JP2003212707A - 抗菌・抗カビ性粉末及びその製造方法 - Google Patents

抗菌・抗カビ性粉末及びその製造方法

Info

Publication number
JP2003212707A
JP2003212707A JP2002005882A JP2002005882A JP2003212707A JP 2003212707 A JP2003212707 A JP 2003212707A JP 2002005882 A JP2002005882 A JP 2002005882A JP 2002005882 A JP2002005882 A JP 2002005882A JP 2003212707 A JP2003212707 A JP 2003212707A
Authority
JP
Japan
Prior art keywords
antibacterial
titanium oxide
particles
oxide particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002005882A
Other languages
English (en)
Inventor
Eiichi Taruoka
鋭一 樽岡
Yasutaka Kawanobu
保隆 川延
Koji Anayama
幸司 穴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002005882A priority Critical patent/JP2003212707A/ja
Publication of JP2003212707A publication Critical patent/JP2003212707A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 細菌類に対する抗菌性のみならず、真菌類に
対しても優れた抗カビ効果を呈する抗菌・抗カビ性粉末
及びその製造方法を提供すること。 【解決手段】 サブミクロンサイズの酸化チタン粒子を
分散させた水溶液中に金属銀前駆体からなる錯体を含む
水溶液を混合し、この混合水溶液に還元剤を添加して攪
拌・分散することにより酸化チタン粒子の表面にナノメ
ートルサイズの金属銀粒子を前記酸化チタン粒子の単位
重量当たり8重量%以上30重量%以下の範囲で分散担
持した状態で還元析出させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、抗菌・抗カビ性粉
末及びその製造方法に関し、更に詳しくは、医療衛生器
具、空気清浄機、建材、日用品等の幅広い分野において
優れた抗菌・抗カビ効果を発揮するスプレーあるいは塗
料として利用可能な抗菌・抗カビ性粉末及びその製造方
法に関するものである。
【0002】
【従来の技術】近年、我々の生活水準の向上に伴って清
潔志向も高まっており、日々の生活において身近な細菌
類(バクテリア)、真菌類(カビ)等の菌類の存在に対
しては特に敏感になってきている。そのため、日常使用
される生活用品等にも抗菌性を付したものを要求する声
は強く、これに応えるべく抗菌処理を施した市販製品が
多く出回ってきている。
【0003】こうした抗菌性を備えた材料は、有機系の
ものと無機系のものとに大別される。有機系の抗菌材料
としては、界面活性剤系、ビグアナイド系、アルコール
系、フェノール系、アニリド系、ヨウ素系、イミダゾー
ル系、チアゾール系、イソチアゾール系、トリアジン
系、ニトリル系、フッ素系、糖質系、トロポロン系、有
機金属系等が知られている。一方、無機系の抗菌材料と
しては、ゼオライト、シリカ、アルミナ、リン酸ジルコ
ニウム、リン酸カルシウム、リン酸ジルコニウム、ケイ
酸カルシウム、シリカゲル、ガラス、酸化チタン、酸化
亜鉛等の無機質粉末に銀、銅、亜鉛等の抗菌性を有する
金属を担持させたものが知られている。
【0004】従来、抗菌材料としては製造コストが安価
であるなどの理由から有機系のものが一般的に用いられ
ているが、抗菌効果の持続力に乏しく、時間の経過と共
に揮発や分解、溶出などが起こり易くその抗菌性能が徐
々に低下していく上に、揮発等した有機成分が人体に危
害を及ぼすことが懸念される。また、有機物質で構成さ
れるため耐熱性に乏しく、高温環境下にさらされる耐熱
用タイル等にこのような有機系の抗菌材料を付すること
はできないといった問題がある。
【0005】これに対して無機系の抗菌材料は、抗菌効
果の持続力に優れ長期に亘って安定した使用が可能であ
るばかりでなく、有機系のような揮発や分解等が生じる
おそれはほとんどないため人体に対する安全性も高い。
さらには耐熱性にも優れていることから、広範囲の分野
での応用が期待されている。
【0006】なかでも、強い抗菌作用を呈する銀は、種
々の無機系抗菌材料に利用されている。例えば、特開平
9−227319号公報には、光触媒粒子である酸化チ
タンの表面近傍に0.01〜2.0重量%の担持範囲内
の銀をイオン状態若しくはメタル状態で担持させてなる
抗菌性粉末が開示されている。そしてこの抗菌性粉末
は、暗所においては、抗菌性に優れた銀による優れた抗
菌性を示し、また、光照射下においては、酸化チタンの
有する光触媒作用と銀による抗菌性との相乗効果によ
り、より一層優れた抗菌性を示すことが示されている。
【0007】また、特開平11−349423号公報に
は、光触媒粒子であるサブミクロンサイズの酸化チタン
粒子に金属銀の粒子を0.5〜5.0重量%の範囲で分
散担持させた状態で担持させてなる抗菌・脱臭材料が開
示されている。そしてこの抗菌・脱臭材料は、銀のもつ
優れた抗菌性能と酸化チタン粒子のもつ優れた抗菌性能
・光触媒性能によって良好な抗菌性、脱臭性を呈するこ
とが示されている。
【0008】
【発明が解決しようとする課題】しかし、上記公報に示
された抗菌材料のように酸化チタン粒子に担持させる金
属銀の担持量が数重量%の範囲あるものは、大腸菌や黄
色ブドウ球菌(MRSA)などの細菌(バクテリア)類
に対しては優れた抗菌(殺菌)効果を発揮すると共に、
その死骸や臭いの成分等を光触媒作用によって分解する
防臭効果をも発揮するという特徴を有しているが、アス
ペルギルス菌等の真菌(カビ)類に対しては十分な抗菌
(殺菌)効果が得られないといった問題があった。この
真菌類は、我々の日常生活において食品、衣類、じゅう
たん等の繊維製品などで身近に発生し、また、近年にお
いて急増するアトピー性皮膚炎などの症状の原因にもな
るものであり、これら真菌類に対する抗菌(抗カビ)対
策も重要な問題である。
【0009】本発明の解決しようとする課題は、細菌類
に対する抗菌性のみならず、真菌類に対しても優れた抗
カビ性をも発現し、スプレー・塗料等のコーティング剤
として塗布することにより優れた抗菌・抗カビ特性を備
えた種々の製品を得ることが可能な抗菌・抗カビ性粉末
及びその製造方法を提供することである。
【0010】
【課題を解決するための手段】この課題を解決するため
に本発明に係る抗菌・抗カビ性粉末は、サブミクロンサ
イズの酸化チタン粒子の表面に、ナノメートルサイズの
抗菌性を有する金属銀粒子を、前記酸化チタン粒子の単
位重量当たり8重量%以上30重量%以下の範囲で分散
担持させてなることを要旨とするものである。
【0011】酸化チタン粒子の表面に金属銀の粒子を分
散担持させると、光照射下において酸化チタンが有する
光触媒効果と、金属銀のもつ強い抗菌効果の両方が作用
し、さらに両方の効果が相乗的に高められることによっ
て細菌類等を殺菌・分解する能力に優れた粉末が得られ
る。本願発明における酸化チタン粒子と金属銀粒子とか
らなる粉末は、金属銀の担持量が8重量%以上30重量
%以下の範囲にあり、酸化チタン粒子表面に占める金属
銀粒子の割合が多いため、上記従来例として示した金属
銀の担持量が5重量%以下の抗菌性材料に比べると、酸
化チタン粒子による光触媒効果は弱まるものの金属銀粒
子による抗菌効果は極めて顕著なものとなる。したがっ
て、本発明に係る抗菌・抗カビ性粉末は、大腸菌や黄色
ブドウ球菌(MRSA)等の細菌類に対してのみなら
ず、強い殺菌作用を必要とするアスペルギルス菌等の真
菌類に対しても優れた抗菌・抗カビ効果が発揮される。
【0012】上記抗菌・抗カビ性粉末をアルコール等の
溶媒あるいはバインダー等と配合すれば、抗菌・抗カビ
性スプレー・塗料等のコーティング剤としての使用が可
能となる。このコーティング剤を医療衛生器具、空気清
浄機、建材、日用品等に塗布することによって、真菌類
に対しても優れた抗菌力を備えた抗菌・抗カビ性製品が
得られる。
【0013】また、本発明に係る抗菌・抗カビ性粉末の
製造方法は、サブミクロンサイズの酸化チタン粒子を分
散させた水溶液中に金属銀前駆体からなる錯体を含む水
溶液を混合し、この混合水溶液に還元剤を添加して攪拌
・分散することにより酸化チタン粒子の表面にナノメー
トルサイズの金属銀粒子を前記酸化チタン粒子の単位重
量当たり8重量%以上30重量%以下の範囲で分散担持
した状態で還元析出させてなることを要旨とするもので
ある。
【0014】サブミクロンサイズの酸化チタンを分散分
散させた水溶液と金属銀前駆体からなる錯体の含む水溶
液とを混合して、金属銀粒子を酸化チタン粒子上に還元
析出させることにより、ナノメートルサイズの金属銀粒
子が酸化チタン粒子の表面上に均一に分散担持され、金
属銀の抗菌性能を最大限に発揮する抗菌・抗カビ性粉末
が得られる。
【0015】
【発明の実施の形態】初めに、本発明に係る抗菌・抗カ
ビ性粉末について説明する。この抗菌・抗カビ性粉末
は、サブミクロンサイズの酸化チタン粒子の表面上にナ
ノメートルサイズの金属銀の粒子が分散担持されたもの
である。
【0016】ここで酸化チタンは、紫外線が照射される
と、酸化チタン表面に存在する吸着水(HO)や吸着
酸素(O)等と反応して、強力な酸化力をもつヒドロ
キシラジカル(・OH)やスーパーオキサイドアニオン
(・O )等の活性酸素種を発生させ、空気中の細菌
を始め悪臭、有毒ガス等を分解を発揮する光触媒効果を
有する物質である。このような特性を有することから、
光照射下では酸化チタン単独でも優れた抗菌・光触媒作
用を呈する。
【0017】また、酸化チタンの結晶構造は、アナター
ゼ型結晶構造であることが望ましい。酸化チタンの主な
結晶構造にはアナターゼ型とルチル型とがある。ルチル
型の酸化チタンは、光触媒活性が比較的低く主に白色顔
料・塗料としての用途の使われているものであるので光
触媒材料としては好ましくない。これに対してアナター
ゼ型の酸化チタンは、ルチル型よりも高い触媒活性を有
し、紫外線照射により強い酸化・還元作用を呈するので
抗菌性能にも優れ、光触媒材料としてして好適な結晶構
造である。
【0018】この酸化チタン粒子の平均粒子径は、0.
04μm以下であることが望ましい。平均粒子径が0.
04μmを超えると酸化チタン粒子の比表面積が小さく
なることにより単位面積当たりの被分解物質との反応量
が低下するため、殺菌(抗菌)等の反応速度の低下が懸
念される。
【0019】一方、酸化チタン粒子の表面に分散担持さ
れる金属銀は、強い抗菌作用を備えた物質である。この
金属銀を担持することにより、酸化チタンの光触媒効果
が及ばない暗所においても高い抗菌性能を維持すること
ができる。また光照射下においては、酸化チタンの光触
媒性能をさらに高める光触媒活性剤としての役割も果た
す。
【0020】また、本願発明においては金属銀の酸化チ
タン粒子表面への担持量は、酸化チタン粒子の単位重量
当たり8重量%以上30重量%以下であることを要す
る。この範囲内で金属銀を担持すれば、金属銀の抗菌効
果は一層顕著なものとなり、細菌類だけでなく真菌類に
対しても強力な殺菌(抗菌・抗カビ)効果を発揮する抗
菌・抗カビ性粉末が得られる。金属銀の担持量が30重
量%を超えると担持量を増加しても抗菌性能の向上は見
られず、光触媒性能はほとんど認められなくなる。一
方、担持量が8重量%未満であると、担持量が不十分で
真菌類に対する殺菌効果が十分に現れない。ここで金属
銀の担持量は、抗菌・抗カビ性をより顕著なものとする
ために好ましくは10重量%以上15重量%以下である
ことが望ましい。なお、抗菌作用を呈する金属粒子とし
て金属銀が最も効果的であるが、それ以外に同じく抗菌
性能を備えた金属銅を酸化チタン粒子の表面に担持する
ことも可能である。
【0021】また、担持する金属銀粒子の平均粒子径は
4nm以下であることが望ましい。平均粒子径が4nm
を超えると、金属銀粒子の比表面積が減少することに伴
い抗菌性能の低下が生じ、抗菌・抗カビ性粉末としての
機能を十分に果たすことができない。
【0022】次に、本発明に係る抗菌・抗カビ性粉末の
製造方法について説明する。本発明に係る抗菌・抗カビ
性粉末の製造方法は、酸化チタン粒子を分散させた水溶
液中に金属銀前駆体からなる錯体を含む水溶液を混合
し、この混合水溶液に還元剤を添加して攪拌・分散する
ことにより酸化チタン粒子の表面に金属銀を分散担持さ
せた抗菌・抗カビ性粉末を得るものである。
【0023】酸化チタン粒子の表面に分散担持させる金
属銀の原料となる金属銀前駆体としては、硝酸銀を用い
ることが望ましい。硝酸銀を用いれば、これを水溶液中
に溶解して得られる硝酸銀のイオン錯体がこの水溶液中
で安定に存在しうるため取扱いが容易であり、所定の担
持量の金属銀を均一に担持させた酸化チタン粒子を安定
供給することができる。また、用いる金属銀前駆体は硝
酸銀以外にも硫酸銀などの銀化合物であってもよい。
【0024】また、還元剤としては、ブドウ糖を用いる
ことが望ましい。還元剤としてブドウ糖を使用すると、
酸化チタン粒子の表面に細かく分散担持させることがで
きる。このように分散担持させる金属銀粒子が細かくな
れば、金属銀の単位重さ当たりの比表面積が大きくなる
ため、抗菌(殺菌)性能がより活性化する。
【0025】本願発明に係る酸化チタン粒子の表面に金
属銀を分散担持してなる抗菌・抗カビ性粉末は、上記の
ような優れた光触媒効果および抗菌効果を発現すること
に加えて、金属銀の担持量を酸化チタン粒子の単位重量
当たり8重量%以上30重量%以下としたことによっ
て、従来のように金属銀の担持量が数重量%以下の場合
には十分な殺菌効果が得られなかった真菌類に対しても
高い抗菌(殺菌)効果を発現させることができる。
【0026】
【実施例】以下に本願発明に係る実施例について詳細に
説明する。まず、本発明に係る抗菌・抗カビ性粉末の製
造方法によって得られた抗菌・抗カビ性粉末を評価手段
について説明する。得られた抗菌・抗カビ性粉末に評価
としては、真菌に対する最小発育阻止濃度(MIC:Mi
nimum Inhibitory Concentration)の測定試験及びフィ
ルム密着法による生菌数の測定試験をそれぞれ行った。
以下に、各測定試験の手順について説明する。
【0027】(最小発育阻止濃度(MIC)の測定試
験)最小発育阻止濃度(MIC)は、日本工業規格(J
IS Z 2911(1981)「混合胞子懸濁液の調
整法」)に準拠して行った。この最小発育阻止濃度(M
IC)の測定に当たっては、まず、(1)接種菌液の調
整を行い、次に、(2)試料の調製を行い、次に、
(3)感受性測定用培地の調製を行い、次に、(4)培
養を行い、最後に、(5)判定を行った。
【0028】(1)接種菌液の調整 必要な器具・試験片の滅菌を行った後、PDA斜面培地
で20〜25℃で培養した試験菌5白金耳を、滅菌した
0.005%スルホこはく酸ジオクチルナトリウム水溶
液10mlに懸濁した。この懸濁液を滅菌ガーゼで濾過
して子実体・菌糸体を除去した後、単一胞子懸濁液を得
た。胞子数を血球算定板で数え、1ml当たりの胞子数
が1.0×10となるようにGP培地で希釈し、接種
用菌液とした。
【0029】(2)試料の調製 検体を乾熱滅菌器で160〜180℃、120分間、密
封しない状態で加熱後、試料とした。
【0030】(3)感受性測定用培地の調製 乾熱滅菌したL字型試験管に試料を測り取り、121℃
で、20分間高圧蒸気滅菌した。GP培地10mlを分
注して、試料の濃度が1600,800,400,20
0,100,50,12.5,6.25μg/mlとな
るように懸濁液を調製し、感受性測定用培地とした。な
お、試料を添加した培地のpHは、試料添加前のpHの
±0.5の範囲に収まっていることを確認した。
【0031】(4)培養 感受性測定用培地に、(1)で調製した接種用試験菌液
を0.1ml接種し、試料が均一に混合されるように振
とう数100rpmで20〜25℃、48時間振とう培
養した。なお試験菌毎に、各試料濃度3本ずつ培養を行
った。
【0032】(5)判定 所定時間培養後、肉眼観察により試験菌の発育の有無を
判定し、発育が阻止された試料の最低濃度をもって、試
験菌株に対する試料の最小発育阻止濃度(MIC)とし
た。
【0033】(フィルム密着法による生菌数の測定試
験)生菌数の測定は、日本工業規格(JIS Z 28
01)に準拠して行った。すなわち、測定に当たって
は、まず、(1)試験片の調製を行い、次に、(2)試
験菌液の調製を行い、次に、(3)試験菌液の接種を行
い、次に、(4)試験菌の培養を行い、最後に、(5)
測定を行った。
【0034】(1)試験片の調製 試験片の調製に際しては、まず、試験基盤に塗布する抗
菌・抗カビ性コート剤の調製を行った。この抗菌・抗カ
ビ性コート剤は、スプレー状タイプのものであり、後述
の作製手順により得られた抗菌・抗カビ性粉末0.3重
量%に、接着性ポリマー2.0重量%と、カップリング
剤1.0重量%と、グリコールエーテル5.0重量%
と、フェノール樹脂1.0重量%と、酸化防止剤0.5
重量%とを配合し、これを噴霧媒体であるジメチルエー
テル中に分散させてスプレーボンベへと注入することに
より得た。得られたスプレー状の抗菌・抗カビ性コート
剤を試験基盤表面に均一に塗布し乾燥させ、これを試験
片とした。
【0035】(2)試験菌液の調製 試験菌をNA培地に移植し、37℃で48時間培養す
る。培養した菌をNA培地に1白金耳移植し、37℃で
18〜20時間培養する。前培養した菌を1/500N
B培地に均一に分散させた後、1ml当たりの菌数が1
個となるように1/500NB培地で希釈し、試験
菌液とした。
【0036】(3)試験菌の接種 (1)で作製した試験片を試験面を上にして滅菌済シャ
ーレ内に置き、(2)で調製した試験菌液を試験面に滴
下し、滴下した試験菌液の上にフィルムを被せ、試験菌
液がフィルム全体に行きわたるように軽く抑えつけた
後、シャーレの蓋をした。
【0037】(4)試験菌の培養 試験菌を接種した試験片の入ったシャーレを35℃、相
対湿度90%以上で24時間培養した。
【0038】(5)測定 培養後の試験片にSCDLP培地を10ml加えて洗い
出し、洗い出し液1mlを採取し、リン酸緩衝生理食塩
水で希釈して10倍希釈系列希釈液を作製する。洗い出
し液及び各希釈液から、それぞれ1mlを滅菌済シャー
レ2枚に分注し、このシャーレ1枚当たり、46〜48
℃に保温したNA培地15〜20mlを加え混合した。
シャーレの蓋をして室温で放置し、培地が固まった後、
シャーレを倒置し、35℃で40〜48時間培養した。
培養後、30〜300個の集落が現れた希釈系列のこの
集落数を測定した。測定した集落数から式1により生菌
数を算出した。本発明においては、生菌数が10未満と
なるまでの所要時間を測定した。
【0039】
【化1】N=C×D×V N:生菌数(試験片1個当たり) C:集落数(採用した2枚のシャーレの集落数の平均
値) D:希釈倍数(採用したシャーレに分注した希釈液の希
釈倍数) V:洗い出しに用いたSCDLP培地の液量(ml)
【0040】(実施例1)硝酸銀15.8g(銀10g
を含有する)を50mlの純水に溶解して、この水溶液
にアンモニア水を17ml添加することにより硝酸銀ア
ミン錯体を得た。一方、平均粒子径7nmのアナターゼ
型の酸化チタン粒子90gを純粋450ml中に分散さ
せて、これに還元剤としてブドウ糖17.0gを添加し
て攪拌した。その後、酸化チタン分散液に硝酸アミン錯
体を添加して、さらに約3時間攪拌した。攪拌後、得ら
れた混合物を洗浄し、その後粉砕・整粒して、酸化チタ
ン表面に10g(10重量%に相当)の1nmの平均粒
子径を有する金属銀を分散させた粉末約100gを得
た。
【0041】(実施例2)硝酸銀118.2g(銀75
gを含有する)を250mlの純水に溶解して、この水
溶液にアンモニア水を130ml添加することにより硝
酸銀アミノ錯体を得た。一方、平均粒子径7nmのアナ
ターゼ型の酸化チタン粒子425gを純水450ml中
に分散させて、これに還元剤としてブドウ糖12.7g
を添加して攪拌した。その後、酸化チタン分散液に硝酸
アミン錯体を添加して、さらに約3時間攪拌した。攪拌
後、得られた混合物を洗浄し、その後粉砕・整粒して、
酸化チタン表面に75g(15重量%に相当)の1nm
の平均粒子径を有する金属銀を分散させた粉末約500
gを得た。
【0042】(比較例1)硝酸銀7.9g(銀5gを含
有する)を50mlの純水に溶解して、この水溶液にア
ンモニア水を9ml添加することにより硝酸銀アミノ錯
体を得た。一方、平均粒子径7nmのアナターゼ型の酸
化チタン粒子95gを純水450ml中に分散させて、
これに還元剤としてブドウ糖8.5gを添加して攪拌し
た。その後、酸化チタン分散液に硝酸アミン錯体を添加
して、さらに約3時間攪拌した。攪拌後、得られた混合
物を洗浄し、その後粉砕・整粒して、酸化チタン表面に
5g(5重量%に相当)の1nmの平均粒子径を有する
金属銀を分散させた粉末約100gを得た。
【0043】(比較例2)硝酸銀23.6g(銀15g
を含有する)を150mlの純水に溶解して、この水溶
液にアンモニア水を26ml添加することにより硝酸銀
アミノ錯体を得た。一方、平均粒子径7nmのシリカ
(SiO)粒子85gを純水900ml中に分散させ
て、これに上記錯体を添加し、40〜50℃で20〜2
4時間攪拌・分散させることによってシリカ粒子表面に
金属銀を析出させた。さらに、この分散溶液に還元剤と
してヒドラジン70mlを添加して約3時間攪拌するこ
とによってシリカ粒子表面にさらに金属銀を析出させ
た。攪拌後、得られた混合物を洗浄し、その後粉砕・整
粒して、シリカ粒子表面に15g(15重量%に相当)
の1nmの平均粒子径を有する金属銀を分散担持させた
粉末約100gを得た。
【0044】得られた粉末について、金属銀を分散担持
させた酸化チタン粒子から発生する活性酸素量の測定お
よび真菌類の最小発育阻止濃度(MIC)及び生菌数の
測定を行った。上記2つの測定試験はいずれも試験菌と
して、アスペルギルス・フミガードゥス(表中では真菌
Aと表記)、アスペルギルス・フラバス(表中では真菌
Bと表記)、及びアスペルギルス・ニガー(表中では真
菌Cと表記)の3種類の真菌を用いて行ったものであ
る。最小発育阻止濃度の測定結果を表1に、生菌数の測
定結果を表2にそれぞれ示す。
【0045】
【表1】
【0046】
【表2】
【0047】最小発育阻止濃度(MIC)の測定の結
果、実施例品1及び2はともに、本発明の抗菌・抗カビ
性粉末試料の投入濃度がいずれの真菌に対しても100
μg/mlであり、抗菌性有りと判断される800μg
/ml以下の基準値よりもはるかに小さい値であった。
したがって、少量の抗菌・抗カビ性粉末によって各真菌
の発育が阻止されており、極めて高い抗菌効果が得られ
た。さらに真菌Dに対しては、金属銀粒子を15重量%
担持させた実施例2においてより高い抗菌効果が得られ
た(表1参照)。また、生菌数の測定においては実施例
1及び実施例2ともに、いずれの真菌に対しても試験粉
末を添加後約0.5〜3時間で10個/ml以下に達し
ほぼ滅菌された状態となった。
【0048】上記実施例1及び実施例2は、金属銀粒子
が酸化チタン粒子に対してそれぞれ10重量%及び15
重量%分散担持されたものであり、この担持された金属
銀が高い抗菌作用を呈することに加えて、担持基材であ
る酸化チタン粒子においても少量ながら紫外線を吸収し
その光触媒効果により発生する活性酸素種が抗菌作用を
呈することによって優れた抗菌・抗カビ効果を発現する
と考えられる。
【0049】これに対して、比較例品1は、最小発育阻
止濃度(MIC)の結果において、真菌B及びCにおい
ては、本発明の抗菌・抗カビ性粉末試料の投入濃度が8
00μg/ml以下と抗菌性有りとなる基準値は満たし
ているものの上記実施例1及び2と比較するとその差は
顕著であり、また真菌Aに対しては基準値を満たしてお
らず十分な抗菌性が得られなかった。また、生菌数の測
定の結果、いずれの真菌に対しても菌数が10個/ml
以下に到達するのに約24時間を要し上記実施例に比べ
抗菌性に劣る結果が得られた。
【0050】この比較例1において各真菌に対する十分
な抗菌(抗カビ)性が得られない原因としては、酸化チ
タン粒子の表面に分散担持させる金属銀粒子の担持量が
5重量%と少ないことが考えられる。また、この比較例
1では酸化チタン粒子の光触媒効果による抗菌性が期待
できるが金属銀ほどの高い抗菌力は有していないため、
上記実施例と比較すると抗菌性能に劣ると考えられる。
【0051】また、酸化チタン粒子の代わりにシリカ
(SiO)粒子を用いた比較例2では、金属銀粒子の
担持量はシリカ粒子に対して10重量%と適量範囲にあ
るものの、最小発育阻止濃度は比較例1と同様であり、
生菌数の測定の結果、いずれの真菌に対しても菌数を1
0個/ml以下とするのに約24時間を要し、十分な抗
菌効果が得られなかった。
【0052】この比較例2において十分な抗菌性能が発
現できない原因としては、シリカは酸化チタンのような
光触媒効果はほとんど期待できない物質であるため担持
基材自身による分解作用は発現しないこと、さらには、
酸化チタンと比較して金属銀粒子を安定して担持させる
ことができないため金属銀粒子の担持ムラが生じ、さら
に銀粒子表面への浄化が行われず、その結果金属銀によ
る抗菌効果が十分に発揮されていないこと、が考えられ
る。
【0053】以上のように、本発明に係る抗菌・抗カビ
性粉末は、基材としてサブミクロンサイズの酸化チタン
粒子を用い、これに抗菌性を有するナノメートルサイズ
の金属銀粒子を担持させたことによって金属銀粒子が酸
化チタン粒子表面に均一に分散担持され、その結果、優
れた抗菌性能が発揮される。また、金属銀粒子の担持量
を酸化チタン粒子の単位重量当たり8重量%以上30重
量%以下の範囲とすることにより、細菌類のみならず数
重量%の金属銀粒子の担持させた従来の抗菌光触媒粉末
では十分に死滅させることができなかった真菌類に対し
ても高い殺菌効果が現れた。
【0054】本発明は、上記した実施例に何ら限定され
るものではなく、本発明の趣旨を逸脱しない範囲で種々
の改変が可能である。例えば、金属銀粒子の担持量は上
記実施例のものに限られず、抗菌・抗カビ性粉末の使用
用途、環境等によって適宜変更可能である。また、抗菌
・抗カビ性粉末を製造するに当たっては、上記実施例で
は金属銀の前駆体として硝酸銀を、還元剤としてはブド
ウ糖をそれぞれ使用しているが、これに限られず酸化チ
タン粒子の表面に金属銀粒子が均一に分散担持されるも
のであれば、種々の原料、還元剤が適用可能である。
【0055】
【発明の効果】本発明に係る抗菌・抗カビ性粉末によれ
ば、サブミクロンサイズの酸化チタン粒子の表面にナノ
メートルサイズの高い抗菌性能を有する金属銀粒子を、
酸化チタン粒子の単位重量に対して8重量%以上30重
量%以下の範囲で分散担持させることによって、細菌類
はもとより、真菌類に対しても優れた抗菌性能を発揮す
ることができる。
【0056】また、上記抗菌・抗カビ性粉末をアルコー
ル等の溶媒あるいはバインダー等と配合すれば、抗菌・
抗カビ性スプレー・塗料等のコーティング剤としての使
用が可能となる。このコーティング剤を医療衛生器具、
空気清浄機、建材、日用品等に塗布することによって、
細菌類だけでなく真菌類に対しても優れた抗菌力を備え
た抗菌・抗カビ性製品が得られる。
【0057】また、本願発明に係る抗菌・抗カビ性粉末
の製造方法によれば、酸化チタンを分散分散させた水溶
液と銀前駆体からなる錯体の含む水溶液とを混合して、
金属銀粒子を酸化チタン粒子上に還元析出させることに
よって、金属銀粒子が酸化チタン粒子の表面上に均一に
分散担持され、優れた抗菌・抗カビ特性を発現する抗菌
・抗カビ性粉末が得られる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 穴山 幸司 愛知県名古屋市南区大同町2丁目30番地 大同特殊鋼株式会社技術開発研究所内 Fターム(参考) 4H011 AA01 AA03 BA01 BB18 BC08 BC18 DA02

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 サブミクロンサイズの酸化チタン粒子の
    表面に、ナノメートルサイズの抗菌性を有する金属銀粒
    子を、前記酸化チタン粒子の単位重量当たり8重量%以
    上30重量%以下の範囲で分散担持させてなることを特
    徴とする抗菌・抗カビ性粉末。
  2. 【請求項2】 前記酸化チタン粒子は、アナターゼ型結
    晶構造により構成されることを特徴とする請求項1に記
    載の抗菌・抗カビ性粉末。
  3. 【請求項3】 前記酸化チタン粒子は、平均粒子径が
    0.04μm以下であることを特徴とする請求項1又は
    2に記載の抗菌・抗カビ性粉末。
  4. 【請求項4】 前記金属銀粒子は、平均粒子径が4nm
    以下であることを特徴とする請求項1ないし3に記載の
    抗菌・抗カビ性粉末。
  5. 【請求項5】 サブミクロンサイズの酸化チタン粒子を
    分散させた水溶液中に金属銀前駆体からなる錯体を含む
    水溶液を混合し、この混合水溶液に還元剤を添加して攪
    拌・分散することにより酸化チタン粒子の表面にナノメ
    ートルサイズの金属銀粒子を前記酸化チタン粒子の単位
    重量当たり8重量%以上30重量%以下の範囲で分散担
    持した状態で還元析出させてなることを特徴とする抗菌
    ・抗カビ性粉末の製造方法。
  6. 【請求項6】 前記銀前駆体が硝酸銀であることを特徴
    とする請求項6に記載の抗菌・抗カビ性粉末の製造方
    法。
  7. 【請求項7】 前記還元剤がブドウ糖であることを特徴
    とする請求項6又は7に記載の抗菌・抗カビ性粉末の製
    造方法。
JP2002005882A 2002-01-15 2002-01-15 抗菌・抗カビ性粉末及びその製造方法 Pending JP2003212707A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005882A JP2003212707A (ja) 2002-01-15 2002-01-15 抗菌・抗カビ性粉末及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005882A JP2003212707A (ja) 2002-01-15 2002-01-15 抗菌・抗カビ性粉末及びその製造方法

Publications (1)

Publication Number Publication Date
JP2003212707A true JP2003212707A (ja) 2003-07-30

Family

ID=27644797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005882A Pending JP2003212707A (ja) 2002-01-15 2002-01-15 抗菌・抗カビ性粉末及びその製造方法

Country Status (1)

Country Link
JP (1) JP2003212707A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037335A1 (fr) * 2003-10-07 2005-04-28 Jinxing Chen Appareil de purification d'air
CN1301061C (zh) * 2005-07-01 2007-02-21 江南大学 一种延长易腐烂果蔬保鲜期的三段复合预处理方法
WO2009058857A1 (en) * 2007-10-31 2009-05-07 John Wayne Kennedy Mitigation of animal and plant diseases using bioavailable minerals
JP2009173624A (ja) * 2008-01-25 2009-08-06 Inst Nacional De Technologia Industrial (Inti) 殺菌性充填剤組成物
US20100150980A1 (en) * 2007-04-04 2010-06-17 Perlen Converting Ag Antimicrobial material
CN102266753A (zh) * 2011-07-18 2011-12-07 福建师范大学 一种高效的活性染料吸附剂的制备方法及其应用
JP2014534337A (ja) * 2011-10-05 2014-12-18 ザ・テキサス・エー・アンド・エム・ユニバーシテイ・システム 抗菌性金属ナノ発泡体及び関連する方法
CN115651493A (zh) * 2022-10-31 2023-01-31 厦门市金宝源实业有限公司 一种针对冠状病毒HCov-229e的抗病毒涂料组合物及其制备工艺

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037335A1 (fr) * 2003-10-07 2005-04-28 Jinxing Chen Appareil de purification d'air
CN1301061C (zh) * 2005-07-01 2007-02-21 江南大学 一种延长易腐烂果蔬保鲜期的三段复合预处理方法
US20100150980A1 (en) * 2007-04-04 2010-06-17 Perlen Converting Ag Antimicrobial material
JP2010523344A (ja) * 2007-04-04 2010-07-15 パーレン コンヴァーティング アクチェンゲゼルシャフト 抗菌性材料
WO2009058857A1 (en) * 2007-10-31 2009-05-07 John Wayne Kennedy Mitigation of animal and plant diseases using bioavailable minerals
GB2467084A (en) * 2007-10-31 2010-07-21 John Wayne Kennedy Mitigation of animal and plant diseases using bioavailable minerals
JP2009173624A (ja) * 2008-01-25 2009-08-06 Inst Nacional De Technologia Industrial (Inti) 殺菌性充填剤組成物
CN102266753A (zh) * 2011-07-18 2011-12-07 福建师范大学 一种高效的活性染料吸附剂的制备方法及其应用
JP2014534337A (ja) * 2011-10-05 2014-12-18 ザ・テキサス・エー・アンド・エム・ユニバーシテイ・システム 抗菌性金属ナノ発泡体及び関連する方法
US9512324B2 (en) 2011-10-05 2016-12-06 The Texas A&M University System Antibacterial metallic nanofoam and related methods
CN115651493A (zh) * 2022-10-31 2023-01-31 厦门市金宝源实业有限公司 一种针对冠状病毒HCov-229e的抗病毒涂料组合物及其制备工艺
CN115651493B (zh) * 2022-10-31 2023-09-05 厦门市金宝源实业有限公司 一种针对冠状病毒HCov-229e的抗病毒涂料组合物及其制备工艺

Similar Documents

Publication Publication Date Title
TWI533806B (zh) Virus deactivator
TWI353881B (ja)
Parham et al. Antimicrobial treatment of different metal oxide nanoparticles: a critical review
Maurya et al. Surface functionalization of TiO2 with plant extracts and their combined antimicrobial activities against E. faecalis and E. coli
EP2136621B1 (en) Antimicrobial material
JP4979151B2 (ja) 抗菌・脱臭材料およびその製造方法
EP2480499B1 (en) Biocidal colloidal dispersions of silica particles with silver ions adsorbed thereon
JP6040021B2 (ja) 抗菌抗ウイルス性組成物及びその製造方法
WO2007051996A1 (en) Antimicrobial films
Khan et al. Synthesis of silver-doped titanium TiO2 powder-coated surfaces and its ability to inactivate Pseudomonas aeruginosa and Bacillus subtilis
CN102427720A (zh) 生物杀伤剂的纳米结构组合物
JP5361533B2 (ja) 環境物質処理剤
JP2003221304A (ja) 抗ウイルス剤、これを含有する塗料および基材
Naik et al. Mesoporous TiO2 nanoparticles containing Ag ion with excellent antimicrobial activity at remarkable low silver concentrations
JPH08165208A (ja) 防菌、防カビ、防臭用噴霧剤
JP5210468B2 (ja) 抗菌性を向上させた光触媒溶液の製造方法
JP2003212707A (ja) 抗菌・抗カビ性粉末及びその製造方法
US20200231441A1 (en) Functionalized fullerene metal nanocomposites
Ismail et al. Transparent nanocrystallite silver for antibacterial coating
WO2021196111A1 (zh) 一种广谱抗病毒杀菌塑料及用途
CN108610719A (zh) 一种玻璃表面用抗菌涂料及其制备方法
JP2013216596A (ja) 抗菌剤、抗菌剤分散液、およびこれを用いた抗菌加工製品
Ahmad Barudin et al. Antibacterial activity of Ag-TiO2 nanoparticles with various silver contents
Hidayat et al. Antimicrobial air filter made of chitosan-ZnO nanoparticles immobilized on white silica gel beads
Anwar et al. Novel synthesis and antimicrobial studies of nanoscale titania particles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041214

A977 Report on retrieval

Effective date: 20080804

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A02 Decision of refusal

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090311

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20090403

Free format text: JAPANESE INTERMEDIATE CODE: A912