JP2003117597A - Biological treating method for excess sludge by utilizing hydrothermal reaction - Google Patents

Biological treating method for excess sludge by utilizing hydrothermal reaction

Info

Publication number
JP2003117597A
JP2003117597A JP2001315095A JP2001315095A JP2003117597A JP 2003117597 A JP2003117597 A JP 2003117597A JP 2001315095 A JP2001315095 A JP 2001315095A JP 2001315095 A JP2001315095 A JP 2001315095A JP 2003117597 A JP2003117597 A JP 2003117597A
Authority
JP
Japan
Prior art keywords
treatment
biological
sludge
hydrothermal reaction
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001315095A
Other languages
Japanese (ja)
Other versions
JP4004766B2 (en
Inventor
Munetaka Ishikawa
宗孝 石川
Sadaaki Murakami
定瞭 村上
Hisashi Miyagawa
久司 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO FRONTIER KK
Techno Frontier Ltd
Original Assignee
TECHNO FRONTIER KK
Techno Frontier Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO FRONTIER KK, Techno Frontier Ltd filed Critical TECHNO FRONTIER KK
Priority to JP2001315095A priority Critical patent/JP4004766B2/en
Publication of JP2003117597A publication Critical patent/JP2003117597A/en
Application granted granted Critical
Publication of JP4004766B2 publication Critical patent/JP4004766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which is applicable even when there is no room for the treating capability of an aerator in particular by studying reaction conditions in decomposing organic matter in the sludge produced by a waste water treatment by a hydrothermal reaction, thereby decreasing the amount of the energy to be charged, decreasing the amount of inorganic suspended solids, such as monolithic carbon and finally annihilating or decreasing wastes. SOLUTION: The hydrothermal reaction treatment is performed under reaction conditions of a temperature ranging from >=140 to <200 deg.C and pressure ranging from 0.5 to 1.6 MPa milder than the conventional subcritical conditions and the treated liquid is subjected to an aerobic treatment in a separately installed aerobic bioreaction chamber and thereafter the treated liquid is returned to a biological treating equipment or is discharged as treated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排水処理により発
生する汚泥中の有機物の完全な消滅或いは大幅な減量を
可能とする、水熱反応を利用した、排水の生物処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biological treatment of wastewater utilizing a hydrothermal reaction, which enables the organic matter in sludge generated by wastewater treatment to be completely eliminated or to be greatly reduced.

【0002】[0002]

【従来の技術】排水処理の方法としては、生物処理法が
最も一般的であり、下水や家庭排水、工場排水、家畜糞
尿排水等は殆どすべてこの方法で行なわれている。生物
処理では主体が微生物であるため、増殖微生物などが余
剰汚泥として発生する。そのため、メタン発酵など嫌気
的処理により汚泥の減量化が図られているが、完全に消
滅させることはできず、その多くが脱水後焼却処理や埋
め立て処理されているのが現状である。
2. Description of the Related Art The most common wastewater treatment method is a biological treatment method, and sewage, domestic wastewater, factory wastewater, livestock excrement wastewater and the like are almost all treated by this method. In biological treatment, the main constituents are microorganisms, so that microorganisms that grow are generated as excess sludge. Therefore, although the amount of sludge has been reduced by anaerobic treatment such as methane fermentation, it cannot be completely eliminated, and most of them are incinerated or landfilled after dehydration.

【0003】そこで、従来から水を高温高圧の状態にし
て汚泥の有機物と反応させる、いわゆる水熱反応を利用
した余剰汚泥の処理方法が幾つか提案されている。ここ
で高温高圧の状態は、水の臨界点(374℃、22MPa)を越
える超臨界水状態と、臨界点以下の亜臨界水状態があ
り、前者では代表的には 450℃〜600℃、25MPa〜50M
Pa、後者では代表的には 300℃〜360℃、9MPa〜19
MPaの範囲が用いられる。
Therefore, there have conventionally been proposed some methods for treating surplus sludge by utilizing so-called hydrothermal reaction in which water is brought into a state of high temperature and high pressure to react with organic matter of sludge. Here, the high temperature and high pressure state includes a supercritical water state that exceeds the critical point of water (374 ℃, 22MPa) and a subcritical water state that is below the critical point. The former is typically 450 ℃ to 600 ℃, 25MPa. ~ 50M
Pa, the latter is typically 300 ℃ -360 ℃, 9MPa-19
A range of MPa is used.

【0004】この水熱反応を利用した従来からの余剰汚
泥の処理方法には、大きく分けて、1)汚泥の液状化(肥
料化・飼料化利用)、2)汚泥の油化(燃料利用)及び3)
汚泥の分解減容化の3つがある。従来からの汚泥の減容
化法である湿式酸化は、脱水汚泥を触媒添加した前記超
臨界水条件下で酸素や過酸化水素などの酸化剤と反応さ
せ、炭酸ガスやアンモニアなどに酸化処理させるので、
多量の触媒や超高温など過酷な条件が必要であり、エネ
ルギー的、コスト的にも引き合わないものである。さら
に、超臨界水は誘電率が低く無機塩類の析出が著しく、
反応器やパイプ系閉塞、有害な触媒使用など、多くの問
題を抱えている。
The conventional methods for treating surplus sludge utilizing the hydrothermal reaction are roughly classified into 1) liquefaction of sludge (utilization as fertilizer and feed), 2) oilification of sludge (utilization of fuel). And 3)
There are three types of decomposition and volume reduction of sludge. Wet oxidation, which is a conventional sludge volume reduction method, is reacted with an oxidizing agent such as oxygen or hydrogen peroxide under the above-mentioned supercritical water conditions in which dehydrated sludge is added as a catalyst to oxidize carbon dioxide or ammonia. So
It requires harsh conditions such as a large amount of catalyst and ultra-high temperature, which is not economically and economically attractive. In addition, supercritical water has a low dielectric constant and significant precipitation of inorganic salts,
It has many problems such as clogging of reactor and pipe system and use of harmful catalyst.

【0005】水熱反応を利用する余剰汚泥の処理方法の
難点を解決する方法として、特開2000-218295号公報に
次の方法が開示されている。即ち、図6に示すように曝
気槽1と固液分離槽2よりなる生物処理装置に水熱反応
装置3が付加された方法であり、水熱反応装置内で亜臨
界状態(320℃、12.1MPa)と大量の水(およそ 90〜99%
程度)の存在下で、汚泥中の有機成分をバクテリアが処
理し易いように分解し、この処理液を既設の曝気槽1で
分解消滅させるものである。汚泥は、その大部分が微生
物細胞であり、その他植物性、動物性の微細なものも含
まれる。そして、水熱反応により、排水や汚泥の生物処
理に利用するバクテリアが処理し易いように、汚泥中の
難生分解性物質を糖やアミノ酸(或いはその分子の一部
がさらに分解したもの)などの易生分解性物質に分解
し、得られた処理液を、生物処理工程、例えば活性汚泥
法の曝気槽に返送し、ここで、バクテリアにより分解・
資化させるものである。
As a method for solving the problems of the method for treating surplus sludge utilizing hydrothermal reaction, Japanese Patent Laid-Open No. 2000-218295 discloses the following method. That is, as shown in FIG. 6, it is a method in which a hydrothermal reaction device 3 is added to a biological treatment device comprising an aeration tank 1 and a solid-liquid separation tank 2, and a subcritical state (320 ° C., 12.1 ° C.) is set in the hydrothermal reaction device. Mpa) and a large amount of water (approximately 90-99%
(About a certain degree), the organic components in the sludge are decomposed so that bacteria can easily treat them, and the treatment liquid is decomposed and eliminated in the existing aeration tank 1. Most of the sludge is microbial cells, and also includes fine plant and animal sludge. Then, due to the hydrothermal reaction, bacteria or bacteria used for biological treatment of wastewater and sludge can be easily treated, so that difficult biodegradable substances in sludge are converted to sugars and amino acids (or some of their molecules are further decomposed), etc. It is decomposed into the easily biodegradable substance, and the resulting treatment liquid is returned to the aeration tank of the biological treatment process, for example, the activated sludge method, where it is decomposed by bacteria.
It is an assimilation.

【0006】この水熱反応装置は、通常、活性汚泥装置
のように汚泥を発生する生物処理装置に付属して設置
し、その水熱反応装置で得られた処理液を、元の活性汚
泥処理装置の曝気槽や接触曝気槽に返送して、再度生物
分解に供するものである。更に、活性汚泥処理装置など
の生物処理装置から発生した余剰汚泥を、嫌気処理装置
など他の生物処理装置で処理する場合に、嫌気処理装置
などに水熱反応装置を付属して設け、ここで予め水熱処
理してから嫌気処理装置に投入することもできる。
[0006] This hydrothermal reaction device is usually attached to a biological treatment device that generates sludge, such as an activated sludge device, and the treatment liquid obtained by the hydrothermal reaction device is used as the original activated sludge treatment device. It is sent back to the aeration tank or contact aeration tank of the equipment and used again for biodegradation. Furthermore, when excess sludge generated from a biological treatment device such as an activated sludge treatment device is treated with another biological treatment device such as an anaerobic treatment device, a hydrothermal reaction device is provided as an accessory to the anaerobic treatment device. It is also possible to perform hydrothermal treatment in advance and then put it in the anaerobic treatment apparatus.

【0007】[0007]

【発明が解決しようとする課題】従来の亜臨界条件下に
おいては、水熱反応自体が高温高圧で行なわれるため、
そのために多大なエネルギーの投入を必要とする。ま
た、従来の反応条件下では、分解反応が進みすぎること
により生じる無定形炭素などの無機浮遊固形物(以下無
機SSと略する場合もある)の発生量が多く、再度の生
物処理において障害となり、最終的に脱水して系外に出
さなければならない浮遊固形物(以下SSと略する場合
もある)の量が増加することになる。また、従来のよう
に水熱反応の処理液を元の曝気槽に返送し生物処理する
と、元の曝気槽の負荷が上昇するので、生物処理能力に
余裕がないため適用困難な場合があった。
Under the conventional subcritical conditions, the hydrothermal reaction itself is carried out at high temperature and high pressure.
Therefore, a large amount of energy needs to be input. Further, under conventional reaction conditions, the amount of inorganic suspended solids such as amorphous carbon (which may be abbreviated as inorganic SS below) generated due to excessive progress of the decomposition reaction is an obstacle to biological treatment again. However, the amount of suspended solids (hereinafter sometimes abbreviated as SS) that must be finally dehydrated and discharged out of the system increases. In addition, if the treatment liquid of the hydrothermal reaction is returned to the original aeration tank and biological treatment is performed as in the conventional case, the load of the original aeration tank will increase, and it may be difficult to apply because there is no room for biological treatment capacity. .

【0008】本発明は、反応条件に検討を加えること
で、エネルギー投入量の軽減をはかり、かつ、前記無定
形炭素などの無機SSの発生量を減少させることにより
最終的な廃棄物を消滅ないしは減少させることを目的と
する。また、工場の排水処理施設等の場合、すでに曝気
槽の処理能力に余裕のないことが多く、従来技術の適用
が難しい場合もあるので、これを解決するための方法を
提供することを目的とする。
In the present invention, by examining the reaction conditions, the amount of energy input is reduced, and the amount of inorganic SS such as amorphous carbon generated is reduced to eliminate or eliminate the final waste. The purpose is to reduce. Further, in the case of a wastewater treatment facility of a factory, etc., it is often the case that the treatment capacity of the aeration tank is already insufficient, and it may be difficult to apply the conventional technology.Therefore, it is an object to provide a method for solving this. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、(1)排水の生
物処理装置で発生する汚泥を水熱反応装置に送り込み、
汚泥中の難生分解性有機物を水熱反応により易生分解性
物質に分解処理する余剰汚泥処理法において、水熱反応
処理を従来の亜臨界条件下より温和な、温度 140℃以上
200℃未満の範囲、圧力 0.4MPa以上 2.0MPa以下の
範囲の反応条件下で処理し、その処理液を別に設置する
好気性生物反応槽で好気性処理した後、その処理液を該
生物処理装置に返送または処理水として放流することを
特徴とする、水熱反応を利用する余剰汚泥生物処理方
法、(2)好気性生物反応槽の前工程として固液分離装置
を設け、処理液のうち、固体含有量の少ない液を該生物
反応槽に供給し、固体含有量の多い液を既設の生物処理
装置及び/または水熱反応装置及び/または脱水処理装置
へ送り、処理することを特徴とする上記(1)に記載の水
熱反応を利用する余剰汚泥生物処理方法、(3)前記好気
性生物反応槽の後工程として固液分離装置を設け、処理
液は放流するとともに、濃縮された汚泥スラリーは水熱
反応装置及び/または脱水処理装置へ送り処理すること
を特徴とする(1)〜(2)のいずれかに記載の水熱反応を
利用する余剰汚泥生物反応処理方法、(4)前記水熱反応
装置において、被処理液と処理液の熱交換をすることを
特徴とする上記(1)〜(3)に記載の水熱反応を利用する
余剰汚泥生物処理方法である。
According to the present invention, (1) sludge generated in a biological treatment device for wastewater is sent to a hydrothermal reaction device,
In the excess sludge treatment method that decomposes hardly biodegradable organic matter in sludge into easily biodegradable substances by hydrothermal reaction, hydrothermal reaction treatment is performed at a temperature of 140 ° C or more, which is milder than conventional subcritical conditions.
Treated under reaction conditions in the range of less than 200 ° C and pressure of 0.4 MPa or more and 2.0 MPa or less, aerobically treating the treated solution in an aerobic biological reaction tank separately installed, and then treating the treated solution with the biological treatment apparatus. A method for treating excess sludge biological matter utilizing a hydrothermal reaction, which is characterized in that it is returned to or discharged as treated water, (2) a solid-liquid separator is provided as a pre-process of an aerobic biological reaction tank, A liquid having a low solid content is supplied to the biological reaction tank, and a liquid having a high solid content is sent to an existing biological treatment device and / or a hydrothermal reaction device and / or a dehydration treatment device for treatment. (1) An excess sludge biological treatment method utilizing the hydrothermal reaction according to (1) above, (3) a solid-liquid separation device is provided as a post-step of the aerobic biological reaction tank, and the treated liquid is discharged and concentrated sludge Slurry is hydrothermal reactor and / or dehydration treatment A method of treating excess sludge biological reaction utilizing the hydrothermal reaction according to any one of (1) to (2), characterized in that the liquid to be treated is treated with the liquid to be treated in the hydrothermal reaction device. The surplus sludge biological treatment method utilizing the hydrothermal reaction according to the above (1) to (3), characterized in that the treatment liquid is heat-exchanged.

【0010】本発明で用いられる水熱処理は後段で生物
膜処理を行なうことを前提としており、したがって水熱
処理単独の場合より温和な条件を適用しても系全体の処
理能力は劣らないばかりか、逆に高温高圧処理の場合に
課題であった炭化があまり進まないため処理後の水の性
状が優れているという効果を有している。
The hydrothermal treatment used in the present invention is premised on the biofilm treatment in the latter stage, and therefore, the treatment capacity of the entire system is not inferior even if milder conditions are applied than in the case of hydrothermal treatment alone. On the contrary, since carbonization, which is a problem in the case of high temperature and high pressure treatment, does not proceed so much, it has an effect that the property of water after treatment is excellent.

【0011】本発明者らは、SSが生物処理に充分適し
た程度に分解され、かつ炭化が抑制される条件として 1
40℃以上 200℃未満、更には 145℃以上 195℃以下が好
ましいことを見出し、後段の生物反応と合わせることで
処理後の環境汚染物質の量を著しく低減させることを可
能とした。また、これらの装置は従来の反応装置に比べ
てコンパクトなため、既設の処理装置の後段への追加が
容易であり、新たな設置スペースを大掛かりに確保する
必要もない。
The present inventors have found that SS is decomposed to such an extent that it is sufficiently suitable for biological treatment, and carbonization is suppressed.
It was found that the temperature is preferably 40 ° C or higher and lower than 200 ° C, more preferably 145 ° C or higher and 195 ° C or lower, and combined with the biological reaction in the latter stage, it was possible to significantly reduce the amount of environmental pollutants after treatment. Further, since these devices are more compact than the conventional reaction device, it is easy to add them to the subsequent stage of the existing processing device, and it is not necessary to secure a large new installation space.

【0012】[0012]

【発明の実施の形態】以下、本発明の図を用いてさらに
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to the drawings.

【0013】本発明の基本構成は、図1に示すように曝
気槽1、固液分離槽2、水熱反応装置3及び生物反応槽
4より構成される。固液分離槽2で分離して濃縮された
汚泥をラインL4より引き抜いて、引抜き汚泥とする。
その一部が被処理汚泥としてラインL7を経由して水熱
反応装置3に送液され、ここで汚泥中の難生分解性物質
が易生分解性の低分子物質群に変換処理され、得られた
処理液を、ラインL8を経由して生物反応槽4へ送り、
微生物機能により代謝分解し、ラインL9より曝気槽1
に返送される。
As shown in FIG. 1, the basic structure of the present invention comprises an aeration tank 1, a solid-liquid separation tank 2, a hydrothermal reaction device 3 and a biological reaction tank 4. The sludge that has been separated and concentrated in the solid-liquid separation tank 2 is drawn from the line L4 to obtain drawn sludge.
A part of the sludge is sent to the hydrothermal reaction device 3 as a sludge to be treated through a line L7, where the hardly biodegradable substance in the sludge is converted into a readily biodegradable low-molecular substance group, and obtained. The treated liquid thus obtained is sent to the biological reaction tank 4 via a line L8,
Metabolically decomposes due to microbial function, and aeration tank 1 from line L9
Will be returned to.

【0014】引抜き汚泥の一部は、返送汚泥として、ラ
インL5を経由して曝気槽に返送される。また更に引抜
き汚泥量が多ければ、余剰汚泥として系外に排出する。
但し、本発明の場合、水熱反応装置の能力が不足すれば
余剰汚泥が発生するが、水熱反応装置が十分な能力を持
っていれば、通常は、従来に言ういわゆる余剰汚泥は発
生しない。また、汚泥中の鉱物質などの無機物や、脱水
素や脱酸素により生じた微量の炭素粒子などは、最終的
に処理水中の微量成分として、または、固液分離槽など
から系外に除去する必要がある。
A part of the drawn sludge is returned to the aeration tank via the line L5 as return sludge. If the amount of drawn sludge is large, it is discharged as excess sludge out of the system.
However, in the case of the present invention, surplus sludge is generated if the capacity of the hydrothermal reaction device is insufficient, but if the hydrothermal reaction device has sufficient capacity, normally so-called surplus sludge is not generated. . In addition, inorganic substances such as mineral substances in sludge and traces of carbon particles generated by dehydrogenation and deoxygenation are finally removed as trace components in treated water or outside the system from solid-liquid separation tanks. There is a need.

【0015】本発明の方法において、水熱反応器の形式
としては攪拌槽及び/または管型反応器が使用される
が、処理水質等を考慮すると滞留時間の分布が少ない管
型反応器がより好ましい。
In the method of the present invention, a stirred tank and / or a tubular reactor is used as the type of hydrothermal reactor, but a tubular reactor having a small residence time distribution is more preferable in consideration of treated water quality and the like. preferable.

【0016】本発明の方法において、加熱・昇温の方法
としては蒸気による直接加熱、間接加熱、電熱による加
熱等適宜選択することができる。
In the method of the present invention, the method of heating / heating may be appropriately selected from direct heating with steam, indirect heating, heating with electric heating and the like.

【0017】本発明の方法において、水熱反応の条件
は、SSが生物処理に充分適した程度に分解され、かつ
炭化が抑制される条件であることが好ましく、具体的に
は 140℃以上 200℃未満、更には 145℃以上 195℃以下
が好ましい。
In the method of the present invention, the hydrothermal reaction conditions are preferably such that SS is decomposed to a degree suitable for biological treatment and carbonization is suppressed. It is preferably lower than ℃, more preferably 145 ℃ or more and 195 ℃ or less.

【0018】本発明の方法において、好気性生物反応槽
の形式としては、活性汚泥法、生物膜法等の通常の生物
処理法が可能であるが、処理能力の面より特に生物膜法
が好ましい。特に、空間的余裕がない場合ほど生物膜法
のメリットが生かされる。
In the method of the present invention, the aerobic bioreactor may be of any type such as an activated sludge method and a biofilm method, but the biofilm method is particularly preferred from the viewpoint of treatment capacity. . In particular, the advantage of the biofilm method is brought to full advantage when there is not enough space.

【0019】本発明において、生物反応槽として固定床
式反応槽を使用する場合、図2に示すように生物反応槽
4の前処理工程として沈降槽5を設け、水熱反応装置3
で未分解の汚泥を分離した後、生物反応槽4に供給する
ことができる。一方、分離された汚泥スラリーは既設の
生物処理装置及び/または水熱反応装置に返送し、必要
により脱水処理することもできる。
In the present invention, when a fixed bed type reaction tank is used as the biological reaction tank, a sedimentation tank 5 is provided as a pretreatment step for the biological reaction tank 4 as shown in FIG.
The undecomposed sludge can be separated into and then supplied to the biological reaction tank 4. On the other hand, the separated sludge slurry can be returned to the existing biological treatment apparatus and / or hydrothermal reaction apparatus, and can be dehydrated if necessary.

【0020】別の実施形態として、生物処理装置に生物
膜濾過法を使用する場合の例を図3を用いて説明する。
排水はL1より、例えば発泡プラスチックを濾材とする
生物膜濾過槽7で処理される。処理を開始して一定時間
経過後、濾材層に蓄積した汚泥を除去するための、いわ
ゆる逆洗を行なう。逆洗の排水は逆洗排水汚泥濃縮槽8
に集められる。通常7は複数個設置されるので各槽の逆
洗の時刻を少しずつずらして、排水の発生量が平準化す
るように行なう。8で濃縮された汚泥はラインL7より
水熱反応装置3に送られる。これ以降の工程は図1と同
様である。
As another embodiment, an example in which a biofilm filtration method is used in a biotreatment device will be described with reference to FIG.
The waste water is treated from L1 in a biofilm filtration tank 7 using, for example, foamed plastic as a filter medium. After a lapse of a certain time after starting the treatment, so-called backwashing is performed to remove sludge accumulated in the filter medium layer. Backwash drainage is backwash drainage sludge concentrator 8
Collected in. Usually, a plurality of 7 are installed, so the backwash time of each tank is slightly shifted so that the amount of wastewater generated is leveled. The sludge concentrated in 8 is sent to the hydrothermal reaction device 3 through the line L7. The subsequent steps are the same as in FIG.

【0021】この構成は、排水の生物処理を行なうにあ
たり、通常の曝気槽に代えて、水熱処理液と同様の方法
で生物処理を行なうことを特徴とするものであり、生物
処理を行なった上澄みはそのまま放流することが可能で
ある。
This structure is characterized in that, when biological treatment of waste water is carried out, biological treatment is carried out in the same manner as in the case of hydrothermal treatment liquid, in place of an ordinary aeration tank. Can be released as is.

【0022】本発明において排水の水質(BOD(生物化
学的酸素要求量)、SS等)の規制値によっては、図4に
示すように、被処理液をL7より水熱反応装置3で処理
し、処理液を生物反応槽4で処理し、この処理液をL14
より放流することもできる。L14 の水質のうち、SS
のみが規制値を超える場合で既存の生物処理装置に返送
できない場合、L15 より沈降槽5に送り、SSを沈降
分離したあと放流することもできる。この場合、分離さ
れたSSは5より取り出され、L12 を経由して再び3
に返送、処理される。生物処理のできないSS分は5の
上部放流水中に稀薄な濃度で含まれ放出される。系のバ
ランス上それでも蓄積する場合は脱水装置6を設置し、
処理することができる。
In the present invention, as shown in FIG. 4, the liquid to be treated may be treated by the hydrothermal reactor 3 from L7 depending on the regulated values of the water quality of wastewater (BOD (biochemical oxygen demand), SS, etc.). , The treatment liquid is treated in the biological reaction tank 4, and the treatment liquid is treated with L14.
It can be released more. Of the water quality of L14, SS
If only the amount exceeds the regulation value and cannot be returned to the existing biological treatment equipment, it can be sent from L15 to the settling tank 5 to separate SS for sedimentation and then discharged. In this case, the separated SS is taken out from 5, and again passed through L12 to 3
Will be returned and processed. The biologically unprocessable SS component is contained in the upper discharge water of 5 at a dilute concentration and is released. If it still accumulates on the balance of the system, install a dehydrator 6
Can be processed.

【0023】図5は水熱反応装置3の詳細な構成の一例
を示すものである、すなわち被処理水と処理水は熱交換
器10で熱交換され熱回収される。
FIG. 5 shows an example of a detailed configuration of the hydrothermal reaction apparatus 3, that is, the water to be treated and the treated water are heat-exchanged by the heat exchanger 10 to recover heat.

【0024】[0024]

【実施例】以下に本発明の具体的な実施例について述べ
る。
EXAMPLES Specific examples of the present invention will be described below.

【0025】[実施例1] (処理原水:人工排水)本実施例では有機物を大量に含ん
だ排水を再現するため、グルコースとペプトンの水溶液
を調製して人工排水とした。BODで 500mg/Lとなる
ように以下の濃度で調製した。
[Example 1] (Treatment raw water: artificial drainage) In this example, in order to reproduce the drainage containing a large amount of organic substances, an aqueous solution of glucose and peptone was prepared and used as artificial drainage. It was prepared at the following concentrations so as to have a BOD of 500 mg / L.

【0026】成分 グルコース 380mg/L ペプトン(蛋白質加水分解物) 130mg/L なお、以下汚染物質の濃度はすべてBOD(生分解性)、
SS(非生分解性)で示す。
Component glucose 380 mg / L peptone (protein hydrolyzate) 130 mg / L In addition, the following concentrations of pollutants are all BOD (biodegradable),
Shown as SS (non-biodegradable).

【0027】(装置)本実施例では図1に示す基本的装置
構成を採用した。
(Device) In this embodiment, the basic device configuration shown in FIG. 1 was adopted.

【0028】曝気槽1:容積 5m3 固液分離槽2:容積 0.5 m3 水熱反応装置3:容積 10 L 生物反応槽4:容積 75 L (実施結果)原水(人工排水)はBOD 500mg/Lであり、
これを曝気槽1に 10,000 kg/dayで供給した。固液分離
槽2で分離された余剰汚泥は200 kg/dayでSS 10,000
mg/Lであった。これを水熱反応装置3に送り、温度 15
0℃、圧力 0.6MPa、滞留時間1時間で水熱処理したと
ころ、BOD 1500mg/L、SS 1500mg/Lとなった。得
られた処理液を、さらにラインL8を経由して生物反応
槽4に送って処理したところ、BOD 150mg/L、SS
2000mg/Lとなった。
Aeration tank 1: Volume 5 m 3 Solid-liquid separation tank 2: Volume 0.5 m 3 Hydrothermal reactor 3: Volume 10 L Biological reaction tank 4: Volume 75 L (implementation result) Raw water (artificial drainage) is BOD 500 mg / L,
This was supplied to the aeration tank 1 at 10,000 kg / day. The surplus sludge separated in the solid-liquid separation tank 2 is SS 10,000 at 200 kg / day.
It was mg / L. This is sent to the hydrothermal reactor 3 and the temperature
When hydrothermally treated at 0 ° C., pressure of 0.6 MPa and residence time of 1 hour, BOD was 1500 mg / L and SS was 1500 mg / L. When the obtained treatment liquid was further sent to the biological reaction tank 4 via a line L8 for treatment, BOD 150 mg / L, SS
It became 2000 mg / L.

【0029】この処理された液を曝気槽1に返送した場
合の曝気槽の負荷は、汚泥を返送せずそのまま系外へ分
離した場合に比べてわずか0.6%の増加にとどまり、従
来からの装置能力でそのまま引き続き利用できることを
示している。
When the treated liquid is returned to the aeration tank 1, the load on the aeration tank is increased by only 0.6% as compared with the case where the sludge is directly returned to the outside without returning it. The ability indicates that it can continue to be used.

【0030】[比較例1]生物反応槽4を省略し、図6に
示す従来からの装置構成とした他は実施例1と同様の条
件で原水(人工排水)の処理を行なった。実施例1と同様
に処理された液を曝気槽1に返送した場合の曝気槽の負
荷は、汚泥を返送せずそのまま系外へ分離した場合に比
べると6%の増加となり、実質的な処理能力の減殺につ
ながることになる。
Comparative Example 1 Raw water (artificial wastewater) was treated under the same conditions as in Example 1 except that the biological reaction tank 4 was omitted and the conventional apparatus configuration shown in FIG. 6 was used. When the liquid treated in the same manner as in Example 1 was returned to the aeration tank 1, the load on the aeration tank was increased by 6% as compared with the case where the sludge was separated from the system without returning it, and the actual treatment It will lead to the loss of ability.

【0031】[実施例2] (装置)本実施例では沈降槽5を追加して図2に示す装置
構成を採用した。
[Embodiment 2] (Apparatus) In this embodiment, an apparatus configuration shown in FIG. 2 is adopted by adding a sedimentation tank 5.

【0032】曝気槽1:容積 5m3 固液分離槽2:容積 0.15m3 水熱反応装置3:容積 10 L 生物反応槽4:容積 75 L 沈降槽5:容積 15 L (実施結果)原水(人工排水)は実施例1のものと同じ性
状、すなわちBOD 500mg/Lであり、これを曝気槽1
に 10,000kg/dayで供給した。固液分離槽2で分離され
た余剰汚泥は 200kg/dayでSS 10,000mg/Lであった。
これを水熱反応装置3に送り、温度 150℃、圧力0.6M
Pa、滞留時間1時間で水熱処理したところ、BOD150
0mg/L、SS 1500mg/Lとなった。得られた処理液を、
さらにラインL8を経由して沈降槽5に送りSSを分離
したところ、30kg/dayでSS 10,000mg/L、BOD 150
0mg/Lの汚泥が分離され、生物反応槽4へはBOD 150
0mg/L、SS 30mg/Lの処理液が 170 kg/dayだけ送ら
れた。生物処理後、この液はBOD 150mg/L、SS 50
0mg/Lとなった。
Aeration tank 1: Volume 5 m 3 Solid-liquid separation tank 2: Volume 0.15 m 3 Hydrothermal reactor 3: Volume 10 L Biological reaction tank 4: Volume 75 L Sedimentation tank 5: Volume 15 L (implementation results) Raw water ( (Artificial drainage) has the same properties as in Example 1, that is, BOD 500 mg / L.
To 10,000 kg / day. The excess sludge separated in the solid-liquid separation tank 2 was SS 10,000 mg / L at 200 kg / day.
This is sent to the hydrothermal reactor 3, temperature 150 ℃, pressure 0.6M
When hydrothermally treated with Pa and residence time of 1 hour, BOD150
It became 0 mg / L and SS 1500 mg / L. The obtained treatment liquid is
Furthermore, when SS was sent to the settling tank 5 via line L8, SS 10,000 mg / L, BOD 150 was obtained at 30 kg / day.
Sludge of 0 mg / L is separated and BOD 150 is fed to the biological reaction tank 4.
The processing solution of 0 mg / L and SS 30 mg / L was sent only 170 kg / day. After biological treatment, this solution is BOD 150 mg / L, SS 50
It became 0 mg / L.

【0033】この処理された液を曝気槽1に返送した場
合の効果は実施例1とほぼ同様であるが、沈降槽5でS
Sを分離しているので生物反応槽4として固定床のもの
を利用できる利点がある。なお、沈降槽5で分離したS
S汚泥は通常直接曝気槽1に返送されるが、直接固液分
離槽2や水熱反応装置3に送ってもよい。
The effect of returning the treated liquid to the aeration tank 1 is almost the same as that of the first embodiment, but S in the sedimentation tank 5 is changed.
Since S is separated, there is an advantage that a fixed-bed biological reaction tank 4 can be used. In addition, S separated in the settling tank 5
The S sludge is usually returned directly to the aeration tank 1, but it may be sent directly to the solid-liquid separation tank 2 or the hydrothermal reaction device 3.

【0034】[実施例3] (装置)本実施例では曝気槽1に代えて生物反応槽4と同
様の仕組みをもつ生物膜濾過槽7を採用して図3に示す
装置構成とした。
[Embodiment 3] (Apparatus) In this embodiment, a biofilm filtration tank 7 having the same mechanism as the bioreaction tank 4 was adopted in place of the aeration tank 1 to form the apparatus configuration shown in FIG.

【0035】生物膜濾過槽7:容積 0.25m3 ×5基 逆洗排水汚泥濃縮槽8:容積 0.15m3 水熱反応装置3:容積 40 L 生物反応槽4:容積 60 L (実施結果)原水(人工排水)は実施例1のものと同じ性
状、すなわちBOD 500mg/Lであり、これを生物膜濾
過槽7に合計で 10,000 kg/day供給した。生物膜濾過槽
7で処理された上澄みはBODが 50mg/Lまで低下して
おりそのまま放流可能であった。
Biofilm filtration tank 7: Volume 0.25 m 3 × 5 units Backwash drainage sludge concentrator 8: Volume 0.15 m 3 Hydrothermal reactor 3: Volume 40 L Bioreaction tank 4: Volume 60 L (implementation result) Raw water (Artificial drainage) had the same properties as in Example 1, that is, BOD 500 mg / L, and was supplied to the biofilm filtration tank 7 in total at 10,000 kg / day. The BOD of the supernatant treated in the biofilm filtration tank 7 was lowered to 50 mg / L, and the supernatant could be discharged as it was.

【0036】個々の生物膜濾過槽7については運転を 2
3時間続けたところで原水の供給を止め、逆洗を行なっ
た。なお、逆洗のタイミングは個々の生物膜濾過槽7に
ついて均等にしたため、4〜5時間ごとに行なわれた。
The operation of each biofilm filtration tank 7 is 2
After continuing for 3 hours, supply of raw water was stopped and backwashing was performed. The backwashing was performed every 4 to 5 hours because the biofilm filtration tanks 7 were made uniform in timing.

【0037】一回の逆洗で濾材層から除去された汚泥を
含む逆洗の排水は 150 kg、BOD50mg/L、SS 2,000
mg/Lであった。
The backwash drainage containing sludge removed from the filter medium layer by one backwash is 150 kg, BOD 50 mg / L, SS 2,000
It was mg / L.

【0038】逆洗排水汚泥濃縮槽8で分離された余剰汚
泥は 750 kg/dayでSS 2,000mg/Lであった。これを水
熱反応装置3に送り、温度150℃、圧力0.6MPa、滞留
時間1時間で水熱処理したところ、BOD 300mg/L、
SS 300mg/Lとなった。得られた処理液を、さらにラ
インL8を経由して生物反応槽4に送って処理したとこ
ろ、BOD 30mg/L、SS 380mg/Lとなった。この処
理された液は生物膜濾過槽7に返送された。
The surplus sludge separated in the backwash drainage sludge thickener 8 was 2,000 mg / L SS at 750 kg / day. When this was sent to the hydrothermal reactor 3 and hydrothermally treated at a temperature of 150 ° C., a pressure of 0.6 MPa and a residence time of 1 hour, BOD of 300 mg / L,
SS became 300 mg / L. When the obtained treatment liquid was further sent to the biological reaction tank 4 via a line L8 for treatment, the BOD was 30 mg / L and the SS was 380 mg / L. The treated liquid was returned to the biofilm filtration tank 7.

【0039】本実施例の構成では、実施例1、2のよう
に曝気槽を設けるための広大なスペースを必要とせず、
代わりにコンパクトな生物膜濾過槽7を使用するため、
ビル内の飲食店などに設置して食品排水の処理を行なわ
せることも可能である。
The configuration of this embodiment does not require a vast space for providing an aeration tank as in the first and second embodiments,
Instead of using the compact biofilm filtration tank 7,
It is also possible to install it in a restaurant or the like in the building to treat food wastewater.

【0040】[実施例4]本実施例では、実施例1と同様
な方法で調整したBOD 100mg/Lの原水(人工排水)を
用いた。
Example 4 In this example, BOD 100 mg / L raw water (artificial drainage) prepared by the same method as in Example 1 was used.

【0041】この原水を、実施例3と同様の構成の装置
で処理したところ、生物反応槽4からの排水においてB
OD 10mg/L、SS 75mg/Lとなった。このように処理
された液が下水道の排出基準を満たす場合、そのまま放
流して公共の最終下水処理に委ねる構成としてもよい。
When this raw water was treated with an apparatus having the same structure as in Example 3, B was discharged from the biological reaction tank 4
OD was 10 mg / L and SS was 75 mg / L. When the liquid thus treated meets the discharge standard of sewerage, it may be discharged as it is and entrusted to the final public sewerage treatment.

【0042】[実施例5]実施例3のような処理水の性状
では、生物反応槽4からの排水をそのまま下水道に排出
することはSSの規制値の問題から不可な場合もある。
そこで、図4に示すように沈降槽5(40 L)を設け、生物
反応槽4からの排水(750 kg/day)を沈降槽5に送り、S
Sを沈降分離した。
[Embodiment 5] With the nature of the treated water as in Embodiment 3, it may not be possible to discharge the waste water from the biological reaction tank 4 to the sewer as it is because of the SS regulation value problem.
Therefore, as shown in FIG. 4, a settling tank 5 (40 L) is provided, and wastewater (750 kg / day) from the biological reaction tank 4 is sent to the settling tank 5 and S
S was separated by sedimentation.

【0043】沈降分離後の上澄みはBOD 30mg/L、S
S 30mg/Lとなり、放流基準値以下となった。
The supernatant after sedimentation is BOD 30 mg / L, S
It became S 30 mg / L, which was below the discharge standard value.

【0044】また、分離した汚泥は 13 kg/dayで、SS
含量 20,000mg/Lであったので、そのまま水熱処理槽3
に返送した。
The separated sludge is 13 kg / day, and SS
Since the content was 20,000 mg / L, the hydrothermal treatment tank 3 as it is
Sent back to.

【0045】[実施例6]実施例5と同じ装置構成で、原
水(人工排水)の性状をBOD 1,000mg/Lに変更して同
様の実験を行なった。
[Example 6] With the same apparatus configuration as in Example 5, the same experiment was conducted by changing the property of raw water (artificial drainage) to BOD 1,000 mg / L.

【0046】沈降分離後の上澄みはBOD 60 mg/L、
SS 30mg/Lとなり、放流基準値以下となった。
The supernatant after sedimentation was BOD 60 mg / L,
SS became 30 mg / L, which was below the discharge standard value.

【0047】また、分離した汚泥は 27 kg/dayで、SS
含量 20,000mg/Lであり、水熱処理槽3に返送すると装
置の能力を超えるので、脱水装置6を設置し脱水処理を
行ない、系外へ分離した。最終的に分離した汚泥は 2.7
kg/dayで、水分 80%であった。
The separated sludge was 27 kg / day, and SS
The content was 20,000 mg / L, and when returned to the hydrothermal treatment tank 3, it exceeded the capacity of the apparatus. Therefore, a dehydrator 6 was installed to perform dehydration treatment, and separation was performed outside the system. 2.7 sludge finally separated
The water content was 80% at kg / day.

【0048】[実施例7]実施例1の構成において、水熱
処理装置3に向かう被処理水のラインに熱交換器10を
設置し、分解処理後の高温の処理水と熱交換を行なっ
た。
[Embodiment 7] In the configuration of Embodiment 1, the heat exchanger 10 is installed in the line of the water to be treated which goes to the hydrothermal treatment apparatus 3, and heat is exchanged with the high temperature treated water after the decomposition treatment.

【0049】熱交換前後の温度変化は、被処理水が 30
℃→125℃、処理水が 150℃→55℃であり、流量は 200
kg/dayで熱交換DUTYは 3,300 kJ/hrであった。
The temperature change before and after heat exchange is 30
℃ → 125 ℃, treated water is 150 ℃ → 55 ℃, the flow rate is 200
The heat exchange DUTY at kg / day was 3,300 kJ / hr.

【0050】[実施例8]実施例3の構成において、水熱
処理装置3に向かう被処理水のラインに熱交換器10を
設置し、分解処理後の高温の処理水と熱交換を行なっ
た。
[Embodiment 8] In the configuration of Embodiment 3, the heat exchanger 10 is installed in the line of the water to be treated which goes to the hydrothermal treatment apparatus 3, and heat is exchanged with the high temperature treated water after the decomposition treatment.

【0051】熱交換前後の温度変化は、被処理水が 30
℃→125℃、処理水が 150℃→55℃であり、流量は 750
kg/dayで熱交換DUTYは 12,500 kJ/hrであった。
The temperature change before and after the heat exchange is 30
℃ → 125 ℃, treated water is 150 ℃ → 55 ℃, flow rate is 750
The heat exchange DUTY was 12,500 kJ / hr at kg / day.

【0052】[0052]

【発明の効果】本発明の水熱反応装置と生物反応槽の組
合せは、次に示すような利点がある。 (1)水熱反応の特徴は、水と固形物の割合、及び反応
の温度・圧力・時間など多くの操作因子があり、水熱反
応装置と生物反応槽との反応条件の組合せに多様性があ
るので、処理成績に確実性がある。 (2)特に、温度・圧力条件を従来のものより低く抑え
ることで、投入エネルギーの低減をはかり、かつ高温で
発生する無定形炭素などの無機SSの発生を抑制するこ
とで最終的に除去する必要のある固形廃棄物を大幅に減
量さらにはほとんど消滅させることができる。 (3)水熱処理液の生物反応槽には、高効率な生物膜反
応槽等を採用することで、小型化が可能である。 (4)生物反応槽は、水熱処理液で馴養された微生物を
使うので、分解効率が高く、生物反応槽が小型になると
ともに既存の曝気槽に対する影響も少ない。 (5)生物反応槽の処理液をそのまま放流または混入し
ている汚泥を除去した後放流することによって既存の曝
気槽へ影響を及ぼさないようにもできる。
The combination of the hydrothermal reaction apparatus and the biological reaction tank of the present invention has the following advantages. (1) The characteristics of hydrothermal reaction are many operating factors such as the ratio of water to solids, temperature, pressure, and time of reaction, and there are various combinations of reaction conditions between the hydrothermal reaction device and the biological reaction tank. Therefore, there is certainty in the processing results. (2) In particular, by controlling the temperature and pressure conditions to be lower than those of the conventional ones, the input energy is reduced, and inorganic SS such as amorphous carbon generated at high temperature is suppressed from being finally removed. The required solid waste can be significantly reduced and even eliminated. (3) As a bioreaction tank for the hydrothermal treatment liquid, a highly efficient biofilm reaction tank or the like can be used to reduce the size. (4) Since the biological reaction tank uses the microorganisms acclimatized with the hydrothermal treatment liquid, the decomposition efficiency is high, the biological reaction tank becomes small, and the existing aeration tank is less affected. (5) It is possible to prevent the existing aeration tank from being affected by discharging the treatment liquid of the biological reaction tank as it is or by removing the mixed sludge and then discharging it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を特徴づける、生物反応槽を含んだ簡単
な構成の実施例を示す図である。
FIG. 1 is a diagram showing an example of a simple structure including a biological reaction tank, which characterizes the present invention.

【図2】本発明における、沈降槽を生物反応槽の前に追
加した構成の実施例を示す図である。
FIG. 2 is a diagram showing an example of a configuration in which a sedimentation tank is added before a biological reaction tank in the present invention.

【図3】本発明における、生物処理装置に生物膜濾過法
を使用する構成の実施例を示す図である。
FIG. 3 is a diagram showing an example of a configuration in which a biofilm filtration method is used in a biological treatment apparatus according to the present invention.

【図4】本発明における、生物反応槽での処理後の排水
が規制をクリアする場合に放流する構成の実施例を示す
図である。
FIG. 4 is a diagram showing an embodiment of the present invention in which the waste water after treatment in the biological reaction tank is discharged when it clears the regulation.

【図5】本発明の実施例における、熱回収の構成を示す
図である。
FIG. 5 is a diagram showing a heat recovery configuration according to an embodiment of the present invention.

【図6】従来技術の一例を示す図である。FIG. 6 is a diagram showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 固液分離槽 3 水熱反応装置 4 生物反応槽 5 沈降槽 6 脱水装置 7 生物処理槽 8 逆洗排水汚泥濃縮槽 9 高圧ポンプ 10 熱交換器 11 加熱器 12 水熱反応器 13 冷却器 14 圧力調整弁 L1〜L20 配管 1 aeration tank 2 Solid-liquid separation tank 3 Hydrothermal reactor 4 Biological reaction tank 5 settling tank 6 dehydrator 7 biological treatment tank 8 Backwash drainage sludge thickener 9 High pressure pump 10 heat exchanger 11 heater 12 Hydrothermal reactor 13 Cooler 14 Pressure control valve L1 to L20 piping

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D059 AA05 BA01 BA21 BA34 BC01 BE31 BK12 CA01 CA22 CA28 EB06 EB20    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4D059 AA05 BA01 BA21 BA34 BC01                       BE31 BK12 CA01 CA22 CA28                       EB06 EB20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排水の生物処理装置で発生する余剰活性
汚泥を水熱反応装置に送り込み、汚泥中の難生分解性有
機物を水熱反応により易生分解性物質に分解処理する工
程を有する、余剰汚泥生物処理方法において、 該水熱反応処理を温度140℃以上200℃未満の範
囲、圧力0.4MPa以上2.0MPa以下の範囲の反応条
件下で行なうことと、 該水熱処理工程ののちその処理液を別に設置する好気性
生物反応槽で好気性処理する工程を有することと、 該好気性処理した処理液を該生物処理装置に返送または
処理水として放流する工程を有することを特徴とする、
水熱反応を利用する余剰汚泥生物処理方法。
1. A step of feeding surplus activated sludge generated in a wastewater biological treatment device to a hydrothermal reaction device and decomposing the hardly biodegradable organic matter in the sludge into an easily biodegradable substance by hydrothermal reaction, In the excess sludge biological treatment method, the hydrothermal reaction treatment is performed under reaction conditions of a temperature of 140 ° C. or higher and lower than 200 ° C. and a pressure of 0.4 MPa or higher and 2.0 MPa or lower, and after the hydrothermal treatment step, It is characterized by having a step of aerobically treating the treatment liquid in an aerobic biological reaction tank separately installed, and returning the treatment liquid subjected to the aerobic treatment to the biological treatment device or discharging it as treated water. ,
Surplus sludge biological treatment method utilizing hydrothermal reaction.
【請求項2】 前記好気性生物反応槽の前工程として固
液分離装置を設け、処理液のうち、固体含有量の少ない
液を該生物反応槽に供給し、固体含有量の多い液を既設
の生物処理装置及び/または水熱反応装置及び/または脱
水処理装置へ送り、処理することを特徴とする請求項1
に記載の水熱反応を利用する余剰汚泥生物処理方法。
2. A solid-liquid separator is provided as a pre-process of the aerobic biological reaction tank, a liquid having a low solid content in the treatment liquid is supplied to the biological reaction tank, and a liquid having a high solid content is already installed. 2. The biological treatment device and / or the hydrothermal reaction device and / or the dehydration treatment device according to claim 1 for processing.
The method for treating excess sludge biological matter, which utilizes the hydrothermal reaction according to 1.
【請求項3】 前記好気性生物反応槽の後工程として固
液分離装置を設け、処理液は放流するとともに、濃縮さ
れた汚泥スラリーは水熱反応装置及び/または脱水処理
装置へ送り処理することを特徴とする請求項1〜2のい
ずれかに記載の水熱反応を利用する余剰汚泥生物処理方
法。
3. A solid-liquid separation device is provided as a post-process of the aerobic biological reaction tank, the treatment liquid is discharged, and the concentrated sludge slurry is sent to a hydrothermal reaction device and / or a dehydration treatment device for treatment. The method for treating excess sludge biological matter utilizing the hydrothermal reaction according to any one of claims 1 to 2.
【請求項4】 前記水熱反応装置において、被処理液と
処理液の熱交換をすることを特徴とする請求項1〜3の
いずれかに記載の水熱反応を利用する余剰汚泥生物処理
方法。
4. The surplus sludge biological treatment method using the hydrothermal reaction according to claim 1, wherein the liquid to be treated and the treatment liquid are heat-exchanged in the hydrothermal reaction device. .
JP2001315095A 2001-10-12 2001-10-12 Excess sludge biological treatment method using hydrothermal reaction Expired - Fee Related JP4004766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315095A JP4004766B2 (en) 2001-10-12 2001-10-12 Excess sludge biological treatment method using hydrothermal reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315095A JP4004766B2 (en) 2001-10-12 2001-10-12 Excess sludge biological treatment method using hydrothermal reaction

Publications (2)

Publication Number Publication Date
JP2003117597A true JP2003117597A (en) 2003-04-22
JP4004766B2 JP4004766B2 (en) 2007-11-07

Family

ID=19133316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315095A Expired - Fee Related JP4004766B2 (en) 2001-10-12 2001-10-12 Excess sludge biological treatment method using hydrothermal reaction

Country Status (1)

Country Link
JP (1) JP4004766B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026774A1 (en) * 2002-09-02 2004-04-01 Koga, Takeshi Method of reducing volume of sludge and apparatus therefor
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
CN103011535A (en) * 2012-04-19 2013-04-03 上海集祥环保科技发展有限公司 Hydro-thermal treatment method for electroplating sludge
CN107459207A (en) * 2017-08-23 2017-12-12 中国农业大学 A kind of integrating device of cultivating wastewater purification and its application
JP2018510773A (en) * 2015-03-26 2018-04-19 エスシーダブリュー・システムズ・ベーフェー Method and system for treating slurry containing organic components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762330B (en) * 2015-04-16 2018-02-13 浙江工商大学 A kind of apparatus and method for improving excess sludge electrochemistry hydrogen generation efficiency

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026774A1 (en) * 2002-09-02 2004-04-01 Koga, Takeshi Method of reducing volume of sludge and apparatus therefor
US7258791B2 (en) 2002-09-02 2007-08-21 Takeshi Koga Method of reducing volume of sludge
US7438805B2 (en) 2002-09-02 2008-10-21 Takeshi Koga Apparatus for reducing volume of sludge
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
CN103011535A (en) * 2012-04-19 2013-04-03 上海集祥环保科技发展有限公司 Hydro-thermal treatment method for electroplating sludge
JP2018510773A (en) * 2015-03-26 2018-04-19 エスシーダブリュー・システムズ・ベーフェー Method and system for treating slurry containing organic components
CN107459207A (en) * 2017-08-23 2017-12-12 中国农业大学 A kind of integrating device of cultivating wastewater purification and its application

Also Published As

Publication number Publication date
JP4004766B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US11001517B2 (en) Bioreactor for treating sewage and sewage treatment system comprising the same
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
US7713417B2 (en) Method for wastewater treatment with resource recovery and reduced residual solids generation
CN101224935A (en) Method for treating landfill leachate
JP2003200199A (en) Sewage treatment method
AU2019385688B2 (en) Advanced phosphorous recovery process and plant
JPH10192889A (en) Method for treating organic drainage
JP4004766B2 (en) Excess sludge biological treatment method using hydrothermal reaction
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
KR950004165B1 (en) Waste water treatment method
Kiriyama et al. Field test of a composite methane gas production system incorporating a membrane module for municipal sewage
JP4248375B2 (en) Organic sludge treatment method and apparatus
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
JP2003300096A (en) Method for anaerobic digestion of high-concentration sludge and apparatus for the same
KR20190134583A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
CN110921979A (en) Waste water treatment device
KR100666605B1 (en) Wastewater treatment method for reducing waste-sludge utilizing an anaerobic digestion reactor and wastewater treatment system thereof
KR20190001090A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2003260435A (en) Apparatus and method for treating nitrogen-containing organic waste
JP6909147B2 (en) Organic wastewater treatment equipment, organic wastewater treatment method and renovation method of organic wastewater treatment equipment
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
JP3780407B2 (en) Sludge volume reduction method
JP2023162977A (en) Wastewater treatment system and wastewater treatment method
KR950008880B1 (en) Apparatus and method for excrement treatment by photosynthetic bacteria
CN115215512A (en) Method for treating urban wastewater by using anaerobic reaction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees