WO2013103111A1 - Method and apparatus for producing ethanol - Google Patents

Method and apparatus for producing ethanol Download PDF

Info

Publication number
WO2013103111A1
WO2013103111A1 PCT/JP2012/083561 JP2012083561W WO2013103111A1 WO 2013103111 A1 WO2013103111 A1 WO 2013103111A1 JP 2012083561 W JP2012083561 W JP 2012083561W WO 2013103111 A1 WO2013103111 A1 WO 2013103111A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
ethanol
reaction
hot water
pressurized hot
Prior art date
Application number
PCT/JP2012/083561
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 健治
北野 誠
典充 金子
健太郎 成相
伊藤 浩史
矢野 伸一
遠藤 貴士
Original Assignee
株式会社Ihi
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 独立行政法人産業技術総合研究所 filed Critical 株式会社Ihi
Publication of WO2013103111A1 publication Critical patent/WO2013103111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method and apparatus for producing ethanol, and in particular, a method for producing ethanol that produces biomass ethanol by saccharification of lignocellulosic material and microbial fermentation using plant waste such as wood and wheat straw as biomass, and It relates to a manufacturing apparatus.
  • Non-Patent Document 1 discloses a process for producing ethanol by saccharifying cellulose in biomass into glucose using cellulase, which is widely known as a saccharifying enzyme, and fermenting the obtained glucose.
  • Patent Document 1 listed below describes a method for producing ethanol in which fine bark that has been subjected to treatment with an alkali solution of bark raw material and refined by mechanical treatment is prepared into a slurry having an appropriate pH and then subjected to concurrent saccharification and fermentation. .
  • patent document 2 describes the treatment of biomass having a step of decomposing hemicellulose by treating cellulosic biomass with pressurized hot water
  • patent document 3 uses pressurized hot water treatment.
  • Non-Patent Document 2 In order to improve the efficiency of ethanol production from cellulosic biomass, development of microorganisms with high fermentation efficiency has been promoted, and various genetically modified yeasts have been proposed (for example, Non-Patent Document 2 below).
  • Cellulose contained in the wood material used as lignocellulosic biomass is saccharified to glucose using cellulase and converted to ethanol by fermentation with yeast, etc., but the monosaccharide obtained from hemicellulose contained in the wood material is In addition, the conversion efficiency to ethanol in fermentation by natural yeast or the like is not so high, and there is a problem of alcohol resistance.
  • the proportion of hemicellulose in the wood depends on the type of plant, it is generally around 30% and is not negligible. Therefore, in order to efficiently produce biomass ethanol at low cost, it is necessary to be able to efficiently perform hemicellulose saccharification and fermentation.
  • the problem to be solved by the present invention is to solve the above-mentioned problems and to provide a method for producing ethanol, which has high conversion efficiency in saccharification / fermentation of hemicellulose and can efficiently purify biomass ethanol.
  • the present inventors have conducted extensive research. As a result, in the saccharification / fermentation of hemicellulose, an efficient method for producing biomass ethanol using xylose ethanol fermentation by genetically modified yeast is proposed. The present inventors have found that it can be configured and completed the present invention.
  • the ethanol production apparatus comprises a pressurized hot water reactor that selectively decomposes hemicellulose contained in biomass by causing pressurized hot water to act on the biomass, and the pressurized heat.
  • the decomposition product of the water reactor is heated to 90 to 110 ° C. to act on a solid acid catalyst to obtain a saccharification product containing xylose, and the saccharification product obtained by the catalyst reaction device is subjected to xylose.
  • the gist of the present invention is to have a fermentation apparatus that produces ethanol by causing a microorganism having fermentation ability to act.
  • the schematic block diagram which shows one Embodiment of the ethanol manufacturing apparatus which concerns on this invention.
  • the graph which shows the relationship between the xylose ratio at the time of fermenting the mixture of xylose and glucose, and an ethanol yield.
  • Graphs (a) to (f) showing temporal changes in the amounts of sugar and ethanol produced by the enzyme reaction in the samples (1) to (6) of the plots constituting the graph of FIG.
  • saccharified products obtained by hydrolysis of cellulose and hemicellulose are ethanol fermented.
  • saccharification of lignocellulosic biomass that is, hydrolysis
  • a pressurized hydrothermal reaction selective hydrolysis of hemicellulose proceeds
  • a saccharifying enzyme reaction hydrolysis of cellulose, which is a residue of pressurized hot water reaction, proceeds.
  • hydrolysis of cellulose which is a residue of pressurized hot water reaction
  • the primary saccharified solution resulting from the hydrolysis reaction By subjecting the primary saccharified solution resulting from the hydrolysis reaction to a solid acid catalytic reaction, it is sufficiently saccharified to produce monosaccharides such as glucose and xylose (secondary saccharification). Monosaccharides obtained by such a saccharification process are fermented to produce ethanol.
  • Glucose fermentation proceeds easily with conventionally known fermentation microorganisms such as natural yeast, but the microorganisms that can be used for fermentation of hemicellulose-derived xylose are limited, and the yield of ethanol is low.
  • a saccharification condition of hemicellulose is set so that a saccharified product suitable for the fermentation can be obtained by utilizing a recently developed microorganism having excellent xylose fermentability.
  • the device 5 hydrolyzes (saccharifies) a partially saccharified product derived from cellulose
  • the second catalytic reaction device 7 hydrolyzes (saccharifies) a partially saccharified product derived from hemicellulose.
  • the fermentation apparatus includes a first fermentation apparatus 6 that ferments a saccharified product derived from cellulose to produce ethanol, and a second fermentation apparatus 8 that ferments a saccharified product derived from hemicellulose to produce ethanol, which are generated from each.
  • the fermentation products F1 and F2 are distilled by the distillation apparatus 9 to separate and purify ethanol.
  • the pressurized hot water reactor 1 includes a pump 1a, a heater 1b, a water amount adjusting valve 1c, a pressure-resistant reaction tank 1d, and a control device 1e.
  • the pump 1a pressurizes and heats water supplied from the outside.
  • the heater 1b heats the pressurized water flowing from the pump 1a to 150 to 230 ° C., preferably about 200 to 230 ° C., in accordance with a temperature control signal input from the control device 1e, and pressurizes hot water W ′ (pressure Hot water in a subcritical state of about 0.47 to 2.8 MPa, preferably about 1.6 to 2.8 MPa), which is supplied to the reaction tank 1d containing the biomass via the water amount adjusting valve 1c.
  • hot water W ′ pressure Hot water in a subcritical state of about 0.47 to 2.8 MPa, preferably about 1.6 to 2.8 MPa
  • the water amount adjusting valve 1c is an electronic control valve whose opening degree can be adjusted in accordance with a flow rate control signal input from the control device 1e, and the flow rate of the pressurized hot water W ′ supplied from the heater 1b to the reaction tank 1d. Adjust appropriately.
  • the control device 1e adjusts the temperature and flow rate of the pressurized hot water W ′ supplied to the reaction tank 1d by the temperature control signal output to the heater 1b and the water amount control signal output to the water amount adjustment valve 1c.
  • the biomass hydrolysis conditions in the reaction tank 1d are controlled as described above.
  • the hemicellulose contained in the biomass is selectively partially decomposed and solubilized to become a hydrous liquid of polysaccharides containing oligosaccharides.
  • the reaction product is a mixture of a water-containing liquid containing oligosaccharides derived from hemicellulose and a solid residue containing cellulose and lignin that do not decompose.
  • the supply form of pressurized hot water in the reaction tank 1d may be a continuous water supply system or a batch system, but is configured so that the pressurized hot water can stay in the tank for about 5 to 120 minutes. If pressurized hot water of about 120 to 200 ° C. is supplied before the above-mentioned pressurized hot water is supplied, lignin can be easily separated.
  • the cooler 3 cools the high-temperature solid residue S after the pressurized hot water reaction, adjusts it to a temperature suitable for the subsequent enzyme reaction, and generally cools it to about 50 to 100 ° C. Energy efficiency is improved by providing a heat exchanger that recovers thermal energy from the refrigerant used in the cooler 3 and makes it available for heating water in the pressurized hot water reactor 1.
  • the solid residue S adjusted to an appropriate temperature by the cooler 3 is supplied to the enzyme reaction device 4.
  • the enzyme reaction apparatus 4 is equipped with a stirrer and a temperature control mechanism, and cellulase, which is a saccharifying enzyme, is added to and mixed with the solid residue S whose water content has been adjusted so that stirring is possible as necessary, so that the enzyme is activated at a temperature.
  • cellulase which is a saccharifying enzyme
  • cellulose in the solid residue S is hydrolyzed by the action of cellulase, and a degradation product mainly composed of a suspended polysaccharide or cellobiose (a dimer of glucose) that is a partial saccharified product of cellulose. Is obtained as the primary saccharified solution C1.
  • Cellulase is generally known as an assembly of a plurality of types of saccharifying enzymes, and contains ⁇ -glucanase as a main component.
  • ⁇ -glucanase is known as a saccharifying enzyme that hydrolyzes cellulose into insoluble suspended polysaccharide (having a higher degree of polymerization than water-soluble oligosaccharide) and water-soluble oligosaccharide (glucose dimer to hexamer).
  • the primary saccharified liquid C1 contains a water-soluble oligosaccharide (mainly cellobiose) and a water-insoluble suspended polysaccharide, and is a fluid liquid in which the suspended polysaccharide is dispersed in a water-containing liquid of the water-soluble oligosaccharide.
  • the suspended polysaccharide is a partially decomposed product of cellulose, specifically, suspended particles containing cellohexaose crystals that are a glucose polymer having a polymerization degree of 7 or more and a hexamer of glucose. It can be decomposed into glucose by a catalytic reaction.
  • the temperature of the enzyme reaction apparatus 4 is appropriately adjusted within the optimum pH and the optimum temperature range of about 40 to 90 ° C. so as to obtain an appropriate enzyme activity according to the saccharifying enzyme to be used.
  • the temperature of the solid residue S introduced into the enzyme reaction apparatus 4 is about 90 to 100 ° C., and the temperature is appropriately adjusted by the cooler 3 in the previous stage. .
  • the cooling capacity of the cooler can be reduced.
  • the specific surface area of the solid residue increases and the saccharification of the saccharifying enzyme is facilitated.
  • the amount used can be reduced, and the saccharification efficiency in the cellulosic saccharification process including the subsequent solid acid catalysis is improved.
  • the primary saccharified solution C1 of cellulose produced in the enzyme reaction apparatus 4 is supplied to the first catalytic reaction apparatus 5.
  • a separation device such as a belt press may be provided in front of the first catalytic reactor 5 as a means for removing solid residues (lignin and the like) that may remain in the primary saccharified liquid C1.
  • the first catalytic reaction device 5 includes a first mixing device 5a having a temperature control mechanism and a first solid-liquid separation device 5b, and the primary saccharified solution C1 is 90 ° C. or higher and lower than 120 ° C. in the first mixing device 5a. Mix and stir with solid acid catalyst X at temperature.
  • the oligosaccharide and the suspended polysaccharide of the primary saccharified liquid C1 are hydrolyzed by the action of the solid acid catalyst X to produce glucose (monosaccharide constituting cellulose), and the reaction product contains glucose as a main component.
  • a mixture of the secondary saccharified solution C2 and the solid acid catalyst X is obtained.
  • the reaction product that has finished the hydrolysis reaction in the first mixing device 5a is charged into the first solid-liquid separation device 5b and separated into solid and liquid. Thereby, the secondary saccharified solution C2 containing glucose as a main component is separated as a supernatant and sent to the first fermentation apparatus 6.
  • the solid acid catalyst X that has settled and separated is recovered and then returned to the first mixing device 5a to be used again.
  • the 1st solid-liquid separation apparatus 5b should just be what can generally be used as a sedimentation tank.
  • the purified product F1 discharged from the first fermentation apparatus 6 is supplied to the distillation apparatus 9 and distilled to recover purified ethanol.
  • the fermentation product F1 contains a solid substance, and may be distilled as it is without removing it. If necessary, if a filtration device for removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F1 is provided, only the liquid product can be distilled.
  • the solid matter separated from the fermentation product F1 by filtration or the like may be introduced into the biomass saccharification step.
  • the hemicellulose-derived primary saccharified solution H1 separated by the solid-liquid separator 2 is supplied to the second catalytic reaction device 7.
  • a separation device for removing a solid dispersion (such as lignin) that may be mixed in the primary saccharified solution H1 may be provided in the front stage of the second catalytic reaction device 7.
  • the second catalytic reaction device 7 includes a second mixing device 7a having a temperature control mechanism and a second solid-liquid separation device 7b, and the primary saccharified solution H1 is 90 ° C. or higher and lower than 120 ° C. in the second mixing device 7a. Mix and stir with solid acid catalyst X at temperature.
  • the hemicellulose-derived oligosaccharides in the primary saccharified solution H1 are hydrolyzed by the action of the solid acid catalyst X to produce monosaccharides including xylose, arabinose (pentose sugar constituting hemicellulose), etc., and secondary saccharification including these Since the liquid H2 is obtained, the reaction product is a mixture of the secondary saccharified liquid H2 containing xylose and the solid acid catalyst X.
  • the solid acid catalyst X used in the second catalytic reactor 7 may be appropriately selected from the same or different from those usable in the first catalytic reactor 5.
  • the reaction product that has finished the hydrolysis reaction in the second mixing device 7a is charged into the second solid-liquid separation device 7b, and the solid acid catalyst X in the charged reaction product is allowed to settle, so that The secondary saccharified liquid H2 is separated and sent to the second fermentation apparatus 8.
  • the solid acid catalyst X that has settled and separated is recovered and then returned to the second mixing device 7a to be used again.
  • the second solid-liquid separator 7b may be anything that can generally be used as a precipitation tank.
  • the secondary saccharified solution H2 supplied from the second solid-liquid separation device 7b to the second fermentation device 8 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, inoculated with fermenting microorganisms, and the fermentation stock solution And xylose or the like is converted into ethanol by the action of the fermentation microorganism.
  • the fermentation microorganism used is a microorganism having xylose fermentation ability. It is preferable to add a nutrient source necessary for the propagation and activity of fermenting microorganisms. If necessary, a temperature control mechanism for maintaining the temperature at which fermentation is likely to proceed may be provided.
  • the purified product F2 discharged from the second fermentation apparatus 8 is supplied to the distillation apparatus 9 and distilled to recover purified ethanol.
  • Fermentation product F2 contains a solid substance and may be distilled as it is without removing it. If necessary, if a filtration device for removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F2 is provided, only the liquid product can be distilled.
  • the solid matter separated from the fermentation product F2 by filtration or the like may be introduced into the biomass saccharification step.
  • the distillation of the fermentation product F2 can be performed together with the fermentation product F1 obtained from the first fermentation apparatus 5 or individually.
  • the biomass B used as a raw material may be any lignocellulosic material, for example, woody materials such as wood, thinned wood, bark, herbs such as rice straw, wheat straw, rice husk, pulp, waste paper, cotton cloth, linen And fiber materials such as artificial cellulose materials, and in particular, plant materials such as wood materials containing hemicellulose can be efficiently saccharified and fermented. From the viewpoint of reaction efficiency, it is preferable to pulverize such biomass B into a granular or powder form in advance, and it is preferable to prepare particles having a particle diameter of about 5 mm or less.
  • pressurized hot water reactor 1 a certain amount of biomass supplied as a raw material from the outside is accommodated in the reaction tank 1d, the heater 1b is adjusted by a temperature control signal input from the controller 1e, and the pump 1a
  • the pressurized water flowing in from is heated to about 150 to 230 ° C., preferably about 190 to 210 ° C., to form pressurized hot water W ′ (for example, subcritical hot water having a pressure of about 1.3 to 1.9 MPa). It is supplied to the reaction tank 1d containing the biomass through the regulating valve 1c.
  • a reaction product obtained by treating a wooden material with a pressurized hydrothermal reactor contains a xylooligosaccharide partially decomposed and solubilized from hemicellulose.
  • a solid-liquid mixture containing a saccharide-containing liquid and a solid residue of cellulose and lignin that does not decompose is obtained.
  • Pressurized hot water may be supplied either continuously or batchwise. However, in the case of continuous water flow, the water flow rate should be set so that the residence time in the tank is 5 to 120 minutes. Adjust and react for about 10 to 120 minutes.
  • the reaction product of the pressurized hot water reactor 1 is supplied to the solid-liquid separator 2 and separated into the liquid portion of the hemicellulose decomposition product and the solid residue S containing cellulose and lignin.
  • the liquid part is supplied to the second catalytic reactor 7, and the solid residue S is supplied to the cooler 3.
  • the solid residue S supplied from the solid-liquid separator 2 is cooled and adjusted to a temperature suitable for the subsequent enzyme reaction.
  • the temperature of the solid residue S introduced into the enzyme reaction apparatus 4 is about 50 to 100 ° C. Adjust as appropriate.
  • the cooling capacity of the cooler can be reduced.
  • the solid residue S whose temperature has been adjusted by the cooler 3 is supplied to the enzyme reaction apparatus 4, and an aqueous liquid containing cellulase, which is a saccharifying enzyme, is added and mixed to maintain the enzyme at an active temperature.
  • the cellulose in the solid residue S is decomposed by the action of cellulase, and as a primary saccharified solution C1 of cellulose, a decomposition product mainly containing cellobiose (a dimer of glucose) which is a water-soluble oligosaccharide is obtained.
  • Cellulase is generally known as an assembly of a plurality of types of saccharifying enzymes, and contains ⁇ -glucanase as a main component.
  • ⁇ -glucanase is known as a saccharification enzyme that hydrolyzes cellulose into water-soluble oligosaccharides (glucose dimer to hexamer).
  • Cellobiose which is a part of the water-soluble oligosaccharide, is decomposed into glucose by ⁇ -glucosidase contained in cellulase.
  • the primary saccharified liquid C1 contains a water-soluble oligosaccharide and a water-insoluble suspended polysaccharide, and is a fluid liquid in which the suspended polysaccharide is dispersed in a water-containing liquid of the water-soluble oligosaccharide.
  • the saccharifying enzyme used in the enzyme reaction apparatus 4 a commercially available saccharifying enzyme can be used, and a commercially available saccharifying enzyme can also be used.
  • the normal saccharifying enzyme has the maximum enzyme activity at about 40 to 50 ° C.
  • the thermostable enzyme has the maximum enzyme activity at about 70 to 90 ° C. Therefore, the temperature of the enzyme reaction apparatus 4 depends on the saccharifying enzyme used. Depending on the conditions, appropriate adjustments may be made to obtain an appropriate enzyme activity.
  • the cooling capacity of the cooler can be reduced, and the temperature of the enzyme reaction device 4 and the temperature of the first mixing device 5a can be brought close to each other. Can improve.
  • the amount of saccharifying enzyme used in the enzyme reaction apparatus 4 is set at a rate of 0.025 to 0.15 g / g, preferably 0.5 to 0.1 g / g, based on the mass (dry) of the solid residue S. Unreacted cellulose can be substantially exhausted by the reaction for 12 to 72 hours, preferably 24 to 48 hours. When the solid residue before the enzyme reaction is subjected to beating treatment and defibration and softening, the enzyme reaction can be completed within about 12 hours using a small amount of enzyme of 0.25 g or less per gram of cellulose. The amount of monosaccharide from the suspended polysaccharide of the primary saccharified solution C1 is increased by the subsequent solid acid catalyzed reaction, and the monosaccharide recovery rate is increased.
  • the solid acid catalyst X to be used examples include inorganic solid acids such as zeolite, alumina and silica, and those in which acidic groups are introduced by sulfonation treatment of organic materials such as resins.
  • a powdered or particulate solid acid catalyst is used.
  • a sulfonated carbon type obtained by carbonizing an organic carbon material and then sulfonated is preferable.
  • the sulfonated carbon-based solid acid catalyst is an amorphous black solid (carbide) obtained by heat-treating organic carbon materials such as woods or herbs in an inert gas atmosphere such as nitrogen. It is obtained by heat treatment in order to add a sulfone group to the carbide skeleton and washing with hot water.
  • Carbonization and sulfonation may be performed at the same time, and the treatment temperature for carbonization and sulfonation is appropriately selected depending on the type of organic substance used.
  • the amount of the solid acid catalyst X used is preferably 5 to 30% by mass with respect to the primary saccharified liquid C1.
  • the reaction time may generally be about 2 to 10 hours.
  • the reaction product that has finished the hydrolysis reaction in the first mixing device 5a is supplied to the first solid-liquid separation device 5b, and the solid acid catalyst X in the reaction product is precipitated.
  • the secondary saccharified solution C2 mainly composed of glucose is separated as a supernatant, sent to the first fermentation apparatus 6, and the solid acid catalyst X separated by settling is recovered and then returned to the first mixing apparatus 5a to be used again.
  • the secondary saccharified solution C2 supplied from the first solid-liquid separation device 5b to the first fermentation device 6 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, and inoculated with fermenting microorganisms, and the fermentation stock solution
  • the glucose is converted into ethanol by the action of the fermentation microorganism.
  • known ethanol fermentation microorganisms such as yeast can be used. Examples include Zymomonas mobilis and Kluyveromyces marxianus.
  • flocculent yeast is advantageous in solid-liquid separation after fermentation because of good sedimentation, and it is advantageous for yeast to use amino acids and the like degraded by hydrolyzing enzymes of surrounding microorganisms as nutrient sources. Since it is also a form, it is useful for improving fermentation efficiency.
  • a nutrient source necessary for the propagation and activity of the fermenting microorganisms and adjust to an optimum pH.
  • essential nutrients such as phosphorus, nitrogen and vitamins, and required trace elements such as Co, Ni, and Zn are necessary, and yeast used for the production of biomass ethanol is The ability to synthesize vitamins or amino acids may be low or lacking.
  • yeast extract, polypeptone and the like can be generally used as a nutrient source for fermentation microorganisms to which such necessary components are added from the outside.
  • plant waste such as tea husk and coffee husk and algal crushed material may be used, and components contained in these cell protoplasts can be used as the nutrient source.
  • the saccharified product (glucose) concentration in the fermentation stock solution is adjusted to be about 1 to 20% by mass, preferably about 10% by mass.
  • the addition amount of the nutrient source for microorganisms (in terms of dry matter) is appropriately adjusted according to the type of fermenting microorganism, and is generally set to about 0.1 to 1% by mass, preferably about 0.2 to 0.5% by mass. Good.
  • the pH of the fermentation stock solution is adjusted to about 2.5 to 5.5, preferably about 3.0 to 5.5, inoculated with fermenting microorganisms at a rate of about 1 to 30 g / L, and a temperature of 30 to 37 ° C.
  • the fermentation proceeds by holding for about 2 to 48 hours.
  • ethanol can be produced at a rate of about 20 to 25 g-ethanol / (L ⁇ h) using a fermentation stock solution having a glucose concentration of about 10% by mass.
  • the fermentation product F1 that has undergone fermentation in the first fermentation apparatus 6 as described above is subjected to distillation apparatus 9 after removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F1 as necessary, by filtration or the like.
  • the ethanol is recovered by distillation at You may distill as it is, without removing solid content from fermentation product F1. You may introduce
  • the hemicellulose-derived primary saccharified liquid H1 separated by the solid-liquid separator 2 is supplied to the second catalytic reactor 7 and the solid acid catalyst X and the primary acid catalyst X at a temperature of 90 ° C. or higher and lower than 120 ° C. in the second mixing device 7a. Mix and stir.
  • the hemicellulose-derived oligosaccharide of the primary saccharified solution H1 and the polysaccharide which is a partial decomposition product are hydrolyzed by the action of the solid acid catalyst X to produce monosaccharides including xylose and arabinose (pentose sugar constituting hemicellulose).
  • a secondary saccharified solution H2 containing these is obtained.
  • the solid acid catalytic reaction In order to suppress a decrease in ethanol production efficiency in the subsequent fermentation in the second fermentation apparatus 8, it is preferable to perform the solid acid catalytic reaction at a temperature of 90 to 110 ° C, particularly around 100 ° C. At temperatures of 120 ° C. or higher, xylose decomposition tends to proceed.
  • the solid acid catalyst X used in the second catalytic reactor 7 can be appropriately selected from the same or different from those that can be used in the first catalytic reactor 5, and after the carbonization treatment of the woods or herbs, the sulfonation treatment is performed. Use of the resulting sulfonated carbon material is preferred.
  • the amount of the solid acid catalyst X to be used is preferably 5 to 30% by mass with respect to the primary saccharified liquid H1 as in the first catalytic reactor 5, and the reaction time may be generally about 1 to 5 hours.
  • the reaction product that has finished the hydrolysis reaction in the second mixing device 7a is charged into the second solid-liquid separation device 7b, where the solid acid catalyst X in the reaction product is allowed to settle, and the secondary saccharified solution H2 is used as a supernatant. To be separated. This is sent to the second fermentation apparatus 8. The solid acid catalyst X that has settled and separated is recovered and then returned to the second mixing device 7a to be used again.
  • the secondary saccharified liquid H2 is a monosaccharide liquid mainly composed of xylose.
  • the secondary saccharified solution H2 supplied from the second solid-liquid separation device 7b to the second fermentation device 8 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, inoculated with fermenting microorganisms, and the fermentation stock solution And xylose or the like is converted into ethanol by the action of the fermentation microorganism.
  • microorganisms having xylose fermentability include Pichia and Rhizopus oryzae.
  • Xylose-fermenting yeast tends to decrease the fermentation rate of xylose in the presence of glucose, but the use of a genetically modified yeast having xylose-fermenting ability can improve the efficiency of producing ethanol from semi-herulose secondary saccharified solution H2.
  • XR genes genes encoding enzymes that catalyze the conversion reaction from xylose to xylitol
  • XDH genes genes encoding enzymes that catalyze the conversion reaction from xylitol to xylulose
  • XK genes xylose and A genetically modified yeast introduced with a gene encoding an enzyme that catalyzes the conversion reaction from ATP to xylulose 5-phosphate and ADP can ferment xylose well in the presence of glucose.
  • Such genetically modified yeasts include, for example, industrial strain IR-2 (FERM BP-754), Type-II (baker yeast) and shochu 3 (association yeast), experimental strain D452-2, It is obtained by transforming the host organism using a vector in which the above gene is incorporated according to a general molecular biological technique, using yeast such as INVSc1 strain as the host organism (see US Patent Publication No. 2011 / 0027847A1), Alternatively, it can be obtained as a genetically modified yeast (N-WT strain, N-ARSdR strain, R-WT strain, R-ARSdR strain, MA-R4 strain) provided by the National Institute of Advanced Industrial Science and Technology. Saccharomyces yeast 424A (LNH-ST) (according to Dr.
  • flocculent yeast is advantageous in solid-liquid separation after fermentation because of good sedimentation, and it is advantageous for yeast to use amino acids and the like degraded by hydrolyzing enzymes of surrounding microorganisms as nutrient sources. Since it is also a form, it is useful for improving fermentation efficiency.
  • the yield of ethanol in fermentation with yeast having xylose fermentation ability is higher from glucose than that from xylose (see FIG. 2), and the fermentation rate is also related to the consumption rate of xylose than the consumption rate of glucose.
  • it is pure xylose, it will be completed in about several hours, and will be somewhat slower due to the coexistence of glucose.
  • There are other by-products in the hemicellulose-based saccharified liquid produced from cellulosic biomass and if the amount is large, the xylose fermentation rate is further reduced and the fermentation by-products are increased.
  • the yeast when the yeast is cultured using a medium containing a low-concentration diluted solution of the secondary saccharified liquid H2, the secondary saccharified liquid concentration of the medium is gradually increased when the propagated yeast is taken out and repeated. By this, the tolerance of the cultured yeast is gradually strengthened.
  • the fermentation product F2 that has undergone fermentation in the second fermentation apparatus 8 as described above is subjected to distillation apparatus 9 after removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F2 as necessary, by filtration or the like. Purified ethanol is recovered by distillation in You may distill as it is, without removing solid content from fermentation product F2.
  • the solid separated from the fermentation product F2 may be introduced into the biomass saccharification step.
  • the distillation of the fermentation product F2 can be performed together with or separately from the fermentation product F1 obtained from the first fermentation apparatus 6.
  • Solid acid catalysts include powders and pellets.
  • the solid acid catalyst may be made of a mesh or the like through which the liquid flows easily.
  • the solid acid catalyst can be held in the permeable container and fixed in the primary saccharified liquids H1 and C1, and the primary saccharified liquid can be flowed between the solid acid catalyst pellets by flowing the primary saccharified liquid. .
  • By adopting such a fixed bed type solid acid catalyst it is possible to simplify the apparatus configuration relating to solid-liquid separation in the first catalytic reaction apparatus and the second catalytic reaction apparatus.
  • each of the first fermentation apparatus 6 and the second fermentation apparatus 8 when microorganisms such as Clostridium acetobutylicum, Clostridium begerinki, Clostridium auranticylicum, Clostridium tetanomorphum are used as fermentation microorganisms, butanol or the like is obtained by fermentation.
  • microorganisms such as Clostridium acetobutylicum, Clostridium begerinki, Clostridium auranticylicum, Clostridium tetanomorphum are used as fermentation microorganisms, butanol or the like is obtained by fermentation.
  • Solid acid catalyzed reaction of primary saccharified solution 75 g of a carbon-based solid acid catalyst obtained by sulfonating amorphous carbide was prepared, and the temperature was maintained at 90 to 100 ° C. in addition to 500 g of the primary saccharified solution obtained by performing the above-mentioned pressurized hot water reaction.
  • the solid acid catalyst reaction was carried out for 2 hours by using and stirring at a speed of 10 rpm.
  • the solid acid catalyst was removed by sedimentation to obtain 400 g of a secondary saccharified solution derived from hemicellulose.
  • xylose and glucose contained in the secondary saccharified solution were quantified by HPLC analysis, the xylose concentration was 0.75% by mass and the glucose concentration was 0.36% by mass.
  • a hemicellulose-derived secondary saccharified solution was prepared from herbaceous biomass, and the ratio of xylose and glucose contained was examined.
  • Sample (1) was 0.67
  • sample (2) was 0.66 and sample (3) were 0.47.
  • Samples of the secondary saccharified solutions (1) to (3) obtained above and purified monosaccharides are commercially available glucose reagent (sample (4)), xylose reagent (sample (5)), and glucose.
  • FIG. 2 is a graph showing the relationship between the xylose ratio of the fermentation stock solution of each sample and the ethanol yield at the end of fermentation using these results.
  • the present invention uses a resource that can efficiently saccharify and ferment hemicellulose contained in wood and other materials to produce ethanol when producing biomass ethanol using plant waste as biomass, and there is no risk of food price increases. Therefore, it can be treated economically and rationally, contributing to waste treatment and resource production, and can contribute to promoting recycling, protecting the environment, and solving energy problems.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided are a method and apparatus that efficiently saccharify and ferment hemicellulose contained in woody materials and the like and produce ethanol that can be converted into biomass ethanol. Pressurized hot water is caused to act on a biomass, the hemicellulose contained in the biomass is selectively degraded, a solid acid catalyst is caused to act on the degradation product at a temperature of 90-110°C, and a saccharified product containing xylose is obtained. Microorganisms having the ability to ferment xylose are caused to act on the resulting saccharified product, and ethanol is produced.

Description

エタノールの製造方法及び製造装置Ethanol production method and production apparatus
 本発明は、エタノールの製造方法及び製造装置に関し、詳細には、木質や麦藁等の植物質廃材をバイオマスとして用いてリグノセルロース系材料の糖化及び微生物発酵によってバイオマスエタノールを生成するエタノールの製造方法及び製造装置に関する。 The present invention relates to a method and apparatus for producing ethanol, and in particular, a method for producing ethanol that produces biomass ethanol by saccharification of lignocellulosic material and microbial fermentation using plant waste such as wood and wheat straw as biomass, and It relates to a manufacturing apparatus.
 近年、石油資源の枯渇に対する解決策として、植物質を用いて微生物の発酵によってエタノールを製造するバイオマスエタノールが注目され、その生産技術として種々のプロセスが発表されている。例えば、下記非特許文献1には、糖化酵素として広く知られるセルラーゼを用いてバイオマス中のセルロースをグルコースに糖化し、得られたグルコースを発酵処理することによってエタノールを生産するプロセスが開示されている。また、下記特許文献1には、樹皮原料のアルカリ液による処理及び機械処理による微細化を経た微細樹皮を、適正なpHのスラリーに調製した後に併行糖化発酵するエタノールの製造方法が記載されている。 Recently, as a solution to the depletion of petroleum resources, biomass ethanol, which produces ethanol by fermentation of microorganisms using plant matter, has attracted attention, and various processes have been announced as its production technology. For example, Non-Patent Document 1 below discloses a process for producing ethanol by saccharifying cellulose in biomass into glucose using cellulase, which is widely known as a saccharifying enzyme, and fermenting the obtained glucose. . Patent Document 1 listed below describes a method for producing ethanol in which fine bark that has been subjected to treatment with an alkali solution of bark raw material and refined by mechanical treatment is prepared into a slurry having an appropriate pH and then subjected to concurrent saccharification and fermentation. .
 又、下記特許文献2には、セルロース系バイオマスを加圧熱水で処理してヘミセルロースを分解する工程を有するバイオマスの処理が記載され、下記特許文献3では、加圧熱水処理を利用して、セルロース系バイオマスのセルロース及びヘミセルロースを各々糖化するバイオマス処理装置を提案している。 Moreover, the following patent document 2 describes the treatment of biomass having a step of decomposing hemicellulose by treating cellulosic biomass with pressurized hot water, and the following patent document 3 uses pressurized hot water treatment. Have proposed a biomass processing apparatus for saccharifying cellulose and hemicellulose of cellulosic biomass.
 一方、セルロース系バイオマスによるエタノール製造の効率を向上するために、発酵効率の高い微生物の開発が進められ、様々な遺伝子組み換え酵母が提案されている(例えば、下記非特許文献2等) On the other hand, in order to improve the efficiency of ethanol production from cellulosic biomass, development of microorganisms with high fermentation efficiency has been promoted, and various genetically modified yeasts have been proposed (for example, Non-Patent Document 2 below).
特開2011-152067号公報JP 2011-152067 A 特開2011-144337号公報JP 2011-144337 A 特開2011-68578号公報JP 2011-68578 A
 リグノセルロース系バイオマスとして用いられる木質材に含まれるセルロースは、セルラーゼを用いてグルコースへ糖化し、酵母等によって発酵することによってエタノールに変換されるが、木質材に含まれるヘミセルロースから得られる単糖は、天然の酵母等による発酵におけるエタノールへの変換効率がさほど高くなく、アルコール耐性の問題もある。木質中にヘミセルロースが占める割合は、植物の種類にもよるが、概して30%前後であり、無視できる量ではない。従って、安価で効率的にバイオマスエタノールを製造するためには、ヘミセルロース系の糖化及び発酵を効率的に行えることが必要である。 Cellulose contained in the wood material used as lignocellulosic biomass is saccharified to glucose using cellulase and converted to ethanol by fermentation with yeast, etc., but the monosaccharide obtained from hemicellulose contained in the wood material is In addition, the conversion efficiency to ethanol in fermentation by natural yeast or the like is not so high, and there is a problem of alcohol resistance. Although the proportion of hemicellulose in the wood depends on the type of plant, it is generally around 30% and is not negligible. Therefore, in order to efficiently produce biomass ethanol at low cost, it is necessary to be able to efficiently perform hemicellulose saccharification and fermentation.
 本発明の課題は、上述の問題を解決し、ヘミセルロース系の糖化・発酵における転換効率が高く、効率的にバイオマスエタノールを精製可能なエタノールの製造方法を提供することである。 The problem to be solved by the present invention is to solve the above-mentioned problems and to provide a method for producing ethanol, which has high conversion efficiency in saccharification / fermentation of hemicellulose and can efficiently purify biomass ethanol.
 上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、ヘミセルロースの糖化・発酵において、遺伝子組み換え酵母によるキシロースのエタノール発酵を利用して、効率的なバイオマスエタノールの製造方法を構成できることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, in the saccharification / fermentation of hemicellulose, an efficient method for producing biomass ethanol using xylose ethanol fermentation by genetically modified yeast is proposed. The present inventors have found that it can be configured and completed the present invention.
 本発明の一態様によれば、エタノールの製造方法は、バイオマスに加圧熱水を作用させて、バイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応工程と、前記加圧熱水反応工程による分解生成物に、90~110℃の温度で固体酸触媒を作用させてキシロースを含む糖化生成物を得る固体酸触媒反応工程と、前記固体酸触媒反応工程で得られる糖化生成物にキシロース発酵能を有する微生物を作用させてエタノールを生成する発酵工程とを有することを要旨とする。 According to one aspect of the present invention, a method for producing ethanol includes a pressurized hot water reaction step of selectively decomposing hemicellulose contained in biomass by causing pressurized hot water to act on the biomass, and the pressurized hot water. A solid acid catalyst reaction step for obtaining a saccharification product containing xylose by allowing a solid acid catalyst to act on the decomposition product of the reaction step at a temperature of 90 to 110 ° C., and a saccharification product obtained in the solid acid catalyst reaction step The gist of the invention is to have a fermentation process in which a microorganism having xylose fermentability is allowed to act to produce ethanol.
 又、本発明の一態様によれば、エタノール製造装置は、バイオマスに加圧熱水を作用させて、バイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応装置と、前記加圧熱水反応装置による分解生成物を90~110℃に加熱して固体酸触媒を作用させて、キシロースを含む糖化生成物を得る触媒反応装置と、前記触媒反応装置によって得られる糖化生成物に、キシロース発酵能を有する微生物を作用させてエタノールを生成する発酵装置とを有することを要旨とする。 Moreover, according to one aspect of the present invention, the ethanol production apparatus comprises a pressurized hot water reactor that selectively decomposes hemicellulose contained in biomass by causing pressurized hot water to act on the biomass, and the pressurized heat. The decomposition product of the water reactor is heated to 90 to 110 ° C. to act on a solid acid catalyst to obtain a saccharification product containing xylose, and the saccharification product obtained by the catalyst reaction device is subjected to xylose. The gist of the present invention is to have a fermentation apparatus that produces ethanol by causing a microorganism having fermentation ability to act.
 本発明によれば、キシロースの発酵効率がよい酵母をセルロース及びヘミセルロースの個別糖化プロセスに導入するに当たって特定の糖化条件を採用することによって、リグノセルロース系バイオマスに含まれるセルロース及びヘミセルロースを各々効率よく糖化・発酵してバイオマスエタノールを製造できるエタノールの製造方法及び製造装置が提供され、バイオマスエタノール製造システムの確立及び普及が容易になる。従って、経済的に有利であり、バイオマスとしての植物質廃棄物の利用が促進され、エネルギー資源問題及び廃棄物処理問題の解消に有用である。 According to the present invention, by introducing specific saccharification conditions in introducing yeast having good fermentation efficiency of xylose into the individual saccharification process of cellulose and hemicellulose, cellulose and hemicellulose contained in lignocellulosic biomass can be efficiently saccharified, respectively. -An ethanol production method and production apparatus capable of producing biomass ethanol by fermentation are provided, and the establishment and spread of a biomass ethanol production system is facilitated. Therefore, it is economically advantageous, the use of plant waste as biomass is promoted, and it is useful for solving energy resource problems and waste disposal problems.
本発明に係るエタノール製造装置の一実施形態を示す概略構成図。The schematic block diagram which shows one Embodiment of the ethanol manufacturing apparatus which concerns on this invention. キシロース及びグルコースの混合物を発酵した場合のキシロース比とエタノール収率との関係を示すグラフ。The graph which shows the relationship between the xylose ratio at the time of fermenting the mixture of xylose and glucose, and an ethanol yield. 図2のグラフを構成するプロットの試料(1)~(6)における、酵素反応による糖及び生成エタノールの量の経時変化を示すグラフ(a)~(f)。Graphs (a) to (f) showing temporal changes in the amounts of sugar and ethanol produced by the enzyme reaction in the samples (1) to (6) of the plots constituting the graph of FIG.
 植物質廃棄物(リグノセルロース系バイオマス)を利用するバイオマスエタノールの生産においては、セルロース及びヘミセルロースの加水分解による糖化物をエタノール発酵する。本発明では、リグノセルロース系バイオマスの糖化、つまり、加水分解は、加圧熱水反応、糖化酵素反応及び固体酸触媒反応の3種の工程において行う。加圧熱水反応においては、ヘミセルロースの選択的加水分解が進行し、糖化酵素反応においては、加圧熱水反応残渣であるセルロースの加水分解が進行し、各々、多糖が部分分解してオリゴ糖~部分分解多糖が生成して、一部は単糖化する(一次糖化)。これらの加水分解反応による一次糖化液に固体酸触媒反応を施すことによって十分に糖化して、グルコース、キシロース等の単糖が生成する(二次糖化)。このような糖化プロセスで得られた単糖は、発酵することによってエタノールが生成する。 In the production of biomass ethanol using plant waste (lignocellulosic biomass), saccharified products obtained by hydrolysis of cellulose and hemicellulose are ethanol fermented. In the present invention, saccharification of lignocellulosic biomass, that is, hydrolysis, is carried out in three types of processes: a pressurized hydrothermal reaction, a saccharifying enzyme reaction, and a solid acid catalytic reaction. In the pressurized hot water reaction, selective hydrolysis of hemicellulose proceeds, and in the saccharification enzyme reaction, hydrolysis of cellulose, which is a residue of pressurized hot water reaction, proceeds. ~ Partially decomposed polysaccharide is produced, and part of it is monosaccharide (primary saccharification). By subjecting the primary saccharified solution resulting from the hydrolysis reaction to a solid acid catalytic reaction, it is sufficiently saccharified to produce monosaccharides such as glucose and xylose (secondary saccharification). Monosaccharides obtained by such a saccharification process are fermented to produce ethanol.
 グルコースの発酵は、天然酵母等の従来公知の発酵微生物によって容易に進行するが、ヘミセルロース由来のキシロースの発酵に利用できる微生物は限られ、エタノールの収率も低い。本発明においては、近年開発されているキシロース発酵性に優れた微生物を利用し、その発酵に適した糖化物が得られるようにヘミセルロースの糖化条件を設定する。 Glucose fermentation proceeds easily with conventionally known fermentation microorganisms such as natural yeast, but the microorganisms that can be used for fermentation of hemicellulose-derived xylose are limited, and the yield of ethanol is low. In the present invention, a saccharification condition of hemicellulose is set so that a saccharified product suitable for the fermentation can be obtained by utilizing a recently developed microorganism having excellent xylose fermentability.
 以下に、本発明について図面を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係るエタノール製造装置の一実施形態を示す概略構成図である。エタノール製造装置Aは、バイオマスBを糖化して単糖を製造する単糖製造装置と、糖化生成物を発酵してエタノールを生成する発酵装置と、発酵生成物を蒸留してエタノールEを精製する蒸留装置9とを有する。単糖製造装置は、加圧熱水反応装置1、固液分離器2、冷却器3、酵素反応装置4、第1触媒反応装置5及び第2触媒反応装置7を有し、第1触媒反応装置5は、セルロース由来の部分糖化物を加水分解(単糖化)し、第2触媒反応装置7はヘミセルロース由来の部分糖化物を加水分解(単糖化)する。発酵装置は、セルロース由来の糖化物を発酵してエタノールを生成する第1発酵装置6と、ヘミセルロース由来の糖化物を発酵してエタノールを生成する第2発酵装置8とからなり、各々から生成する発酵生成物F1,F2を蒸留装置9によって蒸留してエタノールを分離精製する。 FIG. 1 is a schematic configuration diagram showing an embodiment of an ethanol production apparatus according to the present invention. The ethanol production apparatus A is a monosaccharide production apparatus that saccharifies biomass B to produce a monosaccharide, a fermentation apparatus that ferments a saccharification product to produce ethanol, and distills the fermentation product to purify ethanol E. And a distillation apparatus 9. The monosaccharide production apparatus includes a pressurized hot water reaction apparatus 1, a solid-liquid separator 2, a cooler 3, an enzyme reaction apparatus 4, a first catalytic reaction apparatus 5, and a second catalytic reaction apparatus 7, and the first catalytic reaction. The device 5 hydrolyzes (saccharifies) a partially saccharified product derived from cellulose, and the second catalytic reaction device 7 hydrolyzes (saccharifies) a partially saccharified product derived from hemicellulose. The fermentation apparatus includes a first fermentation apparatus 6 that ferments a saccharified product derived from cellulose to produce ethanol, and a second fermentation apparatus 8 that ferments a saccharified product derived from hemicellulose to produce ethanol, which are generated from each. The fermentation products F1 and F2 are distilled by the distillation apparatus 9 to separate and purify ethanol.
 加圧熱水反応装置1は、ポンプ1a、加熱器1b、水量調整弁1c、耐圧性の反応槽1d及び制御装置1eによって構成され、ポンプ1aは、外部から供給される水を加圧して加熱器1bに送出する。加熱器1bは、制御装置1eから入力される温度制御信号に応じて、ポンプ1aから流入する加圧水を150~230℃、好ましくは200~230℃程度まで加熱して加圧熱水W’(圧力0.47~2.8MPa程度、好ましくは1.6~2.8MPa程度の亜臨界状態の熱水)とし、これは、水量調整弁1cを介してバイオマスを収容した反応槽1dに供給される。水量調整弁1cは、制御装置1eから入力される流量制御信号に応じて開度が調節可能な電子制御弁であり、加熱器1bから反応槽1dへ供給される加圧熱水W’の流量を適正に調整する。制御装置1eは、加熱器1bに出力する温度制御信号、及び、水量調整弁1cに出力する水量制御信号によって、反応槽1dに供給される加圧熱水W’の温度及び流量を調節し、反応槽1dにおけるバイオマスの加水分解条件を上述のように制御する。加水分解条件は、例えば、加圧熱水W’の供給量Q(ml)とバイオマス供給量V(g)との比率K(=Q/V)、加圧熱水W’の温度T(℃)として設定することができる。反応槽1dから排出される熱水の熱エネルギーを回収して、加熱器1bに供給される水に供給再利用する熱交換器を設けると、エネルギー効率を改善できる。 The pressurized hot water reactor 1 includes a pump 1a, a heater 1b, a water amount adjusting valve 1c, a pressure-resistant reaction tank 1d, and a control device 1e. The pump 1a pressurizes and heats water supplied from the outside. To device 1b. The heater 1b heats the pressurized water flowing from the pump 1a to 150 to 230 ° C., preferably about 200 to 230 ° C., in accordance with a temperature control signal input from the control device 1e, and pressurizes hot water W ′ (pressure Hot water in a subcritical state of about 0.47 to 2.8 MPa, preferably about 1.6 to 2.8 MPa), which is supplied to the reaction tank 1d containing the biomass via the water amount adjusting valve 1c. . The water amount adjusting valve 1c is an electronic control valve whose opening degree can be adjusted in accordance with a flow rate control signal input from the control device 1e, and the flow rate of the pressurized hot water W ′ supplied from the heater 1b to the reaction tank 1d. Adjust appropriately. The control device 1e adjusts the temperature and flow rate of the pressurized hot water W ′ supplied to the reaction tank 1d by the temperature control signal output to the heater 1b and the water amount control signal output to the water amount adjustment valve 1c. The biomass hydrolysis conditions in the reaction tank 1d are controlled as described above. The hydrolysis conditions are, for example, the ratio K (= Q / V) between the supply amount Q (ml) of pressurized hot water W ′ and the biomass supply amount V (g), and the temperature T (° C. of pressurized hot water W ′. ) Can be set. Energy efficiency can be improved by providing a heat exchanger that recovers the thermal energy of hot water discharged from the reaction tank 1d and supplies it to the water supplied to the heater 1b.
 反応槽1dは、外部から原料として供給される一定量のバイオマスを収容し、水量調整弁1cを通じて供給される加圧熱水W’をバイオマスに添加・作用させて、バイオマスに含まれるヘミセルロースが選択的に加水分解されて可溶化する。加圧熱水で加水分解する場合にセルロースは240~300℃程度の温度を必要とするのに比べ、ヘミセルロースは、セルロースより低温の230℃程度以下で容易に分解可溶化するので、加圧熱水反応装置1においてバイオマスを150~230℃、好ましくは200~230℃で処理することによって、バイオマスに含まれるヘミセルロースが選択的に部分分解・可溶化してオリゴ糖を含む多糖類の含水液体となり、反応生成物は、ヘミセルロース由来のオリゴ糖を含む含水液体と、分解しないセルロース及びリグニンを含む固体残渣との混合物となる。反応槽1dの加圧熱水の供給形態は、連続通水式でも回分式でも良いが、加圧熱水が槽内に5~120分程度滞留可能となるように構成する。上述の加圧熱水の供給の前に、120~200℃程度の加圧熱水を供給すると、リグニンを分離し易くなる。 The reaction tank 1d accommodates a certain amount of biomass supplied as a raw material from the outside, and adds and acts on the pressurized hot water W ′ supplied through the water amount adjusting valve 1c to the biomass, so that hemicellulose contained in the biomass is selected. It is hydrolyzed and solubilized. Compared to the fact that cellulose requires a temperature of about 240 to 300 ° C. when hydrolyzed with pressurized hot water, hemicellulose is easily decomposed and solubilized at about 230 ° C. or lower, which is lower than that of cellulose. By treating the biomass in the water reactor 1 at 150 to 230 ° C., preferably 200 to 230 ° C., the hemicellulose contained in the biomass is selectively partially decomposed and solubilized to become a hydrous liquid of polysaccharides containing oligosaccharides. The reaction product is a mixture of a water-containing liquid containing oligosaccharides derived from hemicellulose and a solid residue containing cellulose and lignin that do not decompose. The supply form of pressurized hot water in the reaction tank 1d may be a continuous water supply system or a batch system, but is configured so that the pressurized hot water can stay in the tank for about 5 to 120 minutes. If pressurized hot water of about 120 to 200 ° C. is supplied before the above-mentioned pressurized hot water is supplied, lignin can be easily separated.
 加圧熱水反応装置1から排出される反応生成物は、固液分離器2に供給され、ヘミセルロース由来分解物の液状糖化物部分と、セルロース及びリグニンを含む固体残渣Sとに分離される。固体残渣Sは、冷却器3に供給された後に、酵素反応装置4及び第1触媒反応装置5によって処理される。液状糖化物部分は、ヘミセルロースの一次糖化液H1として第2触媒反応装置7に供給される。 The reaction product discharged from the pressurized hot water reactor 1 is supplied to the solid-liquid separator 2 and separated into a liquid saccharified portion of the hemicellulose-derived decomposition product and a solid residue S containing cellulose and lignin. The solid residue S is processed by the enzyme reaction device 4 and the first catalytic reaction device 5 after being supplied to the cooler 3. The liquid saccharified product part is supplied to the second catalytic reactor 7 as the primary saccharified solution H1 of hemicellulose.
 冷却器3は、加圧熱水反応後の高温の固体残渣Sを冷却して、後続の酵素反応に適した温度に調整し、概して50~100℃程度迄冷却する。冷却器3において使用する冷媒から熱エネルギーを回収して加圧熱水反応装置1の水の加熱に利用可能にする熱交換器を設けると、エネルギー効率が改善される。 The cooler 3 cools the high-temperature solid residue S after the pressurized hot water reaction, adjusts it to a temperature suitable for the subsequent enzyme reaction, and generally cools it to about 50 to 100 ° C. Energy efficiency is improved by providing a heat exchanger that recovers thermal energy from the refrigerant used in the cooler 3 and makes it available for heating water in the pressurized hot water reactor 1.
 冷却器3によって適温に調整された固体残渣Sは、酵素反応装置4に供給される。酵素反応装置4は、攪拌機及び温度制御機構を備え、必要に応じて攪拌が可能なように水分量を調節した固体残渣Sに糖化酵素であるセルラーゼを添加・混合し、酵素が活性な温度に維持して攪拌することによって、セルラーゼの作用により固体残渣S中のセルロースが加水分解し、セルロースの部分糖化物である懸濁態多糖やセロビオース(グルコースの2量体)を主とする分解生成物が一次糖化液C1として得られる。セルラーゼは、複数種の糖化酵素の集合体として一般的に知られており、主成分としてβ-グルカナーゼを含んでいる。β-グルカナーゼは、セルロースを不溶性の懸濁態多糖(水溶性オリゴ糖よりも重合度が大きい)や水溶性オリゴ糖(グルコースの2~6量体)に加水分解する糖化酵素として知られている。一次糖化液C1は、水溶性オリゴ糖(主にセロビオース)及び水不溶性の懸濁態多糖を含んでおり、水溶性オリゴ糖の含水液体に懸濁態多糖が分散した流動液状である。懸濁態多糖は、セルロースの部分分解物で、具体的には、重合度7以上のグルコース重合体やグルコースの6量体であるセロヘキサオース結晶を含む懸濁粒子であり、後続の固体酸触媒反応によってグルコースに分解可能である。酵素反応装置4の温度は、使用する糖化酵素に応じて適正な酵素活性が得られるように至適pHおよび至適温度40~90℃程度の範囲で適宜調整する。酵素反応装置4の温度調節を容易にするためには、酵素反応装置4に導入される固体残渣Sの温度が90~100℃程度であると好適であり、前段の冷却器3によって適宜調整する。耐熱性酵素を用いると、冷却器の冷却能を低減可能である。 The solid residue S adjusted to an appropriate temperature by the cooler 3 is supplied to the enzyme reaction device 4. The enzyme reaction apparatus 4 is equipped with a stirrer and a temperature control mechanism, and cellulase, which is a saccharifying enzyme, is added to and mixed with the solid residue S whose water content has been adjusted so that stirring is possible as necessary, so that the enzyme is activated at a temperature. By maintaining and stirring, cellulose in the solid residue S is hydrolyzed by the action of cellulase, and a degradation product mainly composed of a suspended polysaccharide or cellobiose (a dimer of glucose) that is a partial saccharified product of cellulose. Is obtained as the primary saccharified solution C1. Cellulase is generally known as an assembly of a plurality of types of saccharifying enzymes, and contains β-glucanase as a main component. β-glucanase is known as a saccharifying enzyme that hydrolyzes cellulose into insoluble suspended polysaccharide (having a higher degree of polymerization than water-soluble oligosaccharide) and water-soluble oligosaccharide (glucose dimer to hexamer). . The primary saccharified liquid C1 contains a water-soluble oligosaccharide (mainly cellobiose) and a water-insoluble suspended polysaccharide, and is a fluid liquid in which the suspended polysaccharide is dispersed in a water-containing liquid of the water-soluble oligosaccharide. The suspended polysaccharide is a partially decomposed product of cellulose, specifically, suspended particles containing cellohexaose crystals that are a glucose polymer having a polymerization degree of 7 or more and a hexamer of glucose. It can be decomposed into glucose by a catalytic reaction. The temperature of the enzyme reaction apparatus 4 is appropriately adjusted within the optimum pH and the optimum temperature range of about 40 to 90 ° C. so as to obtain an appropriate enzyme activity according to the saccharifying enzyme to be used. In order to facilitate the temperature adjustment of the enzyme reaction apparatus 4, it is preferable that the temperature of the solid residue S introduced into the enzyme reaction apparatus 4 is about 90 to 100 ° C., and the temperature is appropriately adjusted by the cooler 3 in the previous stage. . When a thermostable enzyme is used, the cooling capacity of the cooler can be reduced.
 尚、酵素反応装置4に供給する前の固体残渣Sに叩解処理を施して解繊・柔軟化すると、固体残渣の比表面積が増加して固体残渣Sの糖化が進行し易くなり、糖化酵素の使用量を削減することができ、後続する固体酸触媒反応も含めたセルロース系糖化プロセスにおける糖化効率が向上する。 If the solid residue S before being supplied to the enzyme reaction apparatus 4 is subjected to beating and defibration / softening, the specific surface area of the solid residue increases and the saccharification of the saccharifying enzyme is facilitated. The amount used can be reduced, and the saccharification efficiency in the cellulosic saccharification process including the subsequent solid acid catalysis is improved.
 酵素反応装置4において生成するセルロースの一次糖化液C1は、第1触媒反応装置5に供給される。必要に応じて、一次糖化液C1に残存し得る固体残渣(リグニン等)を除去するための手段として、ベルトプレス等の分離装置を第1触媒反応装置5の前段に設けても良い。第1触媒反応装置5は、温度制御機構を有する第1混合装置5aと、第1固液分離装置5bとを備え、一次糖化液C1は、第1混合装置5aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌される。一次糖化液C1のオリゴ糖及び懸濁態多糖は、固体酸触媒Xの作用によって加水分解されてグルコース(セルロースを構成する単糖)が生成し、反応生成物として、グルコースを主成分とする二次糖化液C2と固体酸触媒Xとの混合物が得られる。 The primary saccharified solution C1 of cellulose produced in the enzyme reaction apparatus 4 is supplied to the first catalytic reaction apparatus 5. If necessary, a separation device such as a belt press may be provided in front of the first catalytic reactor 5 as a means for removing solid residues (lignin and the like) that may remain in the primary saccharified liquid C1. The first catalytic reaction device 5 includes a first mixing device 5a having a temperature control mechanism and a first solid-liquid separation device 5b, and the primary saccharified solution C1 is 90 ° C. or higher and lower than 120 ° C. in the first mixing device 5a. Mix and stir with solid acid catalyst X at temperature. The oligosaccharide and the suspended polysaccharide of the primary saccharified liquid C1 are hydrolyzed by the action of the solid acid catalyst X to produce glucose (monosaccharide constituting cellulose), and the reaction product contains glucose as a main component. A mixture of the secondary saccharified solution C2 and the solid acid catalyst X is obtained.
 第1混合装置5aでの加水分解反応を終えた反応生成物は、第1固液分離装置5bに投入され、固液分離される。これにより、グルコースを主成分とする二次糖化液C2が上澄みとして分離されて、第1発酵装置6に送出される。沈降分離した固体酸触媒Xは回収した後、第1混合装置5aに戻して再度使用される。第1固液分離装置5bは、一般的に沈殿槽として使用可能なものであればよい。 The reaction product that has finished the hydrolysis reaction in the first mixing device 5a is charged into the first solid-liquid separation device 5b and separated into solid and liquid. Thereby, the secondary saccharified solution C2 containing glucose as a main component is separated as a supernatant and sent to the first fermentation apparatus 6. The solid acid catalyst X that has settled and separated is recovered and then returned to the first mixing device 5a to be used again. The 1st solid-liquid separation apparatus 5b should just be what can generally be used as a sedimentation tank.
 第1固液分離装置5bから第1発酵装置6に供給された二次糖化液C2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってグルコースをエタノールに変換する。エタノール発酵に利用する発酵微生物としては、酵母等の公知のグルコース発酵能を有するエタノール発酵微生物を用いることができる。発酵微生物の繁殖・活動に必要な栄養源を添加することが好ましい。必要に応じて、発酵が進行し易い温度に保持するための温度制御機構を付設するとよい。 The secondary saccharified solution C2 supplied from the first solid-liquid separation device 5b to the first fermentation device 6 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, and inoculated with fermenting microorganisms, and the fermentation stock solution The glucose is converted into ethanol by the action of the fermentation microorganism. As a fermentation microorganism used for ethanol fermentation, an ethanol fermentation microorganism having a known glucose fermentation ability such as yeast can be used. It is preferable to add a nutrient source necessary for the propagation and activity of fermenting microorganisms. If necessary, a temperature control mechanism for maintaining the temperature at which fermentation is likely to proceed may be provided.
 第1発酵装置6から排出される発酵生成物F1は、蒸留装置9に供給して蒸留することによって、精製エタノールが回収される。発酵生成物F1は固形物を含み、これを除去せずにそのまま蒸留しても良い。必要に応じて、発酵生成物F1から固形物(リグニン、発酵微生物等)を除去するための濾過装置を設けると、液状物のみを蒸留することができる。濾過等によって発酵生成物F1から分離される固形物は、バイオマスの糖化工程に導入しても良い。 The purified product F1 discharged from the first fermentation apparatus 6 is supplied to the distillation apparatus 9 and distilled to recover purified ethanol. The fermentation product F1 contains a solid substance, and may be distilled as it is without removing it. If necessary, if a filtration device for removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F1 is provided, only the liquid product can be distilled. The solid matter separated from the fermentation product F1 by filtration or the like may be introduced into the biomass saccharification step.
 一方、固液分離器2によって分離されたヘミセルロース由来の一次糖化液H1は、第2触媒反応装置7に供給される。必要に応じて、一次糖化液H1に混入し得る固形分散物(リグニン等)を除去するための分離装置を第2触媒反応装置7の前段に設けても良い。第2触媒反応装置7は、温度制御機構を有する第2混合装置7aと、第2固液分離装置7bとを備え、一次糖化液H1は、第2混合装置7aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌される。一次糖化液H1のヘミセルロース由来オリゴ糖は、固体酸触媒Xの作用によって加水分解されて、キシロースやアラビノース(ヘミセルロースを構成する五炭糖)等を含む単糖が生成し、これらを含む二次糖化液H2が得られるので、反応生成物は、キシロースを含む二次糖化液H2と固体酸触媒Xとの混合物となる。第2触媒反応装置7で使用する固体酸触媒Xは、第1触媒反応装置5で使用可能なものから同一又は異なるものを適宜選択して良い。 On the other hand, the hemicellulose-derived primary saccharified solution H1 separated by the solid-liquid separator 2 is supplied to the second catalytic reaction device 7. If necessary, a separation device for removing a solid dispersion (such as lignin) that may be mixed in the primary saccharified solution H1 may be provided in the front stage of the second catalytic reaction device 7. The second catalytic reaction device 7 includes a second mixing device 7a having a temperature control mechanism and a second solid-liquid separation device 7b, and the primary saccharified solution H1 is 90 ° C. or higher and lower than 120 ° C. in the second mixing device 7a. Mix and stir with solid acid catalyst X at temperature. The hemicellulose-derived oligosaccharides in the primary saccharified solution H1 are hydrolyzed by the action of the solid acid catalyst X to produce monosaccharides including xylose, arabinose (pentose sugar constituting hemicellulose), etc., and secondary saccharification including these Since the liquid H2 is obtained, the reaction product is a mixture of the secondary saccharified liquid H2 containing xylose and the solid acid catalyst X. The solid acid catalyst X used in the second catalytic reactor 7 may be appropriately selected from the same or different from those usable in the first catalytic reactor 5.
 第2混合装置7aでの加水分解反応を終えた反応生成物は、第2固液分離装置7bに投入され、投入された反応生成物中の固体酸触媒Xを沈降させることにより、上澄みとして二次糖化液H2が分離され、これは第2発酵装置8に送出される。沈降分離した固体酸触媒Xは回収した後、第2混合装置7aに戻して再度使用される。第2固液分離装置7bは、一般的に沈殿槽として使用可能なものであればよい。 The reaction product that has finished the hydrolysis reaction in the second mixing device 7a is charged into the second solid-liquid separation device 7b, and the solid acid catalyst X in the charged reaction product is allowed to settle, so that The secondary saccharified liquid H2 is separated and sent to the second fermentation apparatus 8. The solid acid catalyst X that has settled and separated is recovered and then returned to the second mixing device 7a to be used again. The second solid-liquid separator 7b may be anything that can generally be used as a precipitation tank.
 第2固液分離装置7bから第2発酵装置8に供給された二次糖化液H2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってキシロース等をエタノールに変換する。使用する発酵微生物は、キシロース発酵能を有する微生物である。発酵微生物の繁殖・活動に必要な栄養源を添加することが好ましい。必要に応じて、発酵が進行し易い温度に保持するための温度制御機構を付設するとよい。 The secondary saccharified solution H2 supplied from the second solid-liquid separation device 7b to the second fermentation device 8 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, inoculated with fermenting microorganisms, and the fermentation stock solution And xylose or the like is converted into ethanol by the action of the fermentation microorganism. The fermentation microorganism used is a microorganism having xylose fermentation ability. It is preferable to add a nutrient source necessary for the propagation and activity of fermenting microorganisms. If necessary, a temperature control mechanism for maintaining the temperature at which fermentation is likely to proceed may be provided.
 第2発酵装置8から排出される発酵生成物F2は、蒸留装置9に供給して蒸留することによって、精製エタノールが回収される。発酵生成物F2は固形物を含み、これを除去せずにそのまま蒸留しても良い。必要に応じて、発酵生成物F2から固形物(リグニン、発酵微生物等)を除去するための濾過装置を設けると、液状物のみを蒸留することができる。濾過等によって発酵生成物F2から分離される固形物は、バイオマスの糖化工程に導入しても良い。発酵生成物F2の蒸留は、第1発酵装置5から得られる発酵生成物F1と一緒に、又は、個別に行うことができる。 The purified product F2 discharged from the second fermentation apparatus 8 is supplied to the distillation apparatus 9 and distilled to recover purified ethanol. Fermentation product F2 contains a solid substance and may be distilled as it is without removing it. If necessary, if a filtration device for removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F2 is provided, only the liquid product can be distilled. The solid matter separated from the fermentation product F2 by filtration or the like may be introduced into the biomass saccharification step. The distillation of the fermentation product F2 can be performed together with the fermentation product F1 obtained from the first fermentation apparatus 5 or individually.
 加圧熱水反応装置1の反応槽1dからは、ブロー水が排出される。又、第1発酵装置6及び第2発酵装置8からは、エタノール発酵の過程で生じる水が排出される。これらの排水Dは、排水処理装置10に供給されて適宜浄化処理を施した後に外部に排出される。 Blow water is discharged from the reaction tank 1 d of the pressurized hot water reactor 1. Further, water generated in the process of ethanol fermentation is discharged from the first fermentation apparatus 6 and the second fermentation apparatus 8. The waste water D is supplied to the waste water treatment apparatus 10 and appropriately subjected to purification treatment, and then discharged to the outside.
 上述のように構成されるエタノール製造装置において実施されるエタノールの製造方法について以下に説明する。 A method for producing ethanol performed in the ethanol production apparatus configured as described above will be described below.
 原料として使用するバイオマスBは、リグノセルロース系素材であれば良く、例えば、木材、間伐材、樹皮等の木質材や、稲藁、麦藁、籾殻等の草本類、パルプや廃棄紙、綿布、麻布、人工セルロース材等の繊維材が挙げられ、特に、ヘミセルロースを含む木質材等の植物性素材を効率的に糖化・発酵することができる。反応効率の観点から、このようなバイオマスBを予め粒状又は粉状に粉砕しておくとよく、粒径5mm程度以下の粒子に調製すると好ましい。 The biomass B used as a raw material may be any lignocellulosic material, for example, woody materials such as wood, thinned wood, bark, herbs such as rice straw, wheat straw, rice husk, pulp, waste paper, cotton cloth, linen And fiber materials such as artificial cellulose materials, and in particular, plant materials such as wood materials containing hemicellulose can be efficiently saccharified and fermented. From the viewpoint of reaction efficiency, it is preferable to pulverize such biomass B into a granular or powder form in advance, and it is preferable to prepare particles having a particle diameter of about 5 mm or less.
 加圧熱水反応装置1において、反応槽1dに、外部から原料として供給される一定量のバイオマスを収容し、制御装置1eから入力される温度制御信号によって加熱器1bを調節して、ポンプ1aから流入する加圧水を150~230℃程度、好ましくは190~210℃程度に加熱して加圧熱水W’(例えば圧力1.3~1.9MPa程度の亜臨界状態の熱水)とし、水量調整弁1cを介してバイオマスを収容した反応槽1dに供給される。制御装置1eから入力される流量制御信号によって水量調整弁1cの開度を調節して、加熱器1bから反応槽1dへ供給される加圧熱水W’の流量を適正に調整する。加圧熱水をバイオマスに添加・作用させると、バイオマスに含まれるヘミセルロースが選択的に加水分解されて可溶化・液状化する。木質素材は、セルロースを主成分とし、ヘミセルロース及びリグニンを含むリグノセルロース系バイオマスであり、加圧熱水で加水分解する場合にセルロースは240~300℃程度の温度を必要とするのに比べ、ヘミセルロースは、セルロースより低温の150~230℃程度で容易に分解可溶化するので、木質素材を加圧熱水反応装置によって処理した反応生成物は、ヘミセルロースが部分分解・可溶化したキシロオリゴ糖を含む多糖類の含水液体と、分解しないセルロース及びリグニンの固体残渣とを含む固液混合物となる。加圧熱水の供給形態は連続通水式でも回分式でも良いが、連続通水式の場合は、加圧熱水の槽内滞留時間が5~120分程度となるように通水速度を調節し、10~120分程度反応させる。 In the pressurized hot water reactor 1, a certain amount of biomass supplied as a raw material from the outside is accommodated in the reaction tank 1d, the heater 1b is adjusted by a temperature control signal input from the controller 1e, and the pump 1a The pressurized water flowing in from is heated to about 150 to 230 ° C., preferably about 190 to 210 ° C., to form pressurized hot water W ′ (for example, subcritical hot water having a pressure of about 1.3 to 1.9 MPa). It is supplied to the reaction tank 1d containing the biomass through the regulating valve 1c. The flow rate of the pressurized hot water W 'supplied from the heater 1b to the reaction tank 1d is adjusted appropriately by adjusting the opening of the water amount adjusting valve 1c by a flow rate control signal input from the control device 1e. When pressurized hot water is added to and acted on biomass, hemicellulose contained in the biomass is selectively hydrolyzed and solubilized and liquefied. The woody material is lignocellulosic biomass containing cellulose as the main component and containing hemicellulose and lignin. When hydrolyzed with pressurized hot water, cellulose is hemicellulose compared with the case where it requires a temperature of about 240 to 300 ° C. Is easily decomposed and solubilized at about 150 to 230 ° C., which is lower than that of cellulose. Therefore, a reaction product obtained by treating a wooden material with a pressurized hydrothermal reactor contains a xylooligosaccharide partially decomposed and solubilized from hemicellulose. A solid-liquid mixture containing a saccharide-containing liquid and a solid residue of cellulose and lignin that does not decompose is obtained. Pressurized hot water may be supplied either continuously or batchwise. However, in the case of continuous water flow, the water flow rate should be set so that the residence time in the tank is 5 to 120 minutes. Adjust and react for about 10 to 120 minutes.
 加圧熱水反応装置1の反応生成物は、固液分離器2に供給されて、ヘミセルロース分解物の液体部分と、セルロース及びリグニンを含む固体残渣Sとに分離される。液体部分は、第2触媒反応装置7に供給され、固体残渣Sは、冷却器3に供給される。 The reaction product of the pressurized hot water reactor 1 is supplied to the solid-liquid separator 2 and separated into the liquid portion of the hemicellulose decomposition product and the solid residue S containing cellulose and lignin. The liquid part is supplied to the second catalytic reactor 7, and the solid residue S is supplied to the cooler 3.
 冷却器3において、固液分離器2から供給される固体残渣Sは冷却され、後続の酵素反応に適した温度に調整される。酵素反応装置4の温度調節を容易にするためには、酵素反応装置4に導入される固体残渣Sの温度が50~100℃程度であると好適であり、冷却器3によってこの範囲になるように適宜調整する。耐熱性酵素を用いると、冷却器の冷却能を低減可能である。 In the cooler 3, the solid residue S supplied from the solid-liquid separator 2 is cooled and adjusted to a temperature suitable for the subsequent enzyme reaction. In order to easily control the temperature of the enzyme reaction apparatus 4, it is preferable that the temperature of the solid residue S introduced into the enzyme reaction apparatus 4 is about 50 to 100 ° C. Adjust as appropriate. When a thermostable enzyme is used, the cooling capacity of the cooler can be reduced.
 冷却器3によって温度を調整した固体残渣Sは、酵素反応装置4に供給されて、糖化酵素であるセルラーゼを含む水性液が添加・混合され、酵素が活性な温度に維持される。セルラーゼの作用によって固体残渣S中のセルロースが分解し、セルロースの一次糖化液C1として、水溶性オリゴ糖であるセロビオース(グルコースの2量体)を主とする分解物が得られる。セルラーゼは、複数種の糖化酵素の集合体として一般的に知られており、主成分としてβ-グルカナーゼを含んでいる。β-グルカナーゼは、セルロースを水溶性オリゴ糖(グルコースの2~6量体)に加水分解する糖化酵素として知られている。又、水溶性オリゴ糖の一部であるセロビオースは、セルラーゼに含まれるβ-グルコシダーゼによってグルコースに分解される。一次糖化液C1は、水溶性オリゴ糖及び水不溶性の懸濁態多糖を含んでおり、水溶性オリゴ糖の含水液体に懸濁態多糖が分散した流動液状である。懸濁態多糖は、セルロースの部分分解物であって、重合度7~3000のグルコース重合体やグルコースの6量体であるセロヘキサオースの結晶であり、後続の固体酸触媒反応によってグルコースに分解可能である。 The solid residue S whose temperature has been adjusted by the cooler 3 is supplied to the enzyme reaction apparatus 4, and an aqueous liquid containing cellulase, which is a saccharifying enzyme, is added and mixed to maintain the enzyme at an active temperature. The cellulose in the solid residue S is decomposed by the action of cellulase, and as a primary saccharified solution C1 of cellulose, a decomposition product mainly containing cellobiose (a dimer of glucose) which is a water-soluble oligosaccharide is obtained. Cellulase is generally known as an assembly of a plurality of types of saccharifying enzymes, and contains β-glucanase as a main component. β-glucanase is known as a saccharification enzyme that hydrolyzes cellulose into water-soluble oligosaccharides (glucose dimer to hexamer). Cellobiose, which is a part of the water-soluble oligosaccharide, is decomposed into glucose by β-glucosidase contained in cellulase. The primary saccharified liquid C1 contains a water-soluble oligosaccharide and a water-insoluble suspended polysaccharide, and is a fluid liquid in which the suspended polysaccharide is dispersed in a water-containing liquid of the water-soluble oligosaccharide. Suspended polysaccharide is a partial degradation product of cellulose, and is a cellulohexaose crystal, which is a glucose polymer with a polymerization degree of 7 to 3000 and glucose hexamer, and is decomposed into glucose by the subsequent solid acid catalyzed reaction. Is possible.
 酵素反応装置4で用いる糖化酵素は、市販品として入手可能な一般的な糖化酵素を使用でき、耐熱性酵素として市販されているものも使用可能である。通常の糖化酵素は、40~50℃程度において酵素活性が最大になり、耐熱性酵素は、70~90℃程度において酵素活性が最大になるので、酵素反応装置4の温度は、使用する糖化酵素に応じて適正な酵素活性が得られるように適宜調整する。耐熱性酵素を用いると、冷却器の冷却能を低減可能であり、又、酵素反応装置4の温度と第1混合装置5aの温度とを近づけることができるので、温度調節におけるエネルギーの使用効率を改善できる。 As the saccharifying enzyme used in the enzyme reaction apparatus 4, a commercially available saccharifying enzyme can be used, and a commercially available saccharifying enzyme can also be used. The normal saccharifying enzyme has the maximum enzyme activity at about 40 to 50 ° C., and the thermostable enzyme has the maximum enzyme activity at about 70 to 90 ° C. Therefore, the temperature of the enzyme reaction apparatus 4 depends on the saccharifying enzyme used. Depending on the conditions, appropriate adjustments may be made to obtain an appropriate enzyme activity. When a thermostable enzyme is used, the cooling capacity of the cooler can be reduced, and the temperature of the enzyme reaction device 4 and the temperature of the first mixing device 5a can be brought close to each other. Can improve.
 酵素反応装置4における糖化酵素の使用量は、固体残渣Sの質量(乾燥)に対して、0.025~0.15g/g、好ましくは0.5~0.1g/gとなる割合に設定することができ、12~72時間、好ましくは24~48時間の反応によって未反応セルロースを実質的に消尽することができる。酵素反応の前の固体残渣に叩解処理を施して解繊・柔軟化すると、酵素反応において、セルロース1g当たり0.25g以下の少ない酵素量を用いて12時間程度以内に酵素分解を終了することができ、後続の固体酸触媒反応によって一次糖化液C1の懸濁態多糖から単糖化される量が増加して単糖回収率が高まる。 The amount of saccharifying enzyme used in the enzyme reaction apparatus 4 is set at a rate of 0.025 to 0.15 g / g, preferably 0.5 to 0.1 g / g, based on the mass (dry) of the solid residue S. Unreacted cellulose can be substantially exhausted by the reaction for 12 to 72 hours, preferably 24 to 48 hours. When the solid residue before the enzyme reaction is subjected to beating treatment and defibration and softening, the enzyme reaction can be completed within about 12 hours using a small amount of enzyme of 0.25 g or less per gram of cellulose. The amount of monosaccharide from the suspended polysaccharide of the primary saccharified solution C1 is increased by the subsequent solid acid catalyzed reaction, and the monosaccharide recovery rate is increased.
 酵素反応装置4において生成するセルロースの一次糖化液C1は、第1混合装置5aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌すると、一次糖化液C1のオリゴ糖及び懸濁態多糖は、固体酸触媒Xの作用によって良好に加水分解されてグルコース(セルロースを構成する単糖)が生成し、グルコースを主成分とする二次糖化液C2が得られる。使用する固体酸触媒Xとしては、ゼオライト、アルミナ、シリカ等の無機固体酸や、樹脂等の有機素材のスルホン化処理等によって酸性基を導入したもの等が挙げられ、接触表面積を多くするために粉末状又は粒子状の固体酸触媒が用いられる。本発明においては、有機炭素材を炭化処理した後にスルホン化処理したスルホン化カーボン系のものが好ましい。スルホン化カーボン系固体酸触媒は、木質類又は草本類等の有機炭素材を窒素等の不活性ガス雰囲気下で加熱処理することにより得られるアモルファス状の黒色固体(炭化物)を濃硫酸または発煙硫酸中で加熱処理して炭化物の骨格にスルホン基を付加し、熱水洗浄することによって得られる。炭化とスルホン化を同時に行ってもよく、炭化及びスルホン化の処理温度は、用いる有機物の種類によって適宜選択される。固体酸触媒Xの使用量は、一次糖化液C1に対して5~30質量%が好ましい。反応時間は、概して2~10時間程度であればよい。 When the primary saccharified liquid C1 produced in the enzyme reaction apparatus 4 is mixed and stirred with the solid acid catalyst X at a temperature of 90 ° C. or higher and lower than 120 ° C. in the first mixing apparatus 5a, the oligosaccharide and suspension of the primary saccharified liquid C1 are mixed. The polysaccharide is hydrolyzed satisfactorily by the action of the solid acid catalyst X to produce glucose (a monosaccharide constituting cellulose), and a secondary saccharified solution C2 containing glucose as a main component is obtained. Examples of the solid acid catalyst X to be used include inorganic solid acids such as zeolite, alumina and silica, and those in which acidic groups are introduced by sulfonation treatment of organic materials such as resins. A powdered or particulate solid acid catalyst is used. In the present invention, a sulfonated carbon type obtained by carbonizing an organic carbon material and then sulfonated is preferable. The sulfonated carbon-based solid acid catalyst is an amorphous black solid (carbide) obtained by heat-treating organic carbon materials such as woods or herbs in an inert gas atmosphere such as nitrogen. It is obtained by heat treatment in order to add a sulfone group to the carbide skeleton and washing with hot water. Carbonization and sulfonation may be performed at the same time, and the treatment temperature for carbonization and sulfonation is appropriately selected depending on the type of organic substance used. The amount of the solid acid catalyst X used is preferably 5 to 30% by mass with respect to the primary saccharified liquid C1. The reaction time may generally be about 2 to 10 hours.
 第1混合装置5aでの加水分解反応を終えた反応生成物は、第1固液分離装置5bに供給され、反応生成物中の固体酸触媒Xを沈降させる。上澄みとしてグルコースを主成分とする二次糖化液C2が分離されて、第1発酵装置6に送出され、沈降分離した固体酸触媒Xは回収した後、第1混合装置5aに戻して再度使用される。 The reaction product that has finished the hydrolysis reaction in the first mixing device 5a is supplied to the first solid-liquid separation device 5b, and the solid acid catalyst X in the reaction product is precipitated. The secondary saccharified solution C2 mainly composed of glucose is separated as a supernatant, sent to the first fermentation apparatus 6, and the solid acid catalyst X separated by settling is recovered and then returned to the first mixing apparatus 5a to be used again. The
 第1固液分離装置5bから第1発酵装置6に供給された二次糖化液C2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってグルコースをエタノールに変換する。エタノール発酵に利用する発酵微生物としては、酵母等の公知のエタノール発酵微生物を用いることができ、例えば、サッカロミセス・セルビシエ、シゾサッカロミセス・ポンベ、ブレタノミセス・クステルシィ、サルシナ・ベントリクリ、クリュイベロミセス・フラジリス、ザイモモナス・モビリス、クルイベロミセス・マルキシアヌス等が挙げられる。また、エタノールへの変換能を有する酵素遺伝子を遺伝子組換えにより導入した細菌を利用してもよい。凝集性酵母を用いると、沈降性がよいので、発酵後の固液分離において好都合であり、酵母が周囲の微生物群の加水分解酵素によって分解されたアミノ酸等を栄養源として利用する上で有利な形態でもあるので、発酵効率の向上にも有用である。発酵の際、発酵微生物の繁殖・活動に必要な栄養源を添加し、至適pHに調整することが好ましい。酵母が活動・増殖するためには、リン、窒素、ビタミン類等の必須栄養素や、Co,Ni,Zn等の要求微量元素が必要であり、また、バイオマスエタノールの生産に使用される酵母は、ビタミン又はアミノ酸等の合成能力が低いか、或いは、欠如している場合がある。このような必要成分を外部から添加する発酵微生物の栄養源として、酵母エキス、ポリペプトンなどが一般的に使用できる。或いは、茶殻やコーヒー殻等の植物性廃棄物や藻類の破砕物を利用しても良く、これらの細胞原形質に含まれる成分を上記栄養源として利用できる。 The secondary saccharified solution C2 supplied from the first solid-liquid separation device 5b to the first fermentation device 6 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, and inoculated with fermenting microorganisms, and the fermentation stock solution The glucose is converted into ethanol by the action of the fermentation microorganism. As a fermentation microorganism used for ethanol fermentation, known ethanol fermentation microorganisms such as yeast can be used. Examples include Zymomonas mobilis and Kluyveromyces marxianus. Moreover, you may utilize the bacterium which introduce | transduced the enzyme gene which has the conversion ability to ethanol by gene recombination. The use of flocculent yeast is advantageous in solid-liquid separation after fermentation because of good sedimentation, and it is advantageous for yeast to use amino acids and the like degraded by hydrolyzing enzymes of surrounding microorganisms as nutrient sources. Since it is also a form, it is useful for improving fermentation efficiency. During fermentation, it is preferable to add a nutrient source necessary for the propagation and activity of the fermenting microorganisms and adjust to an optimum pH. In order for yeast to be active and proliferating, essential nutrients such as phosphorus, nitrogen and vitamins, and required trace elements such as Co, Ni, and Zn are necessary, and yeast used for the production of biomass ethanol is The ability to synthesize vitamins or amino acids may be low or lacking. As a nutrient source for fermentation microorganisms to which such necessary components are added from the outside, yeast extract, polypeptone and the like can be generally used. Alternatively, plant waste such as tea husk and coffee husk and algal crushed material may be used, and components contained in these cell protoplasts can be used as the nutrient source.
 上記発酵原液の糖化物(グルコース)濃度は、1~20質量%程度、好ましくは10質量%程度となるように調整する。微生物用栄養源の添加量(乾燥物換算)は、発酵微生物の種類等に応じて適宜調節され、概して0.1~1質量%程度、好ましくは0.2~0.5質量%程度に設定するとよい。発酵原液のpHは、2.5~5.5程度、好ましくは3.0~5.5程度に調整し、発酵微生物を1~30g/L程度の割合で接種して、温度30~37℃程度に2~48時間程度保持することによって発酵が進行する。例えば、グルコース濃度が10質量%程度の発酵原液を用いて、20~25g-エタノール/(L・h)程度の速度でエタノールを生産することができる。 The saccharified product (glucose) concentration in the fermentation stock solution is adjusted to be about 1 to 20% by mass, preferably about 10% by mass. The addition amount of the nutrient source for microorganisms (in terms of dry matter) is appropriately adjusted according to the type of fermenting microorganism, and is generally set to about 0.1 to 1% by mass, preferably about 0.2 to 0.5% by mass. Good. The pH of the fermentation stock solution is adjusted to about 2.5 to 5.5, preferably about 3.0 to 5.5, inoculated with fermenting microorganisms at a rate of about 1 to 30 g / L, and a temperature of 30 to 37 ° C. The fermentation proceeds by holding for about 2 to 48 hours. For example, ethanol can be produced at a rate of about 20 to 25 g-ethanol / (L · h) using a fermentation stock solution having a glucose concentration of about 10% by mass.
 上述のようにして第1発酵装置6における発酵を経た発酵生成物F1は、必要に応じて、発酵生成物F1から固形物(リグニン、発酵微生物等)を濾過等によって除去した後に、蒸留装置9において蒸留することによってエタノールが回収される。発酵生成物F1から固形分を除去せずにそのまま蒸留しても良い。発酵生成物F1から分離される固形物は、バイオマスの糖化工程に導入しても良い。 The fermentation product F1 that has undergone fermentation in the first fermentation apparatus 6 as described above is subjected to distillation apparatus 9 after removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F1 as necessary, by filtration or the like. The ethanol is recovered by distillation at You may distill as it is, without removing solid content from fermentation product F1. You may introduce | transduce into the biomass saccharification process the solid substance isolate | separated from the fermentation product F1.
 一方、固液分離器2によって分離されたヘミセルロース由来の一次糖化液H1は、第2触媒反応装置7に供給され、第2混合装置7aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌される。一次糖化液H1のヘミセルロース由来オリゴ糖や部分分解物である多糖は、固体酸触媒Xの作用によって加水分解されて、キシロースやアラビノース(ヘミセルロースを構成する五炭糖)等を含む単糖が生成し、これらを含む二次糖化液H2が得られる。後続の第2発酵装置8での発酵におけるエタノール生産効率の低下を抑制するために、90~110℃、特に100℃付近の温度で固体酸触媒反応を行うことが好ましい。120℃以上の温度においてはキシロースの分解が進行し易くなる。第2触媒反応装置7で使用する固体酸触媒Xは、第1触媒反応装置5で使用可能なものから同一又は異なるものを適宜選択でき、木質類又は草本類を炭化処理した後にスルホン化処理によって得られるスルホン化炭素材の使用が好ましい。固体酸触媒Xの使用量についても、第1触媒反応装置5と同様に、一次糖化液H1に対して5~30質量%が好ましく、反応時間は、概して1~5時間程度であればよい。 On the other hand, the hemicellulose-derived primary saccharified liquid H1 separated by the solid-liquid separator 2 is supplied to the second catalytic reactor 7 and the solid acid catalyst X and the primary acid catalyst X at a temperature of 90 ° C. or higher and lower than 120 ° C. in the second mixing device 7a. Mix and stir. The hemicellulose-derived oligosaccharide of the primary saccharified solution H1 and the polysaccharide which is a partial decomposition product are hydrolyzed by the action of the solid acid catalyst X to produce monosaccharides including xylose and arabinose (pentose sugar constituting hemicellulose). A secondary saccharified solution H2 containing these is obtained. In order to suppress a decrease in ethanol production efficiency in the subsequent fermentation in the second fermentation apparatus 8, it is preferable to perform the solid acid catalytic reaction at a temperature of 90 to 110 ° C, particularly around 100 ° C. At temperatures of 120 ° C. or higher, xylose decomposition tends to proceed. The solid acid catalyst X used in the second catalytic reactor 7 can be appropriately selected from the same or different from those that can be used in the first catalytic reactor 5, and after the carbonization treatment of the woods or herbs, the sulfonation treatment is performed. Use of the resulting sulfonated carbon material is preferred. The amount of the solid acid catalyst X to be used is preferably 5 to 30% by mass with respect to the primary saccharified liquid H1 as in the first catalytic reactor 5, and the reaction time may be generally about 1 to 5 hours.
 第2混合装置7aでの加水分解反応を終えた反応生成物は、第2固液分離装置7bに投入され、反応生成物中の固体酸触媒Xを沈降させ、上澄みとして二次糖化液H2が分離される。これは、第2発酵装置8に送出される。沈降分離した固体酸触媒Xは回収した後、第2混合装置7aに戻して再度使用される。二次糖化液H2は、キシロースを主成分とする単糖液である。 The reaction product that has finished the hydrolysis reaction in the second mixing device 7a is charged into the second solid-liquid separation device 7b, where the solid acid catalyst X in the reaction product is allowed to settle, and the secondary saccharified solution H2 is used as a supernatant. To be separated. This is sent to the second fermentation apparatus 8. The solid acid catalyst X that has settled and separated is recovered and then returned to the second mixing device 7a to be used again. The secondary saccharified liquid H2 is a monosaccharide liquid mainly composed of xylose.
 第2固液分離装置7bから第2発酵装置8に供給された二次糖化液H2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってキシロース等をエタノールに変換する。キシロース発酵能を有する微生物には、Pichia、リゾプス属糸状菌(Rhizopus oryzae)等がある。キシロース発酵酵母は、グルコースの存在下ではキシロースの発酵速度が減退し易いが、キシロース発酵能を有する遺伝子組み換え酵母を用いると、セミヘルロースの二次糖化液H2からエタノールを生成する効率を改善できる。特に、染色体組み込みによってXR遺伝子(キシロースからキシリトールへの変換反応を触媒する酵素をコードする遺伝子)、XDH遺伝子(キシリトールからキシルロースへの変換反応を触媒する酵素をコードする遺伝子)及びXK遺伝子(キシロース及びATPからキシルロース5リン酸及びADPへの変換反応を触媒する酵素をコードする遺伝子)が導入された遺伝子組み換え酵母は、グルコース共存下でキシロースを良好に発酵することができる。このような遺伝子組み換え酵母は、例えば、工業株IR-2株(FERM BP-754号)、Type-II株(パン酵母)や焼酎3号株(協会系酵母)、実験株D452-2株、INVSc1株等の酵母を宿主生物として、一般的な分子生物学的手法に従って上記遺伝子を組み込んだベクターを用いて宿主生物を形質転換することによって得られ(米国特許公開公報US 2011/0027847A1参照)、或いは、独立行政法人産業技術総合研究所によって提供される遺伝子組み換え酵母(N-WT株、N-ARSdR株、R-WT株、R-ARSdR株、MA-R4株)として入手可能である。サッカロミセス属酵母424A(LNH-ST)株(Purdue大学Ho博士らによる)もグルコース共存下でキシロースを良好に発酵する。凝集性酵母を用いると、沈降性がよいので、発酵後の固液分離において好都合であり、酵母が周囲の微生物群の加水分解酵素によって分解されたアミノ酸等を栄養源として利用する上で有利な形態でもあるので、発酵効率の向上にも有用である。 The secondary saccharified solution H2 supplied from the second solid-liquid separation device 7b to the second fermentation device 8 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, inoculated with fermenting microorganisms, and the fermentation stock solution And xylose or the like is converted into ethanol by the action of the fermentation microorganism. Examples of microorganisms having xylose fermentability include Pichia and Rhizopus oryzae. Xylose-fermenting yeast tends to decrease the fermentation rate of xylose in the presence of glucose, but the use of a genetically modified yeast having xylose-fermenting ability can improve the efficiency of producing ethanol from semi-herulose secondary saccharified solution H2. In particular, XR genes (genes encoding enzymes that catalyze the conversion reaction from xylose to xylitol), XDH genes (genes encoding enzymes that catalyze the conversion reaction from xylitol to xylulose) and XK genes (xylose and A genetically modified yeast introduced with a gene encoding an enzyme that catalyzes the conversion reaction from ATP to xylulose 5-phosphate and ADP can ferment xylose well in the presence of glucose. Such genetically modified yeasts include, for example, industrial strain IR-2 (FERM BP-754), Type-II (baker yeast) and shochu 3 (association yeast), experimental strain D452-2, It is obtained by transforming the host organism using a vector in which the above gene is incorporated according to a general molecular biological technique, using yeast such as INVSc1 strain as the host organism (see US Patent Publication No. 2011 / 0027847A1), Alternatively, it can be obtained as a genetically modified yeast (N-WT strain, N-ARSdR strain, R-WT strain, R-ARSdR strain, MA-R4 strain) provided by the National Institute of Advanced Industrial Science and Technology. Saccharomyces yeast 424A (LNH-ST) (according to Dr. Ho et al., Purdue University) also ferments xylose well in the presence of glucose. The use of flocculent yeast is advantageous in solid-liquid separation after fermentation because of good sedimentation, and it is advantageous for yeast to use amino acids and the like degraded by hydrolyzing enzymes of surrounding microorganisms as nutrient sources. Since it is also a form, it is useful for improving fermentation efficiency.
 二次糖化液H2の発酵反応は、発酵原液のキシロースの濃度を0.1~20%、好ましくは0.5~10%程度に調整し、pHを3.0~7.6、好ましくは5.0~6.0に調節して、25~38℃程度、好ましくは27~33℃程度の温度で嫌気性条件下で行うと良い。前述したような外部から添加する発酵微生物の栄養源として、酵母エキス、ポリペプトンなどを必要に応じて適宜使用するとよく、1%程度の酵母エキスを加えると好適である。発酵反応は、48時間程度以上で終了する。酵母の種類や育種条件等によって発酵時間は増減する。 In the fermentation reaction of the secondary saccharified solution H2, the concentration of xylose in the fermentation stock solution is adjusted to 0.1 to 20%, preferably about 0.5 to 10%, and the pH is 3.0 to 7.6, preferably 5 The temperature is adjusted to about 0.0 to 6.0, and it is performed under anaerobic conditions at a temperature of about 25 to 38 ° C., preferably about 27 to 33 ° C. Yeast extract, polypeptone, or the like may be appropriately used as necessary as a nutrient source for fermentation microorganisms added from the outside as described above, and it is preferable to add about 1% yeast extract. The fermentation reaction is completed in about 48 hours or more. The fermentation time varies depending on the type of yeast and breeding conditions.
 キシロース発酵能を有する酵母による発酵におけるエタノールの収率は、グルコースからの収率の方がキシロースからの収率より高く(図2参照)、発酵速度についても、グルコースの消費速度よりキシロースの消費速度が遅いが、純粋なキシロースであれば数時間程度で終了し、グルコースの共存によって多少遅くなる。セルロース系バイオマスから生成するヘミセルロース系糖化液には、その他の副生成物が存在し、その量が多いと、更にキシロース発酵速度を低下させ、発酵副産物も増加するが、糖化反応の条件(加圧熱水反応及び固体酸触媒反応)における条件を前述のように設定することで、キシロースの分解等による副生成物の増加が防止され、キシロース発酵の阻害による速度低下が抑制される。又、予め二次糖化液H2を含む選択圧下で培養した酵母を発酵に用いると、発酵効率が向上する。つまり、二次糖化液H2を含む環境中で酵母を培養することによって、二次糖化液H2に含まれる阻害物質に対する耐性を備えた酵母が生育・繁殖し、このような耐性を有する酵母を選択的に取得することができる。具体的には、二次糖化液H2の低濃度希釈液を含む培地を用いて酵母を培養し、繁殖した酵母を取り出して培養を繰り返す際に、培地の二次糖化液濃度を徐々に増加することによって、培養される酵母の耐性が徐々に強化される。 The yield of ethanol in fermentation with yeast having xylose fermentation ability is higher from glucose than that from xylose (see FIG. 2), and the fermentation rate is also related to the consumption rate of xylose than the consumption rate of glucose. However, if it is pure xylose, it will be completed in about several hours, and will be somewhat slower due to the coexistence of glucose. There are other by-products in the hemicellulose-based saccharified liquid produced from cellulosic biomass, and if the amount is large, the xylose fermentation rate is further reduced and the fermentation by-products are increased. By setting the conditions in the hydrothermal reaction and the solid acid catalyzed reaction as described above, an increase in by-products due to xylose decomposition or the like is prevented, and a decrease in speed due to inhibition of xylose fermentation is suppressed. Moreover, when the yeast previously cultured under the selective pressure containing secondary saccharified liquid H2 is used for fermentation, fermentation efficiency will improve. That is, by culturing yeast in an environment containing the secondary saccharified solution H2, yeast having resistance to the inhibitor contained in the secondary saccharified solution H2 grows and propagates, and a yeast having such resistance is selected. Can be obtained. Specifically, when the yeast is cultured using a medium containing a low-concentration diluted solution of the secondary saccharified liquid H2, the secondary saccharified liquid concentration of the medium is gradually increased when the propagated yeast is taken out and repeated. By this, the tolerance of the cultured yeast is gradually strengthened.
 上述のようにして第2発酵装置8における発酵を経た発酵生成物F2は、必要に応じて、発酵生成物F2から固形物(リグニン、発酵微生物等)を濾過等によって除去した後に、蒸留装置9において蒸留することによって精製エタノールが回収される。発酵生成物F2から固形分を除去せずにそのまま蒸留しても良い。発酵生成物F2から分離される固形物は、バイオマスの糖化工程に導入しても良い。発酵生成物F2の蒸留は、第1発酵装置6から得られる発酵生成物F1と一緒又は個別に行うことができる。 The fermentation product F2 that has undergone fermentation in the second fermentation apparatus 8 as described above is subjected to distillation apparatus 9 after removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F2 as necessary, by filtration or the like. Purified ethanol is recovered by distillation in You may distill as it is, without removing solid content from fermentation product F2. The solid separated from the fermentation product F2 may be introduced into the biomass saccharification step. The distillation of the fermentation product F2 can be performed together with or separately from the fermentation product F1 obtained from the first fermentation apparatus 6.
 固体酸触媒には、粉末状やペレット状のものがあり、第1触媒反応装置5及び第2触媒反応装置7でペレット状のものを用いる場合には、液体が容易に流通するメッシュ製等の透過性容器内に固体酸触媒を保持して一次糖化液H1,C1中に浸漬固定し、一次糖化液を流動させて固体酸触媒ペレット間を一次糖化液が流通するように構成することができる。このような固定床型固体酸触媒を採用することで、第1触媒反応装置及び第2触媒反応装置における固液分離に関する装置構成を簡略化することができる。 Solid acid catalysts include powders and pellets. When pellets are used in the first catalyst reaction device 5 and the second catalyst reaction device 7, the solid acid catalyst may be made of a mesh or the like through which the liquid flows easily. The solid acid catalyst can be held in the permeable container and fixed in the primary saccharified liquids H1 and C1, and the primary saccharified liquid can be flowed between the solid acid catalyst pellets by flowing the primary saccharified liquid. . By adopting such a fixed bed type solid acid catalyst, it is possible to simplify the apparatus configuration relating to solid-liquid separation in the first catalytic reaction apparatus and the second catalytic reaction apparatus.
 固体酸触媒反応におけるキシロース生成速度定数及びキシロース分解速度定数と温度との関係に関し、キシロース生成速度定数は、約80℃以上において急激に増大し、90℃程度以上において固体酸触媒反応が良好に進行する。一方、キシロース分解速度定数は、100℃を超えると徐々に増加し始める。このため、キシロースの分解を抑制して副生成物による発酵阻害を抑制するために、固体触媒反応の温度設定は重要である。 Regarding the relationship between the xylose production rate constant and the xylose decomposition rate constant in solid acid catalyzed reaction and temperature, the xylose production rate constant increases rapidly at about 80 ° C or higher, and the solid acid catalytic reaction proceeds well at about 90 ° C or higher. To do. On the other hand, the xylose decomposition rate constant starts to gradually increase when the temperature exceeds 100 ° C. For this reason, in order to suppress decomposition | disassembly of xylose and to suppress the fermentation inhibition by a by-product, the temperature setting of a solid catalytic reaction is important.
 また、第1発酵装置6及び第2発酵装置8の各々において、発酵微生物として、クロストリジウム・アセトブチリカム、クロストリジウム・ベイジェリンキ、クロストリジウム・オーランチブチリカム、クロストリジウム・テタノモーファム等の微生物を利用すると、発酵によってブタノール等のアルコールやアセトンの製造が可能であり、エタノール以外の有用アルコール類、ケトン類の製造に応用することができる。同様に、ヒドロキシメチルフルフラールやフルフラール等の生成にも応用可能である。 Moreover, in each of the first fermentation apparatus 6 and the second fermentation apparatus 8, when microorganisms such as Clostridium acetobutylicum, Clostridium begerinki, Clostridium auranticylicum, Clostridium tetanomorphum are used as fermentation microorganisms, butanol or the like is obtained by fermentation. Can be produced, and can be applied to the production of useful alcohols and ketones other than ethanol. Similarly, it can be applied to the production of hydroxymethylfurfural and furfural.
 (草本系バイオマスの加圧熱水反応)
 草本系バイオマスとして、スイートソルガムバガス(含水率30質量%)300gを細かく粉砕したものを用意し、バッチ式の加圧熱水反応装置(オーエムラボテック社製OML-5)に充填して、200℃の加圧熱水(圧力:1.56MPa、飽和蒸気圧)3Lを供給して20分間反応させた。反応生成物を加圧熱水反応装置から取り出し、3000Gの遠心力を加えて15分間遠心分離することによって、ヘミセルロース由来の一次糖化液2134gと、セルロースを含む固体残渣(含水率84.32質量%)127.55gとを得た。
(Pressurized hot water reaction of herbaceous biomass)
As herbaceous biomass, prepared by finely pulverizing 300 g of sweet sorghum bagasse (water content: 30% by mass), charged in a batch-type pressurized hot water reactor (OML-5 manufactured by OM Labtech Co., Ltd.), and heated to 200 ° C. 3 L of pressurized hot water (pressure: 1.56 MPa, saturated vapor pressure) was supplied and reacted for 20 minutes. The reaction product was taken out from the pressurized hot water reactor and centrifuged at 15 minutes by applying a centrifugal force of 3000 G, so that 2134 g of hemicellulose-derived primary saccharified solution and cellulose-containing solid residue (water content 84.32% by mass) were obtained. ) To 127.55 g.
 (一次糖化液の固体酸触媒反応)
 アモルファス状炭化物をスルホン化したカーボン系固体酸触媒75gを用意し、上述の加圧熱水反応を行って得られた一次糖化液500gに加えて温度を90~100℃に保持し、攪拌装置を用いて速度10rpmで攪拌することによって固体酸触媒反応を2時間行った。固体酸触媒を沈降除去して、400gのヘミセルロース由来の二次糖化液を得た。二次糖化液に含まれるキシロース及びグルコースをHPLC分析により定量したところ、キシロース濃度は0.75質量%、グルコース濃度は0.36質量%であった。
(Solid acid catalyzed reaction of primary saccharified solution)
75 g of a carbon-based solid acid catalyst obtained by sulfonating amorphous carbide was prepared, and the temperature was maintained at 90 to 100 ° C. in addition to 500 g of the primary saccharified solution obtained by performing the above-mentioned pressurized hot water reaction. The solid acid catalyst reaction was carried out for 2 hours by using and stirring at a speed of 10 rpm. The solid acid catalyst was removed by sedimentation to obtain 400 g of a secondary saccharified solution derived from hemicellulose. When xylose and glucose contained in the secondary saccharified solution were quantified by HPLC analysis, the xylose concentration was 0.75% by mass and the glucose concentration was 0.36% by mass.
 (二次糖化液の発酵反応)
 上記で得られた二次糖化液に水を加えてキシロースの濃度を10%程度に調整し、pHを6.0に調節して、発酵微生物としてサッカロマイセス属酵母(米国特許公開公報2011/0027847A1参照、IR-2株に補酵素特異性を改良した酵素の遺伝子を導入したMA-R4株)を接種し、窒素雰囲気下で30℃程度に保持して発酵を48時間行った。
(Fermentation reaction of secondary saccharified solution)
Water is added to the secondary saccharified solution obtained above to adjust the concentration of xylose to about 10%, the pH is adjusted to 6.0, and yeast of the genus Saccharomyces (see US Patent Publication 2011 / 0027847A1) as a fermentation microorganism. The strain MA-2, in which the gene for the enzyme with improved coenzyme specificity was introduced, was inoculated into the IR-2 strain, and the fermentation was carried out for 48 hours while maintaining at about 30 ° C. in a nitrogen atmosphere.
 発酵後の液体から微生物を含む固形分を除去して、液中に含まれるキシロース、グルコース及びエタノールをHPLC分析により定量したところ、キシロース濃度は0質量%、グルコース濃度は0質量%、エタノール濃度は0.4質量%であった。 When solids containing microorganisms were removed from the liquid after fermentation and xylose, glucose and ethanol contained in the liquid were quantified by HPLC analysis, the xylose concentration was 0 mass%, the glucose concentration was 0 mass%, and the ethanol concentration was It was 0.4 mass%.
 (発酵途中の経過)
 上述の二次糖化液の発酵反応において、発酵開始後12時間において発酵液をサンプリングして、キシロース、グルコース及びエタノールを定量したところ、キシロース濃度:0.25質量%、グルコース濃度:0質量%、エタノール濃度:0.36質量%であった。
(Progress during fermentation)
In the fermentation reaction of the above secondary saccharified solution, the fermentation solution was sampled 12 hours after the start of fermentation, and when xylose, glucose and ethanol were quantified, xylose concentration: 0.25% by mass, glucose concentration: 0% by mass, Ethanol concentration: 0.36% by mass.
 図2に示される、発酵原液のキシロース比と発酵後のエタノール収率との関係は、以下の操作に従って得たものである。 The relationship between the xylose ratio of the fermentation stock solution and the ethanol yield after fermentation shown in FIG. 2 is obtained according to the following operation.
 実施例1と同様の操作に従って、草本系バイオマスからヘミセルロース由来の二次糖化液を調製し、含まれるキシロース及びグルコースの割合を調べたところ、試料(1)は0.67、試料(2)は0.66、試料(3)は0.47であった。 According to the same operation as in Example 1, a hemicellulose-derived secondary saccharified solution was prepared from herbaceous biomass, and the ratio of xylose and glucose contained was examined. Sample (1) was 0.67, and sample (2) was 0.66 and sample (3) were 0.47.
 上述で得た試料(1)~(3)の二次糖化液、及び、精製単糖の試料として、市販のグルコース試薬(試料(4))、キシロース試薬(試料(5))、及び、グルコース試薬とキシロース試薬とを混合したキシロースの比率が0.68の混合物(試料(6))を用意した。 Samples of the secondary saccharified solutions (1) to (3) obtained above and purified monosaccharides are commercially available glucose reagent (sample (4)), xylose reagent (sample (5)), and glucose. A mixture (sample (6)) in which the ratio of xylose obtained by mixing the reagent and the xylose reagent was 0.68 was prepared.
 試料(1)~(6)の各々について、水を加えて単糖濃度を10%程度に調整し、pHを6.0に調節して発酵原液とし、実施例1と同様にして窒素雰囲気下で発酵を48時間行った。この間に、発酵中の液体をサンプリングして、液中に含まれるキシロース、グルコース及びエタノールをHPLC分析により定量し、各成分量の経時変化を調べた。その結果を図3の(a)~(f)に示す。これらの結果を用いて、各試料の発酵原液のキシロース比と、発酵終了時のエタノール収率との関係を調べたものが図2のグラフである。 For each of samples (1) to (6), water was added to adjust the monosaccharide concentration to about 10%, and the pH was adjusted to 6.0 to obtain a fermentation stock solution. The fermentation was carried out for 48 hours. During this time, the liquid during the fermentation was sampled, and xylose, glucose and ethanol contained in the liquid were quantified by HPLC analysis, and the change with time of each component amount was examined. The results are shown in (a) to (f) of FIG. FIG. 2 is a graph showing the relationship between the xylose ratio of the fermentation stock solution of each sample and the ethanol yield at the end of fermentation using these results.
 本発明は、植物性廃棄物をバイオマスとしてバイオマスエタノールを生産する際に、木質材等に含まれるヘミセルロースを効率よく糖化・発酵してエタノールに変換でき、食物価格の高騰の虞がない資源を利用して経済的且つ合理的に処理できるので、廃棄物処理及び資源の生産に寄与し、リサイクルの促進及び環境保護、エネルギー問題の解消にも貢献可能であるので、有用性が高い。 The present invention uses a resource that can efficiently saccharify and ferment hemicellulose contained in wood and other materials to produce ethanol when producing biomass ethanol using plant waste as biomass, and there is no risk of food price increases. Therefore, it can be treated economically and rationally, contributing to waste treatment and resource production, and can contribute to promoting recycling, protecting the environment, and solving energy problems.

Claims (15)

  1.  バイオマスに加圧熱水を作用させて、バイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応工程と、
     前記加圧熱水反応工程による分解生成物に、90~110℃の温度で固体酸触媒を作用させてキシロースを含む糖化生成物を得る固体酸触媒反応工程と、
     前記固体酸触媒反応工程で得られる糖化生成物にキシロース発酵能を有する微生物を作用させてエタノールを生成する発酵工程とを有するエタノールの製造方法。
    A pressurized hot water reaction step in which pressurized hot water is allowed to act on the biomass to selectively decompose hemicellulose contained in the biomass;
    A solid acid catalyst reaction step of obtaining a saccharification product containing xylose by allowing a solid acid catalyst to act on the decomposition product of the pressurized hot water reaction step at a temperature of 90 to 110 ° C .;
    A method for producing ethanol comprising a fermentation step in which a microorganism having xylose fermentation ability is allowed to act on a saccharification product obtained in the solid acid catalyst reaction step to produce ethanol.
  2.  前記加圧熱水反応工程における加圧熱水の温度は、150~230℃、圧力は、0.47~2.8MPaである請求項1に記載のエタノールの製造方法。 The method for producing ethanol according to claim 1, wherein the temperature of the pressurized hot water in the pressurized hot water reaction step is 150 to 230 ° C, and the pressure is 0.47 to 2.8 MPa.
  3.  前記発酵工程における微生物は、キシロースからキシリトールへの変換反応を触媒する酵素をコードする遺伝子、キシリトールからキシルロースへの変換反応を触媒する酵素をコードする遺伝子、及び、キシロース及びATPからキシルロース5リン酸及びADPへの変換反応を触媒する酵素をコードする遺伝子を染色体組み込みによって導入した遺伝子組み換え酵母である請求項1又は2に記載のエタノールの製造方法。 The microorganism in the fermentation step includes a gene encoding an enzyme that catalyzes a conversion reaction from xylose to xylitol, a gene encoding an enzyme that catalyzes a conversion reaction from xylitol to xylulose, and xylulose and ATP to xylulose pentaphosphate and The method for producing ethanol according to claim 1 or 2, which is a genetically modified yeast into which a gene encoding an enzyme that catalyzes a conversion reaction to ADP is introduced by chromosomal integration.
  4.  更に、前記加圧熱水反応工程後の固体残渣に糖化酵素を作用させ、固体残渣に含まれるセルロースを分解して、重合度が7~3000の懸濁態多糖を含む液体を生成するセルロースの一次糖化工程を有する請求項1~3の何れか1項に記載のエタノールの製造方法。 Further, a saccharifying enzyme is allowed to act on the solid residue after the pressurized hot water reaction step to decompose cellulose contained in the solid residue, thereby producing a liquid containing a suspended polysaccharide having a degree of polymerization of 7 to 3000. The method for producing ethanol according to any one of claims 1 to 3, further comprising a primary saccharification step.
  5.  更に、前記セルロースの一次糖化工程による生成物に固体酸触媒を作用させ、前記懸濁態多糖を分解して単糖としてグルコースを生成するセルロースの二次糖化工程を有する請求項4に記載のエタノールの製造方法。 The ethanol according to claim 4, further comprising a secondary saccharification step of cellulose in which a product of the cellulose in the primary saccharification step is allowed to act on a solid acid catalyst to decompose the suspended polysaccharide to produce glucose as a monosaccharide. Manufacturing method.
  6.  更に、前記加圧熱水反応工程による分解生成物を固体残渣から分離する分離工程を有する請求項1~5の何れか1項に記載のエタノールの製造方法。 The method for producing ethanol according to any one of claims 1 to 5, further comprising a separation step of separating a decomposition product from the pressurized hot water reaction step from a solid residue.
  7.  更に、前記発酵工程後の生成物に含まれるエタノールを精製する精製工程を有する請求項1~6の何れか1項に記載のエタノールの製造方法。 The method for producing ethanol according to any one of claims 1 to 6, further comprising a purification step for purifying ethanol contained in the product after the fermentation step.
  8.  前記発酵工程における微生物として、前記固体酸触媒反応工程で得られる糖化生成物を含む選択圧下で予め培養されたキシロース発酵能を有する酵母を使用する請求項1に記載のエタノールの製造方法。 2. The method for producing ethanol according to claim 1, wherein a yeast having xylose fermentation ability, which has been cultured in advance under a selective pressure containing a saccharification product obtained in the solid acid catalytic reaction step, is used as the microorganism in the fermentation step.
  9.  バイオマスに加圧熱水を作用させて、バイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応装置と、
     前記加圧熱水反応装置による分解生成物を90~110℃に加熱して固体酸触媒を作用させて、キシロースを含む糖化生成物を得る触媒反応装置と、
     前記触媒反応装置によって得られる糖化生成物に、キシロース発酵能を有する微生物を作用させてエタノールを生成する発酵装置とを有するエタノール製造装置。
    A pressurized hot water reactor for selectively decomposing hemicellulose contained in biomass by applying pressurized hot water to the biomass;
    A catalytic reaction apparatus for obtaining a saccharification product containing xylose by heating a decomposition product obtained by the pressurized hot water reaction apparatus to 90 to 110 ° C. to act a solid acid catalyst;
    An ethanol production apparatus comprising: a fermentation apparatus that produces ethanol by allowing a microorganism having xylose fermentation ability to act on a saccharification product obtained by the catalytic reaction apparatus.
  10.  前記加圧熱水反応装置に150~230℃の温度の加圧熱水を0.47~2.8MPaの圧力で供給するための加熱加圧システムを有する請求項9に記載のエタノール製造装置。 The ethanol production apparatus according to claim 9, further comprising a heating and pressurizing system for supplying pressurized hot water having a temperature of 150 to 230 ° C to the pressurized hot water reactor at a pressure of 0.47 to 2.8 MPa.
  11.  前記発酵装置は、前記微生物として、キシロースからキシリトールへの変換反応を触媒する酵素をコードする遺伝子、キシリトールからキシルロースへの変換反応を触媒する酵素をコードする遺伝子、及び、キシロース及びATPからキシルロース5リン酸及びADPへの変換反応を触媒する酵素をコードする遺伝子を染色体組み込みによって導入した遺伝子組み換え酵母を収容する請求項9又は10に記載のエタノール製造装置。 The fermentation apparatus comprises, as the microorganism, a gene encoding an enzyme that catalyzes a conversion reaction from xylose to xylitol, a gene encoding an enzyme that catalyzes a conversion reaction from xylitol to xylulose, and xylulose and ATP to xylulose 5-phosphorus The ethanol production apparatus according to claim 9 or 10, which accommodates a genetically modified yeast into which a gene encoding an enzyme that catalyzes a conversion reaction to acid and ADP is introduced by chromosomal integration.
  12.  更に、前記加圧熱水反応装置による分解生成物を、固体残渣から分離する分離装置を有する請求項9~11の何れか1項に記載のエタノール製造装置。 The ethanol production apparatus according to any one of claims 9 to 11, further comprising a separation device for separating a decomposition product from the pressurized hot water reactor from a solid residue.
  13.  更に、前記発酵装置の生成物に含まれるエタノールを精製する蒸留装置を有する請求項9~12の何れか1項に記載のエタノール製造装置。 The ethanol production apparatus according to any one of claims 9 to 12, further comprising a distillation apparatus for purifying ethanol contained in the product of the fermentation apparatus.
  14.  更に、前記触媒反応装置の糖化生成物から前記固体酸触媒を分離回収する装置を有する請求項9~13の何れか1項に記載のエタノール製造装置。 The ethanol production apparatus according to any one of claims 9 to 13, further comprising an apparatus for separating and recovering the solid acid catalyst from the saccharification product of the catalytic reaction apparatus.
  15.  更に、前記分離装置によって分離される固体残渣に糖化酵素を作用させ、固体残渣に含まれるセルロースを分解して、重合度が7以上の懸濁態多糖を含む液体を生成するセルロース用の酵素反応装置と、
     前記セルロース用の酵素反応装置の生成物に固体酸触媒を作用させ、前記懸濁態多糖を分解して単糖としてグルコースを生成するセルロース用の触媒反応装置と、
     前記セルロース用の触媒反応装置の生成物に、グルコース発酵能を有する微生物を作用させてエタノールを生成するセルロース系発酵装置と
     を有する請求項12に記載のエタノール製造装置。
    Furthermore, a saccharifying enzyme is allowed to act on the solid residue separated by the separation device, and the cellulose contained in the solid residue is decomposed to produce a liquid containing a suspended polysaccharide having a polymerization degree of 7 or more. Equipment,
    A catalytic reaction device for cellulose that produces a glucose as a monosaccharide by causing a solid acid catalyst to act on the product of the enzyme reaction device for cellulose;
    The ethanol production apparatus according to claim 12, further comprising: a cellulose-based fermentation apparatus that generates ethanol by causing a microorganism having glucose fermentation ability to act on a product of the catalytic reaction apparatus for cellulose.
PCT/JP2012/083561 2012-01-06 2012-12-26 Method and apparatus for producing ethanol WO2013103111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-001527 2012-01-06
JP2012001527A JP2015084650A (en) 2012-01-06 2012-01-06 Method for producing ethanol, and production apparatus

Publications (1)

Publication Number Publication Date
WO2013103111A1 true WO2013103111A1 (en) 2013-07-11

Family

ID=48745173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083561 WO2013103111A1 (en) 2012-01-06 2012-12-26 Method and apparatus for producing ethanol

Country Status (2)

Country Link
JP (1) JP2015084650A (en)
WO (1) WO2013103111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555379A (en) * 2013-11-05 2014-02-05 济南开发区星火科学技术研究院 Preparation method of cellulose liquid fuel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195220A (en) * 2008-01-24 2009-09-03 National Institute Of Advanced Industrial & Technology Hexose-pentose cofermenting yeast having excellent xylose fermentability, and method for highly efficiently producing ethanol using the same
JP2010279255A (en) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd Method for saccharifying biomass
JP2011068578A (en) * 2009-09-24 2011-04-07 Ihi Corp Apparatus and method for treating biomass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195220A (en) * 2008-01-24 2009-09-03 National Institute Of Advanced Industrial & Technology Hexose-pentose cofermenting yeast having excellent xylose fermentability, and method for highly efficiently producing ethanol using the same
JP2010279255A (en) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd Method for saccharifying biomass
JP2011068578A (en) * 2009-09-24 2011-04-07 Ihi Corp Apparatus and method for treating biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555379A (en) * 2013-11-05 2014-02-05 济南开发区星火科学技术研究院 Preparation method of cellulose liquid fuel

Also Published As

Publication number Publication date
JP2015084650A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
CA2694875C (en) Cellulase enzyme based method for the production of alcohol and glucose from pretreated lignocellulosic feedstock
US10738273B2 (en) System for hydrolyzing a cellulosic feedstock slurry using one or more unmixed and mixed reactors
US20230212471A1 (en) Cellulosic biofuel
US20110003348A1 (en) Organic material production system using biomass material and method
Antunes et al. A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor
CN102985550A (en) Compositions and methods for fermentation of biomass
Kassim et al. Bioprocessing of sustainable renewable biomass for bioethanol production
CN102089435A (en) Methods for producing fermentation products
Phummala et al. Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring
WO2013103138A1 (en) Biomass saccharification method and device, method and device for producing sugar, and method and device for producing ethanol
Liu et al. Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor
EP3307898A1 (en) Cellulosic biofuel and co-products
JP2011045277A (en) Production system for cellulose-based ethanol, and method for producing the same
Antunes et al. Column reactors in fluidized bed configuration as intensification system for xylitol and ethanol production from napier grass (Pennisetum Purpureum)
JP5278991B2 (en) Method for producing ethanol raw material and ethanol from lignocellulosic biomass
JP2014036589A (en) Production method and production apparatus of monosaccharide, production method and production apparatus of ethanol, and production method of furfural and plastic
WO2013103111A1 (en) Method and apparatus for producing ethanol
WO2013103086A1 (en) Method and device for producing monosaccharide and method and device for producing ethanol
GB2505502A (en) Hydrolysis and fermentation process for producing bioethanol
Khunnonkwao et al. The outlooks and key challenges in renewable biomass feedstock utilization for value-added platform chemical via bioprocesses
JP2009022165A (en) Method for producing ethanol
JP6167758B2 (en) Ethanol production method
Mironova et al. Synthesis of Bioethanol from Oat Husk via Enzyme-Substrate Feeding
JP2012085544A (en) Method for saccharifying herb-based biomass
Lafuente-Rincón et al. Design and Engineering Parameters of Bioreactors for Production of Bioethanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP