃料とし、この固形燃料の発熱量を測定した(処理温度:350℃、固形燃料発熱量:2.92×107J/kg)。
Glucose 1.3 parts Cellobiose 0.4 parts Cellotriose 0.2 parts The obtained water-insoluble component was dehydrated and molded into a solid fuel, and the calorific value of this solid fuel was measured (treatment temperature: 350 ° C. , Solid fuel calorific value: 2.92 × 10 7 J / kg).

実験例1および2の結果より、本発明に係る方法によれば、スラリーを高濃度化でき、極めて効率よく糖類と固形燃料が製造できることがわかる。   From the results of Experimental Examples 1 and 2, it can be seen that according to the method of the present invention, the slurry can be highly concentrated and sugars and solid fuel can be produced very efficiently.

本発明の方法を実施する装置の一例を示す装置図である。It is an apparatus figure which shows an example of the apparatus which implements the method of this invention.

符号の説明Explanation of symbols

11 スラリー製造器
12 高圧ポンプ
13 反応器
14 ヒーター
16 熱交換器
17 冷却ユニット
18 固液分離フィルター
19 圧力保持バルブ
20 気液分離器
21 液回収部
22 ガスバッグ

DESCRIPTION OF SYMBOLS 11 Slurry manufacturing machine 12 High pressure pump 13 Reactor 14 Heater 16 Heat exchanger 17 Cooling unit 18 Solid-liquid separation filter 19 Pressure holding valve 20 Gas-liquid separator 21 Liquid recovery part 22 Gas bag

Claims (4)

バイオマスを原料とする糖類の製造方法であって、
100〜250℃に加熱した高圧水にバイオマスが懸濁した低濃度スラリーを調製し、このスラリーにさらにバイオマスを加えて高濃度スラリーを調製するスラリーの高濃度化工程、
前記高濃度スラリーを250〜350℃に加熱し、且つ、圧力を前記温度における水の蒸気圧以上にしてバイオマスを分解し糖類を生成する加水分解工程、
前記加水分解工程を経た高濃度スラリーを冷却する冷却工程、
前記冷却工程で冷却した高濃度スラリーから水溶液を回収する回収工程、および、
前記水溶液から糖類を分離する分離工程を含むことを特徴とする糖類の製造方法。
A method for producing saccharides using biomass as a raw material,
A slurry concentration increasing step of preparing a low concentration slurry in which biomass is suspended in high pressure water heated to 100 to 250 ° C., and further adding biomass to the slurry to prepare a high concentration slurry,
A hydrolysis step in which the high-concentration slurry is heated to 250 to 350 ° C., and the pressure is set to be equal to or higher than the vapor pressure of water at the temperature to decompose biomass to produce saccharides;
A cooling step for cooling the high-concentration slurry that has undergone the hydrolysis step;
A recovery step of recovering the aqueous solution from the high-concentration slurry cooled in the cooling step; and
A method for producing a saccharide, comprising a separation step of separating the saccharide from the aqueous solution.
バイオマスを原料とする固形燃料の製造方法であって、
100〜250℃に加熱した高圧水にバイオマスが懸濁した低濃度スラリーを調製し、このスラリーにさらにバイオマスを添加して、高濃度スラリーを調製するスラリーの高濃度化工程、
前記高濃度スラリーを250〜350℃に加熱し、且つ、圧力を前記温度における水の蒸気圧以上にしてバイオマスの加水分解を行う加水分解工程、
前記加水分解工程を経た高濃度スラリーを冷却する冷却工程、
前記冷却工程で冷却した高濃度スラリーから水不溶成分を回収する回収工程、および、
前記水不溶成分を脱水し、固形燃料とする工程を含むことを特徴とする固形燃料の製造方法。
A method for producing a solid fuel using biomass as a raw material,
A slurry high concentration step of preparing a low concentration slurry in which biomass is suspended in high pressure water heated to 100 to 250 ° C., adding biomass to this slurry to prepare a high concentration slurry,
A hydrolysis step of heating the high-concentration slurry to 250 to 350 ° C. and hydrolyzing biomass by setting the pressure to be equal to or higher than the vapor pressure of water at the temperature;
A cooling step for cooling the high-concentration slurry that has undergone the hydrolysis step;
A recovery step of recovering a water-insoluble component from the high-concentration slurry cooled in the cooling step; and
A method for producing a solid fuel, comprising a step of dehydrating the water-insoluble component into a solid fuel.
前記高濃度化工程が、大気圧下、100℃未満で、水にバイオマスを懸濁させて低濃度スラリーとし、この低濃度スラリーを加圧下、攪拌しながら温度100〜250℃に加熱した後、さらにバイオマスを加えて前記スラリーを高濃度化するものである請求項1または2に記載の製造方法。   After the high concentration step is under atmospheric pressure and less than 100 ° C., the biomass is suspended in water to form a low concentration slurry, and this low concentration slurry is heated to a temperature of 100 to 250 ° C. with stirring under pressure. Furthermore, biomass is added and the said slurry is made high concentration, The manufacturing method of Claim 1 or 2. 前記バイオマスが木材である請求項1〜3のいずれかに記載の製造方法。

The manufacturing method according to claim 1, wherein the biomass is wood.

