JP2003147481A - Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forging - Google Patents
Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forgingInfo
- Publication number
- JP2003147481A JP2003147481A JP2001349097A JP2001349097A JP2003147481A JP 2003147481 A JP2003147481 A JP 2003147481A JP 2001349097 A JP2001349097 A JP 2001349097A JP 2001349097 A JP2001349097 A JP 2001349097A JP 2003147481 A JP2003147481 A JP 2003147481A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- steel
- heat treated
- toughness
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は鍛造用鋼及びその製造方
法並びに鍛造品の鍛造方法に関し、さらに詳しくは、自
動車、建設機械および各種産業機械等の部品として使用
される材料として、熱間鍛造後に調質処理を行わずに優
れた強度と靭性を有する鍛造用鋼及びその製造方法並び
に鍛造品の鍛造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forging steel, a method for producing the same, and a method for forging a forged product. More specifically, hot forging is used as a material used for parts of automobiles, construction machines and various industrial machines. The present invention relates to a forging steel having excellent strength and toughness without subsequent heat treatment, a method for producing the same, and a method for forging a forged product.
【0002】[0002]
【従来の技術】従来、機械構造用熱間鍛造品は、一般
に、中炭素鋼または低合金鋼素材を熱間鍛造した後、再
加熱し、焼入れ・焼戻し、すなわち調質処理を施し、目
的、用途に応じた強度および靭性を付与して、使用に供
されていた。しかし、上記調質処理には多大の熱エネル
ギー費用を要すると共に、処理工程の増加、仕掛品の増
大等のために製造費用が高くならざるを得ない。そこで
近年、機械構造用熱間鍛造品の製造において、製造工程
を簡略化、特に、熱間鍛造後の調質処理を省略するため
に、種々の非調質型熱間鍛造用鋼や、非調質熱間鍛造品
の製造方法が提案されている。このような従来の非調質
型熱間鍛造用鋼の多くは、中炭素鋼に微量のV、Nb、
Ti、Zr等のいわゆる析出硬化型合金元素を添加した
析出硬化型非調質鋼であって、熱間鍛造後の冷却工程に
おいてこれらを析出させ、その析出硬化によって高強度
を得ようとするものである。2. Description of the Related Art Conventionally, hot forgings for machine structures are generally made by hot forging a medium carbon steel or low alloy steel material and then reheating, quenching and tempering, that is, tempering treatment. It was provided for use by imparting strength and toughness according to the application. However, the above heat treatment requires a large amount of heat energy cost, and the manufacturing cost is inevitably increased due to an increase in processing steps, an increase in work in process, and the like. Therefore, in recent years, in the production of hot forgings for machine structures, various non-tempered hot forging steels and non-tempered steels have been used to simplify the manufacturing process, in particular, to omit the tempering treatment after hot forging. A method of manufacturing a tempered hot forged product has been proposed. Most of such conventional non-heat treated hot forging steels contain a small amount of V, Nb,
Precipitation hardening type non-heat treated steel to which so-called precipitation hardening type alloying elements such as Ti and Zr are added, in which these are precipitated in the cooling step after hot forging, and high strength is obtained by the precipitation hardening. Is.
【0003】例えば、特公昭58−2243号公報に
は、中炭素鋼に微量のVを添加し、これを1100℃以
上の温度に加熱して型打鍛造し、この後、500℃まで
10〜100℃/分の冷却速度で空冷することにより、
フェライト中に微細なV炭窒化物を析出させたフェライ
ト・パーライト組織からなる非調質鍛造品の製造方法が
記載されている。しかし、このような析出硬化型非調質
鋼を用いる場合には、上記のように1000〜1100
℃またはそれ以上の高温に加熱することが必要であり、
そのまま通常の鍛造を行った場合、鍛造品においても結
晶粒が著しく粗大化するので、充分な靭性を得ることが
できない。For example, in Japanese Examined Patent Publication No. 58-2243, a slight amount of V is added to medium carbon steel, which is heated to a temperature of 1100 ° C. or higher and die-forged, and then 10 to 500 ° C. By air cooling at a cooling rate of 100 ° C / min,
A method for producing a non-heat treated forged product having a ferrite / pearlite structure in which fine V carbonitrides are precipitated in ferrite is described. However, when such a precipitation hardening type non-heat treated steel is used, as described above, 1000 to 1100
It is necessary to heat to a high temperature of ℃ or more,
If ordinary forging is carried out as it is, the crystal grains are significantly coarsened even in the forged product, so that sufficient toughness cannot be obtained.
【0004】このような問題を解決するために、素材鋼
や鍛造方法に関して、析出硬化型元素の添加量を極力少
なくする(例えば、特開昭55−82750号公報)、
低C高Mn化する、(例えば特開昭54−121225
号公報)、析出物の種類を制御する、(例えば、特開昭
56−38448号公報)、制御冷却によって結晶粒を
微細化する、(例えば特開昭56−169723号公
報)等の方法が従来より提案されているが、いずれによ
っても、強度・靭性共に優れる非調質熱間鍛造品を得る
ことは、容易ではない。In order to solve such problems, the addition amount of the precipitation hardening type element is made as small as possible in the material steel and the forging method (for example, JP-A-55-82750).
Low C and high Mn content (for example, JP-A-54-12125)
Japanese Patent Laid-Open Publication No. 56-169723), controlling the type of precipitate (for example, Japanese Patent Laid-Open No. 56-38448), and refining crystal grains by controlled cooling (for example, Japanese Laid-Open Patent Publication No. 56-169723). Although conventionally proposed, it is not easy to obtain a non-heat treated hot forged product excellent in both strength and toughness.
【0005】[0005]
【発明が解決しようとする課題】本発明は強度・靭性共
に優れる非調質熱間鍛造用鋼及びその製造方法並びに鍛
造品の鍛造方法を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-heat treated hot forging steel excellent in both strength and toughness, a method for producing the same, and a method for forging a forged product.
【0006】[0006]
【課題を解決するための手段】本発明は上記の課題を解
決するため、その要旨とするところは、下記の通りであ
る。
(1) 質量%で、C:0.1〜0.8%、Si:0.
05〜2.5%、Mn:0.2〜3%、Al:0.00
5〜0.1%、N:0.001〜0.02%を含有し、
更に、V:0.05〜0.5%、Nb:0.005〜
0.1%の1種または2種を含有し、残部がFeおよび
不可避的不純物からなり、マルテンサイトを面積率で9
5〜100%含有することを特徴とする非調質高強度・
高靭性鍛造用鋼。
(2)(1)の成分に、質量%で、Mg:0.0001
〜0.005%、Zr:0.0001〜0.005%の
1種または2種を添加することを特徴とする非調質高強
度・高靭性鍛造用鋼。
(3)(1)又は(2)の成分に、質量%で、Cr:
0.05〜3%、Ni:0.05〜3%、Mo:0.0
5〜3%、Cu:0.01〜2%、Ti:0.003〜
0.05%、B:0.0005〜0.005%の1種ま
たは2種以上を添加することを特徴とする非調質高強度
・高靭性鍛造用鋼。
(4)(1)〜(3)の何れか1項に記載の成分に、質
量%で、S:0.01〜0.3%、Pb:0.03〜
0.3%、Ca:0.001〜0.05%、Bi:0.
03〜0.3%の1種または2種以上を添加することを
特徴とする非調質高強度・高靭性鍛造用鋼。
(5)前記(1)〜(4)の何れか1項に記載の成分か
らなる鋼片を、棒鋼圧延後、直ちに又は900〜135
0℃に再加熱して、900〜1350℃から室温〜30
0℃まで15〜60℃/secで冷却し、マルテンサイ
トを面積率で95〜100%含有する鋼を得ることを特
徴とする非調質高強度・高靭性鍛造用鋼の製造方法。
(6)(1)〜(4)の何れか1項に記載の鋼を熱間鍛
造する際に、Ac3 点以上950℃以下に加熱し、対数
歪みで0.3〜3の加工を与える熱間鍛造を未再結晶上
限温度以下700℃以上で少なくとも1回以上行い、平
均結晶粒径が10μm以下のフェライトとパーライトか
らなる組織を得ることを特徴とする非調質高強度・高靭
性鍛造品の製造方法。
(7)鍛造後、Ar3 点以下500℃以上の温度域を下
記(1)式で示した冷速(CR)で冷却することを特徴
とする(6)記載の非調質高強度・高靭性鍛造品の製造
方法。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention has the following gist. (1) C: 0.1 to 0.8% and Si: 0.
05-2.5%, Mn: 0.2-3%, Al: 0.00
5 to 0.1%, N: 0.001 to 0.02%,
Furthermore, V: 0.05-0.5%, Nb: 0.005-
0.1% of 1 or 2 is contained, the balance is Fe and unavoidable impurities, and martensite is 9 in area ratio.
Non-heat treated high strength characterized by containing 5-100%
High toughness forging steel. (2) In the component (1), in mass%, Mg: 0.0001
-0.005%, Zr: 0.0001-0.005% 1 type or 2 types are added, The non-heat treated high strength and high toughness forging steel. (3) In the component of (1) or (2), in mass%, Cr:
0.05-3%, Ni: 0.05-3%, Mo: 0.0
5 to 3%, Cu: 0.01 to 2%, Ti: 0.003 to
0.05%, B: 0.0005 to 0.005% of 1 type or 2 or more types of non-heat treated high strength and high toughness forging steel. (4) In the component according to any one of (1) to (3), in mass%, S: 0.01 to 0.3%, Pb: 0.03 to.
0.3%, Ca: 0.001 to 0.05%, Bi: 0.
Non-heat treated high strength / high toughness forging steel, characterized by adding one or more of 03 to 0.3%. (5) Immediately after rolling a steel bar made of the component described in any one of (1) to (4) above or 900 to 135
Reheat to 0 ℃, 900 ~ 1350 ℃ to room temperature ~ 30
A method for producing a non-heat treated high strength / high toughness forging steel, which comprises cooling to 0 ° C. at 15 to 60 ° C./sec to obtain steel containing martensite in an area ratio of 95 to 100%. (6) When hot forging the steel according to any one of (1) to (4), the steel is heated to an Ac 3 point or higher and 950 ° C. or lower to give a work of 0.3 to 3 by logarithmic strain. Non-heat treated high strength / high toughness forging, characterized in that hot forging is performed at least once at a temperature not lower than the upper limit of unrecrystallization temperature of 700 ° C. or more to obtain a structure composed of ferrite and pearlite having an average crystal grain size of 10 μm or less. Method of manufacturing goods. (7) After forging, the temperature range not higher than Ar 3 and not lower than 500 ° C. is cooled at a cooling rate (CR) represented by the following formula (1). Manufacturing method of toughness forged products.
【0007】
0.1℃/sec≦CR≦(2.5ε+1)℃/sec …(1)
(ε:未再結晶温度域で与えた対数歪み)
(8)引張強さが800〜1300MPa であることを特
徴とする(6)又は(7)記載の非調質高強度・高靭性
鍛造品の製造方法。
(9)降伏比が0.7〜0.95であることを特徴とす
る(6)〜(8)の何れか1項に記載の非調質高強度・
高靭性鍛造品の製造方法。0.1 ° C./sec≦CR≦(2.5ε+1)° C./sec (1) (ε: Logarithmic strain given in the non-recrystallization temperature range) (8) Tensile strength is 800 to 1300 MPa The method for producing a non-heat treated high strength / high toughness forged product according to (6) or (7). (9) The non-heat treated high strength according to any one of (6) to (8), characterized in that the yield ratio is 0.7 to 0.95.
Manufacturing method of high toughness forged products.
【0008】[0008]
【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の根幹をなす技術思想は以下の通りであ
る。強度・靭性共に優れる鍛造品を得るためには、その
鍛造品の金属組織を微細にすれば良いことは知られてき
た。最終組織を微細化するには、その前組織であるγ
(オーステナイト)に熱間鍛造により歪みを与えて再結
晶により微細化する方法、および、より鍛造温度を低め
て未再結晶温度で鍛造することにより通常再結晶により
減少してしまう転位を変態時まで残留させ核生成速度を
増加させる方法がある。従来は、再結晶温度域での鍛
造、すなわち高温での鍛造の方が反力が少ないこと、お
よび反力が少ない方が鍛造精度を上げやすい等の理由
で、再結晶温度域の鍛造により組織を微細化することが
前提であった。本発明者等は、従来鍛造で用いられなか
った未再結晶温度域での鍛造を行うことにより、飛躍的
に組織が微細化し、材質も向上することを見いだした。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The technical idea that forms the basis of the present invention is as follows. It has been known that in order to obtain a forged product having excellent strength and toughness, the metal structure of the forged product should be made fine. To refine the final structure, γ
(Austenite) is strained by hot forging to make it finer by recrystallization, and dislocations that are normally reduced by recrystallization by lowering the forging temperature and forging at the non-recrystallization temperature until transformation There is a method of making it remain and increasing the nucleation rate. Conventionally, forging in the recrystallization temperature range, that is, forging at a high temperature has a smaller reaction force, and a smaller reaction force makes it easier to improve the forging accuracy. It was a premise to miniaturize. The present inventors have found that by performing forging in a non-recrystallization temperature range which has not been conventionally used for forging, the structure is dramatically refined and the material is improved.
【0009】一方、鍛造時の加熱は組織微細化の観点か
らは低温加熱の方がγ粒径が小さいため有利である。し
かし、通常の粗大なフェライト+パーライトの組織を持
つ鍛造用鋼を低温加熱にすると、前組織の影響により、
まずパーライト部がγ化しフェライト部は遅れてγ化す
るために粒径ばらつきが大きく、拡散が充分に行われな
いため濃度偏差も残留したままである。結果として鍛造
後の組織ばらつきが大きく材質もそれほど向上しない。
さらに低温加熱では炭窒化物を形成する元素があまり固
溶せず、本発明のように固溶V,Nbを用いた未再結晶
温度の拡大効果は期待できない。また同様に加工誘起析
出による強化も期待できない。これを打破する手段とし
て本発明者等は、鍛造前組織をマルテンサイト主体に調
整することにより、低温加熱でも均一かつ微細な組織が
えられることを見いだした。鍛造前組織を濃度偏差の無
い均一組織であるマルテンサイトを主体とする組織にす
ることにより低温加熱でも均一なγが得られ、鍛造後の
最終組織の微細化に有効である。またマルテンサイトで
は、炭窒化物を形成する元素が固溶ままの状態で残留し
ているため、これを低温加熱した場合、γ中の固溶量は
従来のフェライト−パーライト組織の鍛造用鋼を低温加
熱した場合に比べ格段に多い。このため、固溶V,Nb
を用いた未再結晶温度の拡大効果および加工誘起析出に
よる強化が可能である。これらの効果は、鍛造後の組織
によらず、鍛造後の組織がフェライト−パーライト、ベ
イナイトないしはマルテンサイトでも有効である。On the other hand, heating at the time of forging is advantageous from the viewpoint of microstructure refinement because low temperature heating has a smaller γ grain size. However, when forging steel with a normal coarse ferrite + pearlite structure is heated at low temperature, due to the influence of the previous structure,
First, since the pearlite portion becomes γ and the ferrite portion becomes γ later, there is a large variation in grain size, and since the diffusion is not sufficiently performed, the concentration deviation remains. As a result, there is a large variation in the structure after forging, and the material does not improve so much.
Further, at low temperature heating, the elements forming carbonitrides do not form a solid solution so much, and the effect of enlarging the non-recrystallization temperature using the solid solution V and Nb as in the present invention cannot be expected. Similarly, strengthening due to work-induced precipitation cannot be expected. As a means of breaking this, the present inventors have found that by adjusting the pre-forging structure to be mainly martensite, a uniform and fine structure can be obtained even at low temperature heating. By making the pre-forging structure a structure mainly composed of martensite, which is a uniform structure with no concentration deviation, a uniform γ can be obtained even at low temperature heating, and it is effective for the refinement of the final structure after forging. Further, in martensite, since the element forming a carbonitride remains in the state of solid solution, when it is heated at a low temperature, the solid solution amount in γ is the conventional ferrite-pearlite structure forging steel. Much more than when heated at low temperature. Therefore, solid solution V, Nb
It is possible to enhance the non-recrystallization temperature by using and to strengthen by processing-induced precipitation. These effects are effective regardless of the structure after forging, even if the structure after forging is ferrite-pearlite, bainite or martensite.
【0010】以下に本発明の限定理由を述べる。The reasons for limiting the present invention will be described below.
【0011】Cは、鋼を強化するのに有効な元素である
が、0.1%未満では充分な強度が得られない。一方、
過多に添加すると靭性が低下するため、添加量の上限を
0.8%とする。C is an element effective for strengthening steel, but if it is less than 0.1%, sufficient strength cannot be obtained. on the other hand,
If added too much, the toughness will decrease, so the upper limit of the amount added is 0.8%.
【0012】Siは、鋼の強化元素として有効である
が、0.05%未満ではその効果がない。一方、過多に
添加すると靭性および被削性が低下するため、添加量の
上限を2.5%とする。Si is effective as a strengthening element for steel, but if it is less than 0.05%, it is not effective. On the other hand, if added too much, the toughness and machinability will decrease, so the upper limit of the addition amount is made 2.5%.
【0013】Mnは、鋼の強化に有効な元素であるが、
0.2%未満では充分な効果が得られない。一方、過多
に添加すると靭性および被削性が低下するため、添加量
の上限を3%とする。Mn is an element effective for strengthening steel,
If it is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, if added too much, the toughness and machinability deteriorate, so the upper limit of the amount added is 3%.
【0014】Alは、鋼の脱酸および結晶粒の微細化の
ために有効な元素であるが、0.005%未満ではその
効果がない。一方、過多に添加すると被削性が低下する
ため、添加量の上限を0.1%とする。Al is an effective element for deoxidizing steel and refining crystal grains, but if it is less than 0.005%, it has no effect. On the other hand, if added excessively, the machinability will decrease, so the upper limit of the addition amount is made 0.1%.
【0015】Nは、V炭窒化物やNb炭窒化物を生成し
析出強化のために必要な元素であるが、0.001%未
満では充分な効果が得られない。一方、過多に添加する
と靭性が劣化するため、添加量の上限を0.02%とす
る。N is an element necessary for forming V carbonitrides and Nb carbonitrides for precipitation strengthening, but if less than 0.001%, a sufficient effect cannot be obtained. On the other hand, if added too much, the toughness deteriorates, so the upper limit of the addition is made 0.02%.
【0016】Vは、固溶原子が転位の回復および再結晶
を遅らせる効果がある。すなわち未再結晶温度域を高温
側に広げ、未再結晶域鍛造を容易にする元素である。ま
た、未再結晶圧延後、転位のもつれた部分にVの炭窒化
物が微細に析出し、いわゆる加工誘起析出により、強度
が上昇するため有効な元素である。これらの効果を享受
するためには0.05%以上の添加が必要である。一
方、過多に添加すると靭性が劣化するため、添加量の上
限を0.5%とする。V has an effect that solid solution atoms delay dislocation recovery and recrystallization. That is, it is an element that widens the non-recrystallization temperature region to the high temperature side and facilitates the non-recrystallization region forging. Further, after the non-recrystallization rolling, a carbonitride of V is finely precipitated in the entangled portion of dislocations, and the strength is increased by so-called work-induced precipitation, which is an effective element. In order to enjoy these effects, addition of 0.05% or more is necessary. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the addition amount is made 0.5%.
【0017】NbもVと同様、未再結晶を容易にし、析
出強化のために必要な元素であるが、0.005%未満
では充分な効果が得られない。一方、過多に添加すると
靭性が劣化するため、添加量の上限を0.1%とする。Like V, Nb is an element necessary for facilitating non-recrystallization and strengthening precipitation, but if it is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the added amount is made 0.1%.
【0018】MgおよびZrはともに酸化物や硫化物、
あるいはこれらの複合物を形成し、加熱時のオーステナ
イトの粗大化を抑制する効果を持つ元素であり、またフ
ェライト変態時の成長も抑制するので組織微細化に有効
である。またこれらの酸化物はMnSの析出核になるた
め被削性も向上する。いずれも、0.0001%未満で
はその効果はなく、0.005%を越えると、靱性が劣
化するため、添加量の上限を0.005%とする。Both Mg and Zr are oxides and sulfides,
Alternatively, it is an element that forms these composites and has an effect of suppressing coarsening of austenite during heating, and also suppresses growth during ferrite transformation, so that it is effective for microstructure refinement. Further, since these oxides become MnS precipitation nuclei, machinability is also improved. In either case, if it is less than 0.0001%, there is no effect, and if it exceeds 0.005%, the toughness deteriorates, so the upper limit of the addition amount is made 0.005%.
【0019】Cr,Ni,Mo,Cuはいずれも適量の
添加においては靱性を損なうことなく強度を増大する元
素である。Cr,Ni,Moは、いずれも0.05%未
満ではその効果はなく、3%を越えると靱性が大きく劣
化するため、その添加量の下限をそれぞれ0.05%、
上限を3%とする。Cuは0.01%未満ではその効果
はなく、2%を越えると靱性が大きく劣化するため、そ
の添加量の下限をそれぞれ0.01%、上限を2%とす
る。Cr, Ni, Mo and Cu are all elements that increase the strength without impairing the toughness when added in appropriate amounts. Cr, Ni, and Mo all have no effect at less than 0.05%, and toughness deteriorates significantly at more than 3%. Therefore, the lower limits of their addition amounts are 0.05% and
The upper limit is 3%. If Cu is less than 0.01%, its effect is not provided, and if it exceeds 2%, toughness is significantly deteriorated. Therefore, the lower limits of the amounts added are 0.01% and 2%, respectively.
【0020】Tiは,窒化物・炭化物を生成する。窒化
物は高温まで固溶せずに残るため、加熱時のオーステナ
イト粗大化を防止するのに有効である。また炭化物は微
細に分散して析出強化に有効である。0.003%未満
ではこれらの効果は現れず、0.05%を越えると靱性
が劣化するため、その添加量の下限を0.003%、上
限を0.05%とする。Ti produces nitrides and carbides. Since the nitride remains as a solid solution at high temperatures, it is effective in preventing austenite coarsening during heating. Further, the carbide is finely dispersed and is effective for precipitation strengthening. If it is less than 0.003%, these effects do not appear, and if it exceeds 0.05%, the toughness deteriorates, so the lower limit of the addition amount is made 0.003% and the upper limit is made 0.05%.
【0021】Bは焼き入れ性を増加する元素である。焼
き入れ性を増加することにより強度を増し、さらに粗大
な初析フェライトの生成を防止して組織の微細化を促進
するのに有効な元素である。0.0005%未満ではこ
れらの効果は現れず、0.005%を越えると靱性が劣
化するため、その添加量の下限を0.0005%、上限
を0.005%とする。B is an element that increases hardenability. It is an element effective in increasing the hardenability by increasing the hardenability, preventing the formation of coarse proeutectoid ferrite, and promoting the refinement of the structure. If it is less than 0.0005%, these effects do not appear, and if it exceeds 0.005%, the toughness deteriorates, so the lower limit of the addition amount is made 0.0005% and the upper limit is made 0.005%.
【0022】S,Pb,Ca,Biは、いずれも被削性
を向上する元素である。いずれも過小の添加はその効果
がなく、過大の添加は靱性を劣化させるため、Sは0.
01%以上0.3%以下に、Pbは0.03%以上0.
3%以下に、Caは0.001%以上0.05%以下
に、Biは0.03%以上0.3%以下に添加量を限定
する。S, Pb, Ca and Bi are all elements that improve machinability. In either case, addition of an excessive amount has no effect, and addition of an excessive amount deteriorates toughness, so S is 0.
01% or more and 0.3% or less, Pb is 0.03% or more and 0.1
The addition amount is limited to 3% or less, Ca to 0.001% to 0.05%, and Bi to 0.03% to 0.3%.
【0023】マルテンサイトが面積率で95%より少な
いと、再加熱時の組織均一性および濃度均一性が充分で
なく強度・靭性が低下する。また、再加熱時のNb,V
の固溶量が減るため本発明の効果を充分享受できない。
以上の理由により、本発明の鍛造用鋼はマルテンサイト
を面積率で95%以上含有するものとする。その他の組
織として、フェライト、パーライト、ベイナイトの1種
又は2種以上を面積率で5%以下含有しても本発明の効
果を得ることができる。一方、マルテンサイトを面積率
で100%含有するものは再加熱時の組織および濃度が
均一であり、Nb,Vの固溶量も充分確保できるため、
最も好ましい。When the area ratio of martensite is less than 95%, the uniformity of the structure and the uniformity of the concentration at the time of reheating are insufficient and the strength and toughness deteriorate. Also, Nb and V during reheating
Since the amount of solid solution is reduced, the effect of the present invention cannot be fully enjoyed.
For the above reasons, the forging steel of the present invention contains martensite in an area ratio of 95% or more. As the other structure, the effect of the present invention can be obtained even if one or more of ferrite, pearlite, and bainite are contained in an area ratio of 5% or less. On the other hand, those containing 100% martensite in area ratio have a uniform structure and concentration upon reheating and can secure a sufficient amount of solid solution of Nb and V.
Most preferred.
【0024】次に、本発明の鍛造用鋼の製造方法につい
て述べる。Next, a method for manufacturing the forging steel of the present invention will be described.
【0025】鍛造用素材をマルテンサイト主体の組織と
するためには、高温からの焼入が必要である。焼入開始
前の加熱温度を900℃以上としたのは900℃以上に
焼入開始温度を確保するためであり、一方、加熱温度を
1350℃以下としたのはそれ以上の加熱が困難だから
である。Quenching from a high temperature is necessary in order for the forging material to have a structure mainly composed of martensite. The heating temperature before the start of quenching was set to 900 ° C. or higher in order to secure the quenching start temperature at 900 ° C. or higher, while the heating temperature was set to 1350 ° C. or lower because it is difficult to heat it further. is there.
【0026】また、焼入開始温度を1350℃以下とし
たのは、それより高い温度からの焼入が困難だからであ
る。一方、900℃以上としたのは、それより低い温度
であると充分に焼きが入らず部分的にフェライト、パー
ライト、ベイナイト等が面積率で5%以上生成するから
である。一方、焼入時の冷速下限値を15℃/secと
したのはそれより遅い冷速であると、部分的にフェライ
ト、パーライト、ベイナイト等が面積率で5%以上生成
するからである。冷速上限値を60℃/secとしたの
は、それより速い冷速で冷却することが困難だからであ
る。冷却方法は水冷、油冷等考えられるが、限定しな
い。The quenching start temperature is set to 1350 ° C. or lower because quenching from a temperature higher than that is difficult. On the other hand, the reason for setting the temperature to 900 ° C. or higher is that if the temperature is lower than that, it is not sufficiently baked and ferrite, pearlite, bainite, etc. are partially formed in an area ratio of 5% or more. On the other hand, the lower limit of the cooling rate at the time of quenching is set to 15 ° C./sec, because at a cooling rate slower than that, ferrite, pearlite, bainite, etc. are partially formed in an area ratio of 5% or more. The upper limit of the cooling rate is set to 60 ° C./sec because it is difficult to cool at a cooling rate higher than that. The cooling method may be water cooling or oil cooling, but is not limited thereto.
【0027】冷却停止温度は操業上室温以下とすること
が困難なために室温以上とし、300℃以下ではマルテ
ンサイト変態が終了しているため300℃以下とする。The cooling stop temperature is set to room temperature or higher because it is difficult to keep the temperature below room temperature during operation, and is set to 300 ° C. or lower at 300 ° C. or lower because martensite transformation is completed.
【0028】次に、本発明鍛造品の組織の形態について
述べる。Next, the morphology of the structure of the forged product of the present invention will be described.
【0029】通常、再結晶γでは再結晶により粒内の転
位は整理され転位密度は低い。このため、ほとんどの変
態はγ粒界を基点として始まり、粒内に向かって成長し
ていく。また再結晶γである限り、粒界単位面積当たり
の変態核生成数はほぼ一定の値をとる。このため変態後
の組織の粒数は単位体積当たりのγ粒界の面積にほぼ比
例し、再結晶後のγ粒径が小さいほど、変態後の組織は
細かくなる。一方、未再結晶γでは再結晶による転位の
整理が未だ行われていない状態であるので、粒内の転位
密度は高い。これにより、粒界のみならず粒内からも変
態が開始する。さらに粒界にも加工の影響が残ってお
り、粒界単位面積当たりの変態核生成数も再結晶γと比
べ大きい値をとる。このため粗大なγからでも、微細な
変態組織が得られる。未再結晶γからの変態によって得
られる変態組織は、加工後の冷速によってフェライト+
パーライト、ベイナイト、マルテンサイトに大別できる
が、いずれも平均結晶粒径が10μm以下となる。ただ
し、冷速によっては、これらの組織の混合組織となり、
靭性が著しく劣化するため、後述の冷速制御によりフェ
ライト+パーライト鋼とする。尚、ここで述べる平均結
晶粒径とは、破壊の単位となる結晶粒径であり、フェラ
イト+パーライトの場合はフェライトの平均粒径、ベイ
ナイトおよびマルテンサイトの場合は平均パケット・サ
イズを指す。一方、粒径が微細になると強度、靭性、降
伏比、伸びが向上することは知られているが、平均粒径
が10μm以下であると、これらの効果が顕著に現れて
くる。さらに効果を求めるのであれば、平均粒径が5μ
m 以下であることが望ましい。一方、平均粒径の下限は
特に定めないが、鍛造コストの面から、2μm 以上とす
ることが好ましい。Usually, in recrystallization γ, dislocations in grains are arranged by recrystallization and the dislocation density is low. Therefore, most of the transformation starts from the γ grain boundary and grows toward the inside of the grain. Further, as long as it is recrystallized γ, the number of transformation nuclei generated per unit area of grain boundary has a substantially constant value. Therefore, the number of grains of the structure after transformation is almost proportional to the area of the γ grain boundary per unit volume, and the smaller the γ grain size after recrystallization, the finer the structure after transformation. On the other hand, in the non-recrystallized γ, the dislocations in the grains are high because the dislocations have not been rearranged by recrystallization. As a result, the transformation starts not only at the grain boundaries but also inside the grains. Further, the effect of processing remains on the grain boundaries, and the number of transformation nucleation per unit area of the grain boundary is larger than that of recrystallization γ. Therefore, a fine transformation structure can be obtained even from coarse γ. The transformation structure obtained by transformation from unrecrystallized γ is ferrite +
It can be roughly classified into pearlite, bainite, and martensite, but all have an average crystal grain size of 10 μm or less. However, depending on the cold speed, it becomes a mixed tissue of these tissues,
Since the toughness is significantly deteriorated, ferrite + pearlite steel is used by the cold speed control described later. The average crystal grain size described here is a crystal grain size serving as a unit of fracture, and refers to the average grain size of ferrite in the case of ferrite + pearlite and the average packet size in the case of bainite and martensite. On the other hand, it is known that when the particle size becomes fine, the strength, toughness, yield ratio, and elongation improve, but when the average particle size is 10 μm or less, these effects become remarkable. If further effect is desired, the average particle size is 5μ
It is desirable to be less than m. On the other hand, although the lower limit of the average particle size is not particularly defined, it is preferably 2 μm or more from the viewpoint of forging cost.
【0030】尚、本発明において、平均粒径は光顕微鏡
により断面厚1/4t位置を200〜1000倍で3〜
5視野観察し、切断法により求めた値と定義する。In the present invention, the average particle diameter is 3 to 200 times to 1000 times at the 1/4 t cross section thickness by an optical microscope.
It is defined as a value obtained by observing 5 fields of view and cutting.
【0031】引張強さは、鍛造品の軽量化の点で下限を
800MPa に限定した。一方、1300MPa を越える
と、靭性が著しく低下し、切削寿命および金型寿命も著
しく低下するため、上限を1300MPa 以下にした。The lower limit of the tensile strength is set to 800 MPa in terms of weight reduction of the forged product. On the other hand, when the pressure exceeds 1300 MPa, the toughness is remarkably reduced and the cutting life and the die life are also remarkably reduced. Therefore, the upper limit was made 1300 MPa or less.
【0032】また、降伏比は疲労強度向上のため、0.
7に下限を限定した。一方、0.95以上に降伏比を上
げても疲労強度の向上は飽和するので、上限は0.95
に限定した。Further, the yield ratio is 0.
The lower limit was limited to 7. On the other hand, even if the yield ratio is increased to 0.95 or more, the improvement in fatigue strength saturates, so the upper limit is 0.95.
Limited to.
【0033】次に、鍛造品の製造方法について述べる。Next, a method for manufacturing a forged product will be described.
【0034】加熱温度は、鍛造時にγ単相である必要性
からAc3 点以上とする。また、過度の加熱はγ粒の粗
大化を促し、VないしはNbの加熱中の析出を促すた
め、その上限を950℃とした。尚、Ac3 点は(2)
式により求めた値と定義する。The heating temperature is set to an Ac 3 point or higher because it is necessary to be in the γ single phase during forging. Further, excessive heating promotes coarsening of γ grains and precipitation of V or Nb during heating, so the upper limit was set to 950 ° C. In addition, Ac 3 points are (2)
It is defined as the value obtained by the formula.
【0035】
Ac3=910−203(C)1/2 −15.2(Ni)+44.7(Si)
+104(V)+31.5(Mo)+13.1(W) …(2)
未再結晶上限温度は、(3)式により求めた値と定義す
る。(3)式は、加工フォーマスターを用い、V、Nb
含有成分の鋼について加工焼入試験を行い、組織観察を
行った結果得られた回帰式である。尚、(3)式は加工
度の影響を表す項を除いた簡易式である。Ac3 = 910-203 (C) 1 / 2-15.2 (Ni) +44.7 (Si) +104 (V) +31.5 (Mo) +13.1 (W) (2) Unrecrystallized The upper limit temperature is defined as the value obtained by the equation (3). The formula (3) uses V for Nb using a machining master.
It is a regression equation obtained as a result of performing a work hardening test on the contained steel and observing the structure. The expression (3) is a simple expression excluding the term indicating the influence of the workability.
【0036】
未再結晶上限温度(℃)=819+61((V)+10(Nb))0.2
…(3)
未再結晶γからの変態による組織微細化の効果は、未再
結晶温度域で与える歪みに依存する。対数歪みで0.3
未満の歪みでは、充分な組織微細化ができないため、そ
の下限を対数歪み0.3とする。でき得れば、0.8以
上の歪みが望ましい。一方、歪みを増加すれば組織は微
細化するが、その効果は飽和する傾向にある。歪みの増
加は鍛造反力の増加および金型寿命の低下によりコスト
上昇を招くため対数歪みは3以下とする。複数回の鍛造
で成形する場合には、再結晶温度域での鍛造と組み合わ
せてもよい。また、700℃以下の鍛造温度では鍛造前
にフェライトが生成し、鍛造時に加工フェライトとなり
靭性を劣化させるため、鍛造下限温度を700℃とす
る。Unrecrystallized upper limit temperature (° C.) = 819 + 61 ((V) +10 (Nb)) 0.2 (3) The effect of structural refinement by transformation from unrecrystallized γ is the strain given in the unrecrystallized temperature range. Depends on. 0.3 in logarithmic distortion
If the strain is less than 100 μm, the structure cannot be sufficiently refined. Therefore, the lower limit is set to a logarithmic strain of 0.3. If possible, a strain of 0.8 or more is desirable. On the other hand, if the strain is increased, the structure becomes finer, but the effect tends to be saturated. The increase in strain causes an increase in cost due to an increase in forging reaction force and a decrease in die life, so the logarithmic strain is set to 3 or less. In the case of forming by forging multiple times, it may be combined with forging in the recrystallization temperature range. Further, at a forging temperature of 700 ° C. or lower, ferrite is generated before forging, and it becomes work ferrite during forging, which deteriorates toughness, so the lower forging temperature is set to 700 ° C.
【0037】尚、ここで述べた対数歪みとは、(4)式
で定義した歪みである。元厚高さ平均とは、鍛造前素材
の鍛造方向を高さとしたときの平均値であり、仕上げ厚
高さ平均とは、鍛造後の高さの平均値である。ただし、
押し出し等の加工の場合は、(5)式に従うものとす
る。元断面積平均とは鍛造前素材の鍛造方向に垂直な面
の平均断面積であり、仕上げ断面積平均とは、鍛造後の
断面積平均である。The logarithmic distortion described here is the distortion defined by the equation (4). The original thickness average is the average value when the forging direction of the material before forging is the height, and the average finished thickness is the average height after forging. However,
In the case of processing such as extrusion, the formula (5) shall be followed. The average original cross-sectional area is the average cross-sectional area of the surface of the material before forging perpendicular to the forging direction, and the average finished cross-sectional area is the average cross-sectional area after forging.
【0038】
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均) …(4)
対数歪み=ln(元断面積平均/仕上げ断面積平均) …(5)
鍛造後の冷速によって組織形態が異なることは前述した
が、以下冷速について述べる。未再結晶γからの変態
は、核生成速度が増大しているため、T−T−Tノーズ
が短時間側にシフトし、フェライトが生成しやすくなっ
ている。このため、フェライト+パーライトを生成する
ためには、Ar3 点以下500℃以上の温度域を(1)
式に示した冷速で冷却すればよい。(1)式は図1の直
線から求めた式である。冷却速度の下限を0.1℃/s
ecとしたのは、それより遅い冷速であると、充分な核
生成速度が得られず、フェライトが粗大化してしまうか
らである。一方、上限を(2.5ε+1)℃/secと
したのは、それより速い冷速ではフェライト+パーライ
トが生成せず、ベイナイトないしはマルテンサイトとの
混合組織となり,靱性が劣化してしまうからである。ま
た、冷却制御温度域をAr3点以下としたのは、変態が
始まる温度だからである。一方、その下限を500℃と
したのは、この温度ではすでにフェライト+パーライト
変態が終了しているからである。Logarithmic strain = ln (original thickness height average / finishing thickness height average) (4) Logarithmic strain = ln (original cross-section area average / finishing cross-section average) ... (5) Microstructure by cold speed after forging Although the morphology is different as described above, the cold speed will be described below. In the transformation from unrecrystallized γ, since the nucleation rate is increased, the T-T-T nose shifts to the short time side, and ferrite is easily generated. Therefore, in order to generate ferrite + pearlite, the temperature range of 500 ° C or higher at the Ar 3 point or less is (1)
It may be cooled at the cooling speed shown in the formula. Expression (1) is an expression obtained from the straight line in FIG. Lower limit of cooling rate is 0.1 ℃ / s
The reason for setting ec is that if the cooling rate is slower than that, sufficient nucleation rate cannot be obtained and the ferrite becomes coarse. On the other hand, the upper limit is set to (2.5ε + 1) ° C./sec because ferrite + pearlite is not generated at a faster cooling rate and a mixed structure with bainite or martensite is formed, resulting in deterioration of toughness. . Further, the reason why the cooling control temperature range is set to the Ar3 point or lower is that it is the temperature at which the transformation starts. On the other hand, the lower limit is set to 500 ° C. because the ferrite + pearlite transformation has already been completed at this temperature.
【0039】 0.1℃/sec≦CR≦(2.5ε+1)℃/sec …(1) (ε:未再結晶温度域で与えた対数歪み) 尚、Ar3 点は(6)式により求めた値と定義する。0.1 ° C./sec≦CR≦(2.5ε+1)° C./sec (1) (ε: Logarithmic strain given in the non-recrystallization temperature range) The Ar 3 point is determined by the equation (6). Value.
【0040】 Ar3 =868−396(C)+24.6(Si)−58.7(Mn) −50(Ni)−35(Cu)+190(V) …(6)Ar 3 = 868-396 (C) +24.6 (Si) -58.7 (Mn) -50 (Ni) -35 (Cu) +190 (V) (6)
【0041】[0041]
【実施例】第1表に示す成分の鋼から、φ50×h60
の鍛造用試験片を切り出し、高周波で加熱して、第2表
に示す本発明方法および比較方法を適用して高さ方向の
平板圧縮鍛造を行った。第2表中の歪みは(4)式を適
用して求めた。さらに本発明方法を適用して冷却した場
合、第2表中に示したような粒径、強度、降伏比、靭性
となった。尚、冷却時の温度制御は保熱台車、衝風ない
しは水スプレー冷却で行った。組織は鍛造品の中央から
30mm離れた場所の1/4t位置を光顕撮影し、切断
法により平均粒径(平均パケット・サイズ)を求めた。
中央から30mm離したのはデッドメタル部を避けるた
めである。機械特性はJISA3号引張試験片およびJ
IS3号シャルピー試験片(幅5mm)を用いて測定し
た。第2表中、比較鋼1,2,14は本発明必須元素の
Nb,Vを必要量含んでいないため再結晶が生じ、粗大
な組織となっている。このため強度・降伏比・靭性が低
値である。比較鋼13,15は、Nb,Vを必要以上含
んでいるため、靭性が低値である。比較鋼3,4,5
は、鍛造前組織がマルテンサイトを含有しないか、その
面積率が低いため、鍛造後の組織が粗大となり、強度・
降伏比・靭性が低値である。比較鋼6は、鍛造時の加熱
温度が高すぎたため、前組織をマルテンサイトにした効
果が薄れ、組織が粗大となったため、強度・降伏比・靭
性が低値である。比較鋼7は、加熱温度が低すぎたため
加熱時にγ単相とならず、γ+α二相状態で鍛造したた
め、αが加工されて降伏比・靭性が低値である。比較鋼
8は加工温度が高く再結晶が生じたため、粗大な組織と
なり強度・降伏比・靭性が低値である。比較鋼9は加工
度が少ないため、充分な核生成速度が得られず、粗大な
組織となり強度・降伏比・靭性が低値である。比較鋼1
0は加工後の冷速が遅すぎたため、充分な核生成速度が
得られず、粗大な組織となり強度・降伏比・靭性が低値
である。比較鋼11は、加工後の冷速が早すぎたため一
部ベイナイトが生成し、降伏比・靭性が低値である。比
較鋼12は加工温度が低すぎ、加工時に一部αが生成し
た状態で加工したため、αが加工されて降伏比・靭性が
低値である。Example From steels having the components shown in Table 1, φ50 × h60
The forging test piece was cut out, heated at high frequency, and subjected to flat plate compression forging in the height direction by applying the method of the present invention and the comparison method shown in Table 2. The distortion in Table 2 was obtained by applying the equation (4). Further, when the method of the present invention was applied and cooled, the particle size, strength, yield ratio and toughness were as shown in Table 2. The temperature control during cooling was performed by a heat-retaining trolley, air blast or water spray cooling. The microstructure of the forged product was photographed at a 1 / 4t position 30 mm away from the center of the forged product, and the average grain size (average packet size) was determined by the cutting method.
The distance from the center is 30 mm to avoid the dead metal part. Mechanical properties are JISA No. 3 tensile test piece and J
The measurement was performed using an IS3 Charpy test piece (width 5 mm). In Table 2, the comparative steels 1, 2 and 14 do not contain the necessary amount of Nb and V which are essential elements of the present invention, so that recrystallization occurs and they have a coarse structure. Therefore, strength, yield ratio, and toughness are low. Since the comparative steels 13 and 15 contain Nb and V more than necessary, the toughness is low. Comparative steel 3,4,5
Indicates that the structure before forging does not contain martensite or its area ratio is low, so the structure after forging becomes coarse and the strength
Yield ratio and toughness are low. Comparative Steel 6 had a too high heating temperature during forging, so the effect of converting the previous structure to martensite was weakened, and the structure became coarse, so the strength, yield ratio, and toughness were low. Since the comparative steel 7 was not forged in the γ single phase at the time of heating because the heating temperature was too low and was forged in the γ + α two-phase state, α was processed and the yield ratio and toughness were low. Comparative Steel 8 has a high working temperature and recrystallization, so that it has a coarse structure and has low strength, yield ratio, and toughness. Since the comparative steel 9 has a low workability, it cannot obtain a sufficient nucleation rate, has a coarse structure, and has low strength, yield ratio, and toughness. Comparative steel 1
In the case of 0, the cold speed after processing was too slow, so a sufficient nucleation rate could not be obtained, resulting in a coarse structure and low strength / yield ratio / toughness. Comparative steel 11 had a low yield rate and toughness because part of bainite was formed because the cold speed after working was too fast. Comparative steel 12 was processed in a state where the processing temperature was too low and α was partially generated during the processing, so α was processed and the yield ratio and toughness were low.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【表2】 [Table 2]
【0044】[0044]
【表3】 [Table 3]
【0045】[0045]
【発明の効果】本発明により、明らかに強度、降伏比、
靭性が向上しており、本発明は有効である。According to the present invention, the strength, yield ratio, and
The toughness is improved, and the present invention is effective.
【図面の簡単な説明】[Brief description of drawings]
【図1】 組織生成に及ぼす未再結晶域で付与する対数
歪みと500℃〜Ar3 の温度域の冷速の影響を示す図
である。FIG. 1 is a diagram showing the influence of logarithmic strain imparted in the non-recrystallized region and cold speed in the temperature range of 500 ° C. to Ar 3 on the texture formation.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/60 C22C 38/60 (72)発明者 藤田 崇史 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 樽井 敏三 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 大野 尚仁 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 廣田 茂夫 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 岩間 直樹 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 Fターム(参考) 4K032 AA01 AA02 AA03 AA08 AA09 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA29 AA31 AA32 AA35 AA36 AA39 CF03 CH04 CH05 CJ02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/60 C22C 38/60 (72) Inventor Takashi Fujita 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Headquarters (72) Inventor Toshizo Tarui 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Headquarters (72) Inventor Naohito Ohno 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) Inventor Motohide Mori 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Shigeo Hirota 1 Wano Wari, Arao Town, Tokai City, Aichi Prefecture Aichi Steel Co., Ltd. (72) Invention Person Naoki Iwama 1 Wanowari, Arao-cho, Tokai-shi, Aichi F-term in Aichi Steel Co., Ltd. (reference) 4K032 AA01 AA02 AA03 AA08 AA09 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA29 AA31 AA32 AA35 AA36 AA39 CF03 CH04 CH05 CJ02
Claims (9)
不純物からなり、マルテンサイトを面積率で95〜10
0%含有することを特徴とする非調質高強度・高靭性鍛
造用鋼。1. In mass% C 0.1-0.8% Si 0.05-2.5% Mn 0.2-3% Al 0.005-0.1% N 0.001-0.02 %, And further contains one or two of V 0.05 to 0.5% Nb 0.005 to 0.1%, the balance being Fe and unavoidable impurities, and martensite in area ratio. 95-10
A non-heat treated high strength / high toughness forging steel characterized by containing 0%.
記載の非調質高強度・高靭性鍛造用鋼。2. The composition according to claim 1, which contains one or two of Mg 0.0001 to 0.005% and Zr 0.0001 to 0.005% by mass.
Non-heat treated high strength / high toughness forging steel.
項1又は2記載の非調質高強度・高靭性鍛造用鋼。3. In mass% Cr 0.05 to 3% Ni 0.05 to 3% Mo 0.05 to 3% Cu 0.01 to 2% Ti 0.003 to 0.05% B 0.00055 The non-heat treated high strength / high toughness forging steel according to claim 1 or 2, containing 0.005% of one or more kinds.
項1〜3の何れか1項に記載の非調質高強度・高靭性鍛
造用鋼。4. One or two kinds of S 0.01 to 0.3% Pb 0.03 to 0.3% Ca 0.001 to 0.05% Bi 0.03 to 0.3% in mass%. The non-heat treated high strength / high toughness forging steel according to any one of claims 1 to 3, containing the above.
からなる鋼片を、熱間圧延後、直ちに又は900〜13
50℃に再加熱して、900〜1350℃から室温〜3
00℃まで15〜60℃/secで冷却し、マルテンサ
イトを面積率で95〜100%含有する鋼を得ることを
特徴とする非調質高強度・高靭性鍛造用鋼の製造方法。5. A steel slab comprising the component according to any one of claims 1 to 4 immediately after hot rolling or 900 to 13
Reheat to 50 ℃, 900 ~ 1350 ℃ to room temperature ~ 3
A method for producing a non-heat treated high strength / high toughness forging steel, which comprises cooling to 00 ° C at 15 to 60 ° C / sec to obtain a steel containing martensite in an area ratio of 95 to 100%.
用鋼を熱間鍛造する際に、Ac3 点以上950℃以下に
加熱し、対数歪みで0.3〜3の加工を与える熱間鍛造
を未再結晶上限温度以下700℃以上で少なくとも1回
以上行い、平均結晶粒径が10μm以下のフェライトと
パーライトからなる組織を得ることを特徴とする非調質
高強度・高靭性鍛造品の製造方法。6. When hot forging the forging steel according to any one of claims 1 to 4, heating to an Ac 3 point or more and 950 ° C. or less, and processing of 0.3 to 3 by logarithmic strain Is a non-heat treated high-strength / high-strength structure characterized by performing hot forging at least once at a temperature not lower than the upper limit of unrecrystallized temperature of 700 ° C. to give a structure consisting of ferrite and pearlite having an average crystal grain size of 10 μm or less. Manufacturing method of toughness forged products.
度域を下記(1)式で示した冷速(CR)で冷却するこ
とを特徴とする請求項6記載の非調質高強度・高靭性鍛
造品の製造方法。 0.1℃/sec≦CR≦(2.5ε+1)℃/sec …(1) (ε:未再結晶温度域で与えた対数歪み)7. The non-heat treated high strength according to claim 6, wherein after forging, the temperature range not higher than the Ar 3 point and not lower than 500 ° C. is cooled at a cooling rate (CR) represented by the following formula (1). -Method of manufacturing high toughness forged products. 0.1 ° C./sec≦CR≦(2.5ε+1)° C./sec (1) (ε: logarithmic strain given in the non-recrystallization temperature range)
ことを特徴とする請求項6又は7に記載の非調質高強度
・高靭性鍛造品の製造方法。8. The method for producing a non-heat treated high strength / high toughness forged product according to claim 6, wherein the tensile strength is 800 to 1300 MPa.
特徴とする請求項6〜8の何れか1項に記載の非調質高
強度・高靭性鍛造品の製造方法。9. The method for producing a non-heat treated high strength / high toughness forged product according to claim 6, wherein the yield ratio is 0.7 to 0.95.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001349097A JP3851146B2 (en) | 2001-11-14 | 2001-11-14 | Non-tempered high strength and high toughness forging steel, method for producing the same, and method for producing forged products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001349097A JP3851146B2 (en) | 2001-11-14 | 2001-11-14 | Non-tempered high strength and high toughness forging steel, method for producing the same, and method for producing forged products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003147481A true JP2003147481A (en) | 2003-05-21 |
JP3851146B2 JP3851146B2 (en) | 2006-11-29 |
Family
ID=19161819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001349097A Expired - Fee Related JP3851146B2 (en) | 2001-11-14 | 2001-11-14 | Non-tempered high strength and high toughness forging steel, method for producing the same, and method for producing forged products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3851146B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008127595A (en) * | 2006-11-17 | 2008-06-05 | Kobe Steel Ltd | High strength hot forged non-heat treated steel having excellent fatigue limit ratio and toughness |
JP5079788B2 (en) * | 2007-10-29 | 2012-11-21 | 新日本製鐵株式会社 | Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts |
CN103668000A (en) * | 2013-11-14 | 2014-03-26 | 安徽荣达阀门有限公司 | Rhenium-containing wear-resistant high-hardness alloy material for pump shafts and preparation method thereof |
CN107385331A (en) * | 2017-07-07 | 2017-11-24 | 安徽同盛环件股份有限公司 | A kind of high-strength corrosion-resisting flange forge piece and its production technology |
EP3453777A1 (en) * | 2017-09-08 | 2019-03-13 | Cemtas Celk Makina Sanayi Ve Ticaret Anonim Sirketi | High strength and fracture splittable micro alloyed steel |
CN115074634A (en) * | 2022-07-08 | 2022-09-20 | 北京高创智信冶金科技有限公司 | High-strength non-quenched and tempered steel front shaft for heavy-duty automobile and production process thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110106446B (en) * | 2019-06-24 | 2021-04-13 | 新余钢铁股份有限公司 | 400 MPa-grade Ti-containing hot-rolled ribbed steel bar and production process thereof |
-
2001
- 2001-11-14 JP JP2001349097A patent/JP3851146B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008127595A (en) * | 2006-11-17 | 2008-06-05 | Kobe Steel Ltd | High strength hot forged non-heat treated steel having excellent fatigue limit ratio and toughness |
JP4728204B2 (en) * | 2006-11-17 | 2011-07-20 | 株式会社神戸製鋼所 | High strength non-tempered hot forging steel with excellent fatigue limit ratio and toughness |
JP5079788B2 (en) * | 2007-10-29 | 2012-11-21 | 新日本製鐵株式会社 | Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts |
CN103668000A (en) * | 2013-11-14 | 2014-03-26 | 安徽荣达阀门有限公司 | Rhenium-containing wear-resistant high-hardness alloy material for pump shafts and preparation method thereof |
CN103668000B (en) * | 2013-11-14 | 2016-05-04 | 安徽荣达阀门有限公司 | A kind of wear-resisting high hardness alloy material of rhenium-containing for pump shaft |
CN107385331A (en) * | 2017-07-07 | 2017-11-24 | 安徽同盛环件股份有限公司 | A kind of high-strength corrosion-resisting flange forge piece and its production technology |
EP3453777A1 (en) * | 2017-09-08 | 2019-03-13 | Cemtas Celk Makina Sanayi Ve Ticaret Anonim Sirketi | High strength and fracture splittable micro alloyed steel |
CN115074634A (en) * | 2022-07-08 | 2022-09-20 | 北京高创智信冶金科技有限公司 | High-strength non-quenched and tempered steel front shaft for heavy-duty automobile and production process thereof |
CN115074634B (en) * | 2022-07-08 | 2023-01-06 | 北京高创智信冶金科技有限公司 | High-strength non-quenched and tempered steel front shaft for heavy-duty automobile and production process thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3851146B2 (en) | 2006-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101263239B (en) | Method of producing high-strength steel plates with excellent ductility and plates thus produced | |
KR101253852B1 (en) | Non-heat Treatment Rolled Steel and Drawn Wire Rod Having High Toughness and Method Of Manufacturing The Same | |
EP1119648A1 (en) | Cold workable steel bar or wire and process | |
JPH07138704A (en) | High strength and high ductility dual-phase stainless steel and its production | |
JP3901994B2 (en) | Non-tempered high-strength and high-toughness forged product and its manufacturing method | |
JP3851147B2 (en) | Non-tempered high strength and high toughness forged product and its manufacturing method | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JPH0823048B2 (en) | Method for producing hot rolled steel sheet with excellent bake hardenability and workability | |
JP2001220647A (en) | High strength cold rolled steel plate excellent in workability and producing method therefor | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
JP2000192148A (en) | Steel wire rod excellent in cold workability and its production | |
JP2662409B2 (en) | Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness | |
JP2003147481A (en) | Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forging | |
JPH06299240A (en) | Manufacture of steel material for bearing having excellent spheroidizing characteristic | |
JPH09279233A (en) | Production of high tension steel excellent in toughness | |
JP2001192731A (en) | Method for producing high strength shaft parts | |
JPH09137222A (en) | Production of steel for high strength and low yield ratio reinforcing bar | |
JP3750737B2 (en) | Manufacturing method of non-tempered high strength and high toughness forgings | |
JP2003147480A (en) | Non-heatteated high strength and high toughness forging, and production method therefor | |
JPS6156235A (en) | Manufacture of high toughness nontemper steel | |
JPH0425343B2 (en) | ||
JP2000336460A (en) | Hot rolled wire rod and steel bar for machine structure and manufacture of the same | |
JP3214731B2 (en) | Method for producing non-heat treated steel bar with excellent low temperature toughness | |
JP3747365B2 (en) | Manufacturing method of non-tempered high strength and high toughness forgings | |
JPH059576A (en) | Production of non-heattreated bar steel excellent in toughness at low temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060831 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130908 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130908 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130908 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |