JP4619917B2 - Pretreatment method of lignocellulose - Google Patents

Pretreatment method of lignocellulose Download PDF

Info

Publication number
JP4619917B2
JP4619917B2 JP2005299883A JP2005299883A JP4619917B2 JP 4619917 B2 JP4619917 B2 JP 4619917B2 JP 2005299883 A JP2005299883 A JP 2005299883A JP 2005299883 A JP2005299883 A JP 2005299883A JP 4619917 B2 JP4619917 B2 JP 4619917B2
Authority
JP
Japan
Prior art keywords
lignocellulose
acid
pretreatment method
sugar
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005299883A
Other languages
Japanese (ja)
Other versions
JP2007104983A (en
Inventor
直之 奥田
裕一 小野
健治 鈴木
智基 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2005299883A priority Critical patent/JP4619917B2/en
Publication of JP2007104983A publication Critical patent/JP2007104983A/en
Application granted granted Critical
Publication of JP4619917B2 publication Critical patent/JP4619917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はリグノセルロースの前処理方法に関する。   The present invention relates to a pretreatment method for lignocellulose.

近年再生可能資源であるバガスや稲わら、木材チップなどの天然系の資源からエタノールを製造し、エネルギーや化学原料として利用する試みが内外で進められている。原料としては種々のバイオマスが使用されるが、将来的に有用な資源として木質バイオマスのようなリグノセルロースが注目されている。リグノセルロースは、植物の茎葉等の主成分であり、主にセルロース、ヘミセルロース及びリグニンから構成されている。セルロースは、木材の50%程度の含有量であり、グルコースが直鎖状に結合した比較的安定な高分子である。ヘミセルロースは、木材の20〜30%程度の含有量であり、結合がセルロースのように規則的でなく、加水分解しやすい。リグニンは、木材の20〜30%程度の含有量であり、主にベンゼン核を有する不定形の高分子である。   In recent years, domestic and overseas efforts have been made to produce ethanol from natural resources such as bagasse, rice straw, and wood chips, which are renewable resources, and use them as energy and chemical raw materials. Various biomass is used as a raw material, but lignocellulose such as woody biomass has attracted attention as a useful resource in the future. Lignocellulose is a main component of plant stems and leaves, and is mainly composed of cellulose, hemicellulose, and lignin. Cellulose has a content of about 50% of wood and is a relatively stable polymer in which glucose is linearly bound. Hemicellulose has a content of about 20 to 30% of wood, and bonds are not regular like cellulose and are easily hydrolyzed. Lignin has a content of about 20 to 30% of wood and is an amorphous polymer mainly having a benzene nucleus.

木質バイオマスのようなリグノセルロースからエタノールを製造するには、まず酸やアルカリでヘミセルロースを加水分解し、ヘミセルロース由来の糖液を得る。ヘミセルロースを構成する糖は、主にキシロース、アラビノースといった五炭糖と、グルコース、ガラクトース、マンノースといった六炭糖であり、これらの量比率は木質系バイオマスの種類によって異なっている。
次いで、上記のヘミセルロース由来の糖を得た後の残渣をさらに酸や酵素で処理しセルロース由来の糖を得るが、この処理に希硫酸を用いるとグルコース収率が40%程度と低いことに加え、ギ酸やレブリン酸、ヒドロキシメチルフルフラール(HMF)などの糖の過分解物質が生じやすく、これらの過分解物質はエタノールへの発酵に悪影響を与える。
上記の酸やアルカリ処理に代わる方法として酵素による加水分解が研究されているが、酵素反応を有効に行うための前処理は、原料によって適切な方法を選定する必要がある。
In order to produce ethanol from lignocellulose such as woody biomass, hemicellulose is first hydrolyzed with acid or alkali to obtain a sugar solution derived from hemicellulose. The sugars constituting hemicellulose are mainly pentose sugars such as xylose and arabinose, and hexose sugars such as glucose, galactose and mannose, and the ratio of these amounts varies depending on the type of woody biomass.
Next, the residue after obtaining the hemicellulose-derived sugar is further treated with an acid or enzyme to obtain a cellulose-derived sugar. When dilute sulfuric acid is used for this treatment, the glucose yield is as low as about 40%. Sugar-degrading substances such as formic acid, levulinic acid and hydroxymethylfurfural (HMF) are likely to be produced, and these hyperdegrading substances have an adverse effect on fermentation to ethanol.
Hydrolysis by enzymes has been studied as a method to replace the acid and alkali treatments described above, but it is necessary to select an appropriate method for the pretreatment for effectively carrying out the enzyme reaction depending on the raw materials.

リグノセルロース原料に共通する性質の一つに、ヘミセルロースとセルロースの加水分解条件に差があることが挙げられる。ヘミセルロースは比較的酸やアルカリで分解されやすく、90%以上の高い回収率で糖が得られるのに対し、セルロースの分解はより厳しい条件で行われ、糖の過分解がほぼ同じ速度で生じてしまうため糖の回収率が低くなる。そこで、まず酵素加水分解の前処理を兼ねた一次加水分解でヘミセルロース由来の糖をできるだけ回収する方法が望ましい。   One of the properties common to lignocellulose raw materials is that there is a difference in the hydrolysis conditions of hemicellulose and cellulose. Hemicellulose is relatively easily decomposed by acids and alkalis, and sugar can be obtained with a high recovery rate of 90% or more, whereas cellulose is decomposed under more severe conditions, and sugar overdegradation occurs at almost the same rate. As a result, the sugar recovery rate is low. Therefore, it is desirable to first recover the hemicellulose-derived sugar as much as possible by primary hydrolysis that also serves as a pretreatment for enzymatic hydrolysis.

