JP2023162977A - Wastewater treatment system and wastewater treatment method - Google Patents

Wastewater treatment system and wastewater treatment method Download PDF

Info

Publication number
JP2023162977A
JP2023162977A JP2022073727A JP2022073727A JP2023162977A JP 2023162977 A JP2023162977 A JP 2023162977A JP 2022073727 A JP2022073727 A JP 2022073727A JP 2022073727 A JP2022073727 A JP 2022073727A JP 2023162977 A JP2023162977 A JP 2023162977A
Authority
JP
Japan
Prior art keywords
sludge
equipment
wastewater treatment
digested
digested sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022073727A
Other languages
Japanese (ja)
Inventor
進 石田
Susumu Ishida
輝美 円谷
Terumi Tsuburaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2022073727A priority Critical patent/JP2023162977A/en
Publication of JP2023162977A publication Critical patent/JP2023162977A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

To provide a wastewater treatment system and a wastewater treatment method that can reduce the cost required for dewatering treatment of digested sludge and secure the amount of activated sludge required for biosorption.SOLUTION: Inflowing sewage is separated from coarse solids in a sedimentation basin and a screen unit 1, and the separated coarse solids are treated in a methane fermentation unit 2 to produce digested sludge. The digested sludge is transferred to a dewatering unit 4 and a digested sludge conditioning apparatus 5, and the digested sludge is brought into contact in the digested sludge conditioning unit 5 with surplus sludge from a water treatment apparatus 8 and is conditioned. The conditioned sludge is then contacted in a contacting/mixing unit 6 with treated water from the sedimentation basin and the screen unit 1, and the organic matters contained in the treated water are adsorbed by the conditioned sludge. Sludge with adsorbed organic matters is separated in a separation and concentration unit 7, and the concentrated sludge is transferred to the methane fermentation unit 2. Separated water from the separation/concentration unit 7 is supplied to the water treatment unit 8, and organic matters contained in the wastewater are decomposed in the water treatment unit 8.SELECTED DRAWING: Figure 1

Description

本発明は排水処理装置及び排水処理方法に関する。 The present invention relates to a wastewater treatment device and a wastewater treatment method.

従来より、夾雑物、有機物及び水分を含む下水等の排水に対し標準活性汚泥法による水処理が行なわれている。例えば、家庭や工場等から排出された下水は沈砂池及び最初沈殿池を経て活性汚泥を含む生物反応槽に移送され、生物反応槽において下水中の有機物が活性汚泥により分解され除去される。 Conventionally, wastewater such as sewage containing impurities, organic matter, and moisture has been treated by a standard activated sludge method. For example, sewage discharged from homes, factories, etc. is transferred through a settling tank and a primary settling tank to a biological reaction tank containing activated sludge, and in the biological reaction tank, organic matter in the sewage is decomposed and removed by the activated sludge.

図4は中大規模の下水処理施設で一般的に実施されている標準活性汚泥法による排水処理装置を概略的に示す図である。 FIG. 4 is a diagram schematically showing a wastewater treatment device using the standard activated sludge method, which is generally implemented in medium- and large-scale sewage treatment facilities.

図4の排水処理装置は、沈砂池及びポンプ井41,メタン発酵設備42,エネルギー回収設備43,脱水設備44,最初沈殿池47,生物反応槽(エアレーションタンク)48,最終沈殿池49を備えている。まず、家庭や工場等から排出された下水は沈砂池及びポンプ井41において粗大固形物(沈砂及びし渣)が除去された後、最初沈殿池47に移送され、最初沈殿池47において固形物(初沈汚泥)と処理済水とに分離される。次いで、初沈汚泥はメタン発酵設備42に移送されメタン発酵処理が施される。この初沈汚泥のメタン発酵処理により消化ガス(メタンガス)と消化汚泥が生成し、消化ガスはエネルギー回収設備43に移送され、消化汚泥は脱水設備44に移送される。その後、脱水設備44において消化汚泥に脱水処理が施され、脱水ケーキと脱水ろ液が生成する。 The wastewater treatment device in FIG. 4 includes a settling basin and pump well 41, a methane fermentation facility 42, an energy recovery facility 43, a dewatering facility 44, an initial settling tank 47, a biological reaction tank (aeration tank) 48, and a final settling tank 49. There is. First, sewage discharged from homes, factories, etc. is removed from coarse solids (sand and sludge) in a settling tank and pump well 41, and then transferred to a first settling tank 47, where solids ( The sludge is separated into treated water (pre-settled sludge) and treated water. Next, the initial settled sludge is transferred to the methane fermentation equipment 42 and subjected to methane fermentation treatment. Digestion gas (methane gas) and digested sludge are generated by the methane fermentation treatment of this initial settling sludge, the digested gas is transferred to the energy recovery facility 43, and the digested sludge is transferred to the dewatering facility 44. Thereafter, the digested sludge is subjected to a dehydration process in the dewatering equipment 44 to produce a dehydrated cake and a dehydrated filtrate.

