JP2003119671A - Vapor/liquid water-absorbing heat-generating structure for padding cloth - Google Patents

Vapor/liquid water-absorbing heat-generating structure for padding cloth

Info

Publication number
JP2003119671A
JP2003119671A JP2001318522A JP2001318522A JP2003119671A JP 2003119671 A JP2003119671 A JP 2003119671A JP 2001318522 A JP2001318522 A JP 2001318522A JP 2001318522 A JP2001318522 A JP 2001318522A JP 2003119671 A JP2003119671 A JP 2003119671A
Authority
JP
Japan
Prior art keywords
absorbing
water
moisture
fine particles
exothermic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001318522A
Other languages
Japanese (ja)
Other versions
JP3912578B2 (en
Inventor
Tadahito Onodera
忠人 小野寺
Seiichi Ochi
清一 越智
Akihisa Nakagawa
明久 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001318522A priority Critical patent/JP3912578B2/en
Publication of JP2003119671A publication Critical patent/JP2003119671A/en
Application granted granted Critical
Publication of JP3912578B2 publication Critical patent/JP3912578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Details Of Garments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor/liquid water-absorbing heat-generating structure capable of giving an excellent rate of heat generation which is brought about by absorption of vapor or liquid water, temperature effected by the heat generation, and retention of the heat generation, and therefore capable of being suitably used as a padding cloth. SOLUTION: This vapor/liquid water-absorbing heat-generating structure for the padding cloth is given by applying highly vapor water-absorbing fine particles to the structure, wherein the structure has a maximum temperature rise of >=3 deg.C, when the vapor and/or liquid water are absorbed. The structure preferably retains the heat generation brought about by the absorption of the vapor water for a period of >=30 min, and/or the heat generation brought about by the absorption of the liquid water for a period of >=1 min. Thus, such a fiber structure is simply and stably obtained that absorbs the vapor water or the liquid water from the external environment, the human body or artificial sources, generates the heat rapidly and stably, and is suitable for the padding cloth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、衣服内の汗、湿気
を吸い取り、蓄熱保温性を高めることで衣服内を快適に
する芯地用に好適な吸湿/吸水発熱性構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture-absorbing / water-absorbing exothermic structure suitable for interlining that absorbs sweat and moisture in clothes and enhances heat storage and heat retention to make clothes comfortable.

【0002】[0002]

【従来の技術】保温性に着目した一般衣料、防寒衣料、
スポーツ衣料や低温倉庫用ユニホームなどが種々実用化
されている。従来の保温性改善手段としては、熱伝導度
の小さい空気層を増やすための中空断面繊維や極細繊維
を活用する方法、体熱を反射するアルミ蒸着、コーティ
ングもしくは金属スパッタリングの活用する方法、金属
酸化物やセラミックス練り込みによる遠赤外線効果を期
待する方法(特開昭63−105107号、特開平7−
331584号など)、吸湿発熱性繊維を紡績、混繊等
により布帛、中綿に混用する方法(特開平6−2940
06号、特開平8−197661号ほか)やアクリル
酸、メタクリル酸などのビニル系モノマーのグラフト重
合法でカルボン酸末端を繊維表面もしくは内部に導入
し、ナトリウム塩化など金属塩化することで吸湿発熱性
を付与する方法などが種々提案されている。しかしなが
らこれらの方法はいずれも、発熱加温性が不十分であ
り、加えて、かかる吸湿/吸水発熱性を切り口とした効
果的な蓄熱保温性を発現する芯地に最適な編物、織物、
不織布、フリースまたは樹脂成形品は提案されていな
い。
2. Description of the Related Art General clothing, cold clothing,
Various sports clothing and uniforms for low temperature warehouses have been put to practical use. Conventional methods for improving heat retention include the use of hollow cross-section fibers and ultrafine fibers to increase the air layer with low thermal conductivity, aluminum vapor deposition that reflects body heat, the use of coating or metal sputtering, and metal oxidation. A method of expecting a far-infrared effect by kneading materials and ceramics (JP-A-63-105107, JP-A-7-
No. 331584), and a method of mixing a hygroscopic heat-generating fiber with a fabric or batting by spinning, mixing, or the like (JP-A-6-2940).
No. 06, JP-A-8-197661, etc.) or a vinyl monomer such as acrylic acid or methacrylic acid is introduced into the surface or inside of the fiber by a graft polymerization method to introduce a carboxylic acid terminal into the fiber or metal chloride such as sodium chloride. There have been various proposals for a method of imparting. However, all of these methods have insufficient heating and heating, and in addition, a knit, a woven fabric, which is most suitable for an interlining, which exhibits effective heat storage and heat retention with the heat absorption of moisture / water absorption as a cut,
Non-woven fabrics, fleeces or resin moldings have not been proposed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、吸湿もしく
は吸水時の発熱速度、発熱温度、発熱保持性に優れる芯
地用に適正な吸湿/吸水発熱性構造体を提供するもので
ある。
DISCLOSURE OF THE INVENTION The present invention provides a moisture-absorbing / water-absorbing exothermic structure suitable for interlining, which is excellent in heat generation rate, heat generation temperature, and heat retention during moisture absorption or water absorption.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するための技術構成は次のとおりである。すなわち、 1.高吸湿性微粒子が付着されてなる構造体であり、吸
湿及び/又は吸水時の最大温度上昇が3℃以上であるこ
とを特徴とする吸湿/吸水発熱性芯地用構造体。
The present invention has the following technical constitution for solving the above problems. That is, 1. A structure for moisture-absorbing / water-absorbing exothermic interlining, which is a structure to which highly hygroscopic fine particles are attached, and has a maximum temperature rise of 3 ° C. or more during moisture absorption and / or water absorption.

【0005】2.吸湿時の発熱が30分以上、及び/又
は吸水時の発熱が1分以上保持されることを特徴とする
第1に記載の吸湿/吸水発熱性芯地用構造体。
2. The heat-absorbing / water-absorbing exothermic interlining structure according to the first aspect, characterized in that heat generation during moisture absorption is maintained for 30 minutes or more and / or heat generation during water absorption is maintained for 1 minute or more.

【0006】3.吸水時の最大温度上昇が8℃以上であ
ることを特徴とする第1又は2に記載の吸湿/吸水発熱
性芯地用構造物。
3. 3. The moisture-absorbing / water-absorbing exothermic interlining structure according to item 1 or 2, wherein the maximum temperature rise during water absorption is 8 ° C. or higher.

【0007】4.高吸湿性微粒子が有機微粒子であるこ
とを特徴とする第1〜3のいずれかに記載の吸湿/吸水
発熱性芯地用構造体。
4. The highly hygroscopic / water-absorbing exothermic interlining structure according to any one of the first to third aspects, wherein the highly hygroscopic fine particles are organic fine particles.

【0008】5.高吸湿性有機微粒子がポリスチレン
系、ポリアクリロニトリル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系のいずれかのビニル系
重合体で、スルホン酸基、カルボン酸基、リン酸基ある
いは、それらの金属塩の少なくとも1種の親水基を有
し、かつジビニルベンゼン、トリアリルイソシアネート
またはヒドラジンのいずれかで架橋された架橋重合体で
ある第4に記載の吸湿/吸水発熱性芯地用構造体。
5. The highly hygroscopic organic fine particles are polystyrene-based, polyacrylonitrile-based, polyacrylic acid ester-based, or polymethacrylic acid ester-based vinyl polymers, and have sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, or their metals. The moisture-absorbing / water-absorbing exothermic interlining structure according to the fourth aspect, which is a cross-linked polymer having at least one hydrophilic group of a salt and cross-linked with either divinylbenzene, triallyl isocyanate or hydrazine.

【0009】6.高吸湿性微粒子の平均粒子径が2μm
未満であることを特徴とする第1〜5のいずれかに記載
の吸湿/吸水発熱性芯地用構造体。
6. Highly hygroscopic fine particles have an average particle size of 2 μm
The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of the first to fifth features, wherein

【0010】7.高吸湿性微粒子が親水性樹脂を介して
構造体に固定化されていることを特徴とする第1〜6の
いずれかに記載の吸湿/吸水発熱性芯地用構造体。
7. 7. The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of 1 to 6, wherein the highly hygroscopic fine particles are fixed to the structure through a hydrophilic resin.

【0011】8.高吸湿性微粒子と親水性樹脂の質量比
が1/1〜19/1であることを特徴とする第1〜7の
いずれかに記載の吸湿/吸水発熱性芯地用構造体。
8. The hygroscopic / water-absorbing exothermic interlining structure according to any one of items 1 to 7, wherein the mass ratio of the highly hygroscopic fine particles and the hydrophilic resin is 1/1 to 19/1.

【0012】9.構造体が天然繊維、化合繊もしくはこ
れらの混用繊維で構成される編物、織物、不織布、フリ
ースまたは樹脂成形体であることを特徴とする第1〜8
のいずれかに記載の吸湿/吸水発熱性芯地用構造体。
9. The structure is a knitted fabric, a woven fabric, a non-woven fabric, a fleece, or a resin molded product composed of natural fibers, synthetic fibers, or a mixture of these fibers.
The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of 1.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する.本発明に用いる構造体とは、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
ポリテトラメチレンテレフタレートなどに代表されるポ
リエステル系、ポリエステル系、ナイロン6、ナイロン
66に代表されるポリアミド系、ポリエチレン、ポリプ
ロピレンに代表されるポリオレフィン系、ポリアクリル
ニトリル系、ポリウレタン系、ポリフェニレンサルファ
イド系等の合成繊維、レーヨン、アセテート等の化学繊
維、木綿、麻、シルク、ウール、羽毛などの天然繊維も
しくはこれらの混用素材からなる編物、織物、不織布、
フリース、または樹脂成形体などで構成される構造体で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The structure used in the present invention includes polyethylene terephthalate, polybutylene terephthalate,
Polyesters represented by polytetramethylene terephthalate, polyesters, polyamides represented by nylon 6, nylon 66, polyolefins represented by polyethylene, polypropylene, polyacrylonitriles, polyurethanes, polyphenylene sulfides, etc. Synthetic fibers, chemical fibers such as rayon and acetate, natural fibers such as cotton, hemp, silk, wool and feather, or knits, woven fabrics and non-woven fabrics made of mixed materials thereof,
It is a structure composed of a fleece or a resin molded body.

【0014】本発明の高吸湿性微粒子(以下、高吸湿/
吸水発熱性微粒子とも表記する。)とは、吸湿又は吸水
時に発熱性を示す微粒子であれば、特に化学構造的に限
定されるものではない。例えば、吸湿性シリカなどの無
機系、もしくは吸湿性ポリウレタン系、ポリアミド系、
ポリエステル系およびポリアクリレート系などの種々の
有機系微粒子の適用が可能であるが、特に、高吸湿/吸
水発熱性有機微粒子が好ましく、例えば、ポリスチレン
系、ポリアクリロニトリル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系のいずれかのビニル系
重合体で、スルホン酸基、カルボン酸基、リン酸基ある
いは、それらの金属塩の少なくとも1種の親水基を有
し、かつジビニルベンゼン、トリアリルイソシアネート
またはヒドラジンのいずれかで架橋された架橋重合体微
粒子である。
Highly hygroscopic fine particles of the present invention (hereinafter referred to as high moisture absorption /
Also referred to as water-absorbing exothermic particles. ) Is not particularly limited in terms of chemical structure as long as it is a fine particle that exhibits exothermicity when absorbing moisture or absorbing water. For example, inorganic type such as hygroscopic silica, or hygroscopic polyurethane type, polyamide type,
It is possible to apply various organic fine particles such as polyester-based and polyacrylate-based, but particularly high moisture-absorption / water-absorption exothermic organic fine particles are preferable, and examples thereof include polystyrene-based, polyacrylonitrile-based, polyacrylic ester-based, and polyacrylic ester-based. A methacrylic acid-based vinyl polymer having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or at least one hydrophilic group of metal salts thereof, and having divinylbenzene, triallyl isocyanate, or It is a crosslinked polymer fine particle crosslinked with any of hydrazine.

【0015】高吸湿性微粒子の粒度は、吸湿/吸水発熱
速度/発熱効率、均一付着性、風合い及び耐磨耗性の点
から細かいほど望ましく、平均粒子径2μm未満がより
好ましい。
The particle size of the highly hygroscopic fine particles is preferably as small as possible from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency, uniform adhesion, texture and abrasion resistance, and an average particle diameter of less than 2 μm is more preferable.

【0016】本発明の高吸湿/吸水発熱性微粒子の付与
方法は、繊維、フィルムもしくは樹脂層に直接練り込む
方法や編物、織物、不織布、フリース、紐状物、フィル
ム及び樹脂成形品などの表層にバインダー樹脂を介して
付着させる方法が挙げられるが、吸湿/吸水発熱速度/
発熱効率の点から後者のバインダー樹脂を介する付着方
法が好ましい。
The method of applying the highly hygroscopic / water-absorbing exothermic fine particles of the present invention includes a method of directly kneading into a fiber, a film or a resin layer or a surface layer of a knitted fabric, a woven fabric, a non-woven fabric, a fleece, a string-like product, a film and a resin molded product. There is a method of attaching via a binder resin to
From the viewpoint of heat generation efficiency, the latter method of attaching via a binder resin is preferable.

【0017】バインダー樹脂としては、通常の含浸法、
パディング法、コーティング法、スプレー法に適用でき
るシリコン系、ウレタン系、アクリル系、ポリエステル
系などの樹脂が挙げられ、特に限定されないが、親水
性、透湿性に優れ、高吸湿/吸水発熱性微粒子の吸湿性
を阻害しないものが好ましい。また、これら高吸湿/吸
水発熱性微粒子と親水性樹脂バインダーの系に耐久性向
上のため各種架橋剤を併用しても良い。
As the binder resin, a usual impregnation method,
Examples include silicone-based, urethane-based, acrylic-based, polyester-based resins that can be applied to the padding method, coating method, and spray method, and are not particularly limited, but are excellent in hydrophilicity and moisture permeability, and have high moisture absorption / water absorption heat-generating fine particles. Those that do not impair hygroscopicity are preferred. Further, various crosslinking agents may be used in combination in the system of these highly hygroscopic / water-absorbing exothermic particles and the hydrophilic resin binder in order to improve durability.

【0018】本発明における高吸湿/吸水発熱性微粒子
と親水性樹脂の配合比及びこれらの付着量は、吸湿/吸
水発熱性に大きく影響する。親水性樹脂の親水レベルに
より高吸湿/吸水発熱性微粒子と親水性樹脂の配合比は
多少異なるが、1/1〜19/1の配合使用が望まし
く、特に、親水性樹脂の配合比率の小さいものほど、優
れた吸湿/吸水発熱性を発現させることができる。但
し、親水性樹脂が極端に少ない場合、もしくは併用しな
い場合は構造物表面に付着した高吸湿/吸水発熱性微粒
子の磨耗耐久性が低下し、脱落し易くなる。
The compounding ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin and the amount of these adhering to each other greatly influence the hygroscopic / water-absorbing exothermicity. The compounding ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin is slightly different depending on the hydrophilic level of the hydrophilic resin, but it is desirable to use the compounding ratio of 1/1 to 19/1, and particularly, the compounding ratio of the hydrophilic resin is small. The more excellent moisture absorption / water absorption exothermicity can be exhibited. However, when the hydrophilic resin is extremely small, or when the hydrophilic resin is not used in combination, the abrasion resistance of the highly hygroscopic / water-absorbing heat-generating fine particles adhered to the surface of the structure is deteriorated and the particles easily fall off.

【0019】本発明の吸湿/吸水発熱性構造体の発熱性
は、物湿の吸湿もしくは吸水時に産出する吸着反応熱に
基くもので、構造体に含まれる高吸湿/吸水性微粒子の
吸湿性能力及び又は吸水性能力及び付着量に依存する。
すなわち、高吸湿/吸水性微粒子で、しかも細かいほど
吸着水分による産熱は大きく、発熱速度も早くなる。も
ちろん、かかる吸湿/吸水性は構造体基材単独でも保有
するため、より効果的な吸湿/吸水発熱性を実現させる
ためには適用吸湿/吸水発熱性微粒子の吸湿性は25%
以上が望ましく、さらに好ましくは40%以上である。
したがって、効果的な吸湿/吸水発熱性を得るために
は、本発明の吸湿/吸水発熱性構造体を出来るだけ低吸
湿率、更に好ましくは完全乾燥(絶乾)状態に近い状態
で保管することが肝要である。逆に、飽和吸湿率以上に
水分を吸着し、発熱が完了した構造体は、放熱冷却され
当初の温度まで低下するが、再度、乾燥して吸着水を取
り除けば、元来の優れた吸湿/吸水発熱性が再発現す
る。
The exothermicity of the moisture-absorbing / water-absorbing exothermic structure of the present invention is based on the heat of adsorption reaction generated when absorbing moisture or absorbing water, and the hygroscopic ability of the highly hygroscopic / water-absorbing fine particles contained in the structure. And / or depends on the water absorption capacity and the amount deposited.
That is, the higher the moisture absorption / water absorption fine particles, and the finer the particles, the greater the heat production due to the adsorbed moisture and the faster the heat generation rate. Of course, since such a moisture absorption / water absorption is possessed by the structure base material alone, in order to realize more effective moisture absorption / water absorption exothermicity, the hygroscopicity of the applied moisture absorption / water absorption exothermic fine particles is 25%.
The above is desirable, and more preferably 40% or more.
Therefore, in order to obtain effective moisture absorption / water absorption exothermicity, the moisture absorption / water absorption exothermic structure of the present invention should be stored with a moisture absorption rate as low as possible, and more preferably in a state close to a completely dry (absolute dry) state. Is essential. On the other hand, the structure that has adsorbed moisture at a saturated moisture absorption rate or higher and has completed heat generation is cooled by heat radiation and drops to the initial temperature, but if it is dried again to remove the adsorbed water, the original excellent moisture absorption / Water absorption and exothermicity reappear.

【0020】気相状態の吸湿発熱性が適度な速度で発熱
し、比較的長く発熱性を維持するのに対して、液相の吸
水発熱性は急速な発熱性が得られる反面、付着水の量が
多すぎると顕著な発熱効果が得られない場合もあるの
で、付着水量の管理が重要となる。
The moisture absorption exothermicity in the vapor phase heats up at an appropriate rate and maintains the exothermicity for a relatively long time, whereas the water absorption exothermicity in the liquid phase gives a rapid exothermicity, while the adsorbed water If the amount is too large, the remarkable heat generation effect may not be obtained, so it is important to control the amount of attached water.

【0021】本発明によれば、高吸湿/吸水発熱性微粒
子種類及び付着量を最適化し、適正な親水性樹脂バイン
ダーを介して付着させた構造体は、吸湿及び又は吸水時
の最大温度上昇が3℃以上、好ましくは4℃以上、より
好ましくは5℃以上であり、さらには吸水時の最大温度
上昇が8℃以上であり、しかも吸湿時の発熱が30分以
上、吸水時の発熱が30秒以上より好ましくは1分以上
保持される優れた吸湿/吸水発熱性が得られる。
According to the present invention, the type of the highly hygroscopic / water-absorbing exothermic fine particles and the amount of adhesion are optimized, and the structure adhered through an appropriate hydrophilic resin binder has a maximum temperature rise during moisture absorption and / or water absorption. 3 ° C. or higher, preferably 4 ° C. or higher, more preferably 5 ° C. or higher, further, the maximum temperature rise during water absorption is 8 ° C. or higher, and the heat generation during moisture absorption is 30 minutes or more, and the heat generation during water absorption is 30 Excellent moisture absorption / water absorption exothermicity is obtained, which is maintained for more than 2 seconds, more preferably for more than 1 minute.

【0022】本発明の構造体は、これらの優れた高吸湿
/吸水発熱性に加えて、抗菌防臭性、制菌性、消臭性、
ノネナール消臭性、pH緩衝性、制電性、SR防汚性、
耐酸性雨性の多機能性を発現させることもできる。
The structure of the present invention has, in addition to these excellent high moisture absorption / water absorption exothermic properties, antibacterial / deodorant properties, antibacterial properties, deodorant properties,
Nonenal deodorant, pH buffering, antistatic, SR antifouling,
It is also possible to develop multifunctionality of acid rain resistance.

【0023】[0023]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明は、何らこれらに限定するものではない。以
下で、単に部、%と記載したものは、質量基準を意味す
る。また、本実施例における構造体の測定、評価は次の
方法で行った。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. Below, what is described simply as part and% means on a mass basis. Moreover, the measurement and evaluation of the structure in this example were performed by the following methods.

【0024】<絶乾質量>サンプルを110℃×6時間
乾燥後、シリカゲル入りデシケータに入れ、20℃、6
5%RH環境下で調温後、質量測定を行った。 <吸湿性>20℃、65%RH環境下で24時間調温調
湿後の質量測定を行い、下記式から算出した。 吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}
×100
<Absolute dry mass> After drying the sample at 110 ° C for 6 hours, the sample was placed in a desiccator containing silica gel and kept at 20 ° C for 6 hours.
After adjusting the temperature in a 5% RH environment, mass measurement was performed. <Hygroscopicity> The mass was measured after the temperature and humidity were adjusted for 24 hours in an environment of 20 ° C. and 65% RH, and calculated from the following formula. Moisture absorption rate (%) = {(moisture absorption mass-excess dry mass) / excess dry mass}
× 100

【0025】<吸湿発熱性>110℃×6時間乾燥後、
シリカゲル入りデシケータに入れ、絶乾状態とした5c
m×5cmの測定サンプルに温度センサー(例えば安立
計器(株)製;540K MD−5型)を装着後、20
℃、95%RH環境下(例えば硫酸カリウム飽和水溶液
入りデシケータ)での吸湿発熱性を温度記録計(例えば
安立計器(株)製;DATA COLLECTOR A
M−7052型)で計測した。 <吸水発熱性>前記絶乾状態の5cm×5cmの測定サ
ンプルに温度センサーを装着後、20℃、65%RH環
境下で、サンプル質量の50%相当量のイオン交換水を
3〜5秒の間に均一に噴霧後、吸水発熱性を温度記録計
にて計測した。最大吸水発熱温度及び吸水前サンプル温
度以上の吸水発熱保持時間(分)で評価した。
<Heat absorption by moisture absorption> After drying at 110 ° C. for 6 hours,
5c put in desiccator containing silica gel and dried
20 after mounting a temperature sensor (for example, manufactured by Anritsu Keiki Co., Ltd .; 540K MD-5 type) on a measurement sample measuring m × 5 cm.
Temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR A)
M-7052 type). <Water absorption exothermicity> After attaching a temperature sensor to the measurement sample of 5 cm x 5 cm in the absolutely dry state, ion-exchanged water equivalent to 50% of the sample mass for 3 to 5 seconds was placed in an environment of 20 ° C and 65% RH. After uniformly spraying in the meantime, the water absorption exothermicity was measured with a temperature recorder. The water absorption heat generation time and the water absorption heat generation retention time (minutes) above the maximum water absorption heat generation temperature and the sample temperature before water absorption were evaluated.

【0026】<結露性>10〜15リットルの内体積を
有するデシケーターに5cm×5cmのサンプルを投入
し、ふたを開けた状態で20℃、80%の室内に放置
し、調温・調湿した。24時間後、デシケーターのふた
を閉めて10℃に保たれた環境下に5分以内に移動させ
る。その1時間後にふたを開けサンプルの結露状態を確
認した。
<Dew Condensation> A 5 cm × 5 cm sample was placed in a desiccator having an internal volume of 10 to 15 liters, and the lid was left open in a room at 20 ° C. and 80% to adjust the temperature and humidity. . After 24 hours, the desiccator lid is closed, and the desiccator is moved to the environment kept at 10 ° C. within 5 minutes. One hour after that, the lid was opened and the dew condensation state of the sample was confirmed.

【0027】[実施例1]ポリエチレンテレフタレート
長繊維加工糸(34T/24f)からなるヒラ織物(目
付=80g/m2)を通常リラックス精練、分散染色、
乾燥後、本発明の芯地用高吸湿/吸水発熱性構造体の基
布として用いた。
Example 1 A flat woven fabric (weight per unit area = 80 g / m 2 ) made of polyethylene terephthalate long-fiber processed yarn (34T / 24f) was usually subjected to relax scouring, dispersion dyeing,
After drying, it was used as a base fabric of the highly moisture-absorbing / water-absorbing exothermic structure for interlining of the present invention.

【0028】次に高吸湿/吸水発熱性有機微粒子の製造
を次の方法で行った。メタクリル酸/p−スチレンスル
ホン酸ソーダ=70/30の水溶性重合体350部及び
硫酸ナトリウム35部を6500部の水に溶解し、櫂型
攪拌機付きの重合槽に仕込んだ。次に、アクリル酸メチ
ル2750部及びジビニルベンゼン330部に2,2'
−アゾビス−(2,4−ジメチルバレロニトリル)15
部を溶解して重合槽に仕込み、400rpmの攪拌下、
60℃で2時間重合し、重合率88%の共重合体を得
た。該重合体100部を水900部中に分散し、これに
110部の苛性ソーダを添加し、90℃、2.5時間反
応を行い、アクリル酸メチルのメチルエステル部を加水
分解することによりカルボキシル基4.6ミリ当量/g
を有した架橋重合体を得た。得られた重合体を水中に分
散し、洗浄、脱水後、粉砕、分級し、高吸湿/吸水発熱
性微粒子を得た。得られた高吸湿/吸水発熱性有機微粒
子の20℃、65%RH下での吸湿性は50%、平均粒
子径は0.8μmであった。
Next, highly hygroscopic / water-absorbing exothermic organic fine particles were produced by the following method. 350 parts of a water-soluble polymer of methacrylic acid / sodium p-styrenesulfonate = 70/30 and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a paddle type stirrer. Next, 2,750 parts of methyl acrylate 2750 parts and divinylbenzene 330 parts were added.
-Azobis- (2,4-dimethylvaleronitrile) 15
Part was melted and charged into a polymerization tank, while stirring at 400 rpm,
Polymerization was carried out at 60 ° C. for 2 hours to obtain a copolymer having a polymerization rate of 88%. 100 parts of the polymer was dispersed in 900 parts of water, 110 parts of caustic soda was added thereto, and the reaction was carried out at 90 ° C. for 2.5 hours to hydrolyze the methyl ester part of methyl acrylate to obtain a carboxyl group. 4.6 meq / g
A crosslinked polymer having The obtained polymer was dispersed in water, washed, dehydrated, pulverized and classified to obtain highly hygroscopic / water-absorbing exothermic particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a hygroscopicity of 50% at 20 ° C. and 65% RH and an average particle diameter of 0.8 μm.

【0029】かかる高吸湿/吸水発熱性微粒子20%を
含む水分散体95部に親水性樹脂バインダーとして、T
F−3500(花王社製親水性シリコン系バインダー;
固形分40%)4部およびアクアプレンWS105(明
成化学工業社製親水性ウレタン系バインダー;固形分4
0%)1部を加えた加工パディング液に基布を浸漬し、
マングルにて加工液ウエットピックアップ率100%に
なるよう絞った後、120℃で乾燥後、180℃で1分
間乾熱セットして構造体を得た。得られた構造体の吸湿
/吸水発熱性の特性を表1に示す。未加工品に比べ優れ
た吸湿発熱性/吸水発熱性が得られた。
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / water-absorbing exothermic fine particles was treated with T
F-3500 (Kao's hydrophilic silicone binder;
Solid content 40%) 4 parts and Aquaprene WS105 (Meissei Chemical Industry hydrophilic urethane binder; solid content 4)
0%) Immerse the base cloth in the processing padding liquid added with 1 part,
After squeezing with a mangle so that the wet pick-up rate of the working fluid was 100%, it was dried at 120 ° C. and dry-heat set at 180 ° C. for 1 minute to obtain a structure. The moisture absorption / water absorption exothermic properties of the obtained structure are shown in Table 1. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product.

【0030】[実施例2]実施例2で用いる基布は、前
記実施例1と同じものを用いた。
[Example 2] The same base fabric as that used in Example 1 was used as the base fabric in Example 2.

【0031】実施例2で用いる高吸湿/吸水発熱性有機
微粒子の製造を次の方法で行った。アクリロニトリル4
50部、アクリル酸メチル40部、p−スチレンスルホ
ン酸ソーダ16部及び水118部をオートクレーブに仕
込み、重合開始剤としてジ−tert−ブチルパーオキ
サイドを単量体全体に対して0.5%添加した後、密閉
し、次いで攪拌下において150℃で20分間重合反応
後、攪拌しながら約90℃まで冷却し、平均粒子径1.
4μm(光散乱光度計測定)の原料微粒子の水分散体を
得た。この水分散体に浴中濃度が35%になるようヒド
ラジンを加え、102℃で2時間架橋処理を行い、続い
て浴中濃度が10%になるよう苛性ソーダを加えて、1
02℃で5時間加水分解処理を行った後、流水中で透
析、脱塩、乾燥、粉砕、分級後、高吸湿/吸水発熱性有
機微粒子を得た。得られた高吸湿/吸水発熱性有機微粒
子の20℃、65%RH下での吸湿性は45%、平均粒
子径は0.9μmであった。
The highly hygroscopic / water-absorbing exothermic organic fine particles used in Example 2 were produced by the following method. Acrylonitrile 4
50 parts, 40 parts of methyl acrylate, 16 parts of sodium p-styrenesulfonate and 118 parts of water were charged into an autoclave, and 0.5% of di-tert-butyl peroxide was added as a polymerization initiator to the whole monomer. After that, the mixture was sealed, and then the polymerization reaction was carried out at 150 ° C. for 20 minutes under stirring, followed by cooling to about 90 ° C. with stirring to obtain an average particle size of 1.
An aqueous dispersion of raw material fine particles of 4 μm (measured by a light scattering photometer) was obtained. Hydrazine was added to this aqueous dispersion so that the concentration in the bath was 35%, crosslinking treatment was performed at 102 ° C. for 2 hours, and then caustic soda was added so that the concentration in the bath was 10%.
After hydrolyzing at 02 ° C. for 5 hours, dialysis in running water, desalting, drying, pulverization, and classification were performed to obtain highly hygroscopic / water-absorbing exothermic organic fine particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a hygroscopicity of 45% at 20 ° C. and 65% RH, and an average particle diameter of 0.9 μm.

【0032】かかる高吸湿/吸水発熱性微粒子20%を
含む水分散体95部に親水性樹脂バインダーとして、T
F−3500(花王社製親水性シリコン系バインダー;
固形分40%)5部を加えた加工パディング液に基布を
浸漬し、マングルにて加工液ウエットピックアップ率1
20%になるよう絞った後、120℃で乾燥後、170
℃で1分間乾熱セットして構造体を得た。得られた構造
体の吸湿/吸水発熱性の特性を表1に示す。未加工品に
比べ優れた吸湿発熱性/吸水発熱性が得られた。
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / water-absorbing exothermic fine particles was used as a hydrophilic resin binder.
F-3500 (Kao's hydrophilic silicone binder;
Dip the base cloth in the processing padding solution containing 5 parts of solid content (40%) and use the mangle to wet the processing solution with a pick-up rate of 1
Squeeze to 20%, dry at 120 ° C, then 170
The structure was obtained by dry heat setting at 1 ° C. for 1 minute. The moisture absorption / water absorption exothermic properties of the obtained structure are shown in Table 1. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product.

【0033】[実施例3]2.2デシテックス、繊維長
38mmカットの中空ポリエステル短繊維(機械捲縮
糸)を開繊、カード後、通常のニードルパンチ不織布
(目付け=80g/m 2)を得た。
[Example 3] 2.2 decitex, fiber length
38mm cut hollow polyester staple fiber (mechanical crimp
After opening the card, after carding, the normal needle-punched nonwoven fabric
(Basis weight = 80 g / m 2) Got.

【0034】次いで、実施例1で得られた高吸湿/吸水
発熱性有機微粒子20%を含む水分散体95部に、親水
性バインダーとして、TF−3500(花王社製造親水
性シリコン系バインダー;固形分40%)5部を加えた
加工パディング液に基布を浸漬し、マングルにて加工液
ウエットピックアップ率100%になるよう絞った後、
120℃で乾燥後、170℃で1分間乾熱セットして芯
地用構造体を得た。得られた構造体の吸湿/吸水発熱性
の特性を表1に示す。未加工品に比べ優れた吸湿発熱性
/吸水発熱性が得られた。
Next, 95 parts of an aqueous dispersion containing 20% of highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was added as a hydrophilic binder with TF-3500 (hydrophilic silicon-based binder manufactured by Kao Corporation; solid). After dipping the base cloth in the processing padding liquid added with 5 parts, and squeezing with a mangle so that the processing liquid wet pickup ratio is 100%,
After drying at 120 ° C., it was dry heat set at 170 ° C. for 1 minute to obtain a structure for interlining. The moisture absorption / water absorption exothermic properties of the obtained structure are shown in Table 1. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product.

【0035】[実施例4]40番手綿紡績糸100%か
らなるヒラ織物を通常のり抜き精練、過酸化水素漂白、
シルケット加工後、反応染料により染色、洗浄、乾燥セ
ットした織物を構造体基布として用いた。
[Example 4] A flat woven fabric made of 100% cotton spun yarn of 40 count was subjected to ordinary scouring, hydrogen peroxide bleaching,
A woven fabric dyed with a reactive dye, washed and dried after mercerizing was used as a structural base fabric.

【0036】次いで、実施例1で得られた高吸湿/吸水
発熱性有機微粒子20%を含む水分散体90部に、親水
性バインダーとして、TF−3500(花王社製造親水
性シリコン系バインダー;固形分40%)3.5部およ
び繊維素反応型グリオキザール系樹脂(ジメチロールヒ
ドロキシエチレン尿素;固形分80%)6部、塩化マグ
ネシウム系酸性触媒0.5部を加えた加工パディング液
に基布を浸漬し、マングルにて加工液ピックアップ率1
00%になるよう絞った後、120℃で乾燥後、170
℃で1分間乾熱セットして芯地用構造体を得た。得られ
た構造体の吸湿/吸水発熱性の特性を表1に示す。未加
工品に比べ優れた吸湿発熱性/吸水発熱性が得られた。
Next, 90 parts of an aqueous dispersion containing 20% of highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was used as a hydrophilic binder, and TF-3500 (hydrophilic silicone binder manufactured by Kao Corporation; solid). 40%), 3.5 parts of fibrin-reactive type glyoxal resin (dimethylol hydroxyethylene urea; 80% of solid content), 0.5 parts of magnesium chloride-based acidic catalyst, and a base cloth to a processing padding solution. Immerse and pick up the processing liquid with mangle 1
After squeezing so that it becomes 00%, it is dried at 120 ° C and then 170
The structure for interlining was obtained by dry heat setting at 1 ° C. for 1 minute. The moisture absorption / water absorption exothermic properties of the obtained structure are shown in Table 1. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product.

【0037】[比較例1]実施例1に記載のポリエステ
ル長繊維加工糸使い織物単独での結果を表1に示す。実
施例1、2に比べ吸湿/吸水発熱効果は見られなかっ
た。
[Comparative Example 1] Table 1 shows the results of the woven fabric using the polyester filament processed yarn described in Example 1 alone. As compared with Examples 1 and 2, no moisture absorption / water absorption exothermic effect was observed.

【0038】[比較例2]実施例3に記載の中空ポリエ
ステル短繊維製ニードルパンチ不織布単独での結果を表
1に示す。実施例3に比べ吸湿/吸水発熱効果は見られ
なかった。
[Comparative Example 2] Table 1 shows the results of the needle punched nonwoven fabric made of the hollow polyester short fibers described in Example 3 alone. As compared with Example 3, no moisture absorption / water absorption exothermic effect was observed.

【0039】[比較例3]実施例4に記載の綿紡績糸1
00%ヒラ織物単独での結果を表1に示す。多少の吸湿
/吸水発熱性が見られるものの実施例4に比べ劣るもの
であった。
Comparative Example 3 The cotton spun yarn 1 described in Example 4
The results for the 00% flat fabric alone are shown in Table 1. Although some heat absorption due to moisture absorption / water absorption was observed, it was inferior to that of Example 4.

【0040】[比較例4]実施例1のポリエステル織物
を用い、高吸湿/吸水発熱性微粒子20%を含む水分散
体95部にアミノ変成シリコン樹脂バインダー(固形分
40%)5部を加えた加工液に基布を浸漬し、マングル
にて加工液ウエットピックアップ率100%になるよう
絞った後、120℃で乾燥後、180℃で1分間乾熱セ
ットして構造体を得た。得られた構造体の吸湿/吸水発
熱性の特性を表1に示す。実施例に比べ吸湿発熱性/吸
水発熱性が劣るものであった。
Comparative Example 4 Using the polyester woven fabric of Example 1, 5 parts of amino-modified silicone resin binder (solid content 40%) was added to 95 parts of an aqueous dispersion containing 20% of highly hygroscopic / water-absorbing exothermic fine particles. The base cloth was dipped in the working liquid, squeezed with a mangle so that the wet pick-up ratio of the working liquid was 100%, dried at 120 ° C., and then dried and set at 180 ° C. for 1 minute to obtain a structure. The moisture absorption / water absorption exothermic properties of the obtained structure are shown in Table 1. The exothermic heat of moisture absorption / exothermic heat of water absorption was inferior to those of the examples.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】本発明によれば、高吸湿発熱性微粒子を
少量の親水性樹脂を介して編物、織物、不織布、フリー
ス、もしくは樹脂成形品に付着させ、外部環境、人体も
しくは人工的な湿気(水蒸気)や水分(液体)を吸収し
て迅速かつ安定に発熱することで、芯地用に好適な吸湿
/吸水発熱性構造体を簡便に、かつ安定に得ることがで
きる。
EFFECTS OF THE INVENTION According to the present invention, highly hygroscopic exothermic particles are attached to a knitted fabric, a woven fabric, a nonwoven fabric, a fleece or a resin molded product through a small amount of a hydrophilic resin, and the external environment, human body or artificial moisture By absorbing (steam) and water (liquid) and quickly and stably generating heat, a moisture-absorbing / water-absorbing exothermic structure suitable for interlining can be obtained easily and stably.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L033 AA01 AA04 AB05 AB06 AB07 AC07 AC15 CA13 CA18 CA26 CA27 CA70    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4L033 AA01 AA04 AB05 AB06 AB07                       AC07 AC15 CA13 CA18 CA26                       CA27 CA70

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高吸湿性微粒子が付着されてなる構造体
であり、吸湿及び/又は吸水時の最大温度上昇が3℃以
上であることを特徴とする吸湿/吸水発熱性芯地用構造
体。
1. A structure for moisture-absorbing / water-absorbing exothermic interlining, which is a structure to which highly hygroscopic fine particles are adhered, and has a maximum temperature rise of 3 ° C. or more during moisture absorption and / or water absorption. .
【請求項2】 吸湿時の発熱が30分以上、及び/又は
吸水時の発熱が1分以上保持されることを特徴とする請
求項1に記載の吸湿/吸水発熱性芯地用構造体。
2. The moisture-absorbing / water-absorbing exothermic interlining structure according to claim 1, wherein the heat generated when absorbing moisture is maintained for 30 minutes or more and / or the heat generated when absorbing water is maintained for 1 minute or more.
【請求項3】 吸水時の最大温度上昇が8℃以上である
ことを特徴とする請求項1又は2に記載の吸湿/吸水発
熱性芯地用構造物。
3. The moisture-absorbing / water-absorbing exothermic interlining structure according to claim 1, wherein the maximum temperature rise during water absorption is 8 ° C. or higher.
【請求項4】 高吸湿性微粒子が有機微粒子であること
を特徴とする請求項1〜3のいずれかに記載の吸湿/吸
水発熱性芯地用構造体。
4. The moisture absorbing / water absorbing exothermic interlining structure according to claim 1, wherein the highly hygroscopic fine particles are organic fine particles.
【請求項5】 高吸湿性有機微粒子がポリスチレン系、
ポリアクリロニトリル系、ポリアクリル酸エステル系、
ポリメタクリル酸エステル系のいずれかのビニル系重合
体で、スルホン酸基、カルボン酸基、リン酸基あるい
は、それら金属塩の少なくとも1種の親水基を有し、か
つジビニルベンゼン、トリアリルイソシアネートまたは
ヒドラジンのいずれかで架橋された架橋重合体である請
求4に記載の吸湿/吸水発熱性芯地用構造体。
5. The highly hygroscopic organic fine particles are polystyrene-based,
Polyacrylonitrile-based, polyacrylic ester-based,
Polymethacrylic acid ester-based vinyl polymer having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or at least one hydrophilic group of metal salts thereof, and having divinylbenzene, triallyl isocyanate, or The moisture-absorbing / water-absorbing exothermic interlining structure according to claim 4, which is a cross-linked polymer cross-linked with any one of hydrazine.
【請求項6】 高吸湿性微粒子の平均粒子径が2μm未
満であることを特徴とする請求項1〜5のいずれかに記
載の吸湿/吸水発熱性芯地用構造体。
6. The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of claims 1 to 5, wherein the highly hygroscopic fine particles have an average particle diameter of less than 2 μm.
【請求項7】 高吸湿性微粒子が親水性樹脂を介して構
造体に固定化されていることを特徴とする請求項1〜6
のいずれかに記載の吸湿/吸水発熱性芯地用構造体。
7. The highly hygroscopic fine particles are immobilized on the structure via a hydrophilic resin.
The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of 1.
【請求項8】 高吸湿性微粒子と親水性樹脂の質量比が
1/1〜19/1であることを特徴とする請求項1〜7
のいずれかに記載の吸湿/吸水発熱性芯地用構造体。
8. The mass ratio of the highly hygroscopic fine particles to the hydrophilic resin is 1/1 to 19/1.
The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of 1.
【請求項9】 構造体が天然繊維、化合繊もしくはこれ
らの混用繊維で構成される編物、織物、不織布、フリー
ス、紐状体またはフィルムまたは樹脂成形体であること
を特徴とする請求項1〜8のいずれかに記載の吸湿/吸
水発熱性芯地用構造体。
9. The structure is a knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a string-like body or a film, or a resin molded body, which is composed of natural fibers, synthetic fibers or mixed fibers thereof. 9. The moisture-absorbing / water-absorbing exothermic interlining structure according to any one of 8 above.
JP2001318522A 2001-10-16 2001-10-16 Moisture absorption / water absorption exothermic structure for interlining Expired - Fee Related JP3912578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001318522A JP3912578B2 (en) 2001-10-16 2001-10-16 Moisture absorption / water absorption exothermic structure for interlining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001318522A JP3912578B2 (en) 2001-10-16 2001-10-16 Moisture absorption / water absorption exothermic structure for interlining

Publications (2)

Publication Number Publication Date
JP2003119671A true JP2003119671A (en) 2003-04-23
JP3912578B2 JP3912578B2 (en) 2007-05-09

Family

ID=19136210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001318522A Expired - Fee Related JP3912578B2 (en) 2001-10-16 2001-10-16 Moisture absorption / water absorption exothermic structure for interlining

Country Status (1)

Country Link
JP (1) JP3912578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186811A (en) * 2006-01-12 2007-07-26 Teijin Fibers Ltd Thermal-storage interlining cloth
CN105124811A (en) * 2015-06-18 2015-12-09 长兴虹波纺织有限公司 Production process of non-woven fabric collar interlining with high moisture absorption performance and breathability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226720B2 (en) * 2010-03-26 2013-07-03 株式会社クラレ Water-absorbing wholly aromatic polyester fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186811A (en) * 2006-01-12 2007-07-26 Teijin Fibers Ltd Thermal-storage interlining cloth
CN105124811A (en) * 2015-06-18 2015-12-09 长兴虹波纺织有限公司 Production process of non-woven fabric collar interlining with high moisture absorption performance and breathability
CN105124811B (en) * 2015-06-18 2017-03-22 南陵旺科知识产权运营有限公司 Production process of non-woven fabric collar interlining with high moisture absorption performance and breathability

Also Published As

Publication number Publication date
JP3912578B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
US7427300B2 (en) Hydrophilic finish for fibrous substrates
CN103930611A (en) Moisture-absorbing deodorizing fibers, method for producing fibers, and fiber structure comprising fibers
JP2003193371A (en) Textile product for bedding or interior
JP2010515836A (en) Method for functionalizing fabric substrates by cross-linking under ionizing radiation
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JP2003102784A (en) Moisture/water absorbing exothermic diaper
JP2003119671A (en) Vapor/liquid water-absorbing heat-generating structure for padding cloth
US20060090648A1 (en) Hydrophilic finish for fibrous substrates
JP2003093529A (en) Hygroscopic/water absorbing heating mask
JP2002235278A (en) Contact cold sensory fiber, textile product, and method for producing the same
JP2003102594A (en) Vapor/liquid water absorption heat-generating bedding
JP2003119606A (en) Sportswear
JP3369508B2 (en) Hygroscopic fiber
JPH06158545A (en) Silk fibroin-graft polymer-processed fabric and its production
JP2003129312A (en) Ski suit
JP2003193310A (en) Lining
JP2003096610A (en) Moisture/water-absorbing exothermic cold proofing outfit
JP2003093427A (en) Medical heating poultice cloth material
JP2003129313A (en) Work clothing for cold storage warehouse
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP2003089976A (en) Skin-touching cloth material
JPS58191275A (en) Production of fabric having water repellent property and water absorbability
JP2003116711A (en) Curtain
JP2003096672A (en) Interior material
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R151 Written notification of patent or utility model registration

Ref document number: 3912578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees