JP2007124933A - Pretreatment method of lignocellulose - Google Patents

Pretreatment method of lignocellulose Download PDF

Info

Publication number
JP2007124933A
JP2007124933A JP2005319536A JP2005319536A JP2007124933A JP 2007124933 A JP2007124933 A JP 2007124933A JP 2005319536 A JP2005319536 A JP 2005319536A JP 2005319536 A JP2005319536 A JP 2005319536A JP 2007124933 A JP2007124933 A JP 2007124933A
Authority
JP
Japan
Prior art keywords
lignocellulose
acid
pretreatment method
sugar
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319536A
Other languages
Japanese (ja)
Inventor
Naoyuki Okuda
直之 奥田
Yuichi Ono
裕一 小野
Kenji Suzuki
健治 鈴木
Tomomoto Hayakawa
智基 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2005319536A priority Critical patent/JP2007124933A/en
Publication of JP2007124933A publication Critical patent/JP2007124933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreatment method of lignocellulose which is used when enzymically hydrolyzing a lignocellulose raw material, and by which the treatment can be carried out at a low cost while keeping input energy low, and a sugar can be obtained at a low cost in good yield by suppressing the excess degradation of the sugar. <P>SOLUTION: The pretreatment method of the lignocellulose by enzymic hydrolysis comprises an acid-treating step for subjecting the lignocellulose raw material to acid treatment, a neutralizing step for neutralizing the reaction product of the acid-treating step, and a pulverizing step for subjecting the reaction product of the neutralizing step to wet pulverization treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリグノセルロースの前処理方法に関する。   The present invention relates to a pretreatment method for lignocellulose.

近年再生可能資源であるバガスや稲わら、木材チップなどの天然系の資源からエタノールを製造し、エネルギーや化学原料として利用する試みが内外で進められている。原料としては種々のバイオマスが使用されるが、将来的に有用な資源として木質バイオマスのようなリグノセルロースが注目されている。リグノセルロースは、植物の茎葉等の主成分であり、主にセルロース、ヘミセルロース及びリグニンから構成されている。セルロースは、木材の50%程度の含有量であり、グルコースが直鎖状に結合した比較的安定な高分子である。ヘミセルロースは、木材の20〜30%程度の含有量であり、結合がセルロースのように規則的でなく、加水分解しやすい。リグニンは、木材の20〜30%程度の含有量であり、主にベンゼン核を有する不定形の高分子である。   In recent years, domestic and overseas efforts have been made to produce ethanol from natural resources such as bagasse, rice straw, and wood chips, which are renewable resources, and use them as energy and chemical raw materials. Various biomass is used as a raw material, but lignocellulose such as woody biomass has attracted attention as a useful resource in the future. Lignocellulose is a main component of plant stems and leaves, and is mainly composed of cellulose, hemicellulose, and lignin. Cellulose has a content of about 50% of wood and is a relatively stable polymer in which glucose is linearly bound. Hemicellulose has a content of about 20 to 30% of wood, and bonds are not regular like cellulose and are easily hydrolyzed. Lignin has a content of about 20 to 30% of wood and is an amorphous polymer mainly having a benzene nucleus.

木質バイオマスのようなリグノセルロースからエタノールを製造するには、まず酸やアルカリでヘミセルロースを加水分解し、ヘミセルロース由来の糖液を得る。ヘミセルロースを構成する糖は、主にキシロース、アラビノースといった五炭糖と、グルコース、ガラクトース、マンノースといった六炭糖であり、これらの量比率は木質系バイオマスの種類によって異なっている。
次いで、上記のヘミセルロース由来の糖を得た後の残渣をさらに酸や酵素で処理しセルロース由来の糖を得るが、この処理に希硫酸を用いるとグルコース収率が40%程度と低いことに加え、ギ酸やレブリン酸、ヒドロキシメチルフルフラール(HMF)などの糖の過分解物質が生じやすく、これらの過分解物質はエタノールへの発酵に悪影響を与える。
上記の酸やアルカリ処理に代わる方法として酵素による加水分解が研究されているが、酵素反応を有効に行うための前処理は、原料によって適切な方法を選定する必要がある。
In order to produce ethanol from lignocellulose such as woody biomass, hemicellulose is first hydrolyzed with acid or alkali to obtain a sugar solution derived from hemicellulose. The sugars constituting hemicellulose are mainly pentose sugars such as xylose and arabinose, and hexose sugars such as glucose, galactose and mannose, and the ratio of these amounts varies depending on the type of woody biomass.
Next, the residue after obtaining the hemicellulose-derived sugar is further treated with an acid or enzyme to obtain a cellulose-derived sugar. When dilute sulfuric acid is used for this treatment, the glucose yield is as low as about 40%. Sugar-degrading substances such as formic acid, levulinic acid and hydroxymethylfurfural (HMF) are likely to be produced, and these hyperdegrading substances have an adverse effect on fermentation to ethanol.
Hydrolysis with an enzyme has been studied as a method to replace the acid or alkali treatment described above, but it is necessary to select an appropriate method for the pretreatment for effectively carrying out the enzyme reaction depending on the raw material.

リグノセルロース原料に共通する性質の一つに、ヘミセルロースとセルロースの加水分解条件に差があることが挙げられる。ヘミセルロースは比較的酸やアルカリで分解されやすく、90%以上の高い回収率で糖が得られるのに対し、セルロースの分解はより厳しい条件で行われ、糖の過分解がほぼ同じ速度で生じてしまうため糖の回収率が低くなる。そこで、まず酵素加水分解の前処理を兼ねた一次加水分解でヘミセルロース由来の糖をできるだけ回収する方法が望ましい。   One of the properties common to lignocellulose raw materials is that there is a difference in the hydrolysis conditions of hemicellulose and cellulose. Hemicellulose is relatively easily decomposed by acids and alkalis, and sugar can be obtained with a high recovery rate of 90% or more, whereas cellulose is decomposed under more severe conditions, and sugar overdegradation occurs at almost the same rate. As a result, the sugar recovery rate is low. Therefore, it is desirable to first recover the hemicellulose-derived sugar as much as possible by primary hydrolysis that also serves as a pretreatment for enzymatic hydrolysis.

一次加水分解法としてよく研究されているのは酸またはアルカリを用いる方法である。
酵素加水分解の前処理としてはいずれも効果があるが、一次加水分解でヘミセルロース由来の糖を得ようとする場合、アルカリ条件下では糖の過分解が進みやすいため、酸を用いた処理が有利である。ヘミセルロース原料に対する一次加水分解処理として、苛性ソーダ蒸煮、酸化条件下での石灰処理も報告されているが、いずれもヘミセルロース由来の糖の収率は低い。
The method of using an acid or alkali is well studied as a primary hydrolysis method.
All of the pretreatments for enzymatic hydrolysis are effective. However, when obtaining hemicellulose-derived sugars by primary hydrolysis, sugars tend to undergo excessive decomposition under alkaline conditions, so treatment with acid is advantageous. It is. As the primary hydrolysis treatment for the hemicellulose raw material, caustic soda cooking and lime treatment under oxidizing conditions have been reported, but the yield of sugars derived from hemicellulose is low.