一方、最初沈殿池47の処理水は生物反応槽48に移送され、生物反応槽48において処理水中の有機物が活性汚泥により好気的に分解される。次いで、生物反応槽48から流出した分離水は最終沈殿池49に移送され、汚泥と処理水とに分離される。最終沈殿池49で分離された汚泥は、一部は生物反応槽48に返送(返送汚泥)され、残りは最初沈殿池47で分離された初沈汚泥とともにメタン発酵設備42に移送(余剰汚泥)される。最終沈殿池49から流出した処理水は滅菌槽で滅菌された後に放流されるか又は有効活用される。 On the other hand, the treated water in the first settling tank 47 is transferred to a biological reaction tank 48, where the organic matter in the treated water is aerobically decomposed by activated sludge. Next, the separated water flowing out from the biological reaction tank 48 is transferred to the final settling tank 49, where it is separated into sludge and treated water. A portion of the sludge separated in the final settling tank 49 is returned to the biological reaction tank 48 (return sludge), and the rest is transferred to the methane fermentation equipment 42 together with the first settled sludge separated in the first settling tank 47 (surplus sludge). be done. The treated water flowing out from the final settling tank 49 is sterilized in a sterilization tank and then released or put to effective use.

ところで、好気的な酸化分解が進行した活性汚泥が、流入下水中の有機物を吸着することはバイオソープションとして従来から知られている。例えば、特許文献1には、好気性処理槽から分離した余剰汚泥を原水が流入する吸着槽に移送し、原水中の有機物を吸着した余剰汚泥を固液分離した後に、分離した汚泥を嫌気性消化槽に導入することにより、メタンを高効率で回収する方法が開示されている。 Incidentally, the adsorption of organic matter in inflowing sewage by activated sludge that has undergone aerobic oxidative decomposition has been known as biosorption. For example, in Patent Document 1, surplus sludge separated from an aerobic treatment tank is transferred to an adsorption tank into which raw water flows, and after solid-liquid separation of the surplus sludge that has adsorbed organic matter in the raw water, the separated sludge is subjected to anaerobic treatment. A method for recovering methane with high efficiency by introducing it into a digester is disclosed.

特開2003-190997号公報Japanese Patent Application Publication No. 2003-190997

しかしながら、メタン発酵処理により生成した消化汚泥は非常に微細な粒子を多く含むため、生汚泥(初沈汚泥や余剰汚泥)に比べ難脱水性の性質を有している。そのため、消化汚泥の脱水処理により得られる脱水ケーキは含水率が高く、脱水ケーキの発生量が多くなり、その処分に多大な費用を要するという問題があった。また、脱水処理においては凝集剤が添加されるが、消化汚泥はカチオン性の低分子物質を多く含み汚泥表面の荷電サイトが多いため、凝集剤のイオンサイトを多く消費する。その結果、消化汚泥は生汚泥に比べ凝集剤の添加率が高くなり、脱水処理の費用が増大するという問題があった。
さらに、余剰汚泥(活性汚泥)のバイオソープションを利用して排水中の有機物を吸着する方法(特許文献1)の場合には、好気性処理槽において余剰汚泥の発生量が低下するため、排水処理が進行するにつれてバイオソープションに必要な活性汚泥量を確保することが困難になるという問題があった。
したがって、消化汚泥の脱水処理に要する費用を低減するとともに、バイオソープションに必要な活性汚泥量を確保することのできる排水処理が求められていた。
However, since the digested sludge produced by methane fermentation treatment contains many very fine particles, it is more difficult to dewater than raw sludge (first-settled sludge and surplus sludge). Therefore, the dehydrated cake obtained by the dehydration treatment of digested sludge has a high moisture content, resulting in a large amount of dehydrated cake being generated, resulting in the problem of requiring a large amount of cost to dispose of the dehydrated cake. In addition, a flocculant is added during dewatering treatment, but since digested sludge contains many cationic low-molecular substances and has many charged sites on the sludge surface, many ionic sites of the flocculant are consumed. As a result, digested sludge has a higher rate of flocculant added than raw sludge, resulting in an increase in dewatering costs.
Furthermore, in the case of the method of adsorbing organic matter in wastewater using biosorption of surplus sludge (activated sludge) (Patent Document 1), the amount of surplus sludge generated in the aerobic treatment tank decreases, so the wastewater There was a problem in that as the treatment progressed, it became difficult to secure the amount of activated sludge necessary for biosorption.
Therefore, there has been a need for wastewater treatment that can reduce the cost required for dewatering digested sludge and ensure the amount of activated sludge necessary for biosorption.

本発明の目的は、消化汚泥の脱水処理に要する費用を低減するとともに、バイオソープションに必要な活性汚泥量を確保することができる排水処理装置及び排水処理方法を提供することにある。 An object of the present invention is to provide a wastewater treatment device and a wastewater treatment method that can reduce the cost required for dewatering digested sludge and secure the amount of activated sludge necessary for biosorption.

上記目的を達成するために、本発明の排水処理装置は、夾雑物、有機物及び水分を含む排水を処理する排水処理装置であって、夾雑物と有機物及び水分とを分離する夾雑物分離手段と、前記夾雑物分離手段により分離された夾雑物をメタン発酵処理するメタン発酵処理手段と、前記夾雑物分離手段により得られた有機物及び水分を含む処理水を水処理する水処理手段と、を備える排水処理装置において、前記メタン発酵処理手段により得られた消化汚泥の少なくとも一部を酸素存在下で活性汚泥と接触させて調質する消化汚泥調質手段を有することを特徴とする。 In order to achieve the above object, the wastewater treatment device of the present invention is a wastewater treatment device that treats wastewater containing impurities, organic matter, and moisture, and includes a contaminant separation means that separates impurities from organic matter and moisture. , comprising a methane fermentation treatment means for methane fermenting the impurities separated by the impurity separation means, and a water treatment means for treating the treated water containing organic matter and water obtained by the impurity separation means. The wastewater treatment apparatus is characterized in that it has a digested sludge refining means for bringing at least a portion of the digested sludge obtained by the methane fermentation treatment means into contact with activated sludge in the presence of oxygen.

上記目的を達成するために、本発明の排水処理方法は、上記本発明の排水処理装置を用いた排水処理方法において、前記夾雑物と前記有機物及び水分とを分離する夾雑物分離ステップと、前記夾雑物分離ステップにおいて分離された夾雑物をメタン発酵処理するメタン発酵処理ステップと、前記夾雑物分離ステップにより得られた有機物及び水分を含む処理水を水処理する水処理ステップと、前記メタン発酵処理ステップにより得られた消化汚泥の少なくとも一部を酸素存在下で活性汚泥と接触させて調質する消化汚泥調質ステップと、を有することを特徴とする。 In order to achieve the above object, the wastewater treatment method of the present invention includes a contaminant separation step of separating the contaminants from the organic matter and water; a methane fermentation treatment step in which the impurities separated in the impurity separation step are treated with methane fermentation; a water treatment step in which treated water containing organic matter and moisture obtained in the impurity separation step is treated; and the methane fermentation treatment. The method is characterized by comprising a digested sludge conditioning step of bringing at least a portion of the digested sludge obtained in the step into contact with activated sludge in the presence of oxygen to condition the digested sludge.

本発明によれば、消化汚泥の脱水処理に要する費用を低減するとともに、バイオソープションに必要な活性汚泥量を確保して安定した排水処理を実行することができる。 According to the present invention, it is possible to reduce the cost required for dehydration treatment of digested sludge, and to ensure the amount of activated sludge necessary for biosorption to perform stable wastewater treatment.

本発明の実施の形態に係る排水処理装置を概略的に示す図である。1 is a diagram schematically showing a