一次加水分解法としてよく研究されているのは酸またはアルカリを用いる方法である。
酵素加水分解の前処理としてはいずれも効果があるが、一次加水分解でヘミセルロース由来の糖を得ようとする場合、アルカリ条件下では糖の過分解が進みやすいため、酸を用いた処理が有利である。ヘミセルロース原料に対する一次加水分解処理として、苛性ソーダ蒸煮、酸化条件下での石灰処理も報告されているが、いずれもヘミセルロース由来の糖の収率は低い。
The method of using an acid or alkali is well studied as a primary hydrolysis method.
All of the pretreatments for enzymatic hydrolysis are effective. However, when obtaining hemicellulose-derived sugars by primary hydrolysis, sugars tend to undergo excessive decomposition under alkaline conditions, so treatment with acid is advantageous. It is. As the primary hydrolysis treatment for the hemicellulose raw material, caustic soda cooking and lime treatment under oxidizing conditions have been reported, but the yield of sugars derived from hemicellulose is low.

一方、酸を用いる一次加水分解処理では、糖は回収できるが原料によっては酵素加水分解の前処理として不十分な場合がある。例えば、木材の中でも広葉樹を酸や爆砕で一次処理した後の残渣は比較的容易に酵素で糖化されるが、針葉樹はリグニンを含む構造が広葉樹より強固なため、一次処理した後の残渣をそのまま使用すると酵素加水分解率は低い。
国内で有効利用が望まれている廃建材はスギ、ツガ、マツなどの針葉樹が主体であるため、針葉樹に対する前処理方法の確立は特に国内において重要である。
On the other hand, in the primary hydrolysis treatment using an acid, sugar can be recovered, but depending on the raw material, it may be insufficient as a pretreatment for enzyme hydrolysis. For example, even in wood, the residue after primary treatment of hardwood with acid or blasting is relatively easily saccharified by enzymes, but conifers have a structure containing lignin that is stronger than hardwood, so the residue after primary treatment remains as it is. When used, the enzyme hydrolysis rate is low.
Since waste building materials that are expected to be used effectively in Japan are mainly coniferous trees such as cedar, tsuga, and pine, establishment of a pretreatment method for coniferous trees is particularly important in Japan.

このような観点から、一次処理した残渣を酵素加水分解に供する前に二次処理を行い、酵素加水分解率を高める方法も研究されている。例えば、オゾン、過酸化水素、亜塩素酸ナトリウムなどによる処理が報告されている。しかし、これら薬品の使用はコストが大きいだけでなく、後段の発酵において微生物に阻害的に働く場合が懸念されるので、発酵前に除去する工程を設ける必要がある。   From such a viewpoint, a method of increasing the enzyme hydrolysis rate by performing a secondary treatment before subjecting the primary treated residue to enzyme hydrolysis has also been studied. For example, treatment with ozone, hydrogen peroxide, sodium chlorite and the like has been reported. However, the use of these chemicals is not only costly, but there is a concern that it may act to inhibit microorganisms in the subsequent fermentation, so it is necessary to provide a step for removal before fermentation.

また、セルロースやヘミセルロースを含む木材等のリグノース原料を加水分解する前に微粉砕処理する前処理方法も報告されている(例えば、特許文献1、特許文献2、および特許文献3参照。)。同様にリグノース原料を微粉砕してから酵素加水分解を行った後、再度固形物残渣を粉砕する方法も報告されている(例えば、特許文献4参照。)。また、アルカリ加水分解処理と機械的粉砕処理とを組み合わせた前処理方法についても報告されている(特許文献5参照。)。
特開昭55−9758号公報 特開昭59−91893号公報 特開昭63−137690号公報 特開昭63−137692号公報 特開昭55−45306号公報
In addition, a pretreatment method in which a pulverization treatment is performed before hydrolyzing a lignose raw material such as wood containing cellulose or hemicellulose has been reported (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). Similarly, a method has also been reported in which a lignose raw material is finely pulverized and then subjected to enzyme hydrolysis, and then a solid residue is pulverized again (for example, see Patent Document 4). In addition, a pretreatment method combining an alkali hydrolysis treatment and a mechanical pulverization treatment has also been reported (see Patent Document 5).
Japanese Patent Laid-Open No. 55-9758 JP 59-91893 A JP-A-63-137690 Japanese Patent Laid-Open No. 63-137692 JP-A-55-45306

上述のようにリグノセルロース原料をボールミル等で微粉砕処理する前処理方法は、工程が少なくてすむ反面、投入エネルギーをかなり高くしないと前処理としての効果が得られない。また、アルカリ条件下での加水分解では糖の過分解が進みやすいという問題があった。さらに、ヘミセルロース由来の糖の収率についてはほとんど言及されていなかった。
さらに、前処理に粉砕を行う場合、コスト削減および環境への配慮等の点から、消費動力を低減でき、また、スケールアップを容易に行うことができ、適当な機器サイズで維持管理しやすい粉砕機の使用が望まれていた。
As described above, the pretreatment method in which the lignocellulose raw material is finely pulverized with a ball mill or the like requires fewer steps, but the effect as the pretreatment cannot be obtained unless the input energy is considerably increased. In addition, hydrolysis under an alkaline condition has a problem in that sugar excessively proceeds easily. Furthermore, there was little mention of the yield of hemicellulose-derived sugar.
Furthermore, when pre-grinding is performed, from the viewpoints of cost reduction and environmental considerations, power consumption can be reduced, and scale-up can be easily performed. The use of a machine was desired.

