JP2005167535A - Semiconductor switching circuit - Google Patents

Semiconductor switching circuit Download PDF

Info

Publication number
JP2005167535A
JP2005167535A JP2003402553A JP2003402553A JP2005167535A JP 2005167535 A JP2005167535 A JP 2005167535A JP 2003402553 A JP2003402553 A JP 2003402553A JP 2003402553 A JP2003402553 A JP 2003402553A JP 2005167535 A JP2005167535 A JP 2005167535A
Authority
JP
Japan
Prior art keywords
circuit
voltage
voltage balance
balance circuit
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402553A
Other languages
Japanese (ja)
Inventor
Yasushi Abe
康 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003402553A priority Critical patent/JP2005167535A/en
Publication of JP2005167535A publication Critical patent/JP2005167535A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size and loss in a suppression circuit for suppressing each element voltage unbalance in switching, in a semiconductor switching circuit comprising connection of a plurality of voltage drive type semiconductor devices (semiconductor devices) in series. <P>SOLUTION: A transition voltage balance circuit B1 is connected to the semiconductor devices Q1, Q2 with the shortest distance, and a steady voltage balance circuit B2 is connected to a position that is apart form the semiconductor devices Q1, Q2 and is structurally optimum. In this case, the reason why the distance is made shortest is that it is required that the capacity of a capacitor in the circuit B1 should be increased further, since the time constant of voltage unbalance is very small in a mode, immediately after switching in transition and hence parasitic inductance becomes large, when wiring length is lengthened. Voltage balance results in terms of DC in the unbalance mode of a leakage current, which is not related to the inductance, so that connection is made to an optimum arbitrary position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、複数個直列接続された電圧駆動型半導体素子(以下、単に素子とも言う)を同時にオン,オフさせる場合における各素子の電圧分担のばらつきを低減するための回路方式に関する。   The present invention relates to a circuit system for reducing variations in voltage sharing among elements when a plurality of voltage-driven semiconductor elements connected in series (hereinafter also simply referred to as elements) are simultaneously turned on and off.

図6に、例えば特許文献1や非特許文献1に開示されている従来例を示す。
同図において、Q1〜Q4は電圧駆動型半導体素子としてのIGBT(絶縁ゲートバイポーラトランジスタ)であり、Q1とQ2、Q3とQ4がそれぞれ2直列接続されている。また、各素子に並列接続されている抵抗R、コンデンサC、ダイオードDからなる回路が過渡電圧バランス回路の一例であり、コンデンサが素子電圧アンバランスを抑制するように動作する。また、Rd1〜Rd4は定常電圧バランス回路、GDU1〜GDU4はゲート駆動回路、Edは直流電源電圧である。
FIG. 6 shows a conventional example disclosed in Patent Document 1 and Non-Patent Document 1, for example.
In the figure, Q1 to Q4 are IGBTs (insulated gate bipolar transistors) as voltage-driven semiconductor elements, and Q1 and Q2 and Q3 and Q4 are connected in series. A circuit including a resistor R, a capacitor C, and a diode D connected in parallel to each element is an example of a transient voltage balance circuit, and the capacitor operates so as to suppress the element voltage imbalance. Rd1 to Rd4 are steady voltage balance circuits, GDU1 to GDU4 are gate drive circuits, and Ed is a DC power supply voltage.

上記の回路において、上アーム、すなわちQ1,Q2がターンオフ動作をする際に、Q1がQ2より早いタイミングでオフしたとき各電圧バランス回路がない場合の動作波形を図7(a)に、また、電圧バランス回路がある場合の動作波形を図7(b)に示す。
これらの波形において、モード1はスイッチング直後の期間で、非常に早いアンバランスモード、モード2はテイル電流通流期間で、モード1よりは遅いアンバランスモード、モード3は素子の定常状態における漏れ電流のアンバランスモードを示している。
In the above circuit, when the upper arm, that is, Q1 and Q2 perform the turn-off operation, the operation waveform when each voltage balance circuit is not present when Q1 is turned off earlier than Q2 is shown in FIG. FIG. 7B shows an operation waveform when there is a voltage balance circuit.
In these waveforms, mode 1 is a period immediately after switching, which is a very fast unbalance mode, mode 2 is a tail current flow period, unbalance mode is slower than mode 1, and mode 3 is leakage current in the steady state of the element. Shows the unbalanced mode.

このモード1期間の波形のように、Q1が先にターンオフ動作を開始し、この開始時点よりΔtの期間ではQ2がいまだオン状態にあることから、Q1の素子電圧VCE(Q1)のみが上昇し、電圧アンバランスが生じる。しかし、過渡電圧バランス回路を接続すると、接続しないときに比べて素子電圧の上昇率dv/dtを低減できるので、電圧アンバランス量が抑制される。このdv/dtは過渡電圧バランス回路のCの容量に依存しており、これを増大させるほど過渡電圧アンバランス低減効果を増加させることができる。   As shown in the waveform of the mode 1 period, Q1 starts the turn-off operation first, and since Q2 is still in the on state during the period Δt from the start time, only the element voltage VCE (Q1) of Q1 rises. Voltage imbalance occurs. However, when the transient voltage balance circuit is connected, the increase rate dv / dt of the element voltage can be reduced as compared with the case where the transient voltage balance circuit is not connected, so that the voltage imbalance amount is suppressed. This dv / dt depends on the capacity of C of the transient voltage balance circuit, and the effect of reducing the transient voltage imbalance can be increased as this is increased.

また、モード2期間の波形のように、素子のテイル電流のアンバランスが大きいと、テイル電流が少ないQ1の素子電圧を上昇させるが、上記と同様に過渡電圧バランス回路のCの容量を大きくすることにより、この電圧アンバランス量を抑制することができる。モード3の電圧アンバランスは、素子の漏れ電流でアンバランスするため、例えば図6のように抵抗rd1〜Rd4を接続することで、見かけ上の漏れ電流がバランスし、素子電圧をバランスさせることができる。
特開平04−125071号公報(第2−3頁、図1) 平成11年電気学会産業応用部門大会発表論文「平型IGBT直列接続時のスイッチング試験」
In addition, if the tail current unbalance of the element is large as in the waveform of the mode 2 period, the element voltage of Q1 having a small tail current is increased, but the capacitance of C of the transient voltage balance circuit is increased as described above. Thus, this voltage imbalance amount can be suppressed. Since the voltage unbalance in mode 3 is unbalanced by the leakage current of the element, for example, by connecting resistors rd1 to Rd4 as shown in FIG. 6, the apparent leakage current is balanced and the element voltage is balanced. it can.
Japanese Patent Laid-Open No. 04-125071 (page 2-3, FIG. 1) 1999 IEEJ Industrial Application Division Conference Paper “Switching Test with Flat IGBT Series Connection”

上記のように、2種類の電圧バランス回路を素子と並列に接続することで素子電圧の上昇率dv/dtを低減し、その結果、スイッチング差による素子電圧のアンバランス、またはテイル電流差による素子電圧のアンバランスを抑制でき、回路のコンデンサ容量を大きくすることで、さらにアンバランス抑制効果を出すことができる。
しかし、モード1による電圧アンバランスにモード2の電圧アンバランスが重畳するような場合、これを抑制するためには大きい容量のコンデンサが必要になり、これに伴い抵抗Rでの消費電力も大きくなるため、過渡電圧バランス回路が大型化するという問題がある。
したがって、この発明の解決しようとする課題は、スイッチング時の素子電圧アンバランスを抑制しつつ、過渡電圧バランス回路を小型,低損失化することにある。
As described above, the increase rate dv / dt of the element voltage is reduced by connecting two kinds of voltage balance circuits in parallel with the element, and as a result, the element voltage is unbalanced due to the switching difference or the element due to the tail current difference. The voltage imbalance can be suppressed, and the effect of suppressing the imbalance can be further increased by increasing the capacitor capacity of the circuit.
However, when the voltage imbalance of mode 2 is superimposed on the voltage imbalance of mode 1, a capacitor with a large capacity is required to suppress this, and the power consumption at the resistor R increases accordingly. Therefore, there is a problem that the transient voltage balance circuit becomes large.
Therefore, the problem to be solved by the present invention is to reduce the size and the loss of the transient voltage balance circuit while suppressing the device voltage imbalance during switching.

このような課題を解決するため、請求項1の発明では、複数個直列接続された電圧駆動型半導体素子(半導体素子)と、半導体素子をオン,オフするためにゲート端子に制御信号を供給するゲート駆動回路と、各半導体素子の過渡動作時に発生する電圧アンバランスを抑制する過渡電圧バランス回路と、各半導体素子の定常動作時に発生する電圧アンバランスを抑制する定常電圧バランス回路とを備え、前記過渡電圧バランス回路を各半導体素子とは最短配線で接続し、前記定常電圧バランス回路を各半導体素子から離れた任意の位置に配置することを特徴とする。   In order to solve such a problem, according to the first aspect of the present invention, a plurality of voltage-driven semiconductor elements (semiconductor elements) connected in series and a control signal is supplied to the gate terminal to turn on and off the semiconductor elements. A gate drive circuit, a transient voltage balance circuit that suppresses voltage imbalance that occurs during the transient operation of each semiconductor element, and a steady voltage balance circuit that suppresses voltage imbalance that occurs during the steady operation of each semiconductor element, The transient voltage balance circuit is connected to each semiconductor element by the shortest wiring, and the steady voltage balance circuit is arranged at an arbitrary position away from each semiconductor element.

上記請求項1の発明においては、前記過渡電圧バランス回路は前記半導体素子のテイル電流のばらつきによって生じる電圧アンバランスを抑制するものであることができ(請求項2の発明)、または、上記請求項1または2の発明においては、前記ゲート駆動回路の出力端子と、前記半導体素子のゲート端子とを接続するゲート線を互いに磁気結合することができる(請求項3の発明)。この請求項3の発明においては、前記過渡電圧バランス回路を、配線インダクタンスとの整合により、前記半導体素子から任意の位置に配置することができる(請求項4の発明)。   In the invention of claim 1, the transient voltage balance circuit can suppress voltage imbalance caused by variations in tail current of the semiconductor element (invention of claim 2), or the claim. In the invention of 1 or 2, the gate lines connecting the output terminal of the gate drive circuit and the gate terminal of the semiconductor element can be magnetically coupled to each other (invention of claim 3). In this invention of Claim 3, the said transient voltage balance circuit can be arrange | positioned in arbitrary positions from the said semiconductor element by matching with wiring inductance (Invention of Claim 4).

この発明によれば、半導体素子を複数個直列接続するとき、各ゲート線を磁気結合させるコアと、過渡電圧バランス回路と、定常電圧バランス回路とを接続することにより、半導体素子を全領域で電圧バランスさせることができる。また、この回路構成により、半導体素子と等価的に並列に接続されていれば、過渡電圧バランス回路および定常電圧バランス回路は任意の位置に接続することができ、構造的に簡単化が可能である。   According to the present invention, when a plurality of semiconductor elements are connected in series, a semiconductor element is connected to the entire region by connecting a core that magnetically couples each gate line, a transient voltage balance circuit, and a steady voltage balance circuit. Can be balanced. Also, with this circuit configuration, the transient voltage balance circuit and the steady voltage balance circuit can be connected to any position as long as they are equivalently connected in parallel with the semiconductor element, and the structure can be simplified. .

図1はこの発明の第1の実施の形態を示す構成図である。
図示のように、これはIGBTであるQ1,Q2を2直列接続した半導体スイッチ回路であり、GDU1,GDU2はそれぞれQ1,Q2のゲート駆動回路である。ここで、過渡電圧バランス回路B1は配線インダクタンスが最小となるように素子間に最短配置し、定常電圧バランス回路B2は配線長に関わりなく任意の位置に配置する。これは過渡時、特にモード1での電圧アンバランスの時定数が非常に小さいため、配線が長いと寄生インダクタンスが大きくなり過渡電圧バランス回路B1のコンデンサ容量をさらに大きくしないと、アンバランス抑制効果が小さくなるためである。また、モード3では直流的にバランスし、インダクタンス分は特に影響無いので、構造的に任意の位置に設置する。
FIG. 1 is a block diagram showing a first embodiment of the present invention.
As shown in the figure, this is a semiconductor switch circuit in which two IGBTs Q1 and Q2 are connected in series, and GDU1 and GDU2 are gate drive circuits for Q1 and Q2, respectively. Here, the transient voltage balance circuit B1 is disposed as short as possible between the elements so that the wiring inductance is minimized, and the steady voltage balance circuit B2 is disposed at an arbitrary position regardless of the wiring length. This is because the time constant of voltage imbalance in transition, especially in mode 1, is very small. Therefore, if the wiring is long, the parasitic inductance increases, and if the capacitance of the transient voltage balance circuit B1 is not increased further, the imbalance suppression effect can be obtained. This is because it becomes smaller. Further, in mode 3, since it is balanced in direct current and the inductance is not particularly affected, it is installed at an arbitrary position structurally.

図2はこの発明の第2の実施の形態を示す構成図である。
コアTc,過渡電圧バランス回路B1,定常電圧バランス回路B2はそれぞれ図7で説明したモード1,モード2,モード3の素子電圧アンバランスを抑制する回路である。この回路においても、定常電圧バランス回路B2は図1の場合と同様、任意の位置に配置可能である。また、入力信号1,入力信号2は制御回路からの各IGBTのオン,オフ信号であり、これがゲート駆動回路GDU1,2に入力される。
FIG. 2 is a block diagram showing a second embodiment of the present invention.
The core Tc, the transient voltage balance circuit B1, and the steady voltage balance circuit B2 are circuits for suppressing the device voltage unbalance in the mode 1, mode 2, and mode 3 described with reference to FIG. Also in this circuit, the steady voltage balance circuit B2 can be arranged at an arbitrary position as in the case of FIG. Input signal 1 and input signal 2 are on / off signals of each IGBT from the control circuit, and are input to the gate drive circuits GDU 1 and 2.

図3により、ターンオフ時の動作について説明する。
モード1、すなわちターンオフの過渡動作時において、ゲート駆動回路の伝達時間ばらつきによって、Q1がQ2よりも早くオフしたとする。ここで、コアTc,過渡電圧バランス回路B1,定常電圧バランス回路B2が接続されていない場合は、図3に破線で示すように、Q1の素子電圧VCE(Q1)がQ2の素子電圧VCE(Q2)よりも先に上昇し始め、これらの電圧がアンバランスとなる。また、モード2では、ターンオフのテイル電流領域において、Q2のテイル電流はQ1よりも大きいものとする。
The operation at turn-off will be described with reference to FIG.
Assume that Q1 is turned off earlier than Q2 due to the transmission time variation of the gate drive circuit in mode 1, that is, in the turn-off transient operation. Here, when the core Tc, the transient voltage balance circuit B1, and the steady voltage balance circuit B2 are not connected, the element voltage VCE (Q1) of Q1 is equal to the element voltage VCE (Q2) of Q2, as indicated by a broken line in FIG. ) Begins to rise before these voltages become unbalanced. In mode 2, it is assumed that the tail current of Q2 is larger than Q1 in the turn-off tail current region.

このときの等価回路を図4に示す。
同図において、Ic(Q1),Ic(Q2)はQ1,Q2のテイル電流、Coes1,Coes2はQ1,Q2の出力容量を示す。図4の回路において、Ic(Q1)<Ic(Q2)となると、差分の電流はCoes1に流れるため、VCE(Q1)がVCE(Q2)よりも上昇し、モード1のばらつきに重畳される。その結果、上記の回路条件では、VCE(Q1)とVCE(Q2)は大きくアンバランスし、VCE(Q1)が過電圧となる可能性がある。
An equivalent circuit at this time is shown in FIG.
In the figure, Ic (Q1) and Ic (Q2) indicate tail currents of Q1 and Q2, and Coes1 and Coes2 indicate output capacities of Q1 and Q2. In the circuit of FIG. 4, when Ic (Q1) <Ic (Q2), the difference current flows to Coes1, so that VCE (Q1) rises above VCE (Q2) and is superimposed on the variation in mode 1. As a result, under the above circuit conditions, VCE (Q1) and VCE (Q2) may be greatly unbalanced and VCE (Q1) may be overvoltage.

次に、コアTc,過渡電圧バランス回路B1,定常電圧バランス回路B2が接続されている場合は、図3に実線で示すように、まず、コアTcによりゲート電流が互いに一致し、Q1とQ2のスイッチングタイミングは一致するため、素子電圧のばらつきが抑制される。コアによる素子電圧のバランス作用については、必要ならば、特開平2002−204578号公報を参照されたい。また、モード2の期間では、各IGBTの過渡電圧バランス回路B1によって、テイル電流による電圧アンバランスを抑制することができる。このとき、過渡電圧バランス回路B1の動作がモード2の電圧アンバランスに追従するように、時定数Cs,Rsを電圧がアンバランスするときの時定数τよりも小さく設定する。   Next, when the core Tc, the transient voltage balance circuit B1, and the steady voltage balance circuit B2 are connected, as shown by a solid line in FIG. 3, first, the gate currents coincide with each other by the core Tc, and Q1 and Q2 Since the switching timings coincide, variation in element voltage is suppressed. Regarding the balancing effect of the element voltage by the core, refer to Japanese Patent Application Laid-Open No. 2002-204578 if necessary. In the mode 2 period, the voltage imbalance due to the tail current can be suppressed by the transient voltage balance circuit B1 of each IGBT. At this time, the time constants Cs and Rs are set to be smaller than the time constant τ when the voltage is unbalanced so that the operation of the transient voltage balance circuit B1 follows the voltage unbalance in mode 2.

また、過渡電圧バランス回路B1の充放電経路において、振動が発生してCs,Rsの実効電流が増加しないよう、Rsを振動が発生しない条件値に設定する。
図5に、過渡電圧バランス回路の等価回路を示す。図示のように、配線インダクタンスLsとCs,Rs,IGBTから構成される回路となる。この回路において、IGBTがオンすると、Csの電荷は図示の矢印経路で放電される。この経路の振動係数ζを1以上とすれば、電流は振動することなく、放電することになる。すなわち、次式を満たせば良い。
ζ=Rs√(Cs/Ls)/2≧1
従って、
Rs≧2√(Ls/Cs)
なる条件を満たせば、過渡電圧バランス回路は任意の位置に配置することができ、構造的にも簡単化することができる。
Further, Rs is set to a condition value that does not generate vibration so that vibration does not occur and the effective current of Cs and Rs does not increase in the charge / discharge path of the transient voltage balance circuit B1.
FIG. 5 shows an equivalent circuit of the transient voltage balance circuit. As shown in the figure, the circuit is composed of the wiring inductance Ls, Cs, Rs, and IGBT. In this circuit, when the IGBT is turned on, the charge of Cs is discharged through the illustrated arrow path. If the vibration coefficient ζ of this path is 1 or more, the current is discharged without oscillating. That is, the following equation should be satisfied.
ζ = Rs√ (Cs / Ls) / 2 ≧ 1
Therefore,
Rs ≧ 2√ (Ls / Cs)
If this condition is satisfied, the transient voltage balance circuit can be arranged at an arbitrary position, and the structure can be simplified.

この発明の第1の実施の形態を示す構成図The block diagram which shows 1st Embodiment of this invention この発明の第2の実施の形態を示す構成図The block diagram which shows 2nd Embodiment of this invention 図2の動作を説明するための各部波形図Waveform diagram of each part for explaining the operation of FIG. 素子の等価回路を示す回路図Circuit diagram showing the equivalent circuit of the element 過渡電圧バランス回路の等価回路を示す回路図Circuit diagram showing equivalent circuit of transient voltage balance circuit 従来例を示す構成図Configuration diagram showing a conventional example 図6の動作を説明するための各部波形図Waveform diagram of each part for explaining the operation of FIG.

符号の説明Explanation of symbols

Q1,Q2…IGBT(電圧駆動型半導体素子)、Tc…コア、GDU1,GDU2…ゲート駆動回路、B1…過渡電圧バランス回路、B2…定常電圧バランス回路、Cs1,CS2…コンデンサ、Rd1,Rd2,Rs1,Rs2…抵抗。

Q1, Q2 ... IGBT (voltage driven semiconductor element), Tc ... core, GDU1, GDU2 ... gate drive circuit, B1 ... transient voltage balance circuit, B2 ... steady voltage balance circuit, Cs1, CS2 ... capacitor, Rd1, Rd2, Rs1 , Rs2... Resistance.

Claims (4)

複数個直列接続された電圧駆動型半導体素子(半導体素子)と、半導体素子をオン,オフするためにゲート端子に制御信号を供給するゲート駆動回路と、各半導体素子の過渡動作時に発生する電圧アンバランスを抑制する過渡電圧バランス回路と、各半導体素子の定常動作時に発生する電圧アンバランスを抑制する定常電圧バランス回路とを備え、
前記過渡電圧バランス回路を各半導体素子とは最短配線で接続し、前記定常電圧バランス回路を各半導体素子から離れた任意の位置に配置することを特徴とする半導体スイッチング回路。
A plurality of voltage-driven semiconductor elements (semiconductor elements) connected in series, a gate drive circuit that supplies a control signal to the gate terminal to turn on and off the semiconductor elements, and a voltage amplifier generated during the transient operation of each semiconductor element A transient voltage balance circuit that suppresses the balance, and a steady voltage balance circuit that suppresses voltage imbalance that occurs during the steady operation of each semiconductor element;
A semiconductor switching circuit, wherein the transient voltage balance circuit is connected to each semiconductor element by a shortest wiring, and the steady voltage balance circuit is arranged at an arbitrary position away from each semiconductor element.
前記過渡電圧バランス回路は、前記半導体素子のテイル電流のばらつきによって生じる電圧アンバランスを抑制するものであることを特徴とする請求項1に記載の半導体スイッチング回路。   The semiconductor switching circuit according to claim 1, wherein the transient voltage balance circuit suppresses voltage imbalance caused by variation in tail current of the semiconductor element. 前記ゲート駆動回路の出力端子と、前記半導体素子のゲート端子とを接続するゲート線を互いに磁気結合するコアを設けたことを特徴とする請求項1または2に記載の半導体スイッチング回路。   3. The semiconductor switching circuit according to claim 1, further comprising a core that magnetically couples a gate line connecting the output terminal of the gate drive circuit and the gate terminal of the semiconductor element. 前記過渡電圧バランス回路を、配線インダクタンスとの整合により、前記半導体素子から任意の位置に配置することを特徴とする請求項3に記載の半導体スイッチング回路。

4. The semiconductor switching circuit according to claim 3, wherein the transient voltage balance circuit is arranged at an arbitrary position from the semiconductor element by matching with wiring inductance.

JP2003402553A 2003-12-02 2003-12-02 Semiconductor switching circuit Pending JP2005167535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402553A JP2005167535A (en) 2003-12-02 2003-12-02 Semiconductor switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402553A JP2005167535A (en) 2003-12-02 2003-12-02 Semiconductor switching circuit

Publications (1)

Publication Number Publication Date
JP2005167535A true JP2005167535A (en) 2005-06-23

Family

ID=34726088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402553A Pending JP2005167535A (en) 2003-12-02 2003-12-02 Semiconductor switching circuit

Country Status (1)

Country Link
JP (1) JP2005167535A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089292A (en) * 2005-09-21 2007-04-05 Fuji Electric Holdings Co Ltd Variation reduction method for voltage distribution by a plurality of voltage drive type semi-conductor devices connected in series
JP2007288046A (en) * 2006-04-19 2007-11-01 Fuji Electric Holdings Co Ltd Semiconductor module for electric power
CN102377325A (en) * 2010-08-23 2012-03-14 Abb研究有限公司 Current balancing of parallel connected semiconductor components
CN107534401A (en) * 2015-04-23 2018-01-02 赛峰电气与电源公司 System and method for the electric energy regenerated by actuator that dissipates
CN111049365A (en) * 2019-11-15 2020-04-21 深圳供电局有限公司 IGBT series dynamic voltage-sharing control circuit and method
WO2020183702A1 (en) * 2019-03-14 2020-09-17 オムロン株式会社 Voltage balance circuit for semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125071A (en) * 1990-09-17 1992-04-24 Toshiba Corp Power converter
JPH09284110A (en) * 1996-04-12 1997-10-31 Japan Atom Energy Res Inst Semiconductor switch circuit
JPH1169832A (en) * 1997-08-07 1999-03-09 Mitsubishi Electric Corp Inverter device
JPH11220869A (en) * 1998-02-02 1999-08-10 Toshiba Transport Eng Inc Power converter
JP2002204578A (en) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd Control device for series-connected voltage-driven semiconductor device
JP2003088095A (en) * 2001-09-17 2003-03-20 Toshiba Corp Power semiconductor circuit device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125071A (en) * 1990-09-17 1992-04-24 Toshiba Corp Power converter
JPH09284110A (en) * 1996-04-12 1997-10-31 Japan Atom Energy Res Inst Semiconductor switch circuit
JPH1169832A (en) * 1997-08-07 1999-03-09 Mitsubishi Electric Corp Inverter device
JPH11220869A (en) * 1998-02-02 1999-08-10 Toshiba Transport Eng Inc Power converter
JP2002204578A (en) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd Control device for series-connected voltage-driven semiconductor device
JP2003088095A (en) * 2001-09-17 2003-03-20 Toshiba Corp Power semiconductor circuit device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089292A (en) * 2005-09-21 2007-04-05 Fuji Electric Holdings Co Ltd Variation reduction method for voltage distribution by a plurality of voltage drive type semi-conductor devices connected in series
JP2007288046A (en) * 2006-04-19 2007-11-01 Fuji Electric Holdings Co Ltd Semiconductor module for electric power
JP4697025B2 (en) * 2006-04-19 2011-06-08 富士電機ホールディングス株式会社 Power semiconductor module
CN102377325A (en) * 2010-08-23 2012-03-14 Abb研究有限公司 Current balancing of parallel connected semiconductor components
CN107534401A (en) * 2015-04-23 2018-01-02 赛峰电气与电源公司 System and method for the electric energy regenerated by actuator that dissipates
JP2018513664A (en) * 2015-04-23 2018-05-24 サフラン エレクトリカル アンド パワー System and method for dissipating electrical energy regenerated by an actuator
JP6996660B2 (en) 2019-03-14 2022-01-17 オムロン株式会社 Voltage balance circuit for semiconductor devices
WO2020183702A1 (en) * 2019-03-14 2020-09-17 オムロン株式会社 Voltage balance circuit for semiconductor device
CN112655144A (en) * 2019-03-14 2021-04-13 欧姆龙株式会社 Voltage balancing circuit for semiconductor device
US11552550B2 (en) 2019-03-14 2023-01-10 Omron Corporation Voltage balance circuit for semiconductor devices connected in series with each other, switching circuit, and power converter apparatus
JPWO2020183702A1 (en) * 2019-03-14 2021-10-14 オムロン株式会社 Voltage balance circuit for semiconductor devices
CN111049365A (en) * 2019-11-15 2020-04-21 深圳供电局有限公司 IGBT series dynamic voltage-sharing control circuit and method
CN111049365B (en) * 2019-11-15 2021-06-04 深圳供电局有限公司 IGBT series dynamic voltage-sharing control circuit and method

Similar Documents

Publication Publication Date Title
JP2020010281A (en) Gate drive circuit
JP2000253646A (en) Gate circuit of insulated gate semiconductor device
JPH11234104A (en) Semiconductor module and inverter device
JPWO2019038957A1 (en) Control circuit and power conversion device
KR20160135224A (en) Gate driver controlling a collector to emitter voltage variation of an electronic switch and circuits including the gate driver
US11050358B2 (en) Power module with built-in drive circuit
JP4396036B2 (en) Control device for voltage-driven semiconductor elements connected in series
JP4760256B2 (en) Method for reducing variation in voltage sharing of a plurality of voltage-driven semiconductor elements connected in series
JP2005167535A (en) Semiconductor switching circuit
JP2004096829A (en) Controller of voltage-driven semiconductor device connected in parallel
JP2008043003A (en) Gate drive unit of voltage-driven type semiconductor element
JP3767740B2 (en) Control device for voltage-driven semiconductor elements connected in series
JP2001169534A (en) Gate circuit of insulated gate semiconductor element
US11621626B2 (en) Driving apparatus, semiconductor apparatus, and driving method
US20190089349A1 (en) Switching circuit
Palmer et al. Behaviour of IGBT modules under short circuit conditions
JP3778351B2 (en) Control device for voltage-driven semiconductor elements connected in series
JP4639687B2 (en) Voltage variation suppression method for voltage-driven semiconductor devices
JPH0767320A (en) Driving circuit for power element
US10587181B2 (en) Power semiconductor device with built-in resistor between control electrode and control terminal, and power semiconductor drive system
JP4715346B2 (en) Driving device for voltage-driven semiconductor elements connected in series
JP4631409B2 (en) Semiconductor switch circuit
JP2020195019A (en) Gate drive circuit
JP2009060709A (en) Gate drive circuit
JP4396059B2 (en) Control device for voltage-driven semiconductor elements connected in series

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080724