JP2004011560A 2004-01-20 2004-01-20 Production method of sugar and solid fuel using biomass as raw material Expired - Fee Related JP4726035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011560A JP4726035B2 (en) 2004-01-20 2004-01-20 Production method of sugar and solid fuel using biomass as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011560A JP4726035B2 (en) 2004-01-20 2004-01-20 Production method of sugar and solid fuel using biomass as raw material

Publications (2)

Publication Number Publication Date
JP2005206468A true JP2005206468A (en) 2005-08-04
JP4726035B2 JP4726035B2 (en) 2011-07-20

Family

ID=34898218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011560A Expired - Fee Related JP4726035B2 (en) 2004-01-20 2004-01-20 Production method of sugar and solid fuel using biomass as raw material

Country Status (1)

Country Link
JP (1) JP4726035B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313476A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Decomposition treatment method of wood-based waste material
JP2011516246A (en) * 2008-03-31 2011-05-26 ヴェオリア・ウォーター・ソリューション・アンド・テクノロジーズ・サポート Apparatus and method for continuously pyrolyzing biological material
WO2011087133A1 (en) * 2010-01-18 2011-07-21 株式会社Ihi Biomass treatment device
JP2011161377A (en) * 2010-02-10 2011-08-25 Osaka Prefecture Univ Method for decomposition and utilization of bagasse
JP2015178639A (en) * 2015-06-19 2015-10-08 王子ホールディングス株式会社 Method for producing solid fuel from lignocellulosic material
WO2021235518A1 (en) 2020-05-21 2021-11-25 国立大学法人九州大学 Method for producing ester compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359035A (en) * 1989-07-27 1991-03-14 Oji Paper Co Ltd Production of concentrated lignocellulosic substance solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359035A (en) * 1989-07-27 1991-03-14 Oji Paper Co Ltd Production of concentrated lignocellulosic substance solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313476A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Decomposition treatment method of wood-based waste material
JP4666378B2 (en) * 2006-05-29 2011-04-06 パナソニック株式会社 Decomposition method for woody waste
JP2011516246A (en) * 2008-03-31 2011-05-26 ヴェオリア・ウォーター・ソリューション・アンド・テクノロジーズ・サポート Apparatus and method for continuously pyrolyzing biological material
WO2011087133A1 (en) * 2010-01-18 2011-07-21 株式会社Ihi Biomass treatment device
CN102791887A (en) * 2010-01-18 2012-11-21 株式会社Ihi Biomass treatment device
JP2011161377A (en) * 2010-02-10 2011-08-25 Osaka Prefecture Univ Method for decomposition and utilization of bagasse
JP2015178639A (en) * 2015-06-19 2015-10-08 王子ホールディングス株式会社 Method for producing solid fuel from lignocellulosic material
WO2021235518A1 (en) 2020-05-21 2021-11-25 国立大学法人九州大学 Method for producing ester compound

Also Published As

Publication number Publication date
JP4726035B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4990271B2 (en) Method and apparatus for saccharification and decomposition of cellulosic biomass
AU2005289333B2 (en) Continuous flowing pre-treatment system with steam recovery
JP5520822B2 (en) Biomass component separation process
US8618280B2 (en) Biorefinery process for extraction, separation, and recovery of fermentable saccharides, other useful compounds, and yield of improved lignocellulosic material from plant biomass
JP4619917B2 (en) Pretreatment method of lignocellulose
JP2010081855A (en) Method for producing saccharides
JP2009125050A (en) Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
WO2001032715A1 (en) Process for the production of organic products from lignocellulose containing biomass sources
JP2006255676A (en) Method for separating lignin substance
JP2005205252A (en) High-concentration slurry containing biomass, method for preparing high-concentration slurry and method for manufacturing biomass fuel
JP2011523349A (en) Biomass processing method
JP2010279255A (en) Method for saccharifying biomass
KR20180023075A (en) Improvement on Co-firing of Biomass with Coal Biomass Blending ratio, Manufacturing Method and System of Boiler-Torrefaction Fuel Production thereof
JP2010220512A (en) Pretreatment method for enzymic hydrolysis treatment of herbaceous biomass, and method for producing ethanol by using herbaceous biomass as raw material
JP2007124933A (en) Pretreatment method of lignocellulose
JP2011045277A (en) Production system for cellulose-based ethanol, and method for producing the same
JP4726035B2 (en) Production method of sugar and solid fuel using biomass as raw material
JPWO2009004951A1 (en) Method for producing monosaccharides by hydrolysis and enzymatic saccharification of materials containing cellulose
US9902982B2 (en) Continuous countercurrent enzymatic hydrolysis of pretreated biomass at high solids concentrations
JP5924188B2 (en) Method for producing furfurals from lignocellulose-containing biomass
JP5600203B1 (en) Saccharified liquid manufacturing method and saccharified liquid manufacturing apparatus using biomass as a raw material
JP5861413B2 (en) Continuous production method of furfural from biomass
WO2014097800A1 (en) Plant-biomass hydrolysis method
JP2009213449A (en) Method for producing monosaccharide and ethanol by using oil-based plant biomass residue as raw material
JPWO2009004950A1 (en) Method for producing monosaccharides and / or water-soluble polysaccharides by hydrolysis of materials containing cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

R150 Certificate of patent or registration of utility model

Ref document number: 4726035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees