JP2010279255A - Method for saccharifying biomass - Google Patents
Method for saccharifying biomass Download PDFInfo
- Publication number
- JP2010279255A JP2010279255A JP2009132740A JP2009132740A JP2010279255A JP 2010279255 A JP2010279255 A JP 2010279255A JP 2009132740 A JP2009132740 A JP 2009132740A JP 2009132740 A JP2009132740 A JP 2009132740A JP 2010279255 A JP2010279255 A JP 2010279255A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- pressurized hot
- water treatment
- biomass
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Processing Of Solid Wastes (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、バイオマスの糖化方法に関する。 The present invention relates to a biomass saccharification method.
近年、環境保護の観点から再生可能エネルギーであるバイオマスの活用が注目され、特に、セルロース系バイオマスからエタノールを製造する方法の開発が進められている。セルロース系バイオマスからエタノールを製造するには、まず、セルロース系バイオマスを糖化してグルコースやキシロース等の単糖を生成(糖化)し、その後、この単糖に発酵酵素を作用させることによりエタノールを生成する。
バイオマスを糖化する方法としては、例えば、液体酸(硫酸等)を用いた加水分解、水蒸気爆砕、酵素反応、および加圧熱水処理等が知られている。また、最近では、固体酸触媒を用いた技術が提案されている。
In recent years, the use of biomass, which is renewable energy, has attracted attention from the viewpoint of environmental protection, and in particular, the development of a method for producing ethanol from cellulosic biomass has been promoted. To produce ethanol from cellulosic biomass, first saccharify cellulosic biomass to produce monosaccharides such as glucose and xylose (saccharification), and then produce ethanol by allowing fermentation enzymes to act on the monosaccharides. To do.
Known methods for saccharifying biomass include, for example, hydrolysis using a liquid acid (such as sulfuric acid), steam explosion, enzymatic reaction, and pressurized hot water treatment. Recently, a technique using a solid acid catalyst has been proposed.
これらのうち、高温・高圧化された水を用いるため環境負荷物質を排出しないという点から加圧熱水処理が好適に用いられる(例えば、非特許文献1および2参照)。加圧熱水処理ではセルロースを単糖までに分解することが困難であるため、バイオマスをオリゴ糖まで加水分解した後、酵素糖化により単糖化することが一般的に行われている。
また、固体酸触媒は、廃酸処理が不要であり、反応温度や時間を低減させることができるという点から好適に用いられる(例えば、特許文献1〜4)。また、前述の加圧熱水処理や液体酸を用いた処理に比べて糖類の選択性が高い。
Of these, pressurized hot water treatment is preferably used because it uses high-temperature and high-pressure water and does not discharge environmentally hazardous substances (see, for example, Non-Patent
Moreover, a solid acid catalyst is used suitably from the point that a waste acid process is unnecessary and can reduce reaction temperature and time (for example, patent documents 1-4). Moreover, the selectivity of saccharide | sugar is high compared with the above-mentioned pressurized hot water process and the process using a liquid acid.
しかしながら、非特許文献1および2のように、加圧熱水処理の後に酵素糖化の処理を行うと、酵素糖化の処理は長い時間を要するため(非特許文献1では72時間、非特許文献2では48時間)、効率が悪く、経済性を低下させる原因となる。
また、固体酸触媒を用いた糖化処理では、固体のセルロース系バイオマス原料との反応が固体同士となるため、反応が進行しにくいという問題があった。したがって、特許文献1〜4に記載の固体酸触媒を用いたとしても単糖の収率が不十分であり、さらなる改良が求められている。
However, when the enzymatic saccharification treatment is performed after the pressurized hot water treatment as in
Moreover, in the saccharification process using a solid acid catalyst, since reaction with a solid cellulose biomass raw material becomes solid, there existed a problem that reaction did not advance easily. Therefore, even if the solid acid catalyst described in
本発明の目的は、短時間で高い収率で単糖を得ることができるバイオマスの糖化方法を提供することである。 The objective of this invention is providing the saccharification method of biomass which can obtain a monosaccharide with a high yield in a short time.
本発明のバイオマスの糖化方法は、無触媒下でバイオマスの加圧熱水処理を行う加圧熱水処理工程と、加圧熱水処理工程で得られる処理溶液を固体酸触媒に接触させる触媒単糖化工程と、を備えたことを特徴とする。 The biomass saccharification method of the present invention comprises a pressurized hydrothermal treatment step for performing pressurized hydrothermal treatment of biomass in the absence of a catalyst, and a catalyst unit for bringing a treatment solution obtained in the pressurized hot water treatment step into contact with a solid acid catalyst. And a saccharification step.
この発明(発明1とする)では、加圧熱水処理により、バイオマスがオリゴ糖にまで加水分解された処理溶液を生成する。その後の触媒単糖化工程でこの処理溶液に固体酸触媒を接触させると、液体と固体の反応であるため、固体酸触媒の活性が発現しやすくなり、処理溶液中のオリゴ糖を効率よく加水分解して単糖を得ることができる。
また、固体酸触媒による触媒単糖化工程は、固体酸触媒が単糖の選択性が高いことから短い反応時間で高い収率の単糖を得ることができる。
さらに、加圧熱水処理工程および触媒単糖化工程では、環境負荷物質を排出しない。
In this invention (referred to as Invention 1), a treatment solution in which biomass is hydrolyzed to oligosaccharides is generated by pressurized hot water treatment. When the solid acid catalyst is brought into contact with this treatment solution in the subsequent catalytic saccharification step, it is a liquid-solid reaction, so that the activity of the solid acid catalyst is easily developed, and the oligosaccharide in the treatment solution is efficiently hydrolyzed. Thus, a monosaccharide can be obtained.
In addition, the catalytic monosaccharification step using a solid acid catalyst can obtain a monosaccharide with a high yield in a short reaction time because the solid acid catalyst has high monosaccharide selectivity.
Furthermore, the environmentally hazardous substance is not discharged in the pressurized hot water treatment process and the catalyst monosaccharification process.
発明1のバイオマスの糖化方法において、前記加圧熱水処理工程は、180℃以上230℃以下の温度の加圧熱水で処理を行う第1加圧熱水処理工程を有する(発明2とする)ことが好ましい。
In the biomass saccharification method of the
第1加圧熱水処理工程では、ヘミセルロースを主に加水分解することができる。温度が180℃未満であると、ヘミセルロースが十分に分解しないおそれがある。一方、温度が230℃を超えると、ヘミセルロースが加水分解されて生成するC5オリゴ糖や単糖が過分解するおそれがある。 In the first pressurized hot water treatment step, hemicellulose can be mainly hydrolyzed. There exists a possibility that hemicellulose may not fully decompose | disassemble that temperature is less than 180 degreeC. On the other hand, when the temperature exceeds 230 ° C., C 5 oligosaccharides and monosaccharides hemicellulose is produced is hydrolyzed is over-decomposed fear.
発明1または発明2のバイオマスの糖化方法において、前記触媒単糖化工程は、前記加圧熱水処理工程で得られる処理溶液を、120℃以上180℃以下の温度、当該温度における飽和蒸気圧以上の圧力で、30分以上12時間以下、前記固体酸触媒に接触させる(発明3とする)ことが好ましい。
In the biomass saccharification method of the
触媒単糖化工程を、上記の温度範囲および反応時間で実施すれば、加圧熱水処理工程で得られた処理溶液中のオリゴ糖は単糖化されるとともに、過分解も進行しにくい。圧力が当該温度の飽和蒸気圧未満である場合は、水が蒸発飛散するおそれがあり好ましくない。 If the catalytic saccharification step is carried out in the above temperature range and reaction time, the oligosaccharide in the treatment solution obtained in the pressurized hot water treatment step is saccharified and hyperdegradation hardly proceeds. When the pressure is lower than the saturated vapor pressure at the temperature, water may be evaporated and scattered, which is not preferable.
発明2または発明3のバイオマス糖化方法において、前記加圧熱水処理工程は、前記第1加圧熱水処理工程で得られる残渣を、230℃以上300℃以下の温度の加圧熱水で処理を行う第2加圧熱水処理工程をさらに有し、前記第2加圧熱水処理工程で得られる処理溶液中の糖分を酵素または固体酸触媒を用いて単糖化する単糖化処理工程を備えた(発明4とする)ことが好ましい。
In the biomass saccharification method of the
第2加圧熱水処理工程ではセルロースを主に加水分解することができる。温度が230℃未満であるとセルロースが十分に分解しないおそれがある。一方、温度が300℃を超えるとセルロースが加水分解されて生成するC6オリゴ糖や単糖が過分解するおそれがある。
第1加圧熱水処理工程および第2加圧熱水処理工程で加水分解した後、公知の方法で固液分離して残渣と処理溶液に分ける。各処理溶液中にはオリゴ糖が含まれるため、酵素や固体酸触媒を用いて単糖に分解することができる。第1加圧熱水処理工程で得られる処理溶液を単糖化すると主にC5単糖が得られ、第2加圧熱水処理工程で得られる処理溶液を単糖化すると主にC6単糖が得られる。
発明4では、第1加圧熱水処理工程で得られた処理溶液に対しては触媒単糖化工程を実施し、第2加圧熱水処理工程で得られた処理溶液に対しては酵素または固体酸触媒を用いて単糖化する。したがって、それぞれの単糖化処理により、単糖の高い収率が得られる。
In the second pressurized hot water treatment step, cellulose can be mainly hydrolyzed. If the temperature is lower than 230 ° C, the cellulose may not be sufficiently decomposed. On the other hand, when the temperature exceeds 300 ° C., the C 6 oligosaccharide or monosaccharide produced by hydrolysis of cellulose may be excessively decomposed.
After hydrolysis in the first pressurized hot water treatment step and the second pressurized hot water treatment step, solid-liquid separation is performed by a known method to separate the residue and the treatment solution. Since each treatment solution contains an oligosaccharide, it can be decomposed into a monosaccharide using an enzyme or a solid acid catalyst. Mainly C 5 monosaccharides are obtained when the treatment solution obtained in the first pressurized hot water treatment step to monosaccharification primarily C 6 monosaccharides When the treatment solution obtained in the second pressurized hot water treatment step to monosaccharification Is obtained.
In the invention 4, the catalyst monosaccharification step is performed on the treatment solution obtained in the first pressurized hot water treatment step, and the enzyme or the saccharification step is carried out on the treatment solution obtained in the second pressurized hot water treatment step. Monosaccharification is carried out using a solid acid catalyst. Therefore, a high yield of monosaccharide can be obtained by each monosaccharide treatment.
発明2または発明3のバイオマス糖化方法において、前記加圧熱水処理工程は、前記第1加圧熱水処理工程で得られる残渣を、230℃以上300℃以下の温度の加圧熱水で処理を行う第2加圧熱水処理工程をさらに有し、前記第1加圧熱水処理工程で得られる処理溶液と、前記第2加圧熱水処理工程で得られる処理溶液とを合わせた溶液に対して前記触媒単糖化工程を実施する(発明5とする)ことが好ましい。
In the biomass saccharification method of the
発明5では、第1加圧熱水処理工程で得られた処理溶液と第2加圧熱水処理工程でえら得られた処理溶液とを合わせた溶液に対して触媒単糖化工程を実施する。すなわち、C5およびC6オリゴ糖を同時に単糖化できる固体酸触媒を用いて単糖化する。これによれば、プロセス全体で単糖化工程を削減できるという利点がある。
また、発明4もしくは発明5において、第2加圧熱水処理工程で得られる残渣を固体酸触媒に接触させる工程をさらに備えていてもよい。第2加圧熱水処理によって得られる残渣には加水分解されなかったセルロースや、C6オリゴ糖、C6単糖を含む水溶液を含水している。したがって、このような残渣に対して固体酸触媒を用いて加水分解工程を実施することにより、より多くのC6単糖を得ることができる。
In the invention 5, the catalyst saccharification step is performed on the solution obtained by combining the treatment solution obtained in the first pressurized hot water treatment step and the treatment solution obtained in the second pressurized hot water treatment step. That is, monosaccharification using a solid acid catalyst which can simultaneously monosaccharification the C 5 and C 6 oligosaccharides. According to this, there exists an advantage that a monosaccharification process can be reduced in the whole process.
In addition, in the invention 4 or the invention 5, a step of bringing the residue obtained in the second pressurized hot water treatment step into contact with a solid acid catalyst may be further provided. The residue obtained by the second pressurized hot water treatment contains an aqueous solution containing unhydrolyzed cellulose, C 6 oligosaccharides, and C 6 monosaccharides. Therefore, by implementing the hydrolysis step using a solid acid catalyst for such residues, it can be obtained more C 6 monosaccharide.
発明2または発明3のバイオマス糖化方法において、前記第1加圧熱水処理工程で得られる残渣を固体酸触媒に接触させる触媒加水分解工程をさらに備えた(発明6とする)ことが好ましい。
In the biomass saccharification method of the
第1加圧熱水処理工程で得られる残渣には、結晶が崩れたセルロースを含むため、固体酸触媒の加水分解効果が顕著に現れやすい。その結果、セルロースは結晶成分を多く保つ未処理のバイオマスと接触させる場合より、C6オリゴ糖やC6単糖を多く得ることができる。 Since the residue obtained in the first pressurized hot water treatment step contains cellulose in which crystals are broken, the hydrolysis effect of the solid acid catalyst is likely to appear significantly. As a result, more C 6 oligosaccharides and C 6 monosaccharides can be obtained than when cellulose is brought into contact with untreated biomass that retains a large amount of crystal components.
発明6のバイオマスの糖化方法において、前記触媒加水分解工程で得られる処理溶液中の糖分を酵素または固体酸触媒を用いて単糖化する単糖化処理工程を備えた(発明7とする)ことが好ましい。
また、発明6のバイオマスの糖化方法において、前記第1加圧熱水処理工程で得られる処理溶液と、前記触媒加水分解工程終了後に固液分離して得られる処理溶液とを合わせた溶液に対して前記触媒単糖化工程を実施する(発明8とする)ことが好ましい。
これによれば、発明4および5と同様の作用効果を奏することができる。
The biomass saccharification method of the invention 6 preferably comprises a mono-saccharification treatment step (invention 7) for mono-saccharifying the sugar in the treatment solution obtained in the catalytic hydrolysis step using an enzyme or a solid acid catalyst. .
Further, in the biomass saccharification method according to the sixth aspect of the present invention, for the combined solution of the treatment solution obtained in the first pressurized hydrothermal treatment step and the treatment solution obtained by solid-liquid separation after completion of the catalyst hydrolysis step It is preferable to carry out the catalyst monosaccharification step (referred to as Invention 8).
According to this, there can exist an effect similar to invention 4 and 5.
発明1〜8のバイオマスの糖化方法において、前記固体酸触媒は、BET比表面積が200m2/g以上の有機物をスルホン化したスルホン化有機物を、温度150℃以上250℃以下および圧力1MPa以上5MPa以下の下で水熱処理を行うことにより得られ、前記スルホン化有機物中のスルホ基量が0.1mmol/g以上1.0mmol/g未満である(発明9とする)ことが好ましい。
この発明では、固体酸触媒としてスルホン化有機物を用い、上記条件で使用すると、単糖の選択性が高く、過分解物が生成しにくいため、単糖を高い収率で得ることができる。
In the biomass saccharification method of the
In this invention, when a sulfonated organic substance is used as the solid acid catalyst and used under the above conditions, the monosaccharide can be obtained in high yield because the selectivity of the monosaccharide is high and the hyperdegradation product is not easily generated.
以下、本発明の実施形態について説明するが本発明はこれに限定されるものではない。
〔第1実施形態〕
第1実施形態では、バイオマスの糖化方法を図1に基づいて説明する。なお、ここで用いられる各種装置は、一般的に用いられているものを使用することができる。
[1.原料]
まず、原料として使用されるバイオマス1について説明する。バイオマス1は、ヘミセルロースとセルロースとを含むセルロース系バイオマスであれば特に限定されない。例えば、紙資源や木質系および草本系バイオマス等が挙げられる。これらの中でも草本系バイオマスを用いることが好ましい。
バイオマス1は、糖化効率の向上を図るために粉砕された状態となっている。粉砕後の大きさは特に制限はないが、後述の加圧熱水処理で使用されるスラリーポンプの動作に影響のない範囲で適宜調整することができる。
Hereinafter, although embodiment of this invention is described, this invention is not limited to this.
[First Embodiment]
1st Embodiment demonstrates the saccharification method of biomass based on FIG. In addition, the various apparatuses used here can use what is generally used.
[1. material]
First,
[2.加圧熱水処理]
バイオマス1に対して加圧熱水処理を実施する(加圧熱水処理工程)。加圧熱水処理は、第1加圧熱水処理110と第2加圧熱水処理120との2段階の工程で行われる。
[2−1.第1加圧熱水処理]
まず、バイオマス1に水を加えてスラリー濃度10質量%以上とし、スラリーポンプにて第1加圧熱水処理装置に供給する。第1加圧熱水処理装置を180℃以上230℃以下の温度範囲内、かつこの温度範囲内における飽和蒸気圧以上の圧力とし、60分以内で処理が行われる。なお、スラリー濃度は、スラリーポンプの動作に影響のない範囲で適宜調整することができる。これにより、主にヘミセルロースがオリゴ糖レベルにまで分解される。
第1加圧熱水処理110により得られた処理物を固液分離し、得られた溶液を処理溶液A1とし、得られた固形分を残渣B1とする。ここで、処理溶液A1には主にC5オリゴ糖および単糖が含まれている。
[2. Pressurized hot water treatment]
A pressurized hot water treatment is performed on the biomass 1 (pressurized hot water treatment step). The pressurized hot water treatment is performed in a two-stage process including a first pressurized
[2-1. First pressurized hot water treatment]
First, water is added to
The processed product obtained by the first pressurized
[2−2.第2加圧熱水処理]
第1加圧熱水処理によって得られた残渣B1に対して加圧熱水処理を行う。具体的には、残渣B1に水を加えてスラリー濃度10質量%以上とし、スラリーポンプにて第2加圧熱水処理装置に供給する。第2加圧熱水処理装置を230℃以上300℃以下の温度範囲内、かつこの温度範囲内における飽和蒸気圧以上の圧力とし、30分以内で加圧熱水処理が行われる。なお、スラリー濃度は、スラリーポンプの動作に影響のない範囲で適宜調整することができる。これにより、主にセルロースがオリゴ糖かオリゴ糖より大きい分子レベルにまで分解される。
第2加圧熱水処理120により得られた処理物を固液分離し、得られた溶液を処理溶液A2とし、得られた固形分を残渣B2とする。ここで、処理溶液A2にはC6オリゴ糖および単糖が含まれている。また、残渣B2にはリグニンが含まれており、各種燃料として広く利用される。
[2-2. Second pressurized hot water treatment]
A pressurized hot water treatment is performed on the residue B1 obtained by the first pressurized hot water treatment. Specifically, water is added to the residue B1 to a slurry concentration of 10% by mass or more, and the slurry is supplied to the second pressurized hot water treatment apparatus by a slurry pump. The second pressurized hot water treatment apparatus is set to a pressure in the temperature range of 230 ° C. or higher and 300 ° C. or lower and the saturated vapor pressure in the temperature range, and the pressurized hot water treatment is performed within 30 minutes. The slurry concentration can be appropriately adjusted within a range that does not affect the operation of the slurry pump. This mainly breaks down cellulose to the molecular level that is greater than oligosaccharides or oligosaccharides.
The processed product obtained by the second pressurized
[3.単糖化処理]
次に、加圧熱水処理(第1加圧熱水処理110および第2加圧熱水処理120)によって得られた処理溶液A1、A2に対して単糖化の処理を行う。
[3−1.触媒単糖化処理]
処理溶液A1に対して固体酸触媒を接触させる第1触媒単糖化処理210を行う(触媒単糖化工程)。このときの反応条件は、例えば、温度120℃以上180℃以下、圧力は当該温度の飽和蒸気圧以上、反応時間30分以上12時間以下である。反応温度が低すぎる(120℃未満)場合や反応時間が短い(30分未満)場合は、オリゴ糖から単糖への加水分解が進みにくい。また、反応温度が高い(180℃を超える)場合や反応時間が長い(12時間を越える)場合は、オリゴ糖が過分解されてしまい、単糖の収率が低下するおそれがある。
[3. Monosaccharification treatment]
Next, monosaccharification treatment is performed on the treatment solutions A1 and A2 obtained by the pressurized hot water treatment (the first pressurized
[3-1. Catalytic monosaccharide treatment]
A first
固体酸触媒としては、特に限定されず、例えば、ゼオライト、アルミナ、シリカアルミナ、活性炭、陽イオン交換樹脂、スルホン化活性炭、スルホン化メソポーラスシリカ、スルホン化炭素材料、硫酸ジルコニア、タングステン酸ジルコニア、リン酸ジルコニウムなどが挙げられる。これらの中でも、単糖の選択性が80%以上のものを用いることが好ましく、スルホン化活性炭を用いることが好ましい。
スルホン化活性炭は、活性炭をスルホン化することにより得られるものである。以下にスルホン化活性炭を調整する方法を説明する。
活性炭の原料としては特に限定されないが、反応性が高いという点からBET比表面積が200m2/g以上であることが好ましい。例えば、市販のものを利用することができ、椰子殻、石油ピッチ、石炭、フェノール樹脂などの炭素材料を炭化、賦活することで製造してもよい。
The solid acid catalyst is not particularly limited. For example, zeolite, alumina, silica alumina, activated carbon, cation exchange resin, sulfonated activated carbon, sulfonated mesoporous silica, sulfonated carbon material, zirconia sulfate, zirconia tungstate, phosphoric acid Zirconium etc. are mentioned. Among these, it is preferable to use a monosaccharide having a selectivity of 80% or more, and it is preferable to use a sulfonated activated carbon.
Sulfonated activated carbon is obtained by sulfonating activated carbon. A method for adjusting the sulfonated activated carbon will be described below.
Although it does not specifically limit as a raw material of activated carbon, It is preferable that a BET specific surface area is 200 m < 2 > / g or more from the point that reactivity is high. For example, a commercially available product can be used, and it may be produced by carbonizing and activating carbon materials such as coconut shell, petroleum pitch, coal, and phenol resin.
このような活性炭を濃硫酸または発煙硫酸中でよく分散させ、加熱攪拌することにより、スルホン化活性炭を生成する。加熱温度は100℃以上250℃以下、反応時間は30分以上24時間以下で行う。なお、濃硫酸または発煙硫酸は、活性炭1gに対して10ml以上30ml以下の量を用いる。
ここで、濃硫酸の濃度は、90質量%以上が好ましく、95質量%以上がより好ましい。濃硫酸の濃度が90質量%未満であると、活性炭のスルホン化が不十分となるおそれがある。また、発煙硫酸を用いる場合、その濃度は特に限定されないが、例えば、三酸化硫黄の含有率が30%以上60%以下であるものを用いることができる。
Such activated carbon is well dispersed in concentrated sulfuric acid or fuming sulfuric acid, and heated and stirred to produce sulfonated activated carbon. The heating temperature is 100 ° C. to 250 ° C., and the reaction time is 30 minutes to 24 hours. Concentrated sulfuric acid or fuming sulfuric acid is used in an amount of 10 ml to 30 ml with respect to 1 g of activated carbon.
Here, the concentration of concentrated sulfuric acid is preferably 90% by mass or more, and more preferably 95% by mass or more. When the concentration of concentrated sulfuric acid is less than 90% by mass, sulfonation of activated carbon may be insufficient. Moreover, when using fuming sulfuric acid, the density | concentration is not specifically limited, For example, what has a content rate of 30 to 60% of sulfur trioxide can be used.
得られたスルホン化活性炭中におけるスルホ基の量は、活性炭1gに対して、0.1mmol/g以上であることが好ましく、0.1mmol/g以上1.0mmol/g以下であることがより好ましい。スルホ基の量が0.1mmol/g未満であると、活性が不十分となり、単糖の収率が低下するおそれがある。 The amount of sulfo group in the obtained sulfonated activated carbon is preferably 0.1 mmol / g or more, more preferably 0.1 mmol / g or more and 1.0 mmol / g or less with respect to 1 g of activated carbon. . If the amount of the sulfo group is less than 0.1 mmol / g, the activity becomes insufficient and the yield of monosaccharides may be reduced.
次に、スルホン化活性炭は、水または湯を用いて洗浄濾過される。
スルホン化活性炭は、表面にゆるく結合したスルホ基が反応時に脱離する可能性があるため、予め水熱処理により除去を行う。例えば、スルホン化活性炭を温度100℃以上250℃以下の温度の水に加え、圧力1MPa以上5MPa以下の水熱条件下で処理する。処理時間は30分以上5時間以下である。水熱処理終了後、濾過および乾燥させる。
Next, the sulfonated activated carbon is washed and filtered using water or hot water.
Sulfonated activated carbon is removed in advance by hydrothermal treatment because sulfo groups loosely bonded to the surface may be eliminated during the reaction. For example, the sulfonated activated carbon is added to water having a temperature of 100 ° C. or more and 250 ° C. or less, and treated under hydrothermal conditions of a pressure of 1 MPa or more and 5 MPa or less. The treatment time is 30 minutes or more and 5 hours or less. After the hydrothermal treatment is finished, the solution is filtered and dried.
このような処理を施したスルホン化活性炭を処理溶液A1に加えると、硫酸イオンの溶出が抑えられ、過分解を抑制することができる。
なお、スルホン化活性炭(固体酸触媒)の添加量は、オリゴ糖1gに対して0.01g以上5g以下の範囲内が好ましい。触媒の添加量が0.01g未満であると、単糖化が不十分となるおそれがある。また、触媒の添加量が5gを超えても糖収率の向上は得られない。
なお、触媒単糖化処理210で使用されたスルホン化活性炭(固体酸触媒)は、処理終了後の処理液を固液分離することで回収され、次の触媒単糖化処理210で再利用されてもよいし、燃料として再利用されてもよい。
When the sulfonated activated carbon that has been subjected to such treatment is added to the treatment solution A1, elution of sulfate ions can be suppressed, and excessive decomposition can be suppressed.
In addition, the addition amount of the sulfonated activated carbon (solid acid catalyst) is preferably in the range of 0.01 g to 5 g with respect to 1 g of the oligosaccharide. If the added amount of the catalyst is less than 0.01 g, monosaccharification may be insufficient. Moreover, even if the addition amount of a catalyst exceeds 5 g, an improvement in sugar yield cannot be obtained.
The sulfonated activated carbon (solid acid catalyst) used in the
[3−2.酵素単糖化処理]
処理溶液A2の単糖化は、酵素による酵素単糖化処理220により行う。
酵素としては、オリゴ糖を単糖に加水分解できるものであれば特に限定されないが、例えば、セルラーゼ、キシラナーゼ等の多糖分解酵素が挙げられる。具体的には、セルラーゼとして「ACCELLERASE1000」(Genencor社製)などの商品がある。
酵素単糖化処理220は、処理溶液A2に対してセルラーゼを適当な量添加し、反応が終了するまで一定時間放置する。ここで、反応は、緩衝剤でpH3.5以上5.5以下に調整した緩衝液に処理溶液A2とセルラーゼを加えた反応液を、温度45℃以上55℃以下で24時間以上処理することによって行われる。
そして、反応後の処理溶液を濾過して得られる濾液を回収する。この濾液には、単糖3であるグルコースが主に含まれている。
[3-2. Enzymatic saccharification treatment]
The monosaccharification of the treatment solution A2 is performed by an
The enzyme is not particularly limited as long as it can hydrolyze an oligosaccharide into a monosaccharide, and examples thereof include polysaccharide-degrading enzymes such as cellulase and xylanase. Specifically, there are products such as “ACCELLERASE 1000” (manufactured by Genencor) as cellulase.
In the
And the filtrate obtained by filtering the process solution after reaction is collect | recovered. This filtrate mainly contains glucose which is
[4.第1実施形態の作用効果]
以上より、本実施形態では、次の作用効果を奏することができる。
(1)上記実施形態では、バイオマス1に対して第1加圧熱水処理110を行った後、その処理溶液A1に対してスルホン化活性炭(固体酸触媒)を接触させる触媒単糖化処理210を行って単糖3を得ている。
これによれば、第1加圧熱水処理110によりバイオマス1中のヘミセルロースをオリゴ糖にまで加水分解すると同時に、バイオマス1に含まれるセルロースとリグニンが除去され、後工程においてオリゴ糖が加水分解されやすい。また、加水分解後の処理溶液とスルホン化活性炭との反応は、液体と固体の反応であるため、触媒であるスルホン化活性炭の活性が発現しやすく、処理溶液A1中のオリゴ糖を効率よく加水分解することができる。また、固体酸触媒は単糖の選択性が高い。したがって、短い反応時間(30分以上12時間以下)で高収率の単糖3を得ることができる。
[4. Effects of First Embodiment]
As described above, in the present embodiment, the following operational effects can be achieved.
(1) In the above-described embodiment, after the first pressurized
According to this, the first pressurized
(2)また、上記実施形態では、第1加圧熱水処理110で生成した残渣B1に対して第2加圧熱水処理120を行っている。これによれば、第1加圧熱水処理110で加水分解されなかったセルロースをオリゴ糖にまで加水分解することができる。そして、加水分解された処理溶液A2に対して酵素単糖化処理220を行うので、単糖3をより高い収率で得ることができる。酵素による単糖化処理は、固体酸触媒による触媒単糖化処理210に比べて時間は要するものの単糖の選択性が高いため、単糖3を高い収率で得ることができる。
(2) Moreover, in the said embodiment, the 2nd pressurized
(3)さらに、上記実施形態では、無触媒下で第1加圧熱水処理110および第2加圧熱水処理120を行っている。無触媒下で第1加圧熱水処理110を行うことで、バイオマス1を効果的にオリゴ糖に加水分解することができる。また、残渣B1に含まれる固体のセルロース系残渣の結晶構造を破壊することもできる。したがって、第2加圧熱水処理120の工程において、セルロースの加水分解が進行し、処理溶液A2中のC6オリゴ糖および単糖の濃度が高くなり、酵素単糖化処理220において、高い収率で単糖3を得ることができる。
(3) Further, in the above embodiment, the first pressurized
(4)そして、上記実施形態では、第1触媒単糖化処理210の固体酸触媒としてスルホン化活性炭を用いた。スルホン化活性を用いると、単糖の選択性が高く、過分解物が生成しにくいため、単糖3を高い収率で得ることができる。
(5)また、上記実施形態では、加圧熱水処理、固体酸触媒による触媒単糖化処理、および酵素単糖化処理のいずれの処理も環境に対する負荷が小さいため、有用性が高い。
(6)さらに、上記実施形態では、固体酸触媒(スルホン化活性炭)を使用した後、触媒単糖化処理210で再利用できたり、燃料として再利用することができるため、有用性が高い。燃料として再利用する場合、リグニンなどの残渣B2と共に燃料とすることもできる。また、この残渣B2と使用済み固体酸触媒との混合物は、本実施形態で使用する活性炭系触媒(固体酸触媒)の原料として再利用することも可能である。
(4) In the above embodiment, sulfonated activated carbon is used as the solid acid catalyst of the first
(5) Moreover, in the said embodiment, since all the processes of a pressurized hot water process, the catalyst monosaccharification process by a solid acid catalyst, and an enzyme monosaccharification process have little load with respect to an environment, their usefulness is high.
(6) Furthermore, in the said embodiment, after using a solid acid catalyst (sulfonated activated carbon), since it can recycle | reuse by the catalyst monosaccharide |
[5.第1実施形態の変形例]
なお、上記第1実施形態において、以下のように構成してもよい。
例えば、上記実施形態において、第2加圧熱水処理120で得られる処理溶液A2に対して酵素単糖化処理220を行ったが、図2に示すように、処理溶液A2に対して固体酸触媒による第2触媒単糖化処理230を行ってもよい。これによれば、第2触媒単糖化処理230により、反応時間をより短くすることができる。
また、図3に示すように、第1加圧熱水処理110で得られる処理溶液A1と第2加圧熱水処理120で得られる処理溶液A2とを混合し、この混合液に対して固体酸触媒による第3触媒単糖化処理240を行ってもよい。これによれば、触媒単糖化処理を1回行えばよいので、少ない設備で実施することができる。
[5. Modification of First Embodiment]
Note that the first embodiment may be configured as follows.
For example, in the above embodiment, the
Moreover, as shown in FIG. 3, the treatment solution A1 obtained by the first pressurized
〔第2実施形態〕
次に、第2実施形態を図4に基づいて説明する。第2実施形態では、プロセスが異なるのみで各処理の詳細は第1実施形態と同様であるので、プロセスのみを説明する。
第2実施形態では、バイオマス1に対する加圧熱水処理は、第1加圧熱水処理110のみの1段階の工程で行われる。第1加圧熱水処理110が行われると、処理物を固液分離し、得られた溶液を処理溶液A1とし、得られた固形分を残渣B1とする。
次に、処理溶液A1に対して第1触媒単糖化処理210を実施し、単糖3を得る。
[Second Embodiment]
Next, a second embodiment will be described with reference to FIG. In the second embodiment, only the process is different and the details of each process are the same as those in the first embodiment, and therefore only the process will be described.
In the second embodiment, the pressurized hot water treatment for the
Next, the first
[触媒処理]
また、残渣B1に対して触媒処理310を行う(触媒加水分解工程)。ここでは、前述の第1触媒単糖化処理210で使用されたものと同じ固体酸触媒を用いることができる。残渣B1に水を加えてスラリー濃度を10質量%以上とし、温度120℃以上230℃以下、圧力は当該温度の飽和蒸気圧以上、反応時間30分以上12時間以下で加水分解を行う。この触媒処理310による処理物を固液分離し、得られた溶液を処理溶液A3とし、得られた固形分を残渣B3とする。残渣B3にはリグニンが含まれており、各種燃料として広く利用される。
次に、処理溶液A3に対して酵素単糖化処理220を実施し、単糖3を得る。
なお、触媒処理310で使用された固体酸触媒は、処理終了後の残渣に含まれるリグニン等とともに各種燃料として広く再利用される。
[Catalyst treatment]
Further, the
Next, the
Note that the solid acid catalyst used in the
[第2実施形態の作用効果]
以上より、第2実施形態では、第1実施形態の作用効果(1)(3)(4)(5)および以下の作用効果を奏することができる。
(6)第2実施形態では、第1加圧熱水処理110で得られた残渣B1に対して触媒処理310を行っているため、第1加圧熱水処理110で加水分解されなかったセルロースをオリゴ糖にまで加水分解することができる。そして、加水分解された処理溶液A3(C6オリゴ糖と単糖を含む)に対して酵素単糖化処理220を行うので、単糖をより高い収率で得ることができる。酵素による単糖化処理は、固体酸触媒による触媒単糖化処理210に比べて単糖の選択性が高いため、単糖3を高い収率で得ることができる。また、(3)で述べたように、残渣B1中のセルロースの結晶構造はある程度破壊されているため、触媒処理310での触媒の活性が発現しやすい。
[Effects of Second Embodiment]
As mentioned above, in 2nd Embodiment, there can exist the effect (1) (3) (4) (5) and the following effect of 1st Embodiment.
(6) In the second embodiment, since the
[第2実施形態の変形例]
なお、上記第2実施形態において、以下のように構成してもよい。
例えば、図5に示すように、上記第2実施形態において得られた処理溶液A1と処理溶液A3とを混合し、この混合液に対して固体酸触媒による第3触媒単糖化処理240を行ってもよい。これによれば、触媒単糖化処理を1回行えばよいので、少ない設備で実施することができる。
また、図6に示すように、上記第2実施形態おいて、触媒処理310により得られる処理溶液A3は単糖の割合が多いため、処理溶液A3をさらに酵素等で単糖化処理することなく、処理溶液A3に含まれる単糖を回収してもよい。これによれば、プロセス全体で単糖化工程は第1触媒単糖化処理210だけで済むため、単糖化の工程を簡略化することができる。
[Modification of Second Embodiment]
Note that the second embodiment may be configured as follows.
For example, as shown in FIG. 5, the treatment solution A1 and the treatment solution A3 obtained in the second embodiment are mixed, and the mixture is subjected to a third
Further, as shown in FIG. 6, in the second embodiment, since the treatment solution A3 obtained by the
さらに、前述の第1実施形態および第2実施形態を組み合わせた構成としてもよい。具体的には、図7に示すように、バイオマス1に対して第1加圧熱水処理110および第2加圧熱水処理120を実施し、得られた残渣B2に対して触媒処理310を実施する。そして、第1加圧熱水処理110で得られた処理溶液A1に対して第1触媒単糖化処理210を実施して単糖3を得る。また、第2加圧熱水処理120で得られた処理溶液A2に対して酵素単糖化処理220を実施して単糖3を得る。さらに、触媒処理310により得られる単糖を単糖3として回収する。これによれば、バイオマス1の加水分解による残渣に対して複数回の加水分解処理を実施するので、より多くのセルロースを加水分解することができる。したがって、単糖3を高収率で回収することができる。
Furthermore, it is good also as a structure which combined the above-mentioned 1st Embodiment and 2nd Embodiment. Specifically, as shown in FIG. 7, the first pressurized
〔変形例〕
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上記実施形態では、固体酸触媒としてスルホン化活性炭を用いたが、これに限られない。ゼオライト、アルミナ、シリカアルミナ、活性炭、陽イオン交換樹脂、スルホン化メソポーラスシリカ、スルホン化炭素材料、硫酸ジルコニア、タングステン酸ジルコニア、リン酸ジルコニウム等を用いて触媒単糖化処理および触媒処理を行ってもよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, sulfonated activated carbon is used as the solid acid catalyst, but the present invention is not limited to this. Catalyst monosaccharification treatment and catalyst treatment may be performed using zeolite, alumina, silica alumina, activated carbon, cation exchange resin, sulfonated mesoporous silica, sulfonated carbon material, zirconia sulfate, zirconia tungstate, zirconium phosphate, etc. .
次に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
まず、固体酸触媒として以下の2種類(C1、C2)のスルホン化活性炭を調製した。
EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not restrict | limited at all to the description content of these Examples.
First, the following two types (C1, C2) of sulfonated activated carbon were prepared as solid acid catalysts.
〔スルホン化活性炭(C1)の調整〕
市販の活性炭粉末(和光純薬工業社製)8.0gを95%濃硫酸80mLに加えた。当該反応混合液を125mLのガラス製洗浄瓶に入れ、80mL/分の流量で窒素ガスを流しつつ、常温から150℃まで30分かけて昇温した。そして、当該反応混合液を攪拌しつつ150℃で4時間反応させた。反応混合液を常温まで放冷した後、スルホン化された活性炭を濾別した。得られた活性炭を常温の水2Lと80℃の蒸留水6Lで洗浄した。洗浄後の活性炭2gを水100mLに加え、オートクレーブ中、200℃、1.6MPaで3時間水熱処理した。得られたスルホン化活性炭を常温の水1Lで水洗濾過した後、濾別し、恒温乾燥機により100℃で12時間乾燥した。
[Adjustment of sulfonated activated carbon (C1)]
8.0 g of commercially available activated carbon powder (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 80 mL of 95% concentrated sulfuric acid. The reaction mixture was placed in a 125 mL glass washing bottle and heated from room temperature to 150 ° C. over 30 minutes while flowing nitrogen gas at a flow rate of 80 mL / min. And the said reaction liquid mixture was made to react at 150 degreeC for 4 hours, stirring. After the reaction mixture was allowed to cool to room temperature, the sulfonated activated carbon was filtered off. The obtained activated carbon was washed with 2 L of room temperature water and 6 L of 80 ° C. distilled water. After washing, 2 g of activated carbon was added to 100 mL of water and hydrothermally treated in an autoclave at 200 ° C. and 1.6 MPa for 3 hours. The obtained sulfonated activated carbon was washed with 1 L of room temperature water and filtered, and then filtered and dried at 100 ° C. for 12 hours with a constant temperature dryer.
〔スルホン化活性炭(C2)の調整〕
市販の活性炭粉末(和光純薬工業社製)1.0gを95%濃硫酸20mLに加えた。当該反応混合液を50mLの試験管型ガラス容器に入れ、40mL/分の流量でアルゴンガスを流しつつ、5℃/分の速度で150℃まで昇温した。当該反応混合液を攪拌しつつ150℃で16時間反応させた。反応混合液を常温まで放冷した後、スルホン化された活性炭を濾別した。得られた活性炭を80℃の蒸留水3Lで洗浄した。次いで、水20mLに加え、オートクレーブ中、200℃、1.6MPaで3時間水熱処理した後、スルホン化活性炭を濾別し、恒温乾燥機により100℃で12時間乾燥した。
[Adjustment of sulfonated activated carbon (C2)]
1.0 g of commercially available activated carbon powder (Wako Pure Chemical Industries, Ltd.) was added to 20 mL of 95% concentrated sulfuric acid. The reaction mixture was put in a 50 mL test tube type glass container and heated to 150 ° C. at a rate of 5 ° C./min while flowing argon gas at a flow rate of 40 mL / min. The reaction mixture was reacted at 150 ° C. for 16 hours with stirring. After the reaction mixture was allowed to cool to room temperature, the sulfonated activated carbon was filtered off. The obtained activated carbon was washed with 3 L of distilled water at 80 ° C. Subsequently, in addition to 20 mL of water, hydrothermal treatment was performed in an autoclave at 200 ° C. and 1.6 MPa for 3 hours, and then the sulfonated activated carbon was separated by filtration and dried at 100 ° C. for 12 hours by a constant temperature dryer.
〔試験1〕
スルホン化活性炭(C1)によりオリゴ糖を単糖に変換できることを以下のようにして確認した。
キシロオリゴ糖(和光純薬工業製)2.0g、スルホン化活性炭触媒(C1)0.5g、イオン交換水50gをオートクレーブに入れ、150℃まで45分で昇温し、150℃で3時間反応させた。室温まで冷却後内容物を取り出し、スルホン化活性炭触媒(C1)と反応後の液を濾別した。濾液中の糖を高速液体クロマトグラフィー(HPLC)にて測定した。測定条件は以下の通りである。
測定条件:カラム:HITACHI−GL−W520
溶離液:0.1%ギ酸水
流速:1.0mL/min
検出器 RI(セル温度40℃)
測定結果は、生成物全糖中の残存オリゴ糖は0.1%以下であり、残りは単糖(キシロース)であった。また、生成物中に過分解物が存在していないことも確認した。すなわち、単糖の選択性が高いと言える。
[Test 1]
It was confirmed as follows that oligosaccharides can be converted into monosaccharides by sulfonated activated carbon (C1).
2.0 g of xylo-oligosaccharide (manufactured by Wako Pure Chemical Industries), 0.5 g of sulfonated activated carbon catalyst (C1) and 50 g of ion-exchanged water are put in an autoclave, heated to 150 ° C. in 45 minutes, and reacted at 150 ° C. for 3 hours. It was. After cooling to room temperature, the contents were taken out, and the sulfonated activated carbon catalyst (C1) and the liquid after the reaction were separated by filtration. The sugar in the filtrate was measured by high performance liquid chromatography (HPLC). The measurement conditions are as follows.
Measurement conditions: Column: HITACHI-GL-W520
Eluent: 0.1% formic acid water
Flow rate: 1.0 mL / min
Detector RI (cell temperature 40 ° C)
As a result of the measurement, the remaining oligosaccharide in the total sugar of the product was 0.1% or less, and the remainder was a monosaccharide (xylose). It was also confirmed that no overdecomposed product was present in the product. That is, it can be said that the selectivity of monosaccharide is high.
〔試験2〕
[実施例1]
5mm以下に裁断した稲わら10gとイオン交換水57gをオートクレーブに入れ、190℃で、10分間加圧熱水処理を行った。得られた内容物を濾過し、濾液である稲わら加圧熱水処理液(A1)を得た。そして、この処理液(A1)5mLと、スルホン化活性炭触媒(C2)50mgをオートクレーブに入れ、150℃で3時間反応を行った。これにより得られた溶液を溶液Cとする。
[Test 2]
[Example 1]
10 g of rice straw cut to 5 mm or less and 57 g of ion-exchanged water were placed in an autoclave and subjected to pressurized hot water treatment at 190 ° C. for 10 minutes. The obtained contents were filtered to obtain a rice straw pressurized hot water treatment liquid (A1) as a filtrate. Then, 5 mL of this treatment liquid (A1) and 50 mg of the sulfonated activated carbon catalyst (C2) were placed in an autoclave and reacted at 150 ° C. for 3 hours. The solution thus obtained is designated as Solution C.
[比較例1]
処理液(A1)5mLに触媒を入れない状態でオートクレーブにいれ、150℃で3時間反応させた。これにより得られた溶液を溶液Dとする。
[Comparative Example 1]
In 5 mL of treatment liquid (A1), the catalyst was not put in an autoclave and reacted at 150 ° C. for 3 hours. The solution thus obtained is designated as Solution D.
実施例1および比較例1で得られた溶液について、以下の測定条件の下、単糖の濃度を測定した。
測定条件:カラム:shodex−SP0810
溶離液:水
流速:1.0mL/min
検出器 RI(セル温度40℃)
For the solutions obtained in Example 1 and Comparative Example 1, the concentration of monosaccharides was measured under the following measurement conditions.
Measurement conditions: Column: shodex-SP0810
Eluent: Water
Flow rate: 1.0 mL / min
Detector RI (cell temperature 40 ° C)
[評価]
実施例1の溶液C中のグルコース(単糖)濃度は、比較例1の溶液D中のグルコース濃度の16.9倍であった。また、実施例1の溶液C中のキシロース(単糖)濃度は、比較例1の溶液D中のキシロース濃度の5.0倍であった。すなわち、実施例1では単糖が高収率で得られている。
[Evaluation]
The glucose (monosaccharide) concentration in the solution C of Example 1 was 16.9 times the glucose concentration in the solution D of Comparative Example 1. Moreover, the xylose (monosaccharide) concentration in the solution C of Example 1 was 5.0 times the xylose concentration in the solution D of Comparative Example 1. That is, in Example 1, a monosaccharide was obtained in high yield.
〔試験3〕
[実施例2]
5mm以下に裁断した稲わら10gとイオン交換水57gをオートクレーブに入れ、190℃で、10分間加圧熱水処理を行った。得られた内容物を濾過し、濾液である処理溶液A1については、実施例1と同様に処理した。
残った固体物(残渣)を105℃にて12時間乾燥した。この残渣2gとスルホン化活性炭触媒(C1)0.5gとイオン交換水50gとをオートクレーブに入れ、180℃にて3時間反応させた。これにより得られた生成物を濾過し、濾液Eを得た。
[Test 3]
[Example 2]
10 g of rice straw cut to 5 mm or less and 57 g of ion-exchanged water were placed in an autoclave and subjected to pressurized hot water treatment at 190 ° C. for 10 minutes. The obtained contents were filtered, and the treatment solution A1 as the filtrate was treated in the same manner as in Example 1.
The remaining solid (residue) was dried at 105 ° C. for 12 hours. 2 g of this residue, 0.5 g of the sulfonated activated carbon catalyst (C1) and 50 g of ion-exchanged water were placed in an autoclave and reacted at 180 ° C. for 3 hours. The product thus obtained was filtered to obtain filtrate E.
[実施例3]
5mm以下に裁断した稲わら10gとイオン交換水57gをオートクレーブに入れ、190℃で、10分間加圧熱水処理を行った。得られた内容物を濾過し、濾液である処理溶液A1については、実施例1と同様に処理した。
残った固体物(残渣)を105℃にて12時間乾燥した。この残渣2gに、イオン交換水50gを加え、触媒を用いずにオートクレーブ中、230℃にて10分間反応させた。得られた生成物を濾過し、濾液Fを得た。
[Example 3]
10 g of rice straw cut to 5 mm or less and 57 g of ion-exchanged water were placed in an autoclave and subjected to pressurized hot water treatment at 190 ° C. for 10 minutes. The obtained contents were filtered, and the treatment solution A1 as the filtrate was treated in the same manner as in Example 1.
The remaining solid (residue) was dried at 105 ° C. for 12 hours. To 2 g of this residue, 50 g of ion-exchanged water was added and reacted at 230 ° C. for 10 minutes in an autoclave without using a catalyst. The resulting product was filtered to obtain filtrate F.
実施例2および実施例3で得られた濾液について、以下の測定条件の下、単糖の濃度を測定した。
測定条件:カラム:HITACHI−GL−W520
溶離液:0.1%ギ酸水
流速:1.0mL/min
検出器 RI(セル温度40℃)
For the filtrates obtained in Example 2 and Example 3, the monosaccharide concentration was measured under the following measurement conditions.
Measurement conditions: Column: HITACHI-GL-W520
Eluent: 0.1% formic acid water
Flow rate: 1.0 mL / min
Detector RI (cell temperature 40 ° C)
[評価]
実施例2の濾液E中のグルコース(単糖)濃度は0.56mg/ml、実施例3の濾液F中のグルコース濃度は0.26mg/mlであった。すなわち、触媒を用いた実施例2の方が単糖が高収率で得られている。
なお、実施例3では、固体残渣の糖化は触媒反応を用いないため、実施例2より反応温度を高めに、反応時間を短めに設定している。一方、濾液A1の処理は、実施例2、3ともに同一条件で行った。
[Evaluation]
The glucose (monosaccharide) concentration in the filtrate E of Example 2 was 0.56 mg / ml, and the glucose concentration in the filtrate F of Example 3 was 0.26 mg / ml. That is, the monosaccharide was obtained in a higher yield in Example 2 using a catalyst.
In Example 3, since the saccharification of the solid residue does not use a catalytic reaction, the reaction temperature is set higher than in Example 2 and the reaction time is set shorter. On the other hand, the treatment of the filtrate A1 was performed under the same conditions in both Examples 2 and 3.
本発明は、バイオマスを原料とした燃料、化学品等の製造に利用することができる。 The present invention can be used for the production of fuels, chemicals and the like using biomass as a raw material.
1…バイオマス
3…単糖
110…第1加圧熱水処理
120…第2加圧熱水処理
210…第1触媒単糖化処理
220…酵素単糖化処理
230…第2触媒単糖化処理
240…第3触媒単糖化処理
310…触媒処理
A1、A2、A3…処理溶液
B1、B2、B3、B4…残渣
DESCRIPTION OF
Claims (9)
加圧熱水処理工程で得られる処理溶液を固体酸触媒に接触させる触媒単糖化工程と、を備えたことを特徴とするバイオマスの糖化方法。 A pressurized hot water treatment process for performing pressurized hot water treatment of biomass under no catalyst;
And a catalytic saccharification step in which the treatment solution obtained in the pressurized hot water treatment step is brought into contact with a solid acid catalyst.
前記加圧熱水処理工程は、
180℃以上230℃以下の温度の加圧熱水で処理を行う第1加圧熱水処理工程を有することを特徴とするバイオマスの糖化方法。 The biomass saccharification method according to claim 1,
The pressurized hot water treatment step includes
A biomass saccharification method comprising a first pressurized hot water treatment step of treating with pressurized hot water at a temperature of 180 ° C or higher and 230 ° C or lower.
前記触媒単糖化工程は、
前記加圧熱水処理工程で得られる処理溶液を、120℃以上180℃以下の温度、当該温度における飽和蒸気圧以上の圧力で、30分以上12時間以下、前記固体酸触媒に接触させることを特徴とするバイオマスの糖化方法。 In the biomass saccharification method according to claim 1 or 2,
The catalytic saccharification step comprises
Bringing the treatment solution obtained in the pressurized hot water treatment step into contact with the solid acid catalyst at a temperature of 120 ° C. or higher and 180 ° C. or lower and a pressure of a saturated vapor pressure or higher at the temperature for 30 minutes or longer and 12 hours or shorter. A biomass saccharification method characterized.
前記加圧熱水処理工程は、
前記第1加圧熱水処理工程で得られる残渣を、230℃以上300℃以下の温度の加圧熱水で処理を行う第2加圧熱水処理工程をさらに有し、
前記第2加圧熱水処理工程で得られる処理溶液中の糖分を酵素または固体酸触媒を用いて単糖化する単糖化処理工程を備えたことを特徴とするバイオマスの糖化方法。 In the biomass saccharification method according to claim 2 or 3,
The pressurized hot water treatment step includes
A second pressurized hot water treatment step of treating the residue obtained in the first pressurized hot water treatment step with pressurized hot water having a temperature of 230 ° C. or higher and 300 ° C. or lower;
A biomass saccharification method comprising: a saccharification treatment step of saccharifying a sugar content in the treatment solution obtained in the second pressurized hot water treatment step using an enzyme or a solid acid catalyst.
前記加圧熱水処理工程は、
前記第1加圧熱水処理工程で得られる残渣を、230℃以上300℃以下の温度の加圧熱水で処理を行う第2加圧熱水処理工程をさらに有し、
前記第1加圧熱水処理工程で得られる処理溶液と、前記第2加圧熱水処理工程で得られる処理溶液とを合わせた溶液に対して前記触媒単糖化工程を実施することを特徴とするバイオマスの糖化方法。 In the biomass saccharification method according to claim 2 or 3,
The pressurized hot water treatment step includes
A second pressurized hot water treatment step of treating the residue obtained in the first pressurized hot water treatment step with pressurized hot water having a temperature of 230 ° C. or higher and 300 ° C. or lower;
The catalyst monosaccharification step is performed on a solution obtained by combining the treatment solution obtained in the first pressurized hot water treatment step and the treatment solution obtained in the second pressurized hot water treatment step. To saccharify biomass.
前記第1加圧熱水処理工程で得られる残渣を固体酸触媒に接触させる触媒加水分解工程をさらに備えたことを特徴とするバイオマスの糖化方法。 In the biomass saccharification method according to claim 2 or 3,
A biomass saccharification method, further comprising a catalytic hydrolysis step in which the residue obtained in the first pressurized hot water treatment step is brought into contact with a solid acid catalyst.
前記触媒加水分解工程で得られる処理溶液中の糖分を酵素または固体酸触媒を用いて単糖化する単糖化処理工程を備えたことを特徴とするバイオマスの糖化方法。 In the biomass saccharification method according to claim 6,
A biomass saccharification method comprising a mono-saccharification treatment step of mono-saccharifying a sugar content in the treatment solution obtained in the catalytic hydrolysis step using an enzyme or a solid acid catalyst.
前記第1加圧熱水処理工程で得られる処理溶液と、前記触媒加水分解工程終了後に固液分離して得られる処理溶液とを合わせた溶液に対して前記触媒単糖化工程を実施することを特徴とするバイオマスの糖化方法。 In the biomass saccharification method according to claim 6,
Carrying out the catalytic monosaccharification step on a solution obtained by combining the treatment solution obtained in the first pressurized hot water treatment step and the treatment solution obtained by solid-liquid separation after the catalyst hydrolysis step is completed. A biomass saccharification method characterized.
前記固体酸触媒は、
BET比表面積が200m2/g以上の有機物をスルホン化したスルホン化有機物を、温度150℃以上250℃以下および圧力1MPa以上5MPa以下の下で水熱処理を行うことにより得られ、
前記スルホン化有機物中のスルホ基量が0.1mmol/g以上1.0mmol/g未満であることを特徴とするバイオマスの糖化方法。 In the method for saccharification of biomass according to any one of claims 1 to 8,
The solid acid catalyst is
A sulfonated organic material obtained by sulfonating an organic material having a BET specific surface area of 200 m 2 / g or more is obtained by performing hydrothermal treatment at a temperature of 150 ° C. to 250 ° C. and a pressure of 1 MPa to 5 MPa,
The biomass saccharification method, wherein a sulfo group amount in the sulfonated organic substance is 0.1 mmol / g or more and less than 1.0 mmol / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009132740A JP2010279255A (en) | 2009-06-02 | 2009-06-02 | Method for saccharifying biomass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009132740A JP2010279255A (en) | 2009-06-02 | 2009-06-02 | Method for saccharifying biomass |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010279255A true JP2010279255A (en) | 2010-12-16 |
Family
ID=43536681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009132740A Pending JP2010279255A (en) | 2009-06-02 | 2009-06-02 | Method for saccharifying biomass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010279255A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143396A (en) * | 2010-01-18 | 2011-07-28 | Hideki Shibata | Catalyst for carrying out decomposition carbonization of organic matter |
WO2012117567A1 (en) * | 2011-02-28 | 2012-09-07 | Shibata Hideki | Catalyst for decomposition and carbonization of organic substances |
WO2013046623A1 (en) * | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
WO2013046622A1 (en) * | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
WO2013046624A1 (en) * | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
WO2013103111A1 (en) * | 2012-01-06 | 2013-07-11 | 株式会社Ihi | Method and apparatus for producing ethanol |
JP2014034570A (en) * | 2012-08-10 | 2014-02-24 | Equos Research Co Ltd | Saccharification method, and saccharification reaction device |
WO2014097800A1 (en) * | 2012-12-18 | 2014-06-26 | 昭和電工株式会社 | Plant-biomass hydrolysis method |
US9133277B2 (en) | 2011-04-28 | 2015-09-15 | Kabushiki Kaisha Equos Research | Method for solubilizing cellulose |
JP2017502701A (en) * | 2014-01-16 | 2017-01-26 | アルヴィンド マリナース ラリ、 | Fractionation of oligosaccharides from agricultural waste |
JP2018111617A (en) * | 2017-01-10 | 2018-07-19 | セイコーインスツル株式会社 | Method for producing porous carbon material, method for producing porous activated carbon material, and method for producing electrode material |
JP2019001959A (en) * | 2017-06-19 | 2019-01-10 | 学校法人 芝浦工業大学 | Treatment method of cellulose, and saccharification method of cellulose |
JP2020151678A (en) * | 2019-03-22 | 2020-09-24 | 三菱重工業株式会社 | Hydrothermal treatment apparatus |
WO2020202771A1 (en) * | 2019-03-29 | 2020-10-08 | 三菱重工業株式会社 | Waste treatment system and waste treatment method |
-
2009
- 2009-06-02 JP JP2009132740A patent/JP2010279255A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143396A (en) * | 2010-01-18 | 2011-07-28 | Hideki Shibata | Catalyst for carrying out decomposition carbonization of organic matter |
WO2012117567A1 (en) * | 2011-02-28 | 2012-09-07 | Shibata Hideki | Catalyst for decomposition and carbonization of organic substances |
US9133277B2 (en) | 2011-04-28 | 2015-09-15 | Kabushiki Kaisha Equos Research | Method for solubilizing cellulose |
WO2013046623A1 (en) * | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
WO2013046622A1 (en) * | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
WO2013046624A1 (en) * | 2011-09-30 | 2013-04-04 | 川崎重工業株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
CN103748232A (en) * | 2011-09-30 | 2014-04-23 | 川崎重工业株式会社 | Method for producing ethanol using cellulosic biomass as starting material |
US9273329B2 (en) | 2011-09-30 | 2016-03-01 | Kawasaki Jukogyo Kabushiki Kaisha | Method for producing ethanol using cellulosic biomass as raw material |
JPWO2013046622A1 (en) * | 2011-09-30 | 2015-03-26 | 川崎重工業株式会社 | Ethanol production method using cellulosic biomass |
JPWO2013046624A1 (en) * | 2011-09-30 | 2015-03-26 | 川崎重工業株式会社 | Ethanol production method using cellulosic biomass |
WO2013103111A1 (en) * | 2012-01-06 | 2013-07-11 | 株式会社Ihi | Method and apparatus for producing ethanol |
JP2014034570A (en) * | 2012-08-10 | 2014-02-24 | Equos Research Co Ltd | Saccharification method, and saccharification reaction device |
WO2014097800A1 (en) * | 2012-12-18 | 2014-06-26 | 昭和電工株式会社 | Plant-biomass hydrolysis method |
JPWO2014097800A1 (en) * | 2012-12-18 | 2017-01-12 | 昭和電工株式会社 | Method for hydrolysis of plant biomass |
JP2017502701A (en) * | 2014-01-16 | 2017-01-26 | アルヴィンド マリナース ラリ、 | Fractionation of oligosaccharides from agricultural waste |
JP2018111617A (en) * | 2017-01-10 | 2018-07-19 | セイコーインスツル株式会社 | Method for producing porous carbon material, method for producing porous activated carbon material, and method for producing electrode material |
JP2019001959A (en) * | 2017-06-19 | 2019-01-10 | 学校法人 芝浦工業大学 | Treatment method of cellulose, and saccharification method of cellulose |
WO2020195318A1 (en) * | 2019-03-22 | 2020-10-01 | 三菱重工業株式会社 | Hydrothermal processing device |
JP2020151678A (en) * | 2019-03-22 | 2020-09-24 | 三菱重工業株式会社 | Hydrothermal treatment apparatus |
JP7381001B2 (en) | 2019-03-22 | 2023-11-15 | 三菱重工業株式会社 | Hydrothermal treatment equipment |
WO2020202771A1 (en) * | 2019-03-29 | 2020-10-08 | 三菱重工業株式会社 | Waste treatment system and waste treatment method |
JP2020163280A (en) * | 2019-03-29 | 2020-10-08 | 三菱重工業株式会社 | Waste treatment system and waste treatment method |
CN113597347A (en) * | 2019-03-29 | 2021-11-02 | 三菱重工业株式会社 | Waste treatment system and waste treatment method |
EP3925711A4 (en) * | 2019-03-29 | 2022-04-13 | Mitsubishi Heavy Industries, Ltd. | Waste treatment system and waste treatment method |
JP7370157B2 (en) | 2019-03-29 | 2023-10-27 | 三菱重工業株式会社 | Waste treatment system and waste treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010279255A (en) | Method for saccharifying biomass | |
Mao et al. | FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue | |
ES2425596T3 (en) | Detoxification and recycling of washing solutions used in the pretreatment of lignocellulose content materials | |
Yoon et al. | Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification | |
JP7149332B2 (en) | Method for producing cellulose, low-dispersion hemicellulose and lignin-dissociated polyphenols from fibrous biomass | |
CN103748231B (en) | The ethanol manufacture method being raw material with cellulose-based biomass | |
WO2013046622A1 (en) | Method for producing ethanol using cellulosic biomass as starting material | |
JP2011103874A (en) | Method for treating biomass | |
Wei et al. | Comparison of microwave-assisted zinc chloride hydrate and alkali pretreatments for enhancing eucalyptus enzymatic saccharification | |
CA3094413A1 (en) | Pretreatment with lignosulfonic acid | |
Dai et al. | Toward green production of xylooligosaccharides and glucose from sorghum straw biowaste by sequential acidic and enzymatic hydrolysis | |
Wu et al. | BIOMASS CHAR SULFONIC ACIDS (BC-SO 3 H)-CATALYZED HYDROLYSIS OF BAMBOO UNDER MICROWAVE IRRADIATION. | |
JPWO2009004951A1 (en) | Method for producing monosaccharides by hydrolysis and enzymatic saccharification of materials containing cellulose | |
JP2011045277A (en) | Production system for cellulose-based ethanol, and method for producing the same | |
Lv et al. | Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80 | |
Manivannan et al. | Valorization of fruit waste using DES pretreatment and hydrolysis over a heterogeneous catalyst for bioethanol production | |
Cao et al. | Enhanced enzymatic hydrolysis of sisal waste by sequential pretreatment with UV-catalyzed alkaline hydrogen peroxide and ionic liquid | |
CN106755198B (en) | Method for producing sugar by hydrolyzing agricultural and forestry biomass raw material thick mash | |
JP2009296919A (en) | Method for liquefying cellulose-based biomass | |
WO2014097800A1 (en) | Plant-biomass hydrolysis method | |
JPWO2009004950A1 (en) | Method for producing monosaccharides and / or water-soluble polysaccharides by hydrolysis of materials containing cellulose | |
WO2013046623A1 (en) | Method for producing ethanol using cellulosic biomass as starting material | |
JP2006141244A (en) | Method for saccharifying lignocellulose and the resultant saccharide | |
Ansanay et al. | Pre-treatment of biomasses using magnetised sulfonic acid catalysts | |
JP2015035973A (en) | Manufacturing method of sugar solution and manufacturing method of biomass derivative |