一方、酸を用いる一次加水分解処理では、糖は回収できるが原料によっては酵素加水分解の前処理として不十分な場合がある。例えば、木材の中でも広葉樹を酸や爆砕で一次処理した後の残渣は比較的容易に酵素で糖化されるが、針葉樹はリグニンを含む構造が広葉樹より強固なため、一次処理した後の残渣をそのまま使用すると酵素加水分解率は低い。
国内で有効利用が望まれている廃建材はスギ、ツガ、マツなどの針葉樹が主体であるため、針葉樹に対する前処理方法の確立は特に国内において重要である。
On the other hand, in the primary hydrolysis treatment using an acid, sugar can be recovered, but depending on the raw material, it may be insufficient as a pretreatment for enzyme hydrolysis. For example, in wood, the residue after primary treatment of hardwood with acid or blasting is relatively easily saccharified by enzymes. When used, the enzyme hydrolysis rate is low.
Since waste building materials that are expected to be used effectively in Japan are mainly coniferous trees such as cedar, tsuga and pine, establishment of pretreatment methods for coniferous trees is particularly important in Japan.

このような観点から、一次処理した残渣を酵素加水分解に供する前に二次処理を行い、酵素加水分解率を高める方法も研究されている。例えば、オゾン、過酸化水素、亜塩素酸ナトリウムなどによる処理が報告されている。しかし、これら薬品の使用はコストが大きいだけでなく、後段の発酵において微生物に阻害的に働く場合が懸念されるので、発酵前に除去する工程を設ける必要がある。   From such a viewpoint, a method of increasing the enzyme hydrolysis rate by performing a secondary treatment before subjecting the primary treated residue to enzyme hydrolysis has also been studied. For example, treatment with ozone, hydrogen peroxide, sodium chlorite and the like has been reported. However, the use of these chemicals is not only costly, but there is a concern that it may act to inhibit microorganisms in the subsequent fermentation, so it is necessary to provide a step for removal before fermentation.

また、セルロースやヘミセルロースを含む木材等のリグノース原料を加水分解する前に微粉砕処理する前処理方法も報告されている(例えば、特許文献1、特許文献2、および特許文献3参照。)。同様にリグノース原料を微粉砕してから酵素加水分解を行った後、再度固形物残渣を粉砕する方法も報告されている(例えば、特許文献4参照。)。また、アルカリ加水分解処理と機械的粉砕処理とを組み合わせた前処理方法についても報告されている(特許文献5参照。)。   In addition, a pretreatment method in which a pulverization treatment is performed before hydrolyzing a lignose raw material such as wood containing cellulose or hemicellulose has been reported (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). Similarly, a method has also been reported in which a lignose raw material is finely pulverized and then subjected to enzyme hydrolysis, and then a solid residue is pulverized again (for example, see Patent Document 4). In addition, a pretreatment method combining an alkali hydrolysis treatment and a mechanical pulverization treatment has also been reported (see Patent Document 5).

一方、本発明の発明者らは鋭意検討を行い、リグノセルロース原料にまず酸加水分解処理を施し、固液分離して酸で比較的容易に回収できるヘミセルロース由来の糖を得た後、固形残渣に湿式粉砕処理を行うことにより、続く酵素加水分解の効率を高めることができる前処理方法を見いだしている。この前処理方法では、原料のリグノセルロースは、まず酸処理工程において主に原料中のヘミセルロースを加水分解し、続く固液分離工程で糖液と残渣とに分離され、残渣は、粉砕処理工程において粉砕される(以上、前処理方法。)。その後、酵素加水分解工程において糖へと加水分解され発酵によってエタノールが製造される。一方、固液分離工程で回収された糖液からも、中和された後発酵によってエタノールが製造される。
特開昭55−9758号公報 特開昭59−91893号公報 特開昭63−137690号公報 特開昭63−137692号公報 特開昭55−45306号公報
On the other hand, the inventors of the present invention have made extensive studies and first subjected to an acid hydrolysis treatment on the lignocellulose raw material to obtain a hemicellulose-derived sugar that can be solid-liquid separated and recovered relatively easily with an acid, and then a solid residue. The present inventors have found a pretreatment method that can improve the efficiency of the subsequent enzymatic hydrolysis by performing wet pulverization treatment on the surface of the material. In this pretreatment method, the raw lignocellulose is first hydrolyzed in the acid treatment step, mainly hemicellulose in the raw material, and then separated into a sugar solution and a residue in the subsequent solid-liquid separation step, and the residue is separated in the pulverization treatment step. It is pulverized (pretreatment method). Then, in an enzyme hydrolysis process, it is hydrolyzed to sugar and ethanol is produced by fermentation. On the other hand, ethanol is also produced from the sugar solution recovered in the solid-liquid separation process by fermentation after neutralization.
Japanese Patent Laid-Open No. 55-9758 JP 59-91893 A JP-A-63-137690 Japanese Patent Laid-Open No. 63-137692 JP-A-55-45306

上述のようにリグノセルロース原料をボールミル等で微粉砕処理する前処理方法は、工程が少なくてすむ反面、投入エネルギーをかなり高くしないと前処理としての効果が得られない。また、アルカリ条件下での加水分解では糖の過分解が進みやすいという問題があった。さらに、ヘミセルロース由来の糖の収率についてはほとんど言及されていない。   As described above, the pretreatment method in which the lignocellulose raw material is finely pulverized with a ball mill or the like requires fewer steps, but the effect as the pretreatment cannot be obtained unless the input energy is considerably increased. In addition, hydrolysis under an alkaline condition has a problem in that sugar excessive decomposition easily proceeds. Furthermore, little is mentioned about the yield of sugar derived from hemicellulose.

また、リグノース原料を酸加水分解した後固液分離してから固形残渣を粉砕処理する前処理方法の場合は、ヘミセルロース由来の糖とセルロース由来の糖とを分離して別々に発酵を行うものであり、工程数が多くなってしまうため機器、配管等も多くなり、コスト高につながり設備化が困難になるという問題点があった。
さらに、前処理に粉砕を行う場合、コスト削減および環境への配慮等の点から、消費動力を低減できる粉砕機の使用が望まれていた。
In the case of a pretreatment method in which a solid residue is pulverized after acid-hydrolyzed lignose raw material and then separated, hemicellulose-derived sugar and cellulose-derived sugar are separated and subjected to fermentation separately. In addition, since the number of processes is increased, the number of equipment, piping, and the like is increased, resulting in high costs and difficulty in equipment installation.
Further, when pulverization is performed in the pretreatment, it has been desired to use a pulverizer that can reduce power consumption from the viewpoints of cost reduction and environmental consideration.

本発明は、上述の背景技術の問題点を鑑みてなされたものであり、リグノセルロース原料を酵素加水分解する際の前処理方法であって、投入エネルギーを低く抑えて低コストで処理でき、糖の過分解を抑えて収率よく糖を得るためのリグノセルロースの前処理方法を提供することを課題とする。     The present invention has been made in view of the above-mentioned problems of the background art, and is a pretreatment method for enzymatic hydrolysis of a lignocellulose raw material, which can be processed at a low cost with low input energy. It is an object of the present invention to provide a method for pretreatment of lignocellulose for suppressing sugar overdegradation and obtaining a sugar with high yield.

本発明の発明者らは、上記課題を解決するため鋭意検討した結果、リグノセルロース原料にまず酸加水分解処理を施し、該酸処理工程の反応物を中和した後に湿式粉砕処理を行うことにより、粉砕の投入エネルギーを低く抑えて低コストに処理でき、かつ続く酵素加水分解の効率を高めることができる前処理方法を見いだすに至った。     The inventors of the present invention have made extensive studies to solve the above problems, and as a result, the lignocellulosic raw material is first subjected to an acid hydrolysis treatment, neutralized the reactants in the acid treatment step, and then subjected to a wet pulverization treatment. Thus, the present inventors have found a pretreatment method that can reduce the input energy for pulverization at a low cost and can increase the efficiency of subsequent enzymatic hydrolysis.

すなわち本発明は、リグノセルロースの酵素加水分解の前処理方法であって、リグノセルロース原料を酸処理する酸処理工程と、前記酸処理工程の反応物を中和する中和工程と、前記中和工程の反応物を湿式粉砕処理する粉砕処理工程とを含むことを特徴とするリグノセルロースの前処理方法である。     That is, the present invention is a pretreatment method for enzymatic hydrolysis of lignocellulose, an acid treatment step of acid-treating a lignocellulose raw material, a neutralization step of neutralizing a reaction product of the acid treatment step, and the neutralization And a pulverization process step of wet pulverizing the reaction product of the process.

本発明によれば、酸でヘミセルロースを加水分解した反応物について中和を行ってから、湿式粉砕処理することによって、前処理の工程短縮化が可能となり、工程機器が減って設備費、運転費を抑えることができ、低コストで効率よく酵素加水分解における糖の収率を向上させ、続く発酵でのエタノール収率の向上を達成することが可能となる。工程が短縮化されるため、酸処理工程の反応物を固液分離する場合と比較して、密閉系での操作がしやすくなり製造過程での細菌等の汚染を防ぎやすくなる。また、固液分離を行う場合は系内に固形物洗浄のための水を添加する必要があるが、本発明の前処理方法では水の添加が必要なくなるため糖の濃度を高めることができる。これによって製品となるエタノールを分離するエネルギーの削減が行える。     According to the present invention, the reaction product obtained by hydrolyzing hemicellulose with an acid is neutralized and then wet pulverized to shorten the pretreatment process. Thus, it is possible to efficiently improve the yield of sugar in enzymatic hydrolysis at low cost and to achieve an increase in ethanol yield in subsequent fermentation. Since the process is shortened, compared with the case where the reaction product of the acid treatment process is solid-liquid separated, it is easy to operate in a closed system and it is easy to prevent contamination of bacteria and the like in the manufacturing process. In addition, when performing solid-liquid separation, it is necessary to add water for washing solids into the system. However, in the pretreatment method of the present invention, it is not necessary to add water, so that the sugar concentration can be increased. This can reduce the energy for separating the ethanol product.

本発明によると、酸加水分解による一次処理に引き続き二次処理に過酸化水素等の薬剤を用いる前処理方法に比べ、着色廃水の量が低減できる。また、一次加水分解で一部未反応のヘミセルロース由来の糖(キシロースなど)の回収量も二次処理に薬剤を用いる方法より多く、原料に含まれる糖をより有効に利用することができる。
また、希硫酸等の酸による反応で、ヘミセルロース由来の糖が溶出していること、及びリグニンの一部が溶出していることにより、反応物が柔らかくなっているため、少ない投入エネルギーで、酵素加水分解の効果を大きく高めることができる。
さらに、粉砕工程に叩解機を用いると、ボールミル等の粉砕機を用いる場合と比較して格段に粉砕動力が低減できるため低コスト化を実現できる。
According to the present invention, the amount of colored waste water can be reduced as compared with a pretreatment method using a chemical such as hydrogen peroxide in the secondary treatment following the primary treatment by acid hydrolysis. In addition, the amount of recovered sugar (such as xylose) derived from hemicellulose partially unreacted in the primary hydrolysis is larger than the method using a drug for the secondary treatment, and the sugar contained in the raw material can be used more effectively.
In addition, the reaction product is soft due to the elution of hemicellulose-derived sugar and the elution of part of the lignin in the reaction with an acid such as dilute sulfuric acid. The effect of hydrolysis can be greatly enhanced.
Furthermore, when a beater is used in the pulverization process, the pulverization power can be significantly reduced as compared with the case where a pulverizer such as a ball mill is used, so that cost reduction can be realized.

本発明のリグノセルロースの酵素加水分解の前処理方法は、リグノセルロース原料を希硫酸処理する酸処理工程と、酸処理工程の反応物を中和する中和工程と、中和工程の反応物を湿式粉砕処理する粉砕処理工程とを含む。
図1は、リグノセルロースを原料とし、本発明の前処理方法を含むエタノールの製造方法の一例をフローチャートで示したものである。
原料のリグノセルロースは、まず酸処理工程において主に原料中のヘミセルロースを加水分解し、酸処理された反応物は続く中和工程において中和される。中和工程の反応物は粉砕処理工程において湿式粉砕された(以上、本発明における前処理)後、酵素加水分解工程において糖へと加水分解され発酵によってエタノールが製造される。
The pretreatment method for enzymatic hydrolysis of lignocellulose of the present invention comprises an acid treatment step for treating a lignocellulose raw material with dilute sulfuric acid, a neutralization step for neutralizing a reaction product in the acid treatment step, and a reaction product in the neutralization step. And a pulverization process step for performing a wet pulverization process.
FIG. 1 is a flowchart showing an example of a method for producing ethanol using lignocellulose as a raw material and including the pretreatment method of the present invention.
The raw material lignocellulose first hydrolyzes hemicellulose in the raw material mainly in the acid treatment step, and the acid-treated reaction product is neutralized in the subsequent neutralization step. The reaction product in the neutralization step is wet pulverized in the pulverization step (pretreatment in the present invention), and then hydrolyzed to sugar in the enzyme hydrolysis step to produce ethanol by fermentation.

本発明に用いられる原料のリグノセルロースは、特に限定されないが、例えば木材、稲わら、籾殻、バガスなどが利用できる。特に国内では発生量が多く、収集ルートが確立している廃建材を用いることが望ましい。廃建材は主に木造家屋の解体によって発生し、用いられている樹種としては、杉、松、栂などの針葉樹の比率が高い。     Although the raw material lignocellulose used for this invention is not specifically limited, For example, wood, rice straw, rice husk, bagasse, etc. can be utilized. Particularly in Japan, it is desirable to use waste building materials that are generated in large quantities and have established collection routes. Waste building materials are mainly generated by the demolition of wooden houses, and the percentage of conifers such as cedar, pine, and oak is high.

本発明に用いられるリグノセルロース原料は、あらかじめ破砕機を用いて1〜20mm、特に5〜10mmのサイズに破砕することが好ましい。破砕後のチップサイズはできるだけ小さい方が糖化の効率が高くなるが、破砕のための所要エネルギーも大きくなる。そこで適正なチップサイズが存在する。この破砕工程は酸加水分解後の粉砕処理工程とは異なり、一次加水分解である酸処理工程において原料と硫酸や蒸気の接触を良くしヘミセルロースから糖を回収しやすくするためである。     The lignocellulose raw material used in the present invention is preferably crushed in advance to a size of 1 to 20 mm, particularly 5 to 10 mm using a crusher. As the chip size after crushing is as small as possible, the efficiency of saccharification increases, but the energy required for crushing also increases. There is an appropriate chip size. This crushing process is different from the crushing process after acid hydrolysis, in order to facilitate the recovery of sugar from hemicellulose by improving the contact between the raw material and sulfuric acid or steam in the acid treatment process which is primary hydrolysis.

次いで、リグノセルロース原料を酸処理する。用いる酸としては、例えば硫酸、塩酸、硝酸又はそれらの混合物が挙げられるが、このうち硫酸、特に希硫酸が好ましい。さらに、本発明における酸処理は、加熱しながら行うことが好ましい。反応に用いられる硫酸濃度は0.1〜5%、特に0.5〜3%が好ましい。反応温度は140〜230℃、特に160〜210℃の範囲が望ましい。反応時間は1〜20分、特に5〜10分であることが好ましい。硫酸濃度、反応温度および反応時間が上記の範囲内であると、酸処理工程においてヘミセルロースを効率的に加水分解し、糖を回収することができる。     Next, the lignocellulose raw material is acid-treated. Examples of the acid to be used include sulfuric acid, hydrochloric acid, nitric acid or a mixture thereof. Among these, sulfuric acid, particularly dilute sulfuric acid is preferable. Furthermore, the acid treatment in the present invention is preferably performed while heating. The sulfuric acid concentration used in the reaction is preferably 0.1 to 5%, particularly preferably 0.5 to 3%. The reaction temperature is preferably 140 to 230 ° C, particularly 160 to 210 ° C. The reaction time is preferably 1 to 20 minutes, particularly preferably 5 to 10 minutes. If the sulfuric acid concentration, reaction temperature, and reaction time are within the above ranges, hemicellulose can be efficiently hydrolyzed and sugar can be recovered in the acid treatment step.

次に上記酸処理工程の反応物は、中和工程において中和される。中和に用いるアルカリとしては、水酸化カルシウム、酸化カルシウム、水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム、炭酸カリウム等が挙げられるが、特に水酸化カルシウムが好ましい。中和に用いられるアルカリ濃度は、0.5〜5%、特に1〜3%が好ましい。反応温度は10〜100℃、特に40〜70℃の範囲が好ましい。反応時間は0.1〜10時間、特に0.5〜2時間であることが好ましい。アルカリ濃度、反応温度および反応時間が上記の範囲内であると、酸処理工程で生じた糖の過分解物等の発酵阻害物質を適切に除去することができる。また、残渣中のリグニンの一部が溶解し、後段の酵素による加水分解性が向上する。中和された後の反応物のpHは8〜11、特に9〜10であることが好ましい。     Next, the reaction product in the acid treatment step is neutralized in the neutralization step. Examples of the alkali used for neutralization include calcium hydroxide, calcium oxide, sodium hydroxide, sodium carbonate, potassium hydroxide, and potassium carbonate, and calcium hydroxide is particularly preferable. The alkali concentration used for neutralization is preferably 0.5 to 5%, particularly 1 to 3%. The reaction temperature is preferably in the range of 10 to 100 ° C, particularly 40 to 70 ° C. The reaction time is preferably 0.1 to 10 hours, particularly 0.5 to 2 hours. When the alkali concentration, reaction temperature, and reaction time are within the above ranges, fermentation-inhibiting substances such as sugar hyperdegradation products generated in the acid treatment step can be appropriately removed. In addition, a part of the lignin in the residue is dissolved, and the hydrolyzability by the subsequent enzyme is improved. The pH of the reaction product after neutralization is preferably 8 to 11, particularly 9 to 10.

なお、本中和工程は、後述する粉砕処理工程の後、酵素加水分解の前段階で行うことも可能であるが、低pHで粉砕処理を行う場合、例えば叩解機を耐酸性にする必要がありコストが高くなってしまうため、粉砕処理の前に中和を行う方がより好ましい。   The neutralization step can be performed after the pulverization treatment step, which is described later, before the enzymatic hydrolysis. However, when the pulverization treatment is performed at a low pH, for example, the beating machine needs to be acid-resistant. Since the cost increases, it is more preferable to perform neutralization before the pulverization treatment.

上記中和工程に供する酸処理工程の反応物にはヘミセルロース由来の糖であるグルコース、キシロース、アラビノース、ガラクトース、マンノース等が含まれている。本発明の前処理方法では酸処理工程における糖の過分解物の生成が抑えられるが、この反応物には糖の過分解物であるフルフラール、ヒドロキシメチルフルフラール(HMF)、レブリン酸、ギ酸等がある程度の量は含まれている。これらは後段の微生物による発酵を阻害するため前処理が必要であるが、本中和工程においてフルフラール、HMFの一部除去も行われるため、特段の処理を必要としない。   The reaction product of the acid treatment step used for the neutralization step contains hemicellulose-derived sugars such as glucose, xylose, arabinose, galactose, and mannose. In the pretreatment method of the present invention, the formation of a sugar overdegradation product in the acid treatment step is suppressed, but this reaction product contains a sugar overdegradation product such as furfural, hydroxymethylfurfural (HMF), levulinic acid, formic acid and the like. Some amount is included. These require pretreatment in order to inhibit fermentation by microorganisms in the latter stage, but do not require special treatment because furfural and HMF are partially removed in the neutralization step.

上記中和工程の反応物は、粉砕処理工程において湿式粉砕される。粉砕される反応物の水分含量は50〜95%、特に60〜90%であることが好ましい。この反応物は、希硫酸による加水分解反応でヘミセルロース由来の糖が溶出していること、およびリグニンの一部が溶出していることにより柔らかくなっている。従って少ない投入エネルギーで粉砕しても、続く酵素加水分解の効果を大きく高めることができる。粉砕処理工程に用いられる粉砕機は、湿式で叩解効果が得られる粉砕機であればいずれでもよいが、叩解機、スタンプミル、ボールミルが好ましく、叩解機が特に好ましい。本粉砕処理工程は、湿式粉砕であるため、粉塵爆発や火災の危険がなく、また熱による変性で糖成分の一部が分解することもほとんどない。   The reaction product in the neutralization step is wet pulverized in the pulverization step. The water content of the reaction product to be pulverized is preferably 50 to 95%, particularly 60 to 90%. This reaction product is softened due to the elution of hemicellulose-derived sugar by hydrolysis with dilute sulfuric acid and the elution of a part of lignin. Therefore, the effect of subsequent enzymatic hydrolysis can be greatly enhanced even if pulverization is performed with a small amount of input energy. The pulverizer used in the pulverization process may be any pulverizer capable of obtaining a beating effect when wet, but a beating machine, a stamp mill, and a ball mill are preferable, and a beating machine is particularly preferable. Since this pulverization process is wet pulverization, there is no danger of dust explosion or fire, and part of the sugar component is hardly decomposed by heat denaturation.

粉砕処理工程に用いられる叩解機は、原料が固定刃と回転刃の間を通過する際に破砕を行い、刃の材質や形状を適宜選択し刃間の間隔、回転数等を設定制御することにより微粉砕から粗粉砕まで自由に粒度を変えて木材等を破砕することができる粉砕機である。叩解機を用いる場合、ボールミルやスタンプミル等の粉砕機と比較して粉砕時の消費動力が格段に低減できるため、エネルギー効率がよく低コストで粉砕処理を行うことができる。叩解機を用いる粉砕処理により、数μm〜300μm程度の粒度を有する残渣が得られる。
上記したように、リグノセルロースを前処理することにより、その後の酵素加水分解、発酵によるエタノール生成を、投入エネルギーを低く抑えて低コストでかつ効率よく行うことができる。
The beating machine used in the pulverization process crushes when the raw material passes between the fixed blade and the rotary blade, selects the blade material and shape as appropriate, and controls the interval between the blades, the number of rotations, etc. Is a crusher capable of crushing wood and the like by freely changing the particle size from fine crushing to coarse crushing. When a beater is used, the power consumed during grinding can be significantly reduced compared to a grinding machine such as a ball mill or a stamp mill, so that the grinding process can be performed with high energy efficiency and low cost. The residue which has a particle size of about several micrometers-300 micrometers is obtained by the grinding | pulverization process using a beating machine.
As described above, by pretreating lignocellulose, subsequent ethanol hydrolysis and ethanol production by fermentation can be efficiently performed at low cost with low input energy.

上記のように粉砕処理工程において粉砕された反応物は酵素加水分解に供されて糖が製造される。酵素加水分解の酵素としては、セルラーゼが用いられる。すなわち、粉砕された残渣を懸濁した液にセルラーゼを添加し、攪拌しながら、例えばpH4〜6、30〜60℃、10〜120時間反応させる。
この酵素による加水分解液には、セルロース由来の糖であるグルコースおよびヘミセルロース由来の糖であるグルコース、キシロース、アラビノース、ガラクトース、マンノース等が含まれる。この糖液に窒素、リンを含む栄養源とエタノール発酵微生物を添加し、糖をエタノールに変換する。発酵微生物としては、五炭糖を変換できる微生物を単独で使用しても、五炭糖を変換できる微生物と六炭糖を変換できる微生物とを併用してもよい。
The reaction product pulverized in the pulverization process as described above is subjected to enzymatic hydrolysis to produce sugar. Cellulase is used as the enzyme for enzyme hydrolysis. That is, cellulase is added to a liquid in which the pulverized residue is suspended, and the reaction is performed, for example, at pH 4 to 6, 30 to 60 ° C., for 10 to 120 hours with stirring.
The hydrolyzed solution by this enzyme includes glucose, which is a sugar derived from cellulose, and glucose, xylose, arabinose, galactose, mannose, etc., which are sugars derived from hemicellulose. A nutrient source containing nitrogen and phosphorus and an ethanol-fermenting microorganism are added to the sugar solution to convert the sugar into ethanol. As the fermentation microorganism, a microorganism capable of converting pentose may be used alone, or a microorganism capable of converting pentose and a microorganism capable of converting hexose may be used in combination.

本発明によれば、酸でヘミセルロースを加水分解した反応物について中和を行ってから、湿式粉砕処理することによって、前処理の工程短縮化が可能となり、工程機器が減って設備費、運転費を抑えることができ、低コストで効率よく酵素加水分解に供する糖の収率を向上させ、続く発酵でのエタノール収率の向上を達成することが可能となる。工程が短縮化されるため、酸処理工程の反応物を固液分離する場合と比較して、密閉系での操作がしやすくなり製造過程での細菌汚染を防ぎやすくなる。また、固液分離を行う場合は、ろ過を行う際、系内の固形物洗浄のための水を添加する必要があるが、本発明の前処理方法では水の添加が必要なくなるため糖の濃度を高めることができる。これによって製品となるエタノールを分離するエネルギーの削減が行える。   According to the present invention, the reaction product obtained by hydrolyzing hemicellulose with an acid is neutralized and then wet pulverized to shorten the pretreatment process. It is possible to improve the yield of sugar to be subjected to enzymatic hydrolysis efficiently at low cost, and to achieve an increase in ethanol yield in subsequent fermentation. Since the process is shortened, it is easier to operate in a closed system and prevent bacterial contamination in the production process than in the case of solid-liquid separation of the reaction product in the acid treatment process. In addition, when performing solid-liquid separation, it is necessary to add water for washing solid matter in the system when filtration is performed, but in the pretreatment method of the present invention, it is not necessary to add water. Can be increased. This can reduce the energy for separating the ethanol product.

また、本発明によると、酸加水分解による一次処理に引き続き二次処理に過酸化水素等の薬剤を用いる前処理方法に比べ、着色廃水の量が低減できる。また、一次加水分解で一部未反応のヘミセルロース由来の糖(キシロースなど)の回収量も二次処理に薬剤を用いる方法より多く、原料に含まれる糖をより有効に利用することができる。     Further, according to the present invention, the amount of colored waste water can be reduced as compared with a pretreatment method using a chemical such as hydrogen peroxide in the secondary treatment following the primary treatment by acid hydrolysis. In addition, the amount of recovered sugar (such as xylose) derived from hemicellulose partially unreacted in the primary hydrolysis is larger than the method using a drug for the secondary treatment, and the sugar contained in the raw material can be used more effectively.

以下、実施例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例等に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited to these Examples.

酸処理工程:原料として廃建材(ボード原料用チップ)を用い、加水分解機として連続式加水分解機(処理量:120kg/時間)を用い、硫酸濃度1%、反応温度170℃、反応時間10分で一次加水分解を行った。反応物は、主にヘミセルロース由来の糖を9%含む糖液と、主にセルロースとリグニンからなる残渣の混合物であった。残渣の固形物としての濃度は約10%であった。反応物の量は原料100gに対して305gであった。
中和工程:酸処理工程の反応物に水酸化カルシウムを濃度1.8%で添加し、反応温度60℃、反応時間30分で中和を行った。
粉砕工程:叩解機に中和工程の反応物27kg(湿潤重量、水分含量90%)を入れ、約10秒間粉砕を行った。粉砕前の粒度は十数μm〜数mmの分布であったのに対し、粉砕後は数μm〜300μm程度の分布であり50%Dは約60μmであった。
Acid treatment process: Waste building materials (chips for board raw materials) are used as raw materials, a continuous hydrolyzer (treatment amount: 120 kg / hour) is used as a hydrolyzer, a sulfuric acid concentration is 1%, a reaction temperature is 170 ° C., and a reaction time is 10 Primary hydrolysis was performed in minutes. The reaction product was a mixture of a sugar solution mainly containing 9% hemicellulose-derived sugar and a residue mainly composed of cellulose and lignin. The concentration of the residue as a solid was about 10%. The amount of the reaction product was 305 g with respect to 100 g of the raw material.
Neutralization step: Calcium hydroxide was added to the reaction product in the acid treatment step at a concentration of 1.8%, and neutralization was performed at a reaction temperature of 60 ° C. and a reaction time of 30 minutes.
Crushing step: 27 kg (wet weight, moisture content 90%) of the reaction product in the neutralization step was placed in a beater and pulverized for about 10 seconds. The particle size before pulverization was a distribution of several tens of μm to several mm, whereas after pulverization, the distribution was about several μm to 300 μm, and 50% D was about 60 μm.

酵素加水分解兼アルコール発酵工程(以下、同時糖化発酵工程):250mLの三角フラスコに、残渣固形物を約10%含む、粉砕した反応物を100g添加した。続いてコーンスティープリカー(日本食品加工株式会社製)を5g添加し、pHを6.5に調整した。続いてセルラーゼ(GC 220、ジェネンコア・インターナショナルジャパン・リミテッド)を残渣の固形物1gに対して0.24g添加した。さらに、エタノール発酵性遺伝子組換え大腸菌(株名:KO11)と酵母(株名:Saccharomyces cerevisiae TJ-1)の前培養液をそれぞれ5gずつ添加した。これを反応温度35℃、100rpmで振とうし、100時間同時糖化発酵を行った。なお、前培養は、組換え大腸菌の場合、キシロース4%を含むLuria−Bertani(LB)培地で12時間好気的に培養した。酵母の場合、グルコース5%、コーンスティープリカー0.5%、尿素0.08%、リン酸二水素カリウム0.02%を含む培地で12時間好気的に培養した。   Enzymatic hydrolysis and alcohol fermentation process (hereinafter, simultaneous saccharification and fermentation process): To a 250 mL Erlenmeyer flask, 100 g of a pulverized reaction product containing about 10% of a solid residue was added. Subsequently, 5 g of corn steep liquor (manufactured by Nippon Food Processing Co., Ltd.) was added to adjust the pH to 6.5. Subsequently, 0.24 g of cellulase (GC 220, Genencor International Japan Limited) was added to 1 g of the residual solid. Furthermore, 5 g each of precultured solutions of ethanol-fermenting gene recombinant E. coli (strain name: KO11) and yeast (strain name: Saccharomyces cerevisiae TJ-1) were added. This was shaken at a reaction temperature of 35 ° C. and 100 rpm, and subjected to simultaneous saccharification and fermentation for 100 hours. In the case of recombinant Escherichia coli, the preculture was aerobically cultured for 12 hours in Luria-Bertani (LB) medium containing 4% xylose. In the case of yeast, it was cultured aerobically for 12 hours in a medium containing 5% glucose, 0.5% corn steep liquor, 0.08% urea, and 0.02% potassium dihydrogen phosphate.

分析:同時糖化発酵前後の発酵液中のエタノールをガスクロマトグラフで分離、定量した。ガスクロマトグラフのカラムとしては、ジーエルサイエンス社のCP−Wax 52CBを使用した。また、同時糖化発酵前後の単糖をHPLCで分離、定量した。HPLCのカラムとしてはBIO−RAD社のHPX−87Pを使用した。同時糖化発酵液中のエタノール濃度から、原料100g(乾物)あたりのエタノール収量を計算した。酸処理工程で上記と硫酸を、中和工程で水酸化カルシウムを、原料同時糖化発酵においてコーンスティープリカーと前培養液をそれぞれ添加していることを考慮して、以下の式を用いた。
原料100gあたりのエタノール収量[g]=(発酵液中のエタノール濃度[%]−発酵前のエタノール濃度[%])×(305/100)×(118/100)×((100+5+5+5)/100)
Analysis: Ethanol in the fermentation broth before and after simultaneous saccharification and fermentation was separated and quantified by gas chromatography. CP-Wax 52CB manufactured by GL Sciences Inc. was used as a gas chromatograph column. In addition, monosaccharides before and after simultaneous saccharification and fermentation were separated and quantified by HPLC. As the HPLC column, HPX-87P manufactured by BIO-RAD was used. From the ethanol concentration in the simultaneous saccharification and fermentation broth, the ethanol yield per 100 g (dry matter) of the raw material was calculated. Considering that the above and sulfuric acid were added in the acid treatment step, calcium hydroxide was added in the neutralization step, and corn steep liquor and preculture were added in the raw material simultaneous saccharification and fermentation, the following equations were used.
Yield of ethanol per 100 g of raw material [g] = (ethanol concentration in fermentation broth [%] − ethanol concentration before fermentation [%]) × (305/100) × (118/100) × ((100 + 5 + 5 + 5) / 100)

(比較例1)
一次加水分解の反応物を、粉砕処理を行わずにそのまま酵素加水分解に用いたこと以外は上記の実施例1と同様にしてエタノールを得た。
上記実施例1および比較例1のエタノール濃度の経時変化を図2に、エタノール収量を表1に示す。
(Comparative Example 1)
Ethanol was obtained in the same manner as in Example 1 except that the reaction product of the primary hydrolysis was directly used for enzyme hydrolysis without pulverization.
FIG. 2 shows the change over time in the ethanol concentrations of Example 1 and Comparative Example 1, and Table 1 shows the ethanol yield.

Figure 2007124933
Figure 2007124933

実施例1および比較例1における同時糖化発酵で得られたエタノール収量の結果より、実施例1のように酸加水分解の反応物を中和、粉砕処理することによって、比較例1のように粉砕処理しなかった場合よりも大幅にエタノール収量が向上することがわかった。   From the result of ethanol yield obtained by the simultaneous saccharification and fermentation in Example 1 and Comparative Example 1, the reaction product of acid hydrolysis was neutralized and pulverized as in Example 1, thereby pulverizing as in Comparative Example 1. It was found that the ethanol yield was significantly improved as compared with the case of no treatment.

本発明のリグノセルロースの前処理方法は、木質バイオマスを原料とする糖化およびエタノールの製造に有用である。   The lignocellulose pretreatment method of the present invention is useful for saccharification and production of ethanol using woody biomass as a raw material.

リグノセルロースを原料とし、本発明の前処理方法を含むエタノールの製造方法の一例をフローチャートで示したものである。An example of the manufacturing method of ethanol which uses lignocellulose as a raw material and includes the pre-processing method of this invention is shown with the flowchart. 実施例1および比較例1のエタノール濃度の経時変化を示す。The time-dependent change of the ethanol concentration of Example 1 and Comparative Example 1 is shown.

Claims (8)

リグノセルロースの酵素加水分解の前処理方法であって、リグノセルロース原料を酸処理する酸処理工程と、前記酸処理工程の反応物を中和する中和工程と、前記中和工程の反応物を湿式粉砕処理する粉砕処理工程とを含むことを特徴とするリグノセルロースの前処理方法。   A pretreatment method for enzymatic hydrolysis of lignocellulose, wherein an acid treatment step of acid-treating a lignocellulose raw material, a neutralization step of neutralizing a reaction product of the acid treatment step, and a reaction product of the neutralization step A pretreatment method for lignocellulose, comprising a pulverization treatment step of performing a wet pulverization treatment. 湿式粉砕処理を叩解機により行うことを特徴とする請求項1に記載のリグノセルロースの前処理方法。   The pretreatment method for lignocellulose according to claim 1, wherein the wet pulverization is performed by a beating machine. 前記酸処理を、希硫酸を用いて行うことを特徴とする請求項1又は2に記載のリグノセルロースの前処理方法。     The pretreatment method for lignocellulose according to claim 1 or 2, wherein the acid treatment is performed using dilute sulfuric acid. 前記酸処理工程において、希硫酸の濃度が0.1〜5%であることを特徴とする請求項3に記載のリグノセルロースの前処理方法。     The pretreatment method for lignocellulose according to claim 3, wherein the concentration of dilute sulfuric acid is 0.1 to 5% in the acid treatment step. 前記酸処理工程において、反応温度が140〜230℃であることを特徴とする請求項1〜4のいずれか1項に記載のリグノセルロースの前処理方法。     In the said acid treatment process, reaction temperature is 140-230 degreeC, The pretreatment method of lignocellulose of any one of Claims 1-4 characterized by the above-mentioned. 前記酸処理工程において、反応時間が1〜20分であることを特徴とする請求項1〜5のいずれか1項に記載のリグノセルロースの前処理方法。     In the said acid treatment process, reaction time is 1 to 20 minutes, The pretreatment method of lignocellulose of any one of Claims 1-5 characterized by the above-mentioned. 前記リグノセルロース原料が廃建材であることを特徴とする請求項1〜6のいずれか1項に記載のリグノセルロースの前処理方法。     The said lignocellulose raw material is a waste building material, The pretreatment method of lignocellulose of any one of Claims 1-6 characterized by the above-mentioned. リグノセルロースを、酸処理前に破砕処理を行うことを特徴とする請求項1〜7のいずれか1項に記載のリグノセルロースの前処理方法。

The lignocellulose pretreatment method according to any one of claims 1 to 7, wherein the lignocellulose is crushed before acid treatment.

JP2005319536A 2005-11-02 2005-11-02 Pretreatment method of lignocellulose Pending JP2007124933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319536A JP2007124933A (en) 2005-11-02 2005-11-02 Pretreatment method of lignocellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319536A JP2007124933A (en) 2005-11-02 2005-11-02 Pretreatment method of lignocellulose

Publications (1)

Publication Number Publication Date
JP2007124933A true JP2007124933A (en) 2007-05-24

Family

ID=38148138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319536A Pending JP2007124933A (en) 2005-11-02 2005-11-02 Pretreatment method of lignocellulose

Country Status (1)

Country Link
JP (1) JP2007124933A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295394A (en) * 2007-06-01 2008-12-11 Hiromitsu Moriyama Method for producing bio-ethanol
WO2009069323A1 (en) * 2007-11-28 2009-06-04 Jfe Engineering Corporation Process for producing ethanol from oil-palm empty fruit bunch, process for producing ethanol from plant biomass, and method of plant biomass pretreatment before saccharization
WO2009072878A1 (en) 2007-12-04 2009-06-11 Jantinus Kappe Process for the manufacture of bioethanol
WO2009080737A3 (en) * 2007-12-21 2009-12-17 Shell Internationale Research Maatschappij B.V. A process for converting lignocellulose into sugars
WO2010016536A1 (en) * 2008-08-07 2010-02-11 株式会社雪国まいたけ Method for treating lignocellulose material
WO2010050223A1 (en) 2008-10-30 2010-05-06 王子製紙株式会社 Saccharide production process and ethanol production process
WO2010110424A1 (en) * 2009-03-27 2010-09-30 日清オイリオグループ株式会社 Process for producing lipase powder composition
CN103421863A (en) * 2013-07-24 2013-12-04 河北工业大学 Pre-processing method for improving enzymolysis saccharifying effect of biomass
WO2013190876A1 (en) * 2012-06-21 2013-12-27 月島機械株式会社 Biomass processing system and processing method
US9416375B2 (en) 2012-06-21 2016-08-16 Ecolab Usa Inc. Methods using peracids for controlling corn ethanol fermentation process infection and yield loss
WO2019112138A1 (en) * 2017-12-06 2019-06-13 주식회사 리그넘 Method for preparing bio-filler to be added to plastic, and bio-filler to be added to plastic, prepared thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238690A (en) * 2000-02-28 2001-09-04 Tsukishima Kikai Co Ltd Method for saccharifying waste paper
JP2003135052A (en) * 2001-11-02 2003-05-13 National Institute Of Advanced Industrial & Technology Method for hydrolyzing cellulose raw material
JP2004201599A (en) * 2002-12-26 2004-07-22 Tsukishima Kikai Co Ltd System and method for producing sugar from waste building material
WO2004081185A2 (en) * 2003-03-07 2004-09-23 Athenix Corporation Methods to enhance the activity of lignocellulose-degrading enzymes
WO2005099854A1 (en) * 2004-04-13 2005-10-27 Iogen Energy Corporation Recovery of inorganic salt during processing of lignocellulosic feedstocks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238690A (en) * 2000-02-28 2001-09-04 Tsukishima Kikai Co Ltd Method for saccharifying waste paper
JP2003135052A (en) * 2001-11-02 2003-05-13 National Institute Of Advanced Industrial & Technology Method for hydrolyzing cellulose raw material
JP2004201599A (en) * 2002-12-26 2004-07-22 Tsukishima Kikai Co Ltd System and method for producing sugar from waste building material
WO2004081185A2 (en) * 2003-03-07 2004-09-23 Athenix Corporation Methods to enhance the activity of lignocellulose-degrading enzymes
WO2005099854A1 (en) * 2004-04-13 2005-10-27 Iogen Energy Corporation Recovery of inorganic salt during processing of lignocellulosic feedstocks

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295394A (en) * 2007-06-01 2008-12-11 Hiromitsu Moriyama Method for producing bio-ethanol
WO2009069323A1 (en) * 2007-11-28 2009-06-04 Jfe Engineering Corporation Process for producing ethanol from oil-palm empty fruit bunch, process for producing ethanol from plant biomass, and method of plant biomass pretreatment before saccharization
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
WO2009072878A1 (en) 2007-12-04 2009-06-11 Jantinus Kappe Process for the manufacture of bioethanol
WO2009080737A3 (en) * 2007-12-21 2009-12-17 Shell Internationale Research Maatschappij B.V. A process for converting lignocellulose into sugars
WO2010016536A1 (en) * 2008-08-07 2010-02-11 株式会社雪国まいたけ Method for treating lignocellulose material
WO2010050223A1 (en) 2008-10-30 2010-05-06 王子製紙株式会社 Saccharide production process and ethanol production process
US8911980B2 (en) 2009-03-27 2014-12-16 The Nisshin Oillio Group, Ltd. Method for producing lipase powder compositions
WO2010110424A1 (en) * 2009-03-27 2010-09-30 日清オイリオグループ株式会社 Process for producing lipase powder composition
JP2010227005A (en) * 2009-03-27 2010-10-14 Nisshin Oillio Group Ltd Method for producing lipase powder composition
CN102449146A (en) * 2009-03-27 2012-05-09 日清奥利友集团株式会社 Method for producing lipase powder compositions
US9677093B2 (en) 2012-06-21 2017-06-13 Ecolab Usa Inc. Method using short chain peracids for controlling biofuel fermentation process infection and yield loss
JP2014003914A (en) * 2012-06-21 2014-01-16 Tsukishima Kikai Co Ltd Treatment system and treatment method for biomass
WO2013190876A1 (en) * 2012-06-21 2013-12-27 月島機械株式会社 Biomass processing system and processing method
US9416375B2 (en) 2012-06-21 2016-08-16 Ecolab Usa Inc. Methods using peracids for controlling corn ethanol fermentation process infection and yield loss
US10190138B2 (en) 2012-06-21 2019-01-29 Ecolab Usa Inc. Methods using short chain peracids to replace antibiotics for controlling fermentation process infection
US10731183B2 (en) 2012-06-21 2020-08-04 Ecolab Usa Inc. Methods using short chain peracids for controlling corn ethanol fermentation process infection and yield loss
US11352649B2 (en) 2012-06-21 2022-06-07 Ecolab Usa Inc. Methods for reducing and/or eliminating microbial populations in a fermentation process
CN103421863A (en) * 2013-07-24 2013-12-04 河北工业大学 Pre-processing method for improving enzymolysis saccharifying effect of biomass
WO2019112138A1 (en) * 2017-12-06 2019-06-13 주식회사 리그넘 Method for preparing bio-filler to be added to plastic, and bio-filler to be added to plastic, prepared thereby
US11220580B2 (en) 2017-12-06 2022-01-11 Lignum Inc. Method for preparation of bio-filler for plastic and bio-filler for plastic prepared thereby

Similar Documents

Publication Publication Date Title
JP4619917B2 (en) Pretreatment method of lignocellulose
US10072380B2 (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
JP2007124933A (en) Pretreatment method of lignocellulose
US7666637B2 (en) Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals
Kuhad et al. Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation
AU2009290407B2 (en) A process for production of ethanol from lignocellulosic material
US20080032344A1 (en) Process for recovery of holocellulose and near-native lignin from biomass
JP4522797B2 (en) Lignocellulose pretreatment method and ethanol production method
MX2013014331A (en) Methods for converting lignocellulosic material to useful products.
CN106574278B (en) Production of lactic acid and/or lactate from lignocellulosic material by separate saccharification and fermentation steps
JP2008043328A (en) Method for saccharifying wood-based biomass
JP2007151433A (en) Method for pretreatment of lignocellulose and method for producing ethanol
Mussatto Biomass pretreatment with acids
JP4619831B2 (en) Pretreatment method of lignocellulose
Sunkar et al. Bi-phasic hydrolysis of corncobs for the extraction of total sugars and ethanol production using inhibitor resistant and thermotolerant yeast, Pichia kudriavzevii
JP2014158437A (en) Saccharified solution of lignocellulosic biomass, and manufacturing and application method thereof
JP2011182741A (en) Method for producing alcohol
CN101613728B (en) Method for efficiently saccharifying straw pulp fiber
JP2022140397A (en) Improved process for second generation lactic acid production
JP2009022165A (en) Method for producing ethanol
Rodriguez-Gomez et al. The importance and impact of pretreatment on bio-butanol production
Sharma et al. Pretreatment strategies: unlocking of lignocellulosic substrate
Joshi et al. Intensified synthesis of bioethanol from sustainable biomass
WO2013114962A1 (en) Bioethanol production method and production system
Valchev et al. Use of enzymes in hydrolysis of maize stalks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018