JP2014034570A - Saccharification method, and saccharification reaction device - Google Patents

Saccharification method, and saccharification reaction device Download PDF

Info

Publication number
JP2014034570A
JP2014034570A JP2012178406A JP2012178406A JP2014034570A JP 2014034570 A JP2014034570 A JP 2014034570A JP 2012178406 A JP2012178406 A JP 2012178406A JP 2012178406 A JP2012178406 A JP 2012178406A JP 2014034570 A JP2014034570 A JP 2014034570A
Authority
JP
Japan
Prior art keywords
saccharification
glucose
reaction
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012178406A
Other languages
Japanese (ja)
Inventor
Norito Taneda
憲人 種田
Koichi Shiraishi
剛一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2012178406A priority Critical patent/JP2014034570A/en
Publication of JP2014034570A publication Critical patent/JP2014034570A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a saccharification method which has a high yield and causes less overdecomposition of glucose during a saccharification process of producing the glucose by further hydrolyzing a solubilized liquid obtained from a biomass raw material containing cellulose, and to provide a saccharification reaction device used therefor.SOLUTION: A saccharification reaction device 10 of the present invention includes a reaction tank 20, a reaction progress measurement part 30, and a control part 40. A molecular sieve 24 through which glucose can pass is inserted between a tank upper section 21 and a tank middle section 22, and a molecular sieve 25 through which organic acids can pass is inserted between the tank middle section 22 and a tank lower section 23. A pressure pump 26 is provided in the tank upper section 21, and the control part 40 controls the pressure pump 26 according to the data signal from the reaction progress measurement part 30.

Description

本発明は、セルロースを含有するバイオマス原料から得た可溶化液をさらに加水分解してグルコースを得る糖化方法、及びそのために用いられる糖化反応装置に関する。   The present invention relates to a saccharification method for obtaining glucose by further hydrolyzing a solubilized liquid obtained from a biomass raw material containing cellulose, and a saccharification reaction apparatus used therefor.

近年、石油代替燃料としてバイオ燃料が注目され、サトウキビやとうもろこしなどのバイオマスを原料としたバイオエタノールの生産が実用化されている。しかし、食料品をバイオエタノールの原料とした場合、食料品との競合によって価格が大きく変動するなどの問題が生ずる。このため、木材、草、稲わらなど非食料品であるセルロース系バイオマスを原料としたバイオ燃料の生産が望まれている。   In recent years, biofuel has attracted attention as an alternative fuel for petroleum, and production of bioethanol using biomass such as sugarcane and corn has been put into practical use. However, when food is used as a raw material for bioethanol, there is a problem that the price fluctuates greatly due to competition with the food. For this reason, production of biofuels using cellulosic biomass, which is a non-food product such as wood, grass, and rice straw, as a raw material is desired.

ところが、セルロース系バイオマス中のセルロースはリグニンと強固に結合したリグノセルロースとして存在しており、セルロースをいきなりグルコースまで加水分解するのは容易ではない。このため、まず可溶化工程としてセルロース系バイオマスを加圧熱水処理によって水に可溶性の多糖類にまで加水分解させた可溶化液とし、さらにこの可溶化液を加水分解して単糖であるグルコースを含む溶液とする糖化工程を行うという2段階の処理が提案されている(特許文献1,2)。   However, cellulose in cellulosic biomass exists as lignocellulose that is firmly bonded to lignin, and it is not easy to hydrolyze cellulose to glucose suddenly. Therefore, as a solubilization step, first, a cellulose-based biomass is hydrolyzed to a water-soluble polysaccharide by pressurized hydrothermal treatment, and the solubilized solution is further hydrolyzed to obtain glucose, which is a monosaccharide. A two-stage process has been proposed in which a saccharification step is carried out to make a solution containing sucrose (Patent Documents 1 and 2).

特開2010−166831号公報JP 2010-166831 A 特開2010−279255号公報JP 2010-279255 A

しかし、上記従来の2段階処理では、糖化工程において生成したグルコースがさらに反応して過分解が起こり、グルコースの歩留まりが悪くなるという問題があった。   However, the conventional two-stage treatment has a problem that glucose produced in the saccharification process further reacts to cause excessive decomposition, resulting in poor yield of glucose.

本発明は、上記従来の実情に鑑みてなされたものであり、グルコースの過分解が起こりにくく、歩留まりの良い可溶化液の糖化方法及びそれに用いる糖化反応装置を提供することを課題とする。   This invention is made | formed in view of the said conventional situation, and makes it a subject to provide the saccharification method of the saccharification method of a solubilizing solution with which it is hard to produce the excessive decomposition | disassembly of glucose and a yield, and its saccharification reaction apparatus.

本発明の糖化反応装置における第1の局面は、セルロースを含有するバイオマス原料から得た水可溶性多糖類を含む可溶化液を加水分解してグルコースを得るための糖化反応装置であって、前記可溶化液の糖化反応の進行度を測定するための反応進行度測定手段と、前記グルコースを分離するグルコース分離手段と、前記糖化反応の進行度に応じて前記グルコース分離手段を制御する制御手段と、を備えたことを特徴とする。
また、本発明の糖化方法における第1の局面は、セルロースを含有するバイオマス原料から得た、水可溶性多糖類を含む可溶化液を加水分解してグルコースを得る糖化方法であって、加水分解を行ないつつ、前記可溶化液の糖化反応の進行度をグルコースの濃度で判断してグルコースを分離することを特徴とする。
A first aspect of the saccharification reaction apparatus of the present invention is a saccharification reaction apparatus for obtaining glucose by hydrolyzing a solubilized liquid containing a water-soluble polysaccharide obtained from a biomass raw material containing cellulose. A reaction progress measuring means for measuring the progress of the saccharification reaction of the lysate, a glucose separating means for separating the glucose, a control means for controlling the glucose separating means according to the progress of the saccharification reaction, It is provided with.
The first aspect of the saccharification method of the present invention is a saccharification method for obtaining glucose by hydrolyzing a solubilized liquid containing a water-soluble polysaccharide obtained from a biomass raw material containing cellulose. While performing, the progress of the saccharification reaction of the solubilized solution is judged by the concentration of glucose, and glucose is separated.

本発明の第1の局面の糖化反応装置及び糖化方法では、可溶化液中の水可溶性多糖類が加水分解して生成したグルコースが、グルコース分離手段によって速やかに反応系から分離される。また、可溶化液の糖化反応進行度を測定するための反応進行度測定部の測定結果に基づいて、グルコースの過分解反応が顕著となる前にグルコース分離手段でグルコースを分離できる。このため、グルコースの生成速度を高い状態に保ちつつ、グルコースの過分解生成物を少なくすることができる。したがって、グルコースがさらに過分解反応を起こしてヒドロキシメチルフルフラールや酢酸や乳酸等の過分解物となるのを防止でき、グルコースの歩留まりもよくなる。   In the saccharification reaction apparatus and the saccharification method according to the first aspect of the present invention, glucose produced by hydrolysis of the water-soluble polysaccharide in the solubilized liquid is quickly separated from the reaction system by the glucose separation means. Moreover, based on the measurement result of the reaction progress measuring unit for measuring the progress of the saccharification reaction of the solubilized solution, the glucose can be separated by the glucose separating means before the excessive decomposition reaction of glucose becomes significant. For this reason, the excessive decomposition product of glucose can be decreased while maintaining the production rate of glucose at a high level. Therefore, it is possible to prevent glucose from further causing a hyperdegradation reaction to become a hyperdegradation product such as hydroxymethylfurfural, acetic acid, and lactic acid, and the yield of glucose is also improved.

可溶化液の糖化反応進行度は、可溶化液の水素イオン濃度やグルコース濃度等で推定できる。このため、本発明の第2の局面は、反応進行度測定手段は、糖化反応の進行度を濃度で検出して測定する装置であるとした。   The progress of the saccharification reaction of the solubilized solution can be estimated from the hydrogen ion concentration, the glucose concentration, etc. of the solubilized solution. For this reason, in the second aspect of the present invention, the reaction progress measuring means is an apparatus that detects and measures the progress of the saccharification reaction by concentration.

水素イオン濃度はpH測定装置で測定でき、グルコース濃度は旋光度測定装置で測定できる。このため、第3の局面の糖化反応装置では、反応進行度測定部はpH測定装置及び/又は旋光度測定装置を有するとした。なお、グルコース濃度を測定する装置として、旋光度測定装置の代わりにグルコースオキダーゼを用いたグルコース濃度測定用の酵素センサーを用いてもよい。   The hydrogen ion concentration can be measured with a pH measuring device, and the glucose concentration can be measured with an optical rotation measuring device. For this reason, in the saccharification reaction device of the third aspect, the reaction progress measurement unit has a pH measurement device and / or an optical rotation measurement device. In addition, as an apparatus for measuring the glucose concentration, an enzyme sensor for measuring glucose concentration using glucose oxidase may be used instead of the optical rotation measuring device.

また、可溶化液からのグルコースの分離はゼオライト等の分子篩を用いて行うことができる。このため、第4の局面の糖化反応装置では、グルコースの分離は分子篩によって行うこととした。   Moreover, the separation of glucose from the solubilized solution can be performed using a molecular sieve such as zeolite. For this reason, in the saccharification reaction apparatus of the fourth aspect, the separation of glucose is performed by a molecular sieve.

実施形態の糖化工程S5を含む、セルロース含有バイオマス原料から糖化液を製造するための工程図である。It is process drawing for manufacturing a saccharified liquid from a cellulose containing biomass raw material including saccharification process S5 of embodiment. 実施形態の可溶化液の糖化反応装置の模式図である。It is a schematic diagram of the saccharification reaction apparatus of the solubilization liquid of embodiment. 実施形態の可溶化液の糖化反応装置の反応進行度測定部30部分の模式図である。It is a schematic diagram of the reaction progress measurement part 30 part of the saccharification reaction apparatus of the solubilization liquid of embodiment. 制御部40で行う制御のフローチャートである。3 is a flowchart of control performed by a control unit 40.

<可溶化液の調製>
本発明の糖化方法において原料となる、セルロースを含有するバイオマス原料から得た水可溶性多糖類を含む可溶化液は、以下のようにして調製する(図1参照)。
(原 料)
セルロースを含有する原料となるのは、セルロースを含む植物系の原料であり、セルロースの他に、でん粉、ヘミセルロース、ペクチンなど、セルロース以外の多糖類を含むものであっても用いることができる。具体的には、稲わら、麦わら、バガス等の草類、竹、笹などの間伐材、おがくず、チップ、端材などの木材加工木屑、街路樹剪定材、木質建築廃材、樹皮、流木等の木質系バイオマス、古紙等のセルロース製品からのバイオマス等が挙げられる。また、セルロースを原料として使用可能な程度含むものであれば、汚泥、畜糞、農業廃棄物、都市ゴミ等も用いることができる。
<Preparation of solubilized solution>
A solubilized liquid containing a water-soluble polysaccharide obtained from a biomass raw material containing cellulose, which is a raw material in the saccharification method of the present invention, is prepared as follows (see FIG. 1).
(material)
The raw material containing cellulose is a plant-based raw material containing cellulose, and it can be used even if it contains polysaccharides other than cellulose, such as starch, hemicellulose, and pectin, in addition to cellulose. Specifically, grasses such as rice straw, wheat straw, bagasse, thinned timber such as bamboo and firewood, sawn wood, chips, wood chips such as wood chips, pruned roadside trees, wood construction waste, bark, driftwood, etc. Examples include woody biomass and biomass from cellulose products such as waste paper. In addition, sludge, livestock excrement, agricultural waste, municipal waste, etc. can be used as long as cellulose can be used as a raw material.

・粗粉砕工程(S1)
これらの原料は、セルロースの可溶化を促進させるために、前処理として粗粉砕を行い、セルロースの結晶化度を下げておくことが好ましい。粉砕方法としては特に限定されず、原料の形態に応じて適当な方法を適宜選択すればよいが、まず数〜数十mm程度に粗粉砕してハンドリングし易い状態にしてから、さらに細かく粉砕すると、微粉砕を効率的に行なうことができる。粗粉砕にはハンマーミルやカッターミルなどの汎用粉砕機が使用できる。また、微粉砕には、振動ミル、ボールミル、ロッドミル、ローラーミル、コロイドミル、ディスクミル、ジェットミルなどの汎用粉砕機が使用でき、原料を数〜数十ミクロンに微細化するとともに、セルロース結晶性を低下させることができる。微粉砕処理は、乾式、湿式いずれの方式も適用できるが、セルロースの結晶性を低下させる面で、乾式粉砕が望ましい。原料の含水量が多い場合には、あらかじめ遠心脱水や熱風乾燥などで含水率を30%以下にしてから乾式粉砕を行うことで、セルロースの結晶性を効率的に低下させることができる。
・ Rough grinding process (S1)
In order to promote solubilization of cellulose, these raw materials are preferably subjected to coarse pulverization as a pretreatment to reduce the crystallinity of cellulose. The pulverization method is not particularly limited, and an appropriate method may be appropriately selected according to the form of the raw material, but first, it is roughly pulverized to several to several tens of millimeters to be easily handled, and then further finely pulverized. Fine grinding can be performed efficiently. A general-purpose pulverizer such as a hammer mill or a cutter mill can be used for coarse pulverization. For fine pulverization, general-purpose pulverizers such as a vibration mill, ball mill, rod mill, roller mill, colloid mill, disc mill, jet mill, etc. can be used. Can be reduced. As the pulverization treatment, both dry and wet methods can be applied, but dry pulverization is desirable in terms of reducing the crystallinity of cellulose. When the water content of the raw material is large, the crystallinity of cellulose can be effectively reduced by dry pulverization after the water content is reduced to 30% or less in advance by centrifugal dehydration or hot air drying.

・水分調整工程(S2)
粗粉砕の終わった原料に対して、その水分含有率を測定してから、水分割合の調整を行う。水分割合の多すぎる場合は乾燥させ、水分割合が少ない場合は水を添加する。適切な水分割合の計算方法については、次の可溶化工程において説明する。
・ Moisture adjustment process (S2)
After measuring the moisture content of the raw material after the coarse pulverization, the moisture content is adjusted. If the water content is too high, dry it. If the water content is low, add water. An appropriate method for calculating the water content will be described in the next solubilization step.

・可溶化工程(S3)
そして、水分割合を調整した粗粉砕原料を温度と圧力を制御することによって、有機酸を含有する可溶化混合物とする。温度及び圧力の制御としては、1)水熱処理を行うための制御法や、2)低温低圧での制御法が挙げられる。
水熱処理とは飽和水蒸気圧以上に加圧された加圧熱水(液体状態で存在する高温高圧の水)によってセルロース含有バイオマス原料を水可溶性にする処理であり、亜臨界領域や超臨界領域で処理を行う。亜臨界領域では飽和水蒸気圧よりも全圧が高い領域であり、換言すれば水が水蒸気以外に液体の水として安定に共存する領域である。このため、亜臨界領域でのセルロースの加水分解反応は、イオン積が大きくなっている液体の水によって進行するものと推定される。また、超臨界領域でのセルロースの加水分解反応は、気−液の区別ができなくなった超臨界状態という特殊な状態の水による加水分解反応である。加圧熱水はイオン積が増加するため、セルロースの加水分解反応を促進すると考えられている。このため、水熱処理法は、特別な薬品を使うことなく、短時間でセルロース原料を可溶化することができるという長所を有しており、環境に対する負荷も小さいセルロース原料の可溶化法であるということができる。生成する有機酸の量は、温度や圧力や反応時間を制御することによってコントロールが可能である。
・ Solubilization step (S3)
Then, the coarsely pulverized raw material with the adjusted water ratio is made into a solubilized mixture containing an organic acid by controlling the temperature and pressure. Examples of temperature and pressure control include 1) a control method for performing hydrothermal treatment, and 2) a control method at low temperature and low pressure.
Hydrothermal treatment is a process that makes cellulose-containing biomass raw materials water-soluble with pressurized hot water (high-temperature and high-pressure water that exists in a liquid state) pressurized to a saturation water vapor pressure or higher. Process. In the subcritical region, the total pressure is higher than the saturated water vapor pressure. In other words, water is a region where water stably coexists as liquid water in addition to water vapor. For this reason, it is presumed that the hydrolysis reaction of cellulose in the subcritical region proceeds with liquid water having a large ionic product. In addition, the hydrolysis reaction of cellulose in the supercritical region is a hydrolysis reaction with water in a special state called a supercritical state where gas-liquid cannot be distinguished. Pressurized hot water is thought to accelerate the hydrolysis reaction of cellulose because of an increased ionic product. For this reason, the hydrothermal treatment method has the advantage that the cellulose raw material can be solubilized in a short time without using a special chemical, and is said to be a solubilizing method of the cellulose raw material with a small environmental load. be able to. The amount of organic acid produced can be controlled by controlling temperature, pressure and reaction time.

一方、低温低圧での制御法では、水熱処理とは全く異なった温度−圧力の領域を用いる。すなわち、100℃以上300℃未満であって、且つ、全圧が0.05MPa以上10MPa未満という低温−低圧の領域で加水分解反応を行うことが特徴である。このような領域は、全圧が飽和水蒸気圧よりも小さい領域(すなわち、水が安定に存在せず、水蒸気のみが存在する領域)か、液体の水と水蒸気とが共存はするが全圧は10MPa未満と小さい領域であり、亜臨界領域や超臨界領域とは全く異なる状況である。この方法においても、可溶化糖以外に乳酸や酢酸等の有機酸も生成し、後述する糖化工程(S5)においてこれらの有機酸を触媒として利用することができる。生成する有機酸の量は、添加する水の量、温度、圧力、反応時間等を制御することによってコントロールが可能である。この低温低圧での制御法は、加圧熱水を用いた方法よりもヒドロキシメチルフルフラール(HMF)等の過分解物の生成が少なく、最終的な糖化の収率を高くすることができる。   On the other hand, the control method at low temperature and low pressure uses a temperature-pressure region which is completely different from that of hydrothermal treatment. That is, it is characterized in that the hydrolysis reaction is carried out in a low temperature-low pressure region where the total pressure is from 0.05 MPa to less than 10 MPa. Such a region is a region where the total pressure is smaller than the saturated water vapor pressure (that is, a region where water does not exist stably and only water vapor exists), or liquid water and water vapor coexist, but the total pressure is This is a small region of less than 10 MPa, and is completely different from the subcritical region and supercritical region. Also in this method, organic acids such as lactic acid and acetic acid can be generated in addition to the solubilized sugar, and these organic acids can be used as a catalyst in the saccharification step (S5) described later. The amount of organic acid to be generated can be controlled by controlling the amount of water to be added, temperature, pressure, reaction time, and the like. This low temperature and low pressure control method produces less overdegradation products such as hydroxymethylfurfural (HMF) than the method using pressurized hot water, and can increase the final saccharification yield.

可溶化工程(S3)では、温度や圧力を制御するために反応容器は蓋付きの密閉容器を用いることができる。このような容器としては、耐食性金属からなるオートクレーブ装置や、PTFE等のフッ素樹脂からなる蓋付き容器を内側に収容する金属性耐圧容器といった、二重構造の容器を用いることもできる。
そして、これらの容器内に水分割合を調整した粗粉砕原料と水とを所定量投入し、蓋を閉めて温度を設定する。これにより原料にもともと含まれていた水分及び添加した水は、水蒸気となり体積を増す。このとき、最終的に到達する圧力は、実ガスに対する補正がなされた状態方程式に、温度、水の量及び容器体積を代入することにより、容易に求めることができる。このため、可溶化工程に先立って行われる、粉砕されたセルロース原料の水分調整は、計算で求められた量となるように行う。加熱方法は特に制限されず、電気ヒータ、高周波、マイクロ波、スチーム等を用いることができる。
In the solubilization step (S3), a closed vessel with a lid can be used as the reaction vessel in order to control temperature and pressure. As such a container, a double-structure container such as an autoclave apparatus made of a corrosion-resistant metal or a metal pressure-resistant container that houses a lidded container made of a fluororesin such as PTFE can be used.
Then, a predetermined amount of the coarsely pulverized raw material and water adjusted in the water ratio are put into these containers, and the lid is closed to set the temperature. As a result, the water originally contained in the raw material and the added water become water vapor and increase in volume. At this time, the finally reached pressure can be easily obtained by substituting the temperature, the amount of water, and the container volume into the state equation corrected for the actual gas. For this reason, the water | moisture content adjustment of the pulverized cellulose raw material performed prior to a solubilization process is performed so that it may become the quantity calculated | required by calculation. The heating method is not particularly limited, and an electric heater, high frequency, microwave, steam, or the like can be used.

・抽出工程(S4)
こうして得られた可溶化混合物に対して0.1〜500倍量となるように水を加えて溶解し、固液分離を行うことにより可溶化液を得る。
・ Extraction process (S4)
Water is added to the solubilized mixture thus obtained in an amount of 0.1 to 500 times to dissolve, and solid-liquid separation is performed to obtain a solubilized solution.

<可溶化液の糖化>
以上のようにして得られた可溶化液を用いて、以下に説明する実施形態の糖化工程S5を行い、可溶化液をさらに加水分解してグルコースを含有する糖化液を得る。
(糖化工程S5)
糖化工程S5では図2に示す糖化反応装置10を用いることができる。この糖化反応装置10は、反応槽20と、反応進行度測定部30と、制御部40とを備えている。
<Saccharification of solubilized solution>
The saccharification step S5 of the embodiment described below is performed using the solubilized solution obtained as described above, and the solubilized solution is further hydrolyzed to obtain a saccharified solution containing glucose.
(Saccharification process S5)
In the saccharification step S5, the saccharification reaction apparatus 10 shown in FIG. 2 can be used. The saccharification reaction apparatus 10 includes a reaction tank 20, a reaction progress measurement unit 30, and a control unit 40.

反応槽20は槽上部21、槽中部22及び槽下部23に分かれており、槽上部21と槽中部22との間にはグルコース分子は通過可能であるがオリゴ糖等の水可溶性の多糖類は通過できないゼオライトからなる分子篩24が挿入されている。また、槽中部22と槽下部23との間には酢酸や乳酸などの低分子の有機酸は通過できるが、グルコース分子は通過できないゼオライトからなる分子篩25が挿入されている。また、槽上部21の上端には槽上部21内を加圧するための加圧ポンプ26が設けられている。さらに、槽上部21の側壁上端には可溶化液を投入するための投入口27が取り付けられている。また、槽上部21の下端には電磁バルブV1が取り付けられており、槽中部22の下端には電磁バルブV2が取り付けられており、槽下部23の下端には電磁バルブV3が取り付けられている。   The reaction tank 20 is divided into a tank upper part 21, a tank middle part 22, and a tank lower part 23, and glucose molecules can pass between the tank upper part 21 and the tank middle part 22, but water-soluble polysaccharides such as oligosaccharides A molecular sieve 24 made of zeolite that cannot pass is inserted. In addition, a molecular sieve 25 made of zeolite is inserted between the middle tank portion 22 and the lower tank portion 23 so that low molecular organic acids such as acetic acid and lactic acid can pass but glucose molecules cannot pass. A pressurizing pump 26 for pressurizing the inside of the tank upper portion 21 is provided at the upper end of the tank upper portion 21. Furthermore, a charging port 27 for charging the solubilizing liquid is attached to the upper end of the side wall of the tank upper portion 21. In addition, an electromagnetic valve V1 is attached to the lower end of the tank upper part 21, an electromagnetic valve V2 is attached to the lower end of the tank middle part 22, and an electromagnetic valve V3 is attached to the lower end of the tank lower part 23.

反応進行度測定部30は、図3に示すように、反応槽20の側面に内部と連通して取り付けられたU字形の流路31を有しており、流路31の途中にはpHセンサー32が挿入されている。また、流路31の途中には、径方向に互いに対面して石英ガラス窓35a、35bが取り付けられており、石英ガラス窓35a、35bの外側には光源34、偏光板33a、33b、検光子36からなる旋光度計37が取り付けられている。さらに流路31の出入り口には固体酸触媒が流路31に侵入するのを防ぐためのストレーナ38a、38bが取り付けられている。   As shown in FIG. 3, the reaction progress measurement unit 30 has a U-shaped channel 31 attached to the side surface of the reaction tank 20 so as to communicate with the inside, and a pH sensor is provided in the middle of the channel 31. 32 is inserted. Further, quartz glass windows 35a and 35b are attached in the middle of the flow path 31 so as to face each other in the radial direction. A light source 34, polarizing plates 33a and 33b, and an analyzer are disposed outside the quartz glass windows 35a and 35b. An optical rotation meter 37 consisting of 36 is attached. Further, strainers 38 a and 38 b for preventing the solid acid catalyst from entering the flow path 31 are attached to the entrance and exit of the flow path 31.

制御部40はpHセンサー32及び旋光度計37からの出力に応じて、加圧ポンプ26(図2参照)の制御を可能としている。   The control unit 40 can control the pressurizing pump 26 (see FIG. 2) in accordance with outputs from the pH sensor 32 and the polarimeter 37.

以上のように構成された図2に示す糖化反応装置10では、抽出工程S4によって得られた可溶化液及び固体酸触媒が投入口27から投入される。そして、図示しない撹拌装置によって可溶化液を撹拌しながら図示しない加熱ヒータによって槽上部21内部を加温する。このとき、槽上部21に連通する流路31内のpHセンサー32によってpHが測定されると同時に、旋光度計37によって旋光度が測定される。これらの測定結果のデータ信号が制御部40に伝達される。   In the saccharification reaction apparatus 10 shown in FIG. 2 configured as described above, the solubilized liquid and the solid acid catalyst obtained in the extraction step S4 are input from the input port 27. Then, the inside of the tank upper portion 21 is heated by a heater (not shown) while stirring the solubilized liquid by a stirring device (not shown). At this time, the pH is measured by the pH sensor 32 in the flow path 31 communicating with the tank upper part 21, and at the same time, the optical rotation is measured by the polarimeter 37. Data signals of these measurement results are transmitted to the control unit 40.

制御部40は、これらのデータ信号に基づき、図4に示すフローチャートにしたがって加圧ポンプ26、電磁バルブV1及び加熱ヒータを制御する。
すなわち、まずステップS101において、制御部40は旋光度計37からのデータ信号に基づき糖化できる水可溶性多糖類がある一定以上存在するか否かを判断する。このために、あらかじめ糖化工程S5における旋光度と糖化できる水可溶性多糖類の量との関係を示す検量線を作成しておき、旋光度の閾値を設定しておく。
Based on these data signals, the control unit 40 controls the pressurizing pump 26, the electromagnetic valve V1, and the heater according to the flowchart shown in FIG.
That is, first, in step S101, the control unit 40 determines whether or not a certain amount of water-soluble polysaccharide that can be saccharified exists based on the data signal from the polarimeter 37. For this purpose, a calibration curve indicating the relationship between the optical rotation in the saccharification step S5 and the amount of water-soluble polysaccharide that can be saccharified is prepared in advance, and a threshold value for optical rotation is set.

そして、旋光度が閾値を超えていない場合(すなわち糖化できる水可溶性多糖類が所定濃度以上の場合)には加熱ヒータのON状態を継続し、ステップS102に進む。ステップS102ではpHセンサー32からの測定データに基づき制御部40がpHが閾値以下(すなわち、グルコースが過分解を起こす状態に到達している)か否かについて判断する。このために、あらかじめ糖化工程S5における可溶化液のpHと過分解物の生成量との関係を示す検量線を作成しておき、pHの閾値を設定しておく。そして、pH値がこの閾値を超えている場合には加熱ヒータのON状態を継続し、糖化工程S5を継続する。また、pHが閾値以下になっている場合(すなわち、グルコースが過分解を起こす状態に到達している場合)には制御部40が加圧ポンプ26を駆動させ、槽上部21内の可溶化液中に含まれる水可溶性多糖類、グルコース及び有機酸のうち、グルコース及び有機酸を分子篩24で分離する。こうしてグルコース及び有機酸は槽中部22に入り、さらには分子篩25によって有機酸が分離されて槽下部23に移行する。これにより槽中部22にはグルコースが貯留され、槽下部23には有機酸が貯留される。   When the optical rotation does not exceed the threshold (that is, when the water-soluble polysaccharide that can be saccharified has a predetermined concentration or more), the heater is kept on and the process proceeds to step S102. In step S102, based on the measurement data from the pH sensor 32, the control unit 40 determines whether or not the pH is equal to or lower than the threshold value (that is, the glucose has reached a state in which excessive decomposition occurs). For this purpose, a calibration curve showing the relationship between the pH of the solubilized solution in the saccharification step S5 and the amount of overlysate is prepared in advance, and a threshold value for pH is set. And when pH value exceeds this threshold value, the ON state of a heater is continued and saccharification process S5 is continued. Further, when the pH is lower than the threshold value (that is, when the glucose has reached a state of causing excessive decomposition), the control unit 40 drives the pressurizing pump 26 to solubilize the liquid in the tank upper portion 21. Among the water-soluble polysaccharide, glucose and organic acid contained therein, the glucose and organic acid are separated by the molecular sieve 24. In this way, glucose and organic acid enter the middle part 22 of the tank, and further, the organic acid is separated by the molecular sieve 25 and moves to the lower part 23 of the tank. Thereby, glucose is stored in the tank middle part 22, and organic acid is stored in the tank lower part 23.

一方、ステップS101において旋光度が閾値を超えている場合(すなわち水可溶性多糖類が所定濃度以下の場合)には加熱ヒータをOFF状態にし、電磁バルブV1を開状態にして糖化液を固体酸触媒とともに取り出して糖化工程S5を終了する。   On the other hand, when the optical rotation exceeds the threshold value in step S101 (that is, when the water-soluble polysaccharide is less than or equal to the predetermined concentration), the heater is turned off, the electromagnetic valve V1 is opened, and the saccharified solution is removed from the solid acid catalyst. Then, the saccharification step S5 is completed.

以上のように、実施形態の糖化反応装置では、槽上部21内の可溶化液の旋光度を旋光度計37によってモニタリングし、水可溶性多糖類の濃度を考慮しながら糖化工程S5の終点を見極めて反応を行うため、糖化工程S5を無駄に長く行うことが防止される。また、槽上部21内の可溶化液のpHをpHセンサー32によってモニタリングし、可溶化液のpHを考慮しながら、絶えずグルコースが過分解を起こし難い状態となるように、グルコースを分子篩24によって分離する。このため、グルコースの過分解が起こり難くなり、グルコースの歩留まりが向上する。また、グルコースの分離と可溶化液の糖化反応とを同時に並行して行うことができるため、糖化工程を効率的に短時間で行うことができる。   As described above, in the saccharification reaction apparatus of the embodiment, the optical rotation of the solubilized liquid in the tank upper part 21 is monitored by the optical rotation meter 37, and the end point of the saccharification step S5 is determined while considering the concentration of the water-soluble polysaccharide. Therefore, the saccharification step S5 is prevented from being performed unnecessarily for a long time. Further, the pH of the solubilized liquid in the tank upper part 21 is monitored by the pH sensor 32, and the glucose is separated by the molecular sieve 24 so that the glucose is not easily excessively decomposed while considering the pH of the solubilized liquid. To do. For this reason, excessive decomposition of glucose does not easily occur, and the yield of glucose is improved. Moreover, since the separation of glucose and the saccharification reaction of the solubilized solution can be performed simultaneously in parallel, the saccharification step can be efficiently performed in a short time.

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

Claims (5)

セルロースを含有するバイオマス原料から得た水可溶性多糖類を含む可溶化液を加水分解してグルコースを得るための糖化反応装置であって、
前記可溶化液の糖化反応の進行度を測定するための反応進行度測定手段と、前記グルコースを分離するグルコース分離手段と、前記糖化反応の進行度に応じて前記グルコース分離手段を制御する制御手段と、を備えたことを特徴とする糖化反応装置。
A saccharification reaction apparatus for obtaining glucose by hydrolyzing a solubilized liquid containing a water-soluble polysaccharide obtained from a biomass raw material containing cellulose,
Reaction progress measuring means for measuring the progress of the saccharification reaction of the solubilized liquid, glucose separating means for separating the glucose, and control means for controlling the glucose separating means according to the progress of the saccharification reaction And a saccharification reaction apparatus.
前記反応進行度測定手段は、糖化反応の進行度を濃度で検出して測定する装置である請求項1記載の糖化反応装置。   The saccharification reaction apparatus according to claim 1, wherein the reaction progress degree measuring means is an apparatus for detecting and measuring the progress degree of the saccharification reaction by concentration. 前記反応進行度測定手段は、pH測定装置及び/又は旋光度測定装置である請求項2に記載の糖化反応装置。   The saccharification reaction apparatus according to claim 2, wherein the reaction progress measurement means is a pH measurement apparatus and / or an optical rotation measurement apparatus. 前記グルコース分離手段は、分子篩である請求項1から3のいずれかに記載の糖化反応装置。   The saccharification reaction apparatus according to any one of claims 1 to 3, wherein the glucose separation means is a molecular sieve. セルロースを含有するバイオマス原料から得た、水可溶性多糖類を含む可溶化液を加水分解してグルコースを得る糖化方法であって、
加水分解を行ないつつ、前記可溶化液の糖化反応の進行度をグルコースの濃度で判断してグルコースを分離することを特徴とする糖化方法。
A saccharification method for obtaining glucose by hydrolyzing a solubilized liquid containing a water-soluble polysaccharide obtained from a biomass raw material containing cellulose,
A saccharification method characterized in that glucose is separated by judging the progress of the saccharification reaction of the solubilized solution based on the glucose concentration while performing hydrolysis.
JP2012178406A 2012-08-10 2012-08-10 Saccharification method, and saccharification reaction device Pending JP2014034570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178406A JP2014034570A (en) 2012-08-10 2012-08-10 Saccharification method, and saccharification reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178406A JP2014034570A (en) 2012-08-10 2012-08-10 Saccharification method, and saccharification reaction device

Publications (1)

Publication Number Publication Date
JP2014034570A true JP2014034570A (en) 2014-02-24

Family

ID=50283764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178406A Pending JP2014034570A (en) 2012-08-10 2012-08-10 Saccharification method, and saccharification reaction device

Country Status (1)

Country Link
JP (1) JP2014034570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163622A1 (en) * 2015-04-09 2016-10-13 한국화학연구원 Enzymic saccharification method of biomass for minimizing generation of metabolite of contaminated microorganisms, and apparatus therefor
CN108272127A (en) * 2018-03-14 2018-07-13 红云红河烟草(集团)有限责任公司 A kind of offal saccharification cabinet
CN110361381A (en) * 2019-08-23 2019-10-22 江西师范大学 A kind of color sensation acid base detemination device and method based on molecular screen membrane

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149343A (en) * 2004-11-26 2006-06-15 Daitoo Fujitekku:Kk Glucose product from wood-based biomass and method for producing glucose product
JP2007020555A (en) * 2005-07-19 2007-02-01 Rentei Rin Method for hydrolyzing polysaccharide substance such as cellulose or the like
JP2008011753A (en) * 2006-07-05 2008-01-24 Hiroshima Univ Method for hydrothermal hydrolysis of lignocellulose
JP2008230983A (en) * 2007-03-16 2008-10-02 National Institute Of Advanced Industrial & Technology Method for producing sugar, method for producing ethanol, and method for producing lactic acid
JP2008228583A (en) * 2007-03-16 2008-10-02 Seiko Instruments Inc Method for decomposing cellulose and method for producing glucose
WO2009031469A1 (en) * 2007-09-05 2009-03-12 Toyota Jidosha Kabushiki Kaisha Method for saccharification and separation of plant fiber material
JP2010166831A (en) * 2009-01-20 2010-08-05 National Institute Of Advanced Industrial Science & Technology Method for producing monosaccharide
JP2010279255A (en) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd Method for saccharifying biomass
JP2011101608A (en) * 2009-11-10 2011-05-26 Ihi Corp Biomass treating system and method
JP2011142894A (en) * 2010-01-18 2011-07-28 Ihi Corp Biomass treatment system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149343A (en) * 2004-11-26 2006-06-15 Daitoo Fujitekku:Kk Glucose product from wood-based biomass and method for producing glucose product
JP2007020555A (en) * 2005-07-19 2007-02-01 Rentei Rin Method for hydrolyzing polysaccharide substance such as cellulose or the like
JP2008011753A (en) * 2006-07-05 2008-01-24 Hiroshima Univ Method for hydrothermal hydrolysis of lignocellulose
JP2008230983A (en) * 2007-03-16 2008-10-02 National Institute Of Advanced Industrial & Technology Method for producing sugar, method for producing ethanol, and method for producing lactic acid
JP2008228583A (en) * 2007-03-16 2008-10-02 Seiko Instruments Inc Method for decomposing cellulose and method for producing glucose
WO2009031469A1 (en) * 2007-09-05 2009-03-12 Toyota Jidosha Kabushiki Kaisha Method for saccharification and separation of plant fiber material
JP2009060828A (en) * 2007-09-05 2009-03-26 Toyota Motor Corp Method for saccharification and separation of vegetable fiber material
JP2010166831A (en) * 2009-01-20 2010-08-05 National Institute Of Advanced Industrial Science & Technology Method for producing monosaccharide
JP2010279255A (en) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd Method for saccharifying biomass
JP2011101608A (en) * 2009-11-10 2011-05-26 Ihi Corp Biomass treating system and method
JP2011142894A (en) * 2010-01-18 2011-07-28 Ihi Corp Biomass treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163622A1 (en) * 2015-04-09 2016-10-13 한국화학연구원 Enzymic saccharification method of biomass for minimizing generation of metabolite of contaminated microorganisms, and apparatus therefor
CN108272127A (en) * 2018-03-14 2018-07-13 红云红河烟草(集团)有限责任公司 A kind of offal saccharification cabinet
CN110361381A (en) * 2019-08-23 2019-10-22 江西师范大学 A kind of color sensation acid base detemination device and method based on molecular screen membrane

Similar Documents

Publication Publication Date Title
Lachos-Perez et al. Sugars and char formation on subcritical water hydrolysis of sugarcane straw
Santucci et al. Autohydrolysis of hemicelluloses from sugarcane bagasse during hydrothermal pretreatment: a kinetic assessment
Gurgel et al. Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst
Shekiro III et al. Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover
Kabel et al. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw
Pérez et al. Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel‐ethanol in a batch reactor
Vallejos et al. Low liquid–solid ratio (LSR) hot water pretreatment of sugarcane bagasse
CN102224220B (en) Bio-oil production method
Sasmal et al. Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production
Kamireddy et al. Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment
Amezcua-Allieri et al. Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars
Fernández-Delgado et al. Comparison of mild alkaline and oxidative pretreatment methods for biobutanol production from brewer’s spent grains
Hamley-Bennett et al. Selective fractionation of sugar beet pulp for release of fermentation and chemical feedstocks; optimisation of thermo-chemical pre-treatment
Mihiretu et al. Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials–A biorefinery approach
CN102084055B (en) Method of treating biomass
Pronyk et al. Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water
Kim et al. Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives
Lu et al. Investigation of the strengthening process for liquid hot water pretreatments
Awedem Wobiwo et al. Bioethanol potential of raw and hydrothermally pretreated banana bulbs biomass in simultaneous saccharification and fermentation process with Saccharomyces cerevisiae
Vargas et al. Biorefinery scheme for residual biomass using autohydrolysis and organosolv stages for oligomers and bioethanol production
Jedvert et al. BIOREFINERY: Mild steam explosion: A way to activate wood for enzymatic treatment, chemical pulping and biorefinery processes
Sievers et al. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate
JP2014034570A (en) Saccharification method, and saccharification reaction device
Benazzi et al. Hydrolysis of sugarcane bagasse using supercritical carbon dioxide to obtain fermentable sugars
Swart et al. Intensification of Xylo-oligosaccharides production by Hydrothermal Treatment of Brewer’s spent grains: the Use of extremely low Acid Catalyst for reduction of Degradation Products Associated with High Solid Loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411