JP2007020555A - Method for hydrolyzing polysaccharide substance such as cellulose or the like - Google Patents

Method for hydrolyzing polysaccharide substance such as cellulose or the like Download PDF

Info

Publication number
JP2007020555A
JP2007020555A JP2005254073A JP2005254073A JP2007020555A JP 2007020555 A JP2007020555 A JP 2007020555A JP 2005254073 A JP2005254073 A JP 2005254073A JP 2005254073 A JP2005254073 A JP 2005254073A JP 2007020555 A JP2007020555 A JP 2007020555A
Authority
JP
Japan
Prior art keywords
hydrolyzing
polysaccharide
cellulose
oxidizing agent
polysaccharide substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254073A
Other languages
Japanese (ja)
Inventor
Rentei Rin
蓮貞 林
Yuu Hse Chung
ユー シー チャン
F Shupe Todd
トッド.エフ.シュープ(Todd.F.Shupe)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chung Yun Hse
Todd FShupe
Original Assignee
Chung Yun Hse
Todd FShupe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Yun Hse, Todd FShupe filed Critical Chung Yun Hse
Priority to JP2005254073A priority Critical patent/JP2007020555A/en
Publication of JP2007020555A publication Critical patent/JP2007020555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the most suitable method for efficiently producing a saccharide such as glucose, etc., from a substance containing polysaccharide such as cellulose, etc., with which pressurized hot water is used as a solvent and corrosion of an apparatus is controlled. <P>SOLUTION: The method for hydrolyzing a polysaccharide substance comprises bringing a substance containing polysaccharide such as cellulose, etc., into contact with pressurized hot water in the presence of an oxidizing agent and selectively and rapidly hydrolyzing the polysaccharide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地球上に大量に存在する多糖類含有物質を単糖類のような有用物質に短時間・高収率で変換する方法に関する。さらに、本発明は、加圧熱水を溶媒として用い、より腐蝕性の低い環境下で、セルロースなど多糖類物質を選択的しかも効率よく加水分解し、単糖及び単糖がグルコース/またはオリゴ糖を高収率で製造する方法に関する。The present invention relates to a method for converting a polysaccharide-containing substance present in large quantities on the earth into a useful substance such as a monosaccharide in a short time and in a high yield. Furthermore, the present invention uses pressurized hot water as a solvent to selectively and efficiently hydrolyze a polysaccharide substance such as cellulose in a less corrosive environment, and the monosaccharide and monosaccharide are glucose / or oligosaccharide. In a high yield.

従来の化石資源の枯渇や地球温暖化によるエネルギー・環境問題は21世紀における最も重大な問題である。これらの問題を解決するためには、環境にやさしく石油のように豊富な有機資源を見つけることが必要である。その中で最も期待されているものの一つにバイオマス資源があり、このバイオマス資源を構成し地球上で最大量を誇るものはセルロースである。Conventional energy and environmental problems due to depletion of fossil resources and global warming are the most serious problems in the 21st century. In order to solve these problems, it is necessary to find abundant organic resources such as petroleum that are environmentally friendly. One of the most promising of these is biomass resources, and the one that makes up this biomass resource and boasts the largest amount on earth is cellulose.

今日ではこのセルロースにこれまで以上に大きな期待が寄せられている。すなわち、セルロースの化学工業原料としての利用に加え、エネルギー資源としての利用を目的とした様々な技術開発が注目されている。その中でも、セルロースからのグルコースの製造はセルロースの有効利用において極めて重要であり、グルコースからのエタノール生産や乳酸への発酵、さらにポリ乳酸など生分解性高分子への変換が最近もっとも注目されている。Today, there is a greater expectation for cellulose than ever before. That is, in addition to the use of cellulose as a chemical industrial raw material, various technological developments aimed at the use as an energy resource have attracted attention. Among them, the production of glucose from cellulose is extremely important for the effective use of cellulose, and ethanol production from glucose, fermentation to lactic acid, and conversion to biodegradable polymers such as polylactic acid have received the most attention recently. .

しかし、セルロースからグルコースを生成する方法として基本的には、酸加水分解法、酵素加水分解法、そして最近開発された超臨界水による加水分解法の三つの方法が知られているが、いずれの方法もグルコースを効率よく且つ大量に生産する方法としては有効な方法とは言い難い。However, there are basically three known methods for producing glucose from cellulose: acid hydrolysis, enzymatic hydrolysis, and recently developed hydrolysis using supercritical water. The method is also difficult to say as an effective method for producing glucose efficiently and in large quantities.

酸加水分解法は酸の濃度によって、希酸法と濃酸法に分別される。希酸法では、温度、圧力とも高く、添加する酸による装置腐食や生成物からの酸除去等の問題もあり、かかる不都合を回避する為に酸の濃度を抑制するとグルコースの生成率が低くなるという欠点がある。また、濃酸法では、温度及び圧力が低いため、安価な反応装置材料、例えば、グラスファイバーFRPが利用でき、かつグルコースの収率も高いが、反応時間も長く、しかも経済的に有効な酸回収方法がないという欠点がある。The acid hydrolysis method is divided into a dilute acid method and a concentrated acid method depending on the acid concentration. In the dilute acid method, both temperature and pressure are high, and there are problems such as equipment corrosion due to the added acid and removal of acid from the product. If the acid concentration is suppressed to avoid such inconvenience, the production rate of glucose decreases. There is a drawback. In the concentrated acid method, since the temperature and pressure are low, an inexpensive reactor material, such as glass fiber FRP, can be used, and the yield of glucose is high, but the reaction time is long and economically effective. There is a disadvantage that there is no recovery method.

酵素加水分解法では、反応速度が遅く、酵素の価格も高いので、工業的な生産技術としては利用されてない。The enzymatic hydrolysis method is not used as an industrial production technique because the reaction rate is slow and the price of the enzyme is high.

一方、最近、上記問題点を解決するため、亜臨界状態または超臨界状態の水を用いてセルロースを加水分解処理し、オリゴ糖や単糖類のグルコースを生産する方法が提案された(特許文献1および2参照)。この技術は、超臨界水の特徴を利用し、秒以下の処理時間でセルロースを完全にオリゴ糖や単糖に分解することが可能である。しかし、グルコースの収率は僅かに20%前後でしかなかった。この原因として、加水分解により生成したオリゴ糖や単糖を高温の反応条件下で様々な熱分解反応による二次的生成物に変化させるためであると判明した。On the other hand, recently, in order to solve the above-mentioned problems, a method has been proposed in which cellulose is hydrolyzed using subcritical or supercritical water to produce oligosaccharide or monosaccharide glucose (Patent Document 1). And 2). This technology utilizes the characteristics of supercritical water and can completely decompose cellulose into oligosaccharides and monosaccharides in a treatment time of seconds or less. However, the yield of glucose was only around 20%. It has been found that this is because the oligosaccharides and monosaccharides produced by hydrolysis are converted into secondary products by various thermal decomposition reactions under high temperature reaction conditions.

この原因解決のため、本発明者らの研究実験により、反応温度が350℃以上になると水のイオン積が低下するため、熱分解などのフリーラジカル反応が増大するためと判明した。その結果、オリゴ糖の還元末端やグルコースが分解してグリコールアルデヒドなど断片化生成物に変換し、しかも、グルコースの収率が低下する。そこでこれらの副反応を抑えるため、圧力を高める方法が提案されたが、装置のコストが増加するとともに、グルコースの収率は僅かしか増大しないことが判明した(特許文献1参照)。
特開平5−31000号公報 特開平10−327900号公報
In order to solve this cause, the inventors' research experiment has revealed that when the reaction temperature is 350 ° C. or higher, the ionic product of water decreases, so that free radical reactions such as thermal decomposition increase. As a result, the reducing end of the oligosaccharide and glucose are decomposed and converted into a fragmented product such as glycol aldehyde, and the yield of glucose decreases. In order to suppress these side reactions, a method for increasing the pressure has been proposed, but it has been found that the cost of the apparatus increases and the yield of glucose increases only slightly (see Patent Document 1).
JP-A-5-31000 Japanese Patent Laid-Open No. 10-327900

本発明はこうした状況のもとになされたものであり、多糖類の加水分解反応を促進すると共に装置の腐食を抑え、セルロースなどの多糖類を含有する物質からグルコースなどの有用糖類を効率よく製造する方法を提供させることを目的とする。The present invention has been made under these circumstances, and promotes the hydrolysis reaction of polysaccharides, suppresses corrosion of the apparatus, and efficiently produces useful saccharides such as glucose from substances containing polysaccharides such as cellulose. The purpose is to provide a method to do this.

課題を解決する為の手段Means to solve the problem

本発明は上記目的を達成すべく、加圧熱水により多糖類物質の加水分解を行うにあたり,反応に酸化剤を添加共存させることを特徴とする多糖類物質の加水分解方法に関する。In order to achieve the above object, the present invention relates to a method for hydrolyzing a polysaccharide material, characterized by adding an oxidant to the reaction in the presence of hydrolysis of the polysaccharide material with pressurized hot water.

本発明の多糖類物質の加水分解方法によれば、酸化剤を添加共存させることにより、多糖類物質の加水分解を促進し、装置の腐食をも抑え、グルコースなどの加水分解産物の収率を著しく高めることができる主旨である。According to the method for hydrolyzing a polysaccharide substance of the present invention, by adding an oxidant and coexisting, the hydrolysis of the polysaccharide substance is promoted, the corrosion of the apparatus is suppressed, and the yield of hydrolysis products such as glucose is increased. It is the main point that can be remarkably enhanced.

本発明の手段で対象とする多糖類物質には、多糖類の代表例であるセルロースはもちろん、ヘミセルロース、デンプン、キチン、キトサン等及びこれらの物質を含有するリグノセルロースや農産物などが挙げられる。The polysaccharide substances targeted by the means of the present invention include hemicellulose, starch, chitin, chitosan and the like, lignocellulose and agricultural products containing these substances, as well as cellulose, which is a representative example of polysaccharides.

本発明の多糖類物質の加水分解方法により、オリゴ糖類および/または単糖類を製造することができるが、本発明では単糖類、特にグルコースを製造することが好ましい。Although the oligosaccharide and / or monosaccharide can be produced by the method for hydrolyzing a polysaccharide substance of the present invention, it is preferable to produce a monosaccharide, particularly glucose in the present invention.

また、本発明の加水分解方法に用いる酸化剤には、酸化電位が0〜2ボルトであることが好ましい。The oxidizing agent used in the hydrolysis method of the present invention preferably has an oxidation potential of 0 to 2 volts.

さらに,酸化剤には銀、銅、第二鉄〔Fe+3〕、スズの塩類化合物から選ばれる1種以上の物質であることが好ましい。Further, the oxidizing agent is preferably one or more substances selected from silver, copper, ferric [Fe + 3], and a tin salt compound.

また、前記銀、銅、第二鉄、スズの塩類化合物は硫酸塩、硝酸塩、塩酸塩、酢酸塩であることが好ましい。The silver, copper, ferric and tin salt compounds are preferably sulfates, nitrates, hydrochlorides and acetates.

また、酸化剤がフッ素、塩素、臭素、ヨウ素からなる群から選ばれる1種以上の物質であってもよい。Further, the oxidizing agent may be one or more substances selected from the group consisting of fluorine, chlorine, bromine and iodine.

加水分解の処理温度は100〜500℃の範囲であることが好ましく、また、処理圧力は飽和蒸気圧〜50MPaの範囲であることが好ましい。The treatment temperature for hydrolysis is preferably in the range of 100 to 500 ° C., and the treatment pressure is preferably in the range of saturated vapor pressure to 50 MPa.

発明の効果The invention's effect

本発明の効果として、加圧熱水に、2以上の酸化剤を共存させることができ、それにより、酸化剤の必要添加量の低減及び加水分解反応速度の向上に非常に有効となる。As an effect of the present invention, two or more oxidizing agents can coexist in the pressurized hot water, which is very effective in reducing the required amount of oxidizing agent and improving the hydrolysis reaction rate.

本発明は酸化剤を添加することにより、副反応を抑え、収率を高め、今までの先願に無い高い効果を取得することができる。
今までに行われて来たセルロースからグルコースの製造方法には三つの方法が知られ、その効果を下記する。
▲1▼濃硫酸を用いてセルロースを加水分解させてグルコースを作る(濃硫酸法)。しかし、この濃硫酸法には硫酸の処理の問題点が指摘されている。
▲2▼希硫酸(0.1%等)を用いて上記▲1▼よりも高い温度(200℃前後)で加水分解する(稀硫酸法)。しかし、この稀硫酸法には硫酸が設備に対する腐食などの問題点が指摘されている。
▲3▼酸を使用せず、200℃以上の亜臨界または超臨界水を利用してセルロースを分解する(超臨界水分解)。しかし、この超臨界水分解には副反応が多く、収率が低い問題点が指摘されている。
従って、酸化剤を添加する本発明は今までにない効果を発揮することができる。
In the present invention, by adding an oxidizing agent, side reactions can be suppressed, the yield can be increased, and a high effect not found in previous prior applications can be obtained.
There are three known methods for producing glucose from cellulose that have been performed so far, and the effects thereof will be described below.
(1) Glucose is produced by hydrolyzing cellulose using concentrated sulfuric acid (concentrated sulfuric acid method). However, this concentrated sulfuric acid method has been pointed out to be problematic in the treatment of sulfuric acid.
(2) Hydrolysis is performed using dilute sulfuric acid (0.1% or the like) at a temperature higher than (1) above (around 200 ° C.) (diluted sulfuric acid method). However, in this dilute sulfuric acid method, problems such as corrosion of sulfuric acid on equipment have been pointed out.
(3) The cellulose is decomposed using subcritical or supercritical water at 200 ° C. or higher without using an acid (supercritical water decomposition). However, this supercritical water splitting has many side reactions, and it has been pointed out that the yield is low.
Therefore, the present invention in which an oxidizing agent is added can exhibit an unprecedented effect.

本発明は、酸化剤の存在下、セルロースなど多糖類物質を、加圧熱水を用いて加水分解し、オリゴ糖または/および単糖に変換する方法を提供するものである。The present invention provides a method of hydrolyzing a polysaccharide substance such as cellulose in the presence of an oxidizing agent using pressurized hot water to convert it into oligosaccharides and / or monosaccharides.

加圧熱水における酸化剤の作用・効果における理論的根拠は、まだ解明されてないが、加圧熱水におけるグルコシド結合は酸化剤の作用により開裂しやすくなることが考えられる。The theoretical basis for the action and effect of the oxidizing agent in the pressurized hot water has not yet been elucidated, but it is considered that the glucoside bond in the pressurized hot water is easily cleaved by the action of the oxidizing agent.

本発明に使用できる多糖類物質としては、特に限定されるものではないが、自然界に存在する多糖類、例えば、セルロース、ヘミセルロース、デンプン、キチン,キトサンなど、これらの多糖類を含有する有機物資源には、例えばリグノセルロース系資源である木材、竹、ケナフ、バガス、稲わらなど、およびこれらから由来する木材繊維、木材チップや単板くず、パルプ類、古紙等の紙など、米、小麦、トウモロコシ等の穀類やジャガイモ、サツマイモ等の芋類、さらには一般家庭ごみに含まれるバイオマス物質などが挙げられる。その中では、セルロース及びセルロースを含有する物質である木材、パルプ、古紙などが原料の豊富さの面から、より好ましい。セルロースは、反応生成物中にリグニンなどの非糖成分由来の副生成物を生じることが少なく、分離工程を省略できる点、でも好ましい。これらの多糖類物質の形態は特に限定するものではないが、処理速度及び処理の均一性を考えた場合、粉末状に粉砕した方が好ましい。The polysaccharide substance that can be used in the present invention is not particularly limited, but is a natural polysaccharide such as cellulose, hemicellulose, starch, chitin, and chitosan. For example, wood, bamboo, kenaf, bagasse, rice straw, etc., which are lignocellulosic resources, and wood fibers, wood chips, veneer scraps, pulps, waste paper, etc., rice, wheat, corn Cereals such as potatoes, potatoes and sweet potatoes such as sweet potatoes, and biomass materials contained in general household waste. Among them, cellulose and cellulose-containing materials such as wood, pulp, and waste paper are more preferable from the viewpoint of the abundance of raw materials. Cellulose is also preferable in that a by-product derived from a non-sugar component such as lignin is hardly generated in the reaction product, and the separation step can be omitted. Although the form of these polysaccharide substances is not particularly limited, it is preferable to grind into a powder form in consideration of the processing speed and the uniformity of the processing.

本発明の方法により、セルロースなど多糖類を高効率でオリゴ糖および/または単糖類に変換することができるが、その中で、グルコースを生産する方法として、グルコースは多くの化学薬品、高分子材料およびバイオエネルギーなどの原料でもあるため、特に好ましい。According to the method of the present invention, polysaccharides such as cellulose can be converted into oligosaccharides and / or monosaccharides with high efficiency. Among them, glucose is a method for producing glucose, and many chemicals and polymer materials are used as glucose. It is also particularly preferable because it is also a raw material for bioenergy and the like.

酸化剤としては、特に限定するものではないが、酸化電位は0〜2.0ボルトの範囲にあるものが好ましい。酸化電位は0以下では反応促進効果は低いし,酸化電位が2以上となると,酸化反応が激しすぎ副生成物の量が多くなる傾向もある。The oxidizing agent is not particularly limited, but an oxidizing potential in the range of 0 to 2.0 volts is preferable. When the oxidation potential is 0 or less, the reaction promoting effect is low, and when the oxidation potential is 2 or more, the oxidation reaction is too intense and the amount of by-products tends to increase.

具体的には,酸化剤は銀、銅、第二鉄〔Fe+3〕、スズの塩類化合物から選ばれる1種以上の物質であることが好ましい。これらの塩類化合物としては硫酸塩、硝酸塩、塩酸塩などが好適である。Specifically, the oxidizing agent is preferably one or more substances selected from silver, copper, ferric [Fe + 3], and a tin salt compound. As these salt compounds, sulfates, nitrates, hydrochlorides and the like are suitable.

また、酸化剤が上記の塩類化合物以外にも、フッ素、塩素、臭素、ヨウ素といったハロゲン元素も有効である。In addition to the above-mentioned salt compounds, halogen elements such as fluorine, chlorine, bromine, and iodine are also effective.

その中で、塩化第二鉄、硝酸銀、塩化銅、またはヨウ素は加水分解反応促進効果が特に大きいので、より好ましい。Among them, ferric chloride, silver nitrate, copper chloride, or iodine is more preferable because the hydrolysis reaction promoting effect is particularly large.

上記酸化剤は1種単独で使用してもよいが、2種以上併用してもよい。Although the said oxidizing agent may be used individually by 1 type, you may use 2 or more types together.

上記の酸化剤の添加量は、酸化剤の種類、反応温度及び多糖類物質の分子量や結晶化度によって異なるが、糖類物質100重量部に対して、0.001〜20重量部添加するこのが好ましい。0.05〜10重量部はより好ましい。添加量は0.001重量部以下では十分な効果が得られない傾向があるが、20重量部以上では副生成物が多くなる傾向がある。The amount of the oxidant added varies depending on the type of oxidant, the reaction temperature, the molecular weight of the polysaccharide substance, and the degree of crystallinity, but 0.001 to 20 parts by weight is added to 100 parts by weight of the saccharide substance. preferable. 0.05-10 weight part is more preferable. When the addition amount is 0.001 part by weight or less, a sufficient effect tends not to be obtained, but when it is 20 parts by weight or more, there is a tendency that by-products increase.

本発明において、多糖類又は多糖類含有物質を、酸化剤の存在下で、加圧熱水を用いて加水分解し、オリゴ糖または/および単糖に変換するに際し、その方法及び装置には特に制限はなく、公知の方法や装置にて適用できる。例えば、オートクレイブ式反応装置に多糖類物質、水および酸化剤を入れて加熱反応させるバッチ式反応方法、固定床型反応器に多糖類物質を充填し、これに所定量の酸化剤を含む加圧熱水を連続的に通水して、多糖類を加水分解し、生成した反応物を熱水と共に系外へ流出させる固定床式反応方法、多糖類物質や酸化剤や水などからなるスラリーを連続的に反応器に流通させる流通式反応方法などが挙げられる。その中で、流通式反応方法を使用する場合は反応時間の制御が容易であり、より好ましい。In the present invention, when a polysaccharide or a polysaccharide-containing substance is hydrolyzed using pressurized hot water in the presence of an oxidizing agent and converted to an oligosaccharide or / and a monosaccharide, the method and apparatus are particularly suitable. There is no restriction | limiting, It can apply with a well-known method and apparatus. For example, a batch-type reaction method in which a polysaccharide substance, water, and an oxidizing agent are placed in an autoclave reactor and heated to react, or a fixed-bed reactor is filled with a polysaccharide substance, which contains a predetermined amount of an oxidizing agent. A fixed bed type reaction method in which pressurized hot water is continuously passed through to hydrolyze the polysaccharide and the produced reaction product flows out of the system together with the hot water, a slurry made of polysaccharide material, oxidizing agent, water, etc. For example, a flow-type reaction method in which the gas is continuously passed through the reactor. Among them, when a flow reaction method is used, the reaction time can be easily controlled, which is more preferable.

加圧熱水処理の際、多糖類物質に対する加圧熱水の使用量は特に限定するものではなく、処理方式・装置により適宜選択でよい。例えばバッチ式処理装置の場合は、多糖類100重量部に対して加圧熱水は100〜10000重量部、流通式処理装置の場合は、多糖類100重量部に対して、加圧熱水は300〜10000重量部が好適である。In the pressurized hot water treatment, the amount of pressurized hot water used for the polysaccharide substance is not particularly limited, and may be appropriately selected depending on the treatment method and apparatus. For example, in the case of a batch type processing apparatus, the pressurized hot water is 100 to 10,000 parts by weight with respect to 100 parts by weight of the polysaccharide, and in the case of a flow type processing apparatus, the pressurized hot water is 100 parts by weight of the polysaccharide. 300 to 10,000 parts by weight is preferred.

本発明において使用する加圧熱水は温度100〜500℃、圧力飽和蒸気圧〜100MPaの範囲において使用するものである。この場合、温度:180〜350℃、圧力:飽和蒸気圧〜50MPaの範囲の水がより好ましい。温度および圧力が低すぎると多糖類の加水分解反応速度が小さく生産能率は低く、温度および圧力が高すぎると反応制御が困難で収率が低下する傾向がある。The pressurized hot water used in the present invention is used in a temperature range of 100 to 500 ° C. and a pressure saturated vapor pressure to 100 MPa. In this case, water in the range of temperature: 180 to 350 ° C. and pressure: saturated vapor pressure to 50 MPa is more preferable. If the temperature and pressure are too low, the hydrolysis reaction rate of the polysaccharide is low and the production efficiency is low. If the temperature and pressure are too high, the reaction control is difficult and the yield tends to decrease.

多糖類物質の加圧熱水での反応時間は、反応装置、反応温度および多糖類物質の分子量や結晶化度あるいは使用する酸化剤の種類や添加量によって異なり、流通型の場合には、通常加圧熱水が250〜350℃の範囲であれば0.2〜300秒程度である。ただし、熱水を流通させる固定床型反応器を用いた場合、水可溶性成分を反応系外に追い出すために、さらに数分間の通水が必要となる。またバッチ型の反応器を用いた場合には、所定温度までの加熱時間は反応器の大きさ次第であるため、反応時間がもっと長い場合もある。The reaction time of the polysaccharide material in pressurized hot water varies depending on the reaction equipment, reaction temperature, molecular weight and crystallinity of the polysaccharide material, and the type and amount of oxidant used. If pressurized hot water is in the range of 250 to 350 ° C, it is about 0.2 to 300 seconds. However, when a fixed bed reactor through which hot water is circulated is used, it is necessary to pass water for several minutes in order to drive out the water-soluble component out of the reaction system. When a batch type reactor is used, the reaction time may be longer because the heating time to a predetermined temperature depends on the size of the reactor.

反応器から流出した反応液は、その中に含まれるグルコースやオリゴ糖など水可溶性成分の二次分解を抑制するため、直ちに冷却することが望ましい。The reaction liquid flowing out from the reactor is preferably cooled immediately in order to suppress secondary decomposition of water-soluble components such as glucose and oligosaccharide contained therein.

図1は本発明を実施する為に構成されるオートクレイブ式反応装置使用例を示す概略説明図である。図2は本発明を実施する為めの実験フローチャットを示めす。セルロースなどの多糖物質、酸化剤及び蒸留水などを所定量でオートクレイブに加入し、超音波で10分間処理させた後、口を閉め、250℃オイルバスに入れて所定処理時間後、右のオイルバスからオートクレイブを取り出し、左の冷却水に侵入させることによって反応を停止させる。FIG. 1 is a schematic explanatory view showing an example of using an autoclave reactor configured to carry out the present invention. FIG. 2 shows an experimental flow chat for carrying out the present invention. After adding a polysaccharide substance such as cellulose, an oxidizing agent and distilled water in a predetermined amount to an autoclave and treating with ultrasonic waves for 10 minutes, the mouth is closed, put in a 250 ° C. oil bath and after a predetermined treatment time, The reaction is stopped by removing the autoclave from the oil bath and allowing it to enter the cooling water on the left.

上記オートクレイブから出した反応混合液を、ろ過などにより未反応残渣、即ち、水不溶部と水可溶部とに分離し、水不溶部の残渣を乾燥させた後、その収率を求める。The reaction mixture taken out from the autoclave is separated into unreacted residues, that is, a water-insoluble part and a water-soluble part by filtration or the like, and the residue of the water-insoluble part is dried, and then the yield is determined.

一方、水可溶部は高速液体クロマトグラフ(HPLC)によって生成物を同定・定量分析とした。これによって、各生成物の収率を求めることができる。On the other hand, the product was identified and quantitatively analyzed by high performance liquid chromatograph (HPLC) for the water-soluble part. Thereby, the yield of each product can be determined.

上述のオートクレイブの内側温度はオイルバス温度が高い程早く反応温度に達し、250℃のオイルバスでは約16分程度にて250℃にもなる。The inner temperature of the above autoclave reaches the reaction temperature faster as the oil bath temperature is higher, and reaches 250 ° C. in about 16 minutes in an oil bath at 250 ° C.

次に、本発明を実施例1、並びに実施例2により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
以下、図1の装置と図2のフローチャットにより、実際に処理を行った結果について、実施例にて説明する。この実験に用いられたオートクレイブの容積は75cmである。
Next, the present invention will be described in more detail with reference to Example 1 and Example 2. However, the present invention is not limited to these examples.
Hereinafter, the results of actual processing using the apparatus of FIG. 1 and the flow chat of FIG. The volume of the autoclave used for this experiment is 75 cm 3 .

微結晶セルロース(アビセル、2g)と蒸留水(68ml)と塩化銅0.05、0.1、0.15wt%を75mIのオートクレイブに入れ、口が閉められ、超音波で10分処理させた後、250℃のオイルバスで処理時間を16、18、19.5分変化させて処理を行った。分析結果を表1、図3と図4に示す。その結果により、温度250℃、時間18秒の処理条件下では、塩化銅の添加量は0.05〜0.1%の範囲でグルコース収率が最大となった。Microcrystalline cellulose (Avicel, 2 g), distilled water (68 ml) and copper chloride 0.05, 0.1, 0.15 wt% were placed in a 75 ml autoclave, the mouth was closed, and ultrasonically treated for 10 minutes. Thereafter, the treatment was performed in an oil bath at 250 ° C. with treatment times changed by 16, 18, and 19.5 minutes. The analysis results are shown in Table 1, FIG. 3 and FIG. As a result, under the processing conditions of a temperature of 250 ° C. and a time of 18 seconds, the glucose yield was maximized when the amount of copper chloride added was in the range of 0.05 to 0.1%.

塩化銅の代わりにFeCl3、CuSO4、AgNO3、AgCl、SnCl4、ヨウ素を、添加量0.02から0.15%まで加え、実施例1と全く同じ条件と手順でセルロースを処理した。得た反応液の処理結果を表1、図3と図4に示す。実施例1と比べると、グルコースの生成量の時間、添加量の依存性が似ていると云える。In place of copper chloride, FeCl 3, CuSO 4, AgNO 3, AgCl, SnCl 4 and iodine were added from 0.02 to 0.15%, and the cellulose was treated under exactly the same conditions and procedures as in Example 1. The processing results of the obtained reaction liquid are shown in Table 1, FIG. 3 and FIG. Compared with Example 1, it can be said that the dependency of the amount and amount of glucose produced is similar.

次に、本発明の実施例にて比較した場合を下記に示す。
比較例2では酸化剤を使用しない以外は、実施例1と全く同じ条件と手順でセルロースを処理した。得た反応液の分析結果を表1、図3に示す。実施例1の同じ処理時間18分の結果と比べると、酸化剤無添加の場合には、グルコースの生成量が3.5%しか得られず、また、未反応セルロース残渣は約85%であった。
Next, the case where it compares in the Example of this invention is shown below.
In Comparative Example 2, cellulose was treated under exactly the same conditions and procedures as Example 1 except that no oxidizing agent was used. The analysis results of the obtained reaction liquid are shown in Table 1 and FIG. Compared to the result of the same treatment time of 18 minutes in Example 1, when no oxidizing agent was added, the amount of glucose produced was only 3.5%, and the unreacted cellulose residue was about 85%. It was.

酸化性が低い、或いは、酸化性がない塩類化合物を添加し、実施例1と同じ処理条件でセルロースを処理した結果を表2に示す。表1と比較すると、Ca、Mg、Zn、Fe2などの塩類化合物の添加によって、加水分解の促進とグルコース生成量の増加は見られなかった。Table 2 shows the results of treating cellulose under the same treatment conditions as in Example 1 by adding a salt compound having low or no oxidizability. Compared to Table 1, the addition of salt compounds such as Ca, Mg, Zn and Fe2 did not promote hydrolysis and increase the amount of glucose produced.

本発明の多糖類物質の加水分解方法による酸化剤の存在により、セルロースの加水分解を促進し、また、酸加水分解の場合に見られる反応器の腐食を下げ、この方法を産業上利用することにより、グルコースなどの糖類を高収率で得ることができる。表1はセルロースの反応生成物の収率に対する酸化剤の影響を示す表。表2は非酸化剤である塩類化合物の存在下でのセルロースの反応生成物の収率を示す表。The presence of an oxidizing agent by the method for hydrolyzing polysaccharide materials of the present invention promotes the hydrolysis of cellulose, reduces the corrosion of the reactor seen in the case of acid hydrolysis, and uses this method industrially. Thus, saccharides such as glucose can be obtained in high yield. Table 1 shows the influence of the oxidizing agent on the yield of the cellulose reaction product. Table 2 shows the yield of the reaction product of cellulose in the presence of a salt compound that is a non-oxidizing agent.

本発明を実施する為に構成される装置例を示す概略説明図。 本発明の実施の実験フローチャット。 酸化剤の存在下でのセルロースの反応生成物の収率に対する反応時間の影響を示すグラフである。 酸化剤の存在下でのセルロースの反応生成物の収率に対する酸化剤添加量の影響を示すグラフである。

Figure 2007020555
Figure 2007020555
BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing which shows the example of an apparatus comprised in order to implement this invention. The experiment flow chat of implementation of this invention. It is a graph which shows the influence of reaction time with respect to the yield of the reaction product of a cellulose in presence of an oxidizing agent. It is a graph which shows the influence of the oxidizing agent addition amount with respect to the yield of the reaction product of a cellulose in presence of an oxidizing agent.
Figure 2007020555
Figure 2007020555

Claims (8)

加圧熱水により多糖類物質の加水分解を行うに当たり、処理温度が100〜500℃の範囲で、処理圧力が飽和蒸気圧〜50MPaの範囲にて、反応系に酸化剤を添加共存させることを特徴とする多糖類物質の加水分解方法。When hydrolyzing a polysaccharide substance with pressurized hot water, an oxidizing agent should be added and coexisted in the reaction system at a processing temperature in the range of 100 to 500 ° C. and a processing pressure in the range of saturated vapor pressure to 50 MPa. A method for hydrolyzing a polysaccharide material. 加水分解を行う多糖類物質が、セルロース、ヘミセルロース、デンプン、キチンまたはこれらの少なくとも1つを含有する物質であることを特徴とする請求項1記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 1, wherein the polysaccharide substance to be hydrolyzed is cellulose, hemicellulose, starch, chitin or a substance containing at least one of them. 単糖及び/またはオリゴ糖を製造することを目的とする請求項1または請求項2記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 1 or 2, which aims to produce monosaccharides and / or oligosaccharides. 単糖がグルコースである請求項3記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 3, wherein the monosaccharide is glucose. 前記酸化剤は酸化電位が0〜2ボルトである請求項1記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 1, wherein the oxidizing agent has an oxidation potential of 0 to 2 volts. 酸化剤が銀、銅、第二鉄〔Fe+3〕、スズの塩類化合物から選ばれる1種以上の物質であることを特徴とする請求項1に記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 1, wherein the oxidizing agent is at least one substance selected from silver, copper, ferric iron [Fe + 3], and a salt compound of tin. 前記銀、銅、第二鉄〔Fe+3〕、スズの塩類化合物等が、硫酸塩、硝酸塩、塩酸塩、酢酸塩である請求項6に記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 6, wherein the silver, copper, ferric [Fe + 3], tin salt compound, and the like are sulfate, nitrate, hydrochloride, and acetate. 酸化剤がフッ素、塩素、臭素、ヨウ素からなる群から選ばれる1種以上の物質であることを特徴とする請求項1に記載の多糖類物質の加水分解方法。The method for hydrolyzing a polysaccharide substance according to claim 1, wherein the oxidizing agent is one or more substances selected from the group consisting of fluorine, chlorine, bromine and iodine.
JP2005254073A 2005-07-19 2005-07-19 Method for hydrolyzing polysaccharide substance such as cellulose or the like Pending JP2007020555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254073A JP2007020555A (en) 2005-07-19 2005-07-19 Method for hydrolyzing polysaccharide substance such as cellulose or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254073A JP2007020555A (en) 2005-07-19 2005-07-19 Method for hydrolyzing polysaccharide substance such as cellulose or the like

Publications (1)

Publication Number Publication Date
JP2007020555A true JP2007020555A (en) 2007-02-01

Family

ID=37782142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254073A Pending JP2007020555A (en) 2005-07-19 2005-07-19 Method for hydrolyzing polysaccharide substance such as cellulose or the like

Country Status (1)

Country Link
JP (1) JP2007020555A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195189A (en) * 2008-02-22 2009-09-03 Univ Chuo Method for producing monosaccharide or oligosaccharide from polysaccharide
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
JP2009291092A (en) * 2008-06-03 2009-12-17 Toyota Motor Corp Method for saccharifying and separating vegetable fiber material
JP2009291090A (en) * 2008-06-03 2009-12-17 Toyota Motor Corp Method for saccharifying and separating vegetable fiber material
WO2010050223A1 (en) 2008-10-30 2010-05-06 王子製紙株式会社 Saccharide production process and ethanol production process
WO2010067593A1 (en) 2008-12-09 2010-06-17 国立大学法人 北海道大学 Method for producing a sugar-containing liquid in which the primary ingredient is glucose
JP2010539194A (en) * 2007-09-18 2010-12-16 陳培豪 Method for producing main hydrolyzate for hydrolyzing plant fiber raw material using concentrated sulfuric acid
JP2011523349A (en) * 2008-04-02 2011-08-11 イルヴェスニーミ ハンヌ Biomass processing method
JP2011206044A (en) * 2009-09-30 2011-10-20 Sekisui Chem Co Ltd Method of saccharifying cellulose
JP2012044880A (en) * 2010-07-29 2012-03-08 Sekisui Chem Co Ltd Method for saccharifying cellulose
JP2012512949A (en) * 2008-12-19 2012-06-07 キシレコ インコーポレイテッド Biomass processing method
JP2012125174A (en) * 2010-12-14 2012-07-05 Meiji Univ Method for producing glucose
JP2013063051A (en) * 2011-09-20 2013-04-11 Meiji Univ Method of producing oligosaccharide
JP2014034570A (en) * 2012-08-10 2014-02-24 Equos Research Co Ltd Saccharification method, and saccharification reaction device
JP2017518076A (en) * 2014-05-29 2017-07-06 オハイオ ソイビーン カウンシル Mitigation of nutrient inhibitors in plant meal
CN110128561A (en) * 2019-05-09 2019-08-16 华南理工大学 A kind of preparation method of asparagus functional oligose
CN114524882A (en) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 Method for improving hydrolysis rate of carbohydrate polymer in solution containing cupric salt

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539194A (en) * 2007-09-18 2010-12-16 陳培豪 Method for producing main hydrolyzate for hydrolyzing plant fiber raw material using concentrated sulfuric acid
JP2009195189A (en) * 2008-02-22 2009-09-03 Univ Chuo Method for producing monosaccharide or oligosaccharide from polysaccharide
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
JP2011523349A (en) * 2008-04-02 2011-08-11 イルヴェスニーミ ハンヌ Biomass processing method
JP2009291092A (en) * 2008-06-03 2009-12-17 Toyota Motor Corp Method for saccharifying and separating vegetable fiber material
JP2009291090A (en) * 2008-06-03 2009-12-17 Toyota Motor Corp Method for saccharifying and separating vegetable fiber material
WO2010050223A1 (en) 2008-10-30 2010-05-06 王子製紙株式会社 Saccharide production process and ethanol production process
WO2010067593A1 (en) 2008-12-09 2010-06-17 国立大学法人 北海道大学 Method for producing a sugar-containing liquid in which the primary ingredient is glucose
JP2018159079A (en) * 2008-12-19 2018-10-11 キシレコ インコーポレイテッド Processing method of biomass
JP2012512949A (en) * 2008-12-19 2012-06-07 キシレコ インコーポレイテッド Biomass processing method
JP2015147933A (en) * 2008-12-19 2015-08-20 キシレコ インコーポレイテッド Processing method of biomass
US9428621B2 (en) 2008-12-19 2016-08-30 Xyleco, Inc. Processing biomass
US10273416B2 (en) 2008-12-19 2019-04-30 Xyleco, Inc. Processing hydrocarbon-containing materials
US9745518B2 (en) 2008-12-19 2017-08-29 Xyleco, Inc. Processing hydrocarbon-containing materials
JP2011206044A (en) * 2009-09-30 2011-10-20 Sekisui Chem Co Ltd Method of saccharifying cellulose
JP2012044880A (en) * 2010-07-29 2012-03-08 Sekisui Chem Co Ltd Method for saccharifying cellulose
JP2012125174A (en) * 2010-12-14 2012-07-05 Meiji Univ Method for producing glucose
JP2013063051A (en) * 2011-09-20 2013-04-11 Meiji Univ Method of producing oligosaccharide
JP2014034570A (en) * 2012-08-10 2014-02-24 Equos Research Co Ltd Saccharification method, and saccharification reaction device
JP2017518076A (en) * 2014-05-29 2017-07-06 オハイオ ソイビーン カウンシル Mitigation of nutrient inhibitors in plant meal
US10945452B2 (en) 2014-05-29 2021-03-16 Ohio Soybean Council Mitigation of anti-nutritional substances in plant meal
CN110128561A (en) * 2019-05-09 2019-08-16 华南理工大学 A kind of preparation method of asparagus functional oligose
CN110128561B (en) * 2019-05-09 2021-07-20 华南理工大学 Preparation method of asparagus functional oligosaccharide
CN114524882A (en) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 Method for improving hydrolysis rate of carbohydrate polymer in solution containing cupric salt
CN114524882B (en) * 2020-11-23 2023-03-14 中国科学院大连化学物理研究所 Method for improving hydrolysis rate of carbohydrate polymer in solution containing cupric salt

Similar Documents

Publication Publication Date Title
JP2007020555A (en) Method for hydrolyzing polysaccharide substance such as cellulose or the like
Sołowski et al. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process
JP3042076B2 (en) Method for selective hydrolysis of natural or synthetic polymer compounds
Zhou et al. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst
JP5190858B2 (en) Production method of low molecular weight carbohydrates from materials containing polysaccharides
US9920388B2 (en) Process for the production of sugars from biomass
JP2006223152A (en) Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis
CN101255479A (en) Pre-treatment method for highly-effective saccharification of lignocellulose
WO2005049869A1 (en) Method of hydrolyzing organic compound
JP2011092151A (en) Method of processing vegetable raw material
Gill et al. Optimization of acid-mediated delignification of corn stover, an agriculture residue carbohydrate polymer for improved ethanol production
Wen et al. Production of xylo-oligosaccharides and ethanol from corncob by combined tartaric acid hydrolysis with simultaneous saccharification and fermentation
JP4277603B2 (en) Method for hydrolysis of polysaccharide substances
Zhu et al. An integrated process for co-producing fermentable sugars and xylonate from sugarcane bagasse based on xylonic acid assisted pretreatment
Dai et al. Multi-strategy in production of high titer gluconic acid by the fermentation of concentrated cellulosic hydrolysate with Gluconobacter oxydans
JP2008092883A (en) Method for producing sugar
JP4619831B2 (en) Pretreatment method of lignocellulose
JP2011206044A (en) Method of saccharifying cellulose
JP5693286B2 (en) Saccharification method of woody biomass
Liao et al. Efficient production of xylobiose and xylotriose from corncob by mixed acids and xylanase hydrolysis
JPH064663B2 (en) Method for producing xylooligosaccharides by microwave irradiation
JP2010083850A (en) Saccharification of lignocellulose and ethanol fermentation method
JP6474150B2 (en) Saccharification method of biomass raw material
TWI714817B (en) Method for producing glucose and small molecule polysaccharide
US8497097B2 (en) Chlorine dioxide treatment of biomass feedstock