本発明は、上述の背景技術の問題点を鑑みてなされたものであり、リグノセルロース原料を酵素加水分解する際の前処理方法であって、糖の過分解を抑え低コストで収率よく、かつ低動力で効率よく糖を得るためのリグノセルロースの前処理方法を提供することを課題とする。     The present invention has been made in view of the above-mentioned problems of the background art, and is a pretreatment method for enzymatic hydrolysis of a lignocellulose raw material, which suppresses excessive decomposition of sugar and is low in cost and good in yield. It is another object of the present invention to provide a lignocellulose pretreatment method for efficiently obtaining sugar with low power.

本発明の発明者らは、上記課題を解決するため鋭意検討した結果、リグノセルロース原料にまず酸加水分解処理を施し、固液分離して酸で比較的容易に回収できるヘミセルロース由来の糖を得た後、固形残渣に叩解機を用いて粉砕処理を行うことにより、前処理工程の効率を高め、かつ続く酵素加水分解の効率を高めることができる前処理方法を見いだすに至った。     As a result of intensive studies to solve the above problems, the inventors of the present invention have first obtained an acid hydrolysis treatment on a lignocellulose raw material, and obtained a hemicellulose-derived sugar that can be recovered with acid by solid-liquid separation. After that, the solid residue was pulverized using a beating machine, thereby finding a pretreatment method capable of increasing the efficiency of the pretreatment step and increasing the efficiency of the subsequent enzymatic hydrolysis.

すなわち本発明は、リグノセルロースの酵素加水分解の前処理方法であって、リグノセルロース原料を酸処理する酸処理工程と、前記酸処理工程の反応物を固液分離する固液分離工程と、前記固液分離工程の残渣を叩解機を用いて粉砕処理する粉砕処理工程とを含むことを特徴とするリグノセルロースの前処理方法である。     That is, the present invention is a pretreatment method for enzymatic hydrolysis of lignocellulose, an acid treatment step of acid-treating lignocellulose raw material, a solid-liquid separation step of solid-liquid separation of a reaction product of the acid treatment step, And a pulverization treatment step of pulverizing the residue of the solid-liquid separation step using a beating machine.

本発明によれば、酸でヘミセルロースを加水分解した残渣について、叩解機を用いて粉砕処理することによって、低コスト、低動力で酵素加水分解における糖の収率を向上させ、続く発酵でのエタノール収率の向上を達成することが可能となる。
本発明によると、酸加水分解による一次処理に引き続き二次処理に過酸化水素等の薬剤を用いる前処理方法に比べ、着色廃水の量が低減できる。また、一次加水分解で一部未反応のヘミセルロース由来の糖(キシロースなど)の回収量も二次処理に薬剤を用いる方法より多く、原料に含まれる糖をより有効に利用することができる。
また、本発明において、叩解機による粉砕処理は、湿式で行うことができるため、粉塵爆発や火災の危険がなく、また、熱による変性で糖成分の一部が分解することもほとんどない。
According to the present invention, a residue obtained by hydrolyzing hemicellulose with an acid is pulverized using a beater to improve sugar yield in enzymatic hydrolysis at low cost and low power, and ethanol in subsequent fermentation An increase in yield can be achieved.
According to the present invention, the amount of colored waste water can be reduced as compared with a pretreatment method using a chemical such as hydrogen peroxide in the secondary treatment following the primary treatment by acid hydrolysis. In addition, the amount of recovered sugar (such as xylose) derived from hemicellulose partially unreacted in the primary hydrolysis is larger than the method using a drug for the secondary treatment, and the sugar contained in the raw material can be used more effectively.
In the present invention, since the pulverization treatment by the beating machine can be performed in a wet manner, there is no danger of dust explosion or fire, and part of the sugar component is hardly decomposed by heat denaturation.

さらに本発明の前処理方法における粉砕処理工程には叩解機を用いているため、従来のボールミル、ローラミル、スタンプミル等の粉砕機を用いる場合と比較して、消費電力を低減でき、スケールアップが容易であり、機器サイズも適度な大きさであり維持管理が容易であるため、低コストで効率よく粉砕処理を行うことができる。
また、希硫酸等の酸による反応で、ヘミセルロース由来の糖が溶出していること、及びリグニンの一部が溶出していることにより、残渣が柔らかくなっているため、少ない投入エネルギーで、酵素加水分解の効果を大きく高めることができる。
Furthermore, since a pulverizer is used in the pulverization process step in the pretreatment method of the present invention, power consumption can be reduced and scale-up can be reduced as compared with the case of using a pulverizer such as a conventional ball mill, roller mill, or stamp mill. Since it is easy and the device size is moderate and easy to maintain, the grinding process can be performed efficiently at low cost.
In addition, the reaction with an acid such as dilute sulfuric acid elutes hemicellulose-derived sugar, and part of lignin elutes. The effect of decomposition can be greatly enhanced.

本発明のリグノセルロースの酵素加水分解の前処理方法は、リグノセルロース原料を希硫酸処理する酸処理工程と、酸処理工程の反応物を固液分離する固液分離工程と、固液分離工程の残渣を叩解機を用いて粉砕処理する粉砕処理工程とを含む。図1は、リグノセルロースを原料とし、本発明の前処理方法を含むエタノールの製造方法の一例をフローチャートで示したものである。
原料のリグノセルロースは、まず酸処理工程において主に原料中のヘミセルロースを加水分解し、続く固液分離工程で糖液と残渣とに分離される。残渣は、粉砕処理工程において叩解機を用いて粉砕された(以上、本発明における前処理)後、酵素加水分解工程において糖へと加水分解され発酵によってエタノールが製造される。一方、固液分離工程で回収された糖液からも、中和された後発酵によってエタノールが製造される。
The pretreatment method for enzymatic hydrolysis of lignocellulose of the present invention comprises an acid treatment step for treating a lignocellulose raw material with dilute sulfuric acid, a solid-liquid separation step for solid-liquid separation of a reaction product of the acid treatment step, and a solid-liquid separation step. And a pulverization process step of pulverizing the residue using a beating machine. FIG. 1 is a flowchart showing an example of a method for producing ethanol using lignocellulose as a raw material and including the pretreatment method of the present invention.
The raw material lignocellulose is first hydrolyzed mainly in the raw material hemicellulose in the acid treatment step, and then separated into a sugar solution and a residue in the subsequent solid-liquid separation step. The residue is pulverized using a beater in the pulverization process (pretreatment in the present invention), then hydrolyzed to sugar in the enzyme hydrolysis process, and ethanol is produced by fermentation. On the other hand, ethanol is also produced from the sugar solution recovered in the solid-liquid separation process by fermentation after neutralization.

本発明に用いられる原料のリグノセルロースは、特に限定されないが、例えば木材、稲わら、籾殻、バガスなどが利用できる。特に国内では発生量が多く、収集ルートが確立している廃建材を用いることが望ましい。廃建材は主に木造家屋の解体によって発生し、用いられている樹種としては、杉、松、栂などの針葉樹の比率が高い。   Although the raw material lignocellulose used for this invention is not specifically limited, For example, wood, rice straw, rice husk, bagasse, etc. can be utilized. Particularly in Japan, it is desirable to use waste building materials that are generated in large quantities and have established collection routes. Waste building materials are mainly generated by the demolition of wooden houses, and the percentage of conifers such as cedar, pine, and oak is high.

本発明に用いられるリグノセルロース原料は、あらかじめ破砕機を用いて1〜20mm、特に5〜10mmのサイズに破砕することが好ましい。破砕後のチップサイズはできるだけ小さい方が糖化の効率が高くなるが、破砕のための所要エネルギーも大きくなる。そこで適正なチップサイズが存在する。この破砕工程は酸加水分解後の叩解機による粉砕処理工程とは異なり、一次加水分解である酸処理工程において原料と硫酸や蒸気の接触を良くしヘミセルロースから糖を回収しやすくするためである。   The lignocellulose raw material used in the present invention is preferably crushed in advance to a size of 1 to 20 mm, particularly 5 to 10 mm using a crusher. As the chip size after crushing is as small as possible, the efficiency of saccharification increases, but the energy required for crushing also increases. There is an appropriate chip size. This crushing process is different from the crushing process by the beater after acid hydrolysis, in order to improve the contact between the raw material and sulfuric acid or steam in the acid treatment process, which is the primary hydrolysis, and to easily recover the sugar from hemicellulose.

次いで、リグノセルロース原料を酸処理する。用いる酸としては、例えば硫酸、塩酸、硝酸又はそれらの混合物が挙げられるが、このうち硫酸、特に希硫酸が好ましい。さらに、本発明における酸処理は、加熱しながら行うことが好ましい。反応に用いられる硫酸濃度は0.1〜5%、特に0.5〜3%が好ましい。反応温度は140〜230℃、特に160〜210℃の範囲が望ましい。反応時間は1〜20分、特に5〜10分であることが好ましい。硫酸濃度、反応温度および反応時間が上記の範囲内であると、酸処理工程においてヘミセルロースを効率的に加水分解し、糖を回収することができる。   Next, the lignocellulose raw material is acid-treated. Examples of the acid to be used include sulfuric acid, hydrochloric acid, nitric acid or a mixture thereof. Among these, sulfuric acid, particularly dilute sulfuric acid is preferable. Furthermore, the acid treatment in the present invention is preferably performed while heating. The sulfuric acid concentration used in the reaction is preferably 0.1 to 5%, particularly preferably 0.5 to 3%. The reaction temperature is preferably 140 to 230 ° C, particularly 160 to 210 ° C. The reaction time is preferably 1 to 20 minutes, particularly preferably 5 to 10 minutes. If the sulfuric acid concentration, reaction temperature, and reaction time are within the above ranges, hemicellulose can be efficiently hydrolyzed and sugar can be recovered in the acid treatment step.

次に上記酸処理工程の反応物は、固液分離工程においてろ液と固形物残渣とに分離される。残渣は続く粉砕処理工程に供される。ろ液はヘミセルロース由来の糖を含んでおり、後述のように発酵によってエタノールが製造される。固液分離の方法はろ過、遠心分離などを用いることができるが、エネルギー消費の小さいろ過を用いることが好ましい。   Next, the reaction product in the acid treatment step is separated into a filtrate and a solid residue in a solid-liquid separation step. The residue is subjected to a subsequent grinding process step. The filtrate contains hemicellulose-derived sugar, and ethanol is produced by fermentation as described below. As the solid-liquid separation method, filtration, centrifugation, or the like can be used, but it is preferable to use filtration with low energy consumption.

上記固液分離工程の固形物残渣は、粉砕処理工程において叩解機を用いて湿式粉砕される。粉砕される固形物残渣の水分含量は50〜95%、特に60〜90%であることが好ましい。この残渣は、希硫酸による加水分解反応でヘミセルロース由来の糖が溶出していること、およびリグニンの一部が溶出していることにより柔らかくなっている。従って少ない投入エネルギーで粉砕しても、続く酵素加水分解の効果を大きく高めることができる。   The solid residue in the solid-liquid separation process is wet pulverized using a beating machine in the pulverization process. The water content of the solid residue to be pulverized is preferably 50 to 95%, particularly preferably 60 to 90%. This residue is softened by the elution of hemicellulose-derived sugar by hydrolysis with dilute sulfuric acid and the elution of a part of lignin. Therefore, even if pulverization is performed with a small amount of input energy, the effect of subsequent enzymatic hydrolysis can be greatly enhanced.

粉砕処理工程に用いられる叩解機は、原料が固定刃と回転刃の間を通過する際に破砕を行い、刃の材質や形状を適宜選択し刃間の間隔、回転数等を設定制御することにより微粉砕から粗粉砕まで自由に粒度を変えて木材等を破砕することができる粉砕機である。叩解機を用いる場合、ボールミルやスタンプミル等の粉砕機と比較して粉砕時の消費動力が格段に低減できるため、エネルギー効率がよく低コストで粉砕処理を行うことができる。叩解機を用いる粉砕処理により、一般に数μm〜300μm程度の粒度を有する残渣が得られる。   The beating machine used in the pulverization process crushes when the raw material passes between the fixed blade and the rotary blade, selects the blade material and shape as appropriate, and controls the interval between the blades, the number of rotations, etc. Is a crusher capable of crushing wood and the like by freely changing the particle size from fine crushing to coarse crushing. When a beater is used, the power consumed during grinding can be significantly reduced compared to a grinding machine such as a ball mill or a stamp mill, so that the grinding process can be performed with high energy efficiency and low cost. A residue having a particle size of about several μm to 300 μm is generally obtained by pulverization using a beater.

本粉砕処理工程は湿式粉砕であるため、粉塵爆発や火災の危険がなく、また熱による変性で糖成分の一部が分解することもほとんどない。
上記したように、リグノセルロースを前処理することにより、その後の酵素加水分解、発酵によるエタノール生成を低コストで効率よく行うことができる。
Since this pulverization process is wet pulverization, there is no danger of dust explosion or fire, and part of the sugar component is hardly decomposed by heat denaturation.
As described above, by pretreating lignocellulose, subsequent ethanol hydrolysis and ethanol production by fermentation can be efficiently performed at low cost.

上記のように粉砕処理工程において粉砕された残渣は酵素加水分解に供されて糖が製造される。酵素加水分解の酵素としては、セルラーゼが用いられる。すなわち、粉砕された残渣を懸濁した液にセルラーゼを添加し、攪拌しながら、例えばpH4〜6、30〜60℃、10〜120時間反応させる。
この酵素による加水分解液にはセルロース由来の糖であるグルコースが含まれる。この糖液に窒素、リンを含む栄養源とエタノール発酵微生物を添加し、糖をエタノールに変換する。
As described above, the residue pulverized in the pulverization process is subjected to enzymatic hydrolysis to produce sugar. Cellulase is used as the enzyme for enzyme hydrolysis. That is, cellulase is added to a liquid in which the pulverized residue is suspended, and the reaction is performed, for example, at pH 4 to 6, 30 to 60 ° C., for 10 to 120 hours with stirring.
This enzyme hydrolyzed solution contains glucose, which is a sugar derived from cellulose. A nutrient source containing nitrogen and phosphorus and an ethanol-fermenting microorganism are added to the sugar solution to convert the sugar into ethanol.

一方、上記固液分離工程のろ液にはヘミセルロース由来の糖であるグルコース、キシロース、アラビノース、ガラクトース、マンノース等が含まれる。さらに、本発明の前処理方法では酸処理工程における糖の過分解物の生成が抑えられるが、このろ液には糖の過分解物であるフルフラール、ヒドロキシメチルフルフラール(HMF)、レブリン酸、ギ酸等がある程度の量は含まれている。これらは微生物による発酵を阻害するため、前処理が必要である。例えば、石灰を加えて加温する方法はフルフラール、HMFの一部除去も行われる方法として知られている。石灰で中和したろ液には窒素、リンを含む栄養源とエタノール発酵微生物を添加し、糖をエタノールに変換する。   On the other hand, glucose, xylose, arabinose, galactose, mannose, etc., which are sugars derived from hemicellulose, are included in the filtrate of the solid-liquid separation step. Furthermore, in the pre-treatment method of the present invention, the formation of sugar overdegradation products in the acid treatment step is suppressed, but this filtrate contains furfural, hydroxymethylfurfural (HMF), levulinic acid, formic acid, which are sugar overdegradation products. A certain amount is included. Since these inhibit fermentation by microorganisms, pretreatment is necessary. For example, a method of heating by adding lime is known as a method in which part of furfural and HMF is also removed. Nutrient sources containing nitrogen and phosphorus and ethanol-fermenting microorganisms are added to the filtrate neutralized with lime to convert sugar into ethanol.

上記のように本発明のリグノセルロースの前処理方法を用いると、酸加水分解処理工程においてヘミセルロース由来の糖を効率的に回収でき、さらに固液分離した残渣を叩解機を用いて粉砕することにより、低コスト、低動力で酵素加水分解の収率を向上させることができる。従って、低コストでリグノセルロースを原料とする合計糖収量が増加し、これによって糖を発酵させて製造するエタノールの収率をも向上させることができる。   When the lignocellulose pretreatment method of the present invention is used as described above, hemicellulose-derived sugar can be efficiently recovered in the acid hydrolysis treatment step, and further, the solid-liquid separated residue is pulverized using a beating machine. The yield of enzymatic hydrolysis can be improved at low cost and low power. Accordingly, the total sugar yield using lignocellulose as a raw material is increased at a low cost, whereby the yield of ethanol produced by fermenting sugar can be improved.

また、本発明の前処理方法によると、粉砕処理工程において叩解機を用いることにより、従来のボールミル、ローラミル、スタンプミル等の粉砕機を用いる場合と比較して、消費電力を低減させることができ、またスケールアップが容易になり、機器サイズ(設置面積、高さ等)が大きすぎることがなく、維持管理も比較的容易となるため、高効率で糖を得ることが可能となる。   In addition, according to the pretreatment method of the present invention, by using a beater in the pulverization process, it is possible to reduce power consumption as compared with the case of using a pulverizer such as a conventional ball mill, roller mill, stamp mill or the like. In addition, scale-up is facilitated, equipment size (installation area, height, etc.) is not too large, and maintenance is relatively easy, so that sugar can be obtained with high efficiency.

本発明の前処理方法によると、従来のように一次加水分解後の二次処理に過酸化水素等の薬剤を用いる方法に比べ、着色廃水の量が低減できる。また、一次加水分解である酸加水分解で一部未反応であったヘミセルロース由来の糖の回収量も、二次処理に薬剤を用いる方法より多く、原料に含まれる糖をより有効に利用することができる。     According to the pretreatment method of the present invention, the amount of colored waste water can be reduced as compared with the conventional method using a chemical such as hydrogen peroxide in the secondary treatment after the primary hydrolysis. In addition, the amount of hemicellulose-derived sugar that was partially unreacted by acid hydrolysis, which is the primary hydrolysis, is larger than the method using chemicals in the secondary treatment, and the sugar contained in the raw material should be used more effectively. Can do.

以下、実施例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例等に限定されるものではない。     EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited to these Examples.

酸処理工程:原料としてスギ材を用い、加水分解機として連続式加水分解機を用い、硫酸濃度1%、反応温度170℃、反応時間10分で一次加水分解を行い、原料(乾物)100kgあたり20kgの単糖が得られた。固形分回収率は75%であった。
固液分離工程:一次加水分解後、吸引ろ過で固液分離を行った。得られた残渣を水でよく洗浄し、粉砕工程用の原料とした。
粉砕工程:叩解機(リファイナー)に上記の残渣27kg(湿潤重量、水分含量90%)を入れ、約10秒間粉砕を行った。粉砕の前後における残渣の粒度をレーザー回折・散乱方式にて測定したところ、粉砕前の粒度は十数μm〜数mmの分布であったのに対し、粉砕後は数μm〜300μm程度の分布であり50%Dは約50μmであった。
Acid treatment step: using cedar wood as a raw material, using a continuous hydrolyzer as a hydrolyzer, performing primary hydrolysis at a sulfuric acid concentration of 1%, a reaction temperature of 170 ° C., and a reaction time of 10 minutes, per 100 kg of raw material (dry matter) 20 kg of monosaccharide was obtained. The solid content recovery was 75%.
Solid-liquid separation step: After primary hydrolysis, solid-liquid separation was performed by suction filtration. The obtained residue was thoroughly washed with water and used as a raw material for the pulverization process.
Crushing step: 27 kg of the above residue (wet weight, moisture content 90%) was placed in a beater (refiner), and pulverized for about 10 seconds. When the particle size of the residue before and after pulverization was measured by a laser diffraction / scattering method, the particle size before pulverization was a distribution of several tens μm to several mm, whereas after pulverization, the particle size was about several μm to 300 μm. Yes, 50% D was about 50 μm.

酵素加水分解工程:200mLの三角フラスコに、粉砕した残渣を固形物として2.5g投入し、これに緩衝液とイオン交換水とを残渣の付着水分と合わせて50mlになるように添加した。緩衝液としては0.2mol/Lの酢酸ナトリウムを用い、反応液のpHを4.5に調整した。ここにセルラーゼ(SPEZYME GC 220、ジェネンコア・インターナショナルジャパン・リミテッド)を残渣の固形物1gに対して0.4g添加した。これを反応温度45℃、100rpmで振とうし、100時間酵素加水分解を行った。   Enzymatic hydrolysis step: Into a 200 mL Erlenmeyer flask, 2.5 g of the pulverized residue was added as a solid substance, and a buffer solution and ion-exchanged water were added to the residue so as to be 50 ml together with the adhering moisture of the residue. As a buffer solution, 0.2 mol / L sodium acetate was used, and the pH of the reaction solution was adjusted to 4.5. Here, cellulase (SPEZYME GC 220, Genencor International Japan Limited) was added in an amount of 0.4 g to 1 g of the residual solid. This was shaken at a reaction temperature of 45 ° C. and 100 rpm, and enzymatic hydrolysis was performed for 100 hours.

分析:酵素加水分解後の加水分解液中の単糖をHPLCで分離、定量した。HPLCのカラムとしてはBIO−RAD社のHPX−87Pを使用した。加水分解液中の単糖濃度と仕込み基質濃度とから、基質100g(乾物)あたりの単糖収量を計算した。酵素加水分解は仕込み基質濃度を5w/v%で実施したので、基質100gあたりの単糖収量S2は下式で求められる。
基質100g(乾物)あたりの単糖収量S2[g]=加水分解液中の単糖濃度[g/L]x(100/5)x(100/1000)
Analysis: Monosaccharides in the hydrolyzed solution after enzymatic hydrolysis were separated and quantified by HPLC. As the HPLC column, HPX-87P manufactured by BIO-RAD was used. The monosaccharide yield per 100 g (dry matter) of the substrate was calculated from the monosaccharide concentration in the hydrolyzate and the charged substrate concentration. Since the enzymatic hydrolysis was carried out at a charged substrate concentration of 5 w / v%, the monosaccharide yield S2 per 100 g of the substrate can be obtained by the following equation.
Monosaccharide yield per 100 g (dry matter) of substrate S2 [g] = Monosaccharide concentration in hydrolyzate [g / L] x (100/5) x (100/1000)

(比較例1)
一次加水分解の残渣を粉砕処理を行わずにそのまま酵素加水分解工程に用いたこと以外は上記の実施例1と同様にして単糖を得た。
(参考例1)
粉砕工程において粉砕機としてボールミル(CMT株式会社製、型式:TI−200)を用いたこと以外は上記の実施例1と同様にして単糖を得た。
上記実施例1、比較例1および参考例1の酵素糖化収量の結果、ならびに粉砕に用いられた粉砕機の粉砕動力を表1に示す。
(Comparative Example 1)
A monosaccharide was obtained in the same manner as in Example 1 except that the residue of primary hydrolysis was directly used in the enzyme hydrolysis step without being pulverized.
(Reference Example 1)
A monosaccharide was obtained in the same manner as in Example 1 except that a ball mill (manufactured by CMT Corporation, model: TI-200) was used as a pulverizer in the pulverization step.
Table 1 shows the results of enzyme saccharification yield of Example 1, Comparative Example 1 and Reference Example 1, and the pulverization power of the pulverizer used for pulverization.

Figure 0004619917
Figure 0004619917

実施例1および比較例1における酵素加水分解で得られた単糖収量の結果より、実施例1のように酸加水分解の反応物を中和、叩解機により粉砕処理することによって、比較例1のように粉砕処理しなかった場合よりも大幅に単糖収量が向上することがわかった。
また、粉砕機としてボールミルを用いた参考例1と、叩解機を用いた実施例1とを比較すると、糖化終了は実施例1の方が若干劣るものの、粉砕動力が格段に低減されるため、収量と消費動力との両者を考慮すると、叩解機を用いる実施例1の方が効率よく低コストで糖を製造することができる。
From the results of monosaccharide yield obtained by enzymatic hydrolysis in Example 1 and Comparative Example 1, the reaction product of acid hydrolysis was neutralized as in Example 1 and pulverized with a beater to produce Comparative Example 1. Thus, it was found that the yield of monosaccharides was significantly improved as compared with the case where the pulverization treatment was not performed.
Further, comparing Reference Example 1 using a ball mill as a pulverizer and Example 1 using a beating machine, although the end of saccharification is slightly inferior to Example 1, the pulverization power is significantly reduced. Considering both yield and power consumption, Example 1 using a beating machine can produce sugar more efficiently and at lower cost.

本発明のリグノセルロースの前処理方法は、木質バイオマスを原料とする糖化およびエタノールの製造に有用である。   The lignocellulose pretreatment method of the present invention is useful for saccharification and production of ethanol using woody biomass as a raw material.

リグノセルロースを原料とし、本発明の前処理方法を含むエタノールの製造方法の一例をフローチャートで示したものである。An example of the manufacturing method of ethanol which uses lignocellulose as a raw material and includes the pre-processing method of this invention is shown with the flowchart.

Claims (7)

リグノセルロースの酵素加水分解の前処理方法であって、リグノセルロース原料を酸処理する酸処理工程と、前記酸処理工程の反応物を固液分離する固液分離工程と、前記固液分離工程の残渣を叩解機を用いて粉砕処理する粉砕処理工程とを含むことを特徴とするリグノセルロースの前処理方法。   A pretreatment method for enzymatic hydrolysis of lignocellulose, comprising an acid treatment step for acid-treating a lignocellulose raw material, a solid-liquid separation step for solid-liquid separation of a reaction product of the acid treatment step, and a solid-liquid separation step A pretreatment method for lignocellulose, comprising a pulverization step of pulverizing the residue using a beating machine. 前記酸処理を、希硫酸を用いて行うことを特徴とする請求項1に記載のリグノセルロースの前処理方法。   The pretreatment method for lignocellulose according to claim 1, wherein the acid treatment is performed using dilute sulfuric acid. 前記酸処理工程において、希硫酸の濃度が0.1〜5%であることを特徴とする請求項2に記載のリグノセルロースの前処理方法。   The pretreatment method for lignocellulose according to claim 2, wherein the concentration of dilute sulfuric acid is 0.1 to 5% in the acid treatment step. 前記酸処理工程において、反応温度が140〜230℃であることを特徴とする請求項1〜3のいずれか1項に記載のリグノセルロースの前処理方法。   In the said acid treatment process, reaction temperature is 140-230 degreeC, The pretreatment method of lignocellulose of any one of Claims 1-3 characterized by the above-mentioned. 前記酸処理工程において、反応時間が1〜20分であることを特徴とする請求項1〜4のいずれか1項に記載のリグノセルロースの前処理方法。   In the said acid treatment process, reaction time is 1 to 20 minutes, The pretreatment method of lignocellulose of any one of Claims 1-4 characterized by the above-mentioned. 前記リグノセルロース原料が廃建材であることを特徴とする請求項1〜5のいずれか1項に記載のリグノセルロースの前処理方法。   The said lignocellulose raw material is a waste building material, The pretreatment method of lignocellulose of any one of Claims 1-5 characterized by the above-mentioned. リグノセルロースを、酸処理前に破砕処理を行うことを特徴とする請求項1〜6のいずれか1項に記載のリグノセルロースの前処理方法。

The lignocellulose pretreatment method according to any one of claims 1 to 6, wherein the lignocellulose is crushed before acid treatment.

JP2005299883A 2005-10-14 2005-10-14 Pretreatment method of lignocellulose Expired - Fee Related JP4619917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299883A JP4619917B2 (en) 2005-10-14 2005-10-14 Pretreatment method of lignocellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299883A JP4619917B2 (en) 2005-10-14 2005-10-14 Pretreatment method of lignocellulose

Publications (2)

Publication Number Publication Date
JP2007104983A JP2007104983A (en) 2007-04-26
JP4619917B2 true JP4619917B2 (en) 2011-01-26

Family

ID=38031340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299883A Expired - Fee Related JP4619917B2 (en) 2005-10-14 2005-10-14 Pretreatment method of lignocellulose

Country Status (1)

Country Link
JP (1) JP4619917B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877045B2 (en) 2007-04-25 2012-02-15 トヨタ自動車株式会社 Method for decomposing plant fiber materials
JP4240138B1 (en) 2007-09-05 2009-03-18 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP2009142172A (en) * 2007-12-12 2009-07-02 Oji Paper Co Ltd Method for producing sugar composition using biomass as raw material
FR2926824A1 (en) * 2008-01-25 2009-07-31 Cie Ind De La Matiere Vegetale PROCESS FOR PRETREATMENT OF LIGNOCELLULOSIC PLANT MATERIAL FOR PRODUCTION OF BIOETHANOL
JP5165419B2 (en) * 2008-03-10 2013-03-21 日本製紙株式会社 Bioethanol production system using lignocellulose as a raw material
JP5114298B2 (en) 2008-06-03 2013-01-09 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP4609526B2 (en) 2008-06-03 2011-01-12 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP2011055732A (en) * 2009-09-08 2011-03-24 Oji Paper Co Ltd Method for producing saccharides from bark raw material
CA2818041C (en) * 2010-11-25 2015-10-13 Studiengesellschaft Kohle Mbh Method for the acid-catalyzed depolymerization of cellulose
JP2013141415A (en) * 2012-01-06 2013-07-22 Ihi Corp Method and device for producing monosaccharide, and method and device for producing ethanol
JP5999759B2 (en) * 2012-06-21 2016-09-28 月島機械株式会社 Biomass processing method
DE102012109595A1 (en) * 2012-10-09 2014-04-24 Studiengesellschaft Kohle Mbh Process for obtaining sugar alcohols having five to six carbon atoms
JP6366238B2 (en) * 2013-08-09 2018-08-01 株式会社 Dnaセキュリティー研究所 Method for producing glucose aqueous solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201599A (en) * 2002-12-26 2004-07-22 Tsukishima Kikai Co Ltd System and method for producing sugar from waste building material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991893A (en) * 1982-11-16 1984-05-26 Res Assoc Petroleum Alternat Dev<Rapad> Method for pretreating cellulosic raw material for saccharification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201599A (en) * 2002-12-26 2004-07-22 Tsukishima Kikai Co Ltd System and method for producing sugar from waste building material

Also Published As

Publication number Publication date
JP2007104983A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP4619917B2 (en) Pretreatment method of lignocellulose
US7666637B2 (en) Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals
US8728770B2 (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
JP2007124933A (en) Pretreatment method of lignocellulose
JP4958166B2 (en) Treatment of plant biomass with alcohol in the presence of oxygen
WO2010050223A1 (en) Saccharide production process and ethanol production process
JP4522797B2 (en) Lignocellulose pretreatment method and ethanol production method
MX2013014331A (en) Methods for converting lignocellulosic material to useful products.
WO2008017145A1 (en) Process for recovery of holocellulose and near-native lignin from biomass
JP5442284B2 (en) Pretreatment method for enzymatic hydrolysis treatment of herbaceous biomass and ethanol production method using herbaceous biomass as raw material
US20210285155A1 (en) Methods of making specialized cellulose and other products from biomass
MX2013014330A (en) Methods for treating lignocellulosic material.
JP2008043328A (en) Method for saccharifying wood-based biomass
Mussatto Biomass pretreatment with acids
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP2007151433A (en) Method for pretreatment of lignocellulose and method for producing ethanol
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
WO2013151927A1 (en) Pretreatment composition for biomass conversion process
JP2011045277A (en) Production system for cellulose-based ethanol, and method for producing the same
Zhang Waste pretreatment technologies for hydrogen production
JP4619831B2 (en) Pretreatment method of lignocellulose
JP5662724B2 (en) Saccharification method of woody biomass
JPWO2014097800A1 (en) Method for hydrolysis of plant biomass
Joshi et al. Intensified synthesis of bioethanol from sustainable biomass
Valchev et al. Use of enzymes in hydrolysis of maize stalks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees