JP2003169464A - Controller for voltage-driven semiconductor devices connected in series - Google Patents

Controller for voltage-driven semiconductor devices connected in series

Info

Publication number
JP2003169464A
JP2003169464A JP2001366471A JP2001366471A JP2003169464A JP 2003169464 A JP2003169464 A JP 2003169464A JP 2001366471 A JP2001366471 A JP 2001366471A JP 2001366471 A JP2001366471 A JP 2001366471A JP 2003169464 A JP2003169464 A JP 2003169464A
Authority
JP
Japan
Prior art keywords
voltage
gate
driven semiconductor
circuit
gate line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001366471A
Other languages
Japanese (ja)
Other versions
JP3778351B2 (en
Inventor
Koji Maruyama
宏二 丸山
Yasushi Abe
康 阿部
Kiyoaki Sasagawa
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001366471A priority Critical patent/JP3778351B2/en
Publication of JP2003169464A publication Critical patent/JP2003169464A/en
Application granted granted Critical
Publication of JP3778351B2 publication Critical patent/JP3778351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an overvoltage from being applied to specific one of a plurality of voltage-driven semiconductor devices connected in series by equalizing the timing of switching in turning on and off the devices, monitoring the overvoltage in the individual devices after turn-off, and turning on the device again. <P>SOLUTION: The gate wire or emitter wire of the voltage-driven semiconductor device at each stage is magnetically coupled with the gate wire or emitter wire of the device at the next stage. The overvoltage in the individual devices after turn-off is monitored through gate drive circuits. The device to which the overvoltage is applied is subjected to gate voltage control, and the device is turned on again in an active region. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、複数個直列接続
された電圧駆動型半導体素子を同時にオン・オフさせる
場合における過電圧抑制とスイッチングタイミングの制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for overvoltage suppression and switching timing when a plurality of voltage-driven semiconductor elements connected in series are simultaneously turned on / off.

【0002】[0002]

【従来の技術】直列接続された半導体スイッチング素子
を備えた電力変換装置において、各スイッチング素子を
同時にオン・オフさせるために数多くの課題と解決策と
が知られている。特に、電圧駆動型の半導体スイッチン
グ素子を直列接続した場合における問題点を、図11に
示すように半導体スイッチング素子を各アームに2個直
列接続してなるインバータ回路の1相分を例にとって説
明する。
2. Description of the Related Art In a power converter having semiconductor switching elements connected in series, many problems and solutions are known for turning on / off each switching element at the same time. In particular, a problem in the case where voltage-driven semiconductor switching elements are connected in series will be described by taking one phase of an inverter circuit in which two semiconductor switching elements are connected in series in each arm as shown in FIG. .

【0003】図11において、Q1〜Q4は電圧駆動型
半導体素子としてのIGBT(絶縁ゲートバイポーラト
ランジスタ)であり、それぞれに並列に接続されている
抵抗R、コンデンサC、ダイオードDからなる回路がス
ナバ回路である。また、GDU1〜GDU4はゲート駆
動回路、電源電圧はEdである。
In FIG. 11, Q1 to Q4 are IGBTs (insulated gate bipolar transistors) as voltage drive type semiconductor elements, and a circuit consisting of a resistor R, a capacitor C and a diode D connected in parallel to each other is a snubber circuit. Is. Further, GDU1 to GDU4 are gate drive circuits, and the power supply voltage is Ed.

【0004】このインバータ回路において、上アーム、
すなわちQ1,Q2がオン動作からオフ動作に移行する
際に、Q1がQ2より早いタイミングでターンオフした
時の挙動(モード1:スイッチング過渡状態)と、Q1
のテイル電流と称されるターンオフ後の電流がQ2に比
して少ないときのターンオフ後の挙動(モード2:スイ
ッチング過渡状態〜定常状態)とに関し、図12(a)
ではスナバ回路が無い場合の動作波形、図12(b)で
はスナバ回路が有る場合の動作波形を示す。
In this inverter circuit, the upper arm,
That is, when Q1 and Q2 shift from on-operation to off-operation, behavior when Q1 turns off at a timing earlier than Q2 (mode 1: switching transient state) and Q1
12 (a) regarding the behavior after the turn-off when the current after the turn-off, which is referred to as the tail current of (1), is smaller than Q2 (Mode 2: switching transient state to steady state).
Shows an operation waveform when there is no snubber circuit, and FIG. 12B shows an operation waveform when there is a snubber circuit.

【0005】すなわち、図12(a)に示す如く、Q1
が先にターンオフ動作を開始し、この開始時点よりΔt
の期間ではQ2がまだオン状態にあることから、Q1の
素子電圧VCE(Q1)のみが上昇し、電圧アンバラン
スが生じ、また、テイル電流の差が充電電流となり、テ
イル電流の少ないQ1の素子電圧VCE(Q1)をより
上昇させる。しかし、図12(b)に示す如く、スナバ
回路を接続すると、接続していないときと比較して、素
子電圧の上昇率dv/dtおよび電圧アンバランスを低
減することができる。これらの低減はスナバ回路のCの
容量に依存しており、この容量を大きくするほど低減効
果を増加させることができる。
That is, as shown in FIG.
Starts the turn-off operation first, and from this start time Δt
Since Q2 is still in the ON state during the period of, the element voltage VCE (Q1) of Q1 rises, voltage imbalance occurs, and the difference in tail current becomes the charging current, and the element of Q1 with less tail current The voltage VCE (Q1) is further increased. However, as shown in FIG. 12B, when the snubber circuit is connected, the increase rate dv / dt of the element voltage and the voltage imbalance can be reduced as compared with the case where the snubber circuit is not connected. These reductions depend on the capacitance of C of the snubber circuit, and the larger the capacitance, the greater the reduction effect.

【0006】[0006]

【発明が解決しようとする課題】上述の如く素子と並列
にスナバ回路を接続することで、素子電圧のdv/dt
およびアンバランスを低減することが可能となるが、素
子のスイッチング時間差およびテイル電流差をより大き
く許容しようとすると、回路の大型化や回路損失の増加
を招くという問題が生ずる。
As described above, by connecting the snubber circuit in parallel with the element, the dv / dt of the element voltage is increased.
Although it is possible to reduce the unbalance, it is attempted to allow the switching time difference and the tail current difference of the elements to be larger, which causes a problem that the circuit becomes larger and the circuit loss increases.

【0007】従って、この発明の課題は、回路の大型化
や回路損失の増加を招くことなく、直列接続された素子
のスイッチング過渡状態から定常状態に至る全ての期間
での素子電圧分担のアンバランスを抑制し、素子への過
電圧印加およびそれに基づく素子破壊を防止することに
ある。
Therefore, an object of the present invention is to unbalance the element voltage distribution in all the periods from the switching transient state of the elements connected in series to the steady state without inviting an increase in circuit size and an increase in circuit loss. To prevent the application of overvoltage to the element and the destruction of the element due to the overvoltage.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、この発明によれば、直列接続された複数個の電圧駆
動型半導体素子と、これらの電圧駆動型半導体素子をオ
ン・オフするために当該電圧駆動型半導体素子のゲート
端子にゲート信号を供給するゲート駆動回路とからなる
半導体スイッチ回路において、各段の電圧駆動型半導体
素子のゲート線に流れる電流値を一致させるために、初
段のゲート線と次段のゲート線とを磁気結合させ、初段
を除く各段のゲート線は前段のゲート線と次段のゲート
線とを磁気結合させると共に、これらの電圧駆動型半導
体素子に印加される電圧が過電圧になったときには、こ
の過電圧印加を抑制するために当該電圧駆動型半導体素
子のゲート電圧制御を行うことで、各ゲート電流を一致
させてスイッチングタイミングのばらつきを抑制しつ
つ、各段の素子の電圧分担のアンバランスを抑制してい
る(請求項1記載の発明)。
In order to solve the above-mentioned problems, according to the present invention, a plurality of voltage-driven semiconductor elements connected in series and for turning on / off these voltage-driven semiconductor elements are provided. In a semiconductor switch circuit consisting of a gate drive circuit that supplies a gate signal to the gate terminal of the voltage-driven semiconductor element, in order to match the current values flowing in the gate lines of the voltage-driven semiconductor elements of each stage, The gate line and the gate line of the next stage are magnetically coupled, and the gate lines of each stage except the first stage magnetically couple the gate line of the previous stage and the gate line of the next stage, and are applied to these voltage-driven semiconductor elements. When the voltage becomes an overvoltage, the gate voltage of the voltage-driven semiconductor element is controlled in order to suppress the application of the overvoltage, so that the gate currents are matched and the switching current is controlled. While suppressing the variation of the timing, (the invention according to claim 1) to suppress the unbalance of the voltage distribution of elements of each stage are.

【0009】また、請求項1に記載の半導体スイッチ回
路において、前記ゲート駆動回路と前記電圧駆動型半導
体素子のエミッタ端子を接続するエミッタ線同士、また
はゲート線とエミッタ線とを磁気結合させることによ
り、同様な効果を発揮させることができる(請求項2記
載の発明)。
Further, in the semiconductor switch circuit according to claim 1, by magnetically coupling the emitter lines connecting the gate drive circuit and the emitter terminals of the voltage drive type semiconductor elements, or by magnetically coupling the gate line and the emitter line. The same effect can be exhibited (the invention according to claim 2).

【0010】[0010]

【発明の実施の形態】この発明の第1の実施例につい
て、IGBTの直列接続を2組として構成された回路を
例に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described by taking as an example a circuit constituted by two IGBTs connected in series.

【0011】図1は、この発明の半導体スイッチ回路を
用いた回路構成例を示すもので、この回路は、図11と
同様にインバータ回路の1相分である。
FIG. 1 shows an example of a circuit configuration using the semiconductor switch circuit of the present invention. This circuit corresponds to one phase of an inverter circuit as in FIG.

【0012】すなわち、図1に示した回路構成では図1
1に示した回路構成に対してスナバ回路が省略され、ま
た、ゲート駆動回路GDU1〜GDU4に代えてGDU
1a〜GDU4aを備え、さらに、分圧抵抗Rb1〜R
b4、磁気回路MC1,MC2が追加されている。
That is, in the circuit configuration shown in FIG.
The snubber circuit is omitted from the circuit configuration shown in FIG. 1, and the gate drive circuits GDU1 to GDU4 are replaced with GDU.
1a to GDU4a, and voltage dividing resistors Rb1 to Rb
b4 and magnetic circuits MC1 and MC2 are added.

【0013】図1の回路構成における特徴は、上アーム
のゲート線は磁気回路MC1により磁気結合しており、
同様に、下アームのゲート線は磁気回路MC2により磁
気結合している点である。磁気結合させるときには、例
として図2のようにそれぞれのゲート線を同じ磁性体に
巻き付ける。これにより、例えばゲート電流Ig(Q
1)が流れると磁気回路にΦ1の磁束が発生し、これが
GDU2aのゲート線を横切る。同様に、Ig(Q2)
が流れるとΦ2の磁束が発生し、これがGDU1aのゲ
ート線を横切る。これによって、各ゲート線が磁気結合
される。このとき、前記磁性体への巻数N1、N2を同
じにすることで、Ig(Q1)=Ig(Q2)の時に|
Φ1|=|Φ2|となるようにし、Ig(Q1)とIg
(Q2)が逆極性の時に、Φ1とΦ2が逆極性になるよ
うにする。
The feature of the circuit configuration of FIG. 1 is that the gate line of the upper arm is magnetically coupled by a magnetic circuit MC1.
Similarly, the gate line of the lower arm is magnetically coupled by the magnetic circuit MC2. When magnetically coupling, each gate line is wound around the same magnetic substance as shown in FIG. 2, for example. Thereby, for example, the gate current Ig (Q
When 1) flows, a magnetic flux of Φ1 is generated in the magnetic circuit, which crosses the gate line of GDU2a. Similarly, Ig (Q2)
Flows, a magnetic flux of Φ2 is generated, which crosses the gate line of GDU1a. As a result, each gate line is magnetically coupled. At this time, by setting the numbers of turns N1 and N2 around the magnetic body to be the same, when Ig (Q1) = Ig (Q2), |
Φ1 | = | Φ2 | so that Ig (Q1) and Ig
When (Q2) has opposite polarities, Φ1 and Φ2 have opposite polarities.

【0014】図3は、図1に示したゲート駆動回路GD
U1a〜GDU4aそれぞれの詳細回路構成例であり、
図示の如く、従来のGDU1〜GDU4それぞれに対し
て、過電圧判別回路OVとゲート電圧制御回路ROが付
加されている。この過電圧判別回路OVは、図1に示し
た分圧抵抗Rbによって検出された電圧が過電圧かどう
かを判別するものであり、ゲート電圧制御回路ROは、
IGBTのターンオフ時に過電圧と判別されたIGBT
を再度オンさせるものである。
FIG. 3 shows the gate drive circuit GD shown in FIG.
It is a detailed circuit configuration example of each U1a ~ GDU4a,
As shown in the figure, an overvoltage determination circuit OV and a gate voltage control circuit RO are added to each of the conventional GDU1 to GDU4. The overvoltage determination circuit OV determines whether or not the voltage detected by the voltage dividing resistor Rb shown in FIG. 1 is an overvoltage, and the gate voltage control circuit RO is
An IGBT that is determined to be an overvoltage when the IGBT is turned off
To turn it on again.

【0015】図1に示したインバータ回路のQ,Q2の
ターンオフ時の動作について、図4〜図8を参照しつ
つ、以下に説明する。
The operation of the inverter circuit shown in FIG. 1 when Q and Q2 are turned off will be described below with reference to FIGS.

【0016】図4(a,b)は先述のモード1(スイッ
チング過渡状態)の期間における動作波形を示し、先ず
図4(a)に示すように、Q1とQ2のターンオフのタ
イミングが同時の場合には、それぞれゲート(G)−エ
ミッタ(E)間電圧VGE(Q1),VGE(Q2)は
ほぼ等しくなる。すなわち、Q1,Q2を構成するIG
BTのG−E間は、図5に示す如く等価的にコンデンサ
Ciesと見做すことができるため、図4(a)のよう
にIg(Q1),Ig(Q2)には同波形で過渡的にC
iesへの放電電流が流れる。この時、磁気回路MC1
に流れるIg(Q1)とIg(Q2)は極性が逆とな
り、従って、Φ1とΦ2は同レベルで逆極性となるた
め、MC1に発生する磁束は互いに打ち消しあい「0」
となる。その結果、それぞれのゲート線は磁気結合せ
ず、Ig(Q1)とIg(Q2)はそれぞれのCies
からの放電電流として流れ続ける。
FIG. 4A and FIG. 4B show operating waveforms during the above-mentioned mode 1 (switching transient state). First, as shown in FIG. 4A, when the turn-off timings of Q1 and Q2 are the same. , The gate (G) -emitter (E) voltages VGE (Q1) and VGE (Q2) are substantially equal to each other. That is, the IG that constitutes Q1 and Q2
Between G and E of BT can be regarded equivalently as the capacitor Cies as shown in FIG. 5, so that as shown in FIG. 4A, Ig (Q1) and Ig (Q2) have the same waveform transient. Purposely C
A discharge current flows to ies. At this time, the magnetic circuit MC1
Since the polarities of Ig (Q1) and Ig (Q2) flowing through are opposite, and therefore Φ1 and Φ2 have opposite polarities at the same level, the magnetic fluxes generated in MC1 cancel each other out to “0”.
Becomes As a result, the respective gate lines are not magnetically coupled, and Ig (Q1) and Ig (Q2) are different from each Cies.
Continues to flow as discharge current from.

【0017】次に図4(b)に示すように、Q1とQ2
のターンオフタイミングがアンバランスとなった場合、
例えばQ1が先にターンオフした時、すなわち、Ig
(Q1)がIg(Q2)よりも先に流れ出した時には、
Φ1≠Φ2となるため、磁気回路MC1には|Φ1−Φ
2|の磁束が発生し、この磁束により、それぞれのゲー
ト線は磁気結合する。このとき、それぞれのゲート線に
はインダクタンス分L1とL2が発生し、これらは|Φ
1−Φ2|に比例する特性がある。すなわち、Ig(Q
1)とIg(Q2)のアンバランスが大きい程、L1,
L2も大きくなる。また、L1,L2が増加する程、ゲ
ート線のインピーダンスが増加するため、Ig(Q1)
とIg(Q2)が流れにくくなる。この動作により、図
6に示すようにIg(Q1)とIg(Q2)のアンバラ
ンス分に応じて自動的にゲート線のインピーダンスが変
化し、Ig(Q1)は減少する方向、Ig(Q2)は増
加する方向に作用して、Ig(Q1)とIg(Q2)と
が一致するように動作させることができる。
Next, as shown in FIG. 4B, Q1 and Q2
If the turn-off timing of is unbalanced,
For example, when Q1 is turned off first, that is, Ig
When (Q1) flows out before Ig (Q2),
Since Φ1 ≠ Φ2, | Φ1-Φ in the magnetic circuit MC1
A magnetic flux of 2 | is generated, and each gate line is magnetically coupled by this magnetic flux. At this time, inductance components L1 and L2 are generated in each gate line, and these are | Φ
There is a characteristic proportional to 1-Φ2 |. That is, Ig (Q
The larger the imbalance between 1) and Ig (Q2), the more L1
L2 also becomes large. Further, as L1 and L2 increase, the impedance of the gate line increases, so that Ig (Q1)
And Ig (Q2) becomes difficult to flow. As a result of this operation, as shown in FIG. 6, the impedance of the gate line is automatically changed according to the unbalanced amount of Ig (Q1) and Ig (Q2), and Ig (Q1) is decreased, Ig (Q2) Acts in an increasing direction, and can be operated so that Ig (Q1) and Ig (Q2) match.

【0018】上述の如く、磁気回路MC1を設けること
により、Q1とQ2のターンオフタイミングのばらつき
を遅れなく抑制することが可能となる。これは、ターン
オンタイミングのばらつき抑制に対しても同様に有効に
動作する。
As described above, by providing the magnetic circuit MC1, it is possible to suppress variations in turn-off timing of Q1 and Q2 without delay. This also works effectively for suppressing variation in the turn-on timing.

【0019】図7は先述のモード2(スイッチング過渡
状態〜定常状態)の期間において、Q1のテイル電流と
称されるターンオフ後の電流がQ2に比して少ないとき
のターンオフ後の動作波形を示し、このときには、Q1
のコレクタ−エミッタ間電圧VCE(Q1)が上昇を始
め、分圧抵抗Rb1を介して検出されるVCE(Q1)
が過電圧検知レベルに達すると、図3に示した回路構成
のゲート駆動回路GDU1aの過電圧判別回路OVにて
過電圧と判断される。これにより、図3に示す通常オン
・オフ駆動回路は動作を停止する(具体的には、TR2
がオン→オフ)と共に、TR1,Rg(on)と同様回
路のゲート電圧制御回路ROが動作して、Q1のゲート
−エミッタ間電圧VGE(Q1)をしきい値付近の電圧
にすることで、Q1を活性領域内で再オンさせる。Q1
がオンすると、コレクタ−エミッタ間電圧VCE(Q
1)が低下し、Q1に過電圧が印加されるのを防止する
ことができる。
FIG. 7 shows operation waveforms after turn-off when the current after turn-off, which is called the tail current of Q1, is smaller than Q2 during the period of mode 2 (switching transient state to steady state) described above. , At this time, Q1
Collector-emitter voltage VCE (Q1) starts rising and is detected via the voltage dividing resistor Rb1.
Reaches the overvoltage detection level, the overvoltage determination circuit OV of the gate drive circuit GDU1a having the circuit configuration shown in FIG. As a result, the normal on / off drive circuit shown in FIG. 3 stops its operation (specifically, TR2
Is turned on → off), and the gate voltage control circuit RO of the same circuit as TR1 and Rg (on) operates to set the gate-emitter voltage VGE (Q1) of Q1 to a voltage near the threshold value. Turn Q1 back on in the active region. Q1
Is turned on, the collector-emitter voltage VCE (Q
It is possible to prevent 1) from dropping and applying an overvoltage to Q1.

【0020】また 図1に示したQ1,Q2部の回路構
成である図8には、上述の如く、ゲート駆動回路GDU
1aのゲート電圧制御回路ROが動作したときのゲート
線の電流Ig(Q1)の経路が示されている。この図か
ら明らかなように、このときの前記Ig(Q1)は磁気
回路MC1の経路には流れないようして、過電圧が印加
されたQ1のゲート電圧のみを所定の値にすることが可
能になっている。
Further, FIG. 8 showing the circuit configuration of the Q1 and Q2 parts shown in FIG. 1 has the gate drive circuit GDU as described above.
The path of the current Ig (Q1) of the gate line when the gate voltage control circuit RO of 1a operates is shown. As is apparent from this figure, the Ig (Q1) at this time does not flow in the path of the magnetic circuit MC1 and only the gate voltage of Q1 to which the overvoltage is applied can be set to a predetermined value. Has become.

【0021】図9は、この発明の第2の実施例を示すも
ので、素子をn個直列接続したときの回路構成を表して
いる。図から明らかなように、Q1とQ2のゲート線を
磁気回路MC1により磁気結合させてゲート電流値を一
致させ、これらの電流値を基準としてQ3のゲート電流
を一致させるために、Q2とQ3のゲート線を磁気回路
MC2により磁気結合させる、というようにゲート線を
従属的に磁気結合させることで、瞬時に全ての素子のス
イッチングアンバランスを抑制することが可能となり、
また、2本のゲート線当たり1個の磁気回路を取り付け
るだけで済むため、配線を簡単化することができる。
FIG. 9 shows a second embodiment of the present invention and shows a circuit configuration when n elements are connected in series. As is apparent from the figure, the gate lines of Q1 and Q2 are magnetically coupled by the magnetic circuit MC1 to match the gate current values, and in order to match the gate currents of Q3 with these current values as a reference, By magnetically coupling the gate lines subordinately by magnetically coupling the gate lines with the magnetic circuit MC2, it becomes possible to suppress the switching imbalance of all the elements in an instant.
Further, since it is only necessary to attach one magnetic circuit to two gate lines, the wiring can be simplified.

【0022】また、図1に示したように、ゲート電流は
一巡のルートで流れることから、ゲート線とエミッタ線
に流れる電流値が同じとなる。そのため、この発明の第
3の実施例としての図10のようにゲート線とエミッタ
線、またはエミッタ線とエミッタ線を磁気結合しても、
図1での説明と同様の原理でスイッチングタイミングの
ばらつき抑制に対して有効に動作する。
Further, as shown in FIG. 1, since the gate current flows through a round route, the current values flowing through the gate line and the emitter line are the same. Therefore, even if the gate line and the emitter line or the emitter line and the emitter line are magnetically coupled as shown in FIG. 10 as the third embodiment of the present invention,
The same principle as described with reference to FIG. 1 effectively operates to suppress variation in switching timing.

【0023】さらに、図9、図10の回路構成では、先
述のモード2において、ゲート電圧制御回路ROが動作
したときのゲート線の電流はそれぞれの磁気回路の経路
には流れないようにしつつ、過電圧が印加された素子の
みを再オンさせることが可能になっている
Further, in the circuit configurations of FIG. 9 and FIG. 10, in the above-mentioned mode 2, the current of the gate line when the gate voltage control circuit RO operates does not flow in the path of each magnetic circuit, It is possible to turn on only the element to which the overvoltage is applied.

【0024】[0024]

【発明の効果】この発明によれば、複数個の電圧駆動型
半導体素子を直列接続するとき、各素子のゲート線を磁
気結合させ、ゲート電流値を一致させることでスイッチ
ング時間差を抑制し、且つ、各素子の印加電圧にアンバ
ランスが発生したときには、過電圧が印加された電圧駆
動型半導体素子のゲート電圧制御を行うことにより、電
圧駆動型半導体素子への過電圧印加およびそれに基づく
素子破壊を防止することができる。
According to the present invention, when a plurality of voltage-driven semiconductor elements are connected in series, the gate lines of the respective elements are magnetically coupled and the gate current values are made equal to each other, thereby suppressing the switching time difference, and When an imbalance occurs in the voltage applied to each element, the gate voltage control of the voltage-driven semiconductor element to which the overvoltage is applied prevents the overvoltage from being applied to the voltage-driven semiconductor element and the element breakdown due to the overvoltage. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す回路構成図FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention.

【図2】図1の原理を説明するための結線図FIG. 2 is a wiring diagram for explaining the principle of FIG.

【図3】図1の部分詳細回路構成図FIG. 3 is a partial detailed circuit configuration diagram of FIG.

【図4】図1の動作を説明する波形図FIG. 4 is a waveform diagram illustrating the operation of FIG.

【図5】図1の動作を説明するための回路構成図5 is a circuit configuration diagram for explaining the operation of FIG.

【図6】図1の動作を説明するための回路構成図FIG. 6 is a circuit configuration diagram for explaining the operation of FIG.

【図7】図1の動作を説明するための波形図FIG. 7 is a waveform diagram for explaining the operation of FIG.

【図8】図1の動作を説明するための回路構成図FIG. 8 is a circuit configuration diagram for explaining the operation of FIG.

【図9】この発明の第2の実施例を示す回路構成図FIG. 9 is a circuit configuration diagram showing a second embodiment of the present invention.

【図10】この発明の第3の実施例を示す回路構成図FIG. 10 is a circuit configuration diagram showing a third embodiment of the present invention.

【図11】従来例を示す回路構成図FIG. 11 is a circuit configuration diagram showing a conventional example.

【図12】図11の動作を説明する波形図FIG. 12 is a waveform diagram illustrating the operation of FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笹川 清明 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5H740 BA11 BB01 KK01 KK03 MM01 MM05 5J050 AA34 BB24 CC01 DD00 EE03 EE18 EE22 FF22 5J055 AX32 BX16 CX19 DX09 EX07 EY01 EY07 EY10 EY12 EZ00 EZ12 FX03 GX01 GX02 GX05 GX08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyoaki Sasakawa             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. F-term (reference) 5H740 BA11 BB01 KK01 KK03 MM01                       MM05                 5J050 AA34 BB24 CC01 DD00 EE03                       EE18 EE22 FF22                 5J055 AX32 BX16 CX19 DX09 EX07                       EY01 EY07 EY10 EY12 EZ00                       EZ12 FX03 GX01 GX02 GX05                       GX08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直列接続された複数個の電圧駆動型半導
体素子と、これらの電圧駆動型半導体素子をオン・オフ
するために当該電圧駆動型半導体素子のゲート端子にゲ
ート信号を供給するゲート駆動回路とからなる半導体ス
イッチ回路において、 各段の電圧駆動型半導体素子のゲート線に流れる電流値
を一致させるために、初段のゲート線と次段のゲート線
とを磁気結合させ、初段を除く各段のゲート線は前段の
ゲート線と次段のゲート線とを磁気結合させると共に、 これらの電圧駆動型半導体素子に印加される電圧が過電
圧になったときには、この過電圧印加を抑制するために
当該電圧駆動型半導体素子のゲート電圧制御を行うこと
を特徴とする直列接続された電圧駆動型半導体素子の制
御装置。
1. A plurality of voltage-driven semiconductor elements connected in series, and a gate drive for supplying a gate signal to a gate terminal of the voltage-driven semiconductor elements for turning on / off these voltage-driven semiconductor elements. In the semiconductor switch circuit including the circuit, in order to match the current value flowing in the gate line of the voltage-driven semiconductor element in each stage, the gate line of the first stage and the gate line of the next stage are magnetically coupled to each other except the first stage. The gate line of the stage magnetically couples the gate line of the previous stage and the gate line of the next stage, and when the voltage applied to these voltage-driven semiconductor elements becomes an overvoltage, in order to suppress the overvoltage application, A controller for controlling voltage-driven semiconductor elements connected in series, which controls the gate voltage of the voltage-driven semiconductor elements.
【請求項2】 請求項1に記載の半導体スイッチ回路に
おいて、 前記ゲート駆動回路と前記電圧駆動型半導体素子のエミ
ッタ端子を接続するエミッタ線同士、またはゲート線と
エミッタ線とを磁気結合させたことを特徴とする直列接
続された電圧駆動型半導体素子の制御装置。
2. The semiconductor switch circuit according to claim 1, wherein emitter lines connecting the gate drive circuit and the emitter terminals of the voltage-driven semiconductor element are magnetically coupled to each other or the gate line and the emitter line are magnetically coupled to each other. 2. A control device for voltage-driven semiconductor elements connected in series, which is characterized in that.
JP2001366471A 2001-11-30 2001-11-30 Control device for voltage-driven semiconductor elements connected in series Expired - Lifetime JP3778351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366471A JP3778351B2 (en) 2001-11-30 2001-11-30 Control device for voltage-driven semiconductor elements connected in series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366471A JP3778351B2 (en) 2001-11-30 2001-11-30 Control device for voltage-driven semiconductor elements connected in series

Publications (2)

Publication Number Publication Date
JP2003169464A true JP2003169464A (en) 2003-06-13
JP3778351B2 JP3778351B2 (en) 2006-05-24

Family

ID=19176362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366471A Expired - Lifetime JP3778351B2 (en) 2001-11-30 2001-11-30 Control device for voltage-driven semiconductor elements connected in series

Country Status (1)

Country Link
JP (1) JP3778351B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042512A (en) * 2004-07-28 2006-02-09 Fuji Electric Holdings Co Ltd Method for suppressing variations in voltage of voltage driven semiconductor device
JP2006149169A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Semiconductor switching circuit
JP2007116819A (en) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd Gate drive circuit of voltage-driven type semiconductor element, and power converter using the circuit
KR20150002479A (en) * 2013-06-28 2015-01-07 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 Power semiconductor circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042512A (en) * 2004-07-28 2006-02-09 Fuji Electric Holdings Co Ltd Method for suppressing variations in voltage of voltage driven semiconductor device
JP4639687B2 (en) * 2004-07-28 2011-02-23 富士電機ホールディングス株式会社 Voltage variation suppression method for voltage-driven semiconductor devices
JP2006149169A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Semiconductor switching circuit
JP4631409B2 (en) * 2004-11-24 2011-02-16 富士電機ホールディングス株式会社 Semiconductor switch circuit
JP2007116819A (en) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd Gate drive circuit of voltage-driven type semiconductor element, and power converter using the circuit
KR20150002479A (en) * 2013-06-28 2015-01-07 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 Power semiconductor circuit
KR102117719B1 (en) 2013-06-28 2020-06-01 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 Power semiconductor circuit

Also Published As

Publication number Publication date
JP3778351B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP3666843B2 (en) Gate circuit of insulated gate semiconductor device
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP2002281761A (en) Semiconductor power converter
JP4650688B2 (en) Insulated gate transistor drive circuit device
JP4396036B2 (en) Control device for voltage-driven semiconductor elements connected in series
JPH11285238A (en) Gate drive circuit for semiconductor device of insulating gate type and power converter device
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JP3696833B2 (en) Power semiconductor device
JP3680722B2 (en) IGBT overcurrent protection circuit
JP3414859B2 (en) Turn-off circuit device for overcurrent of semiconductor device
JP2004096829A (en) Controller of voltage-driven semiconductor device connected in parallel
JPH0964707A (en) Semiconductor output circuit device
JP2003169464A (en) Controller for voltage-driven semiconductor devices connected in series
JP2002300016A (en) Gate drive means and gate drive circuit
JP2002369495A (en) Drive circuit for voltage-driven element
JP3767740B2 (en) Control device for voltage-driven semiconductor elements connected in series
JP2001169534A (en) Gate circuit of insulated gate semiconductor element
JP2000324801A (en) Drive circuit for voltage-controlled semiconductor device
JP3602011B2 (en) Control circuit
JP2007089292A (en) Variation reduction method for voltage distribution by a plurality of voltage drive type semi-conductor devices connected in series
JP2005167535A (en) Semiconductor switching circuit
JP4396059B2 (en) Control device for voltage-driven semiconductor elements connected in series
JP4026054B2 (en) Control device for voltage-driven semiconductor elements connected in series
JPH10209832A (en) Semiconductor switch circuit
JP6561794B2 (en) Switching circuit

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040115

RD04 Notification of resignation of power of attorney

Effective date: 20040205

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051013

A521 Written amendment

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060209

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100310

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110310

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120310

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120310

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120310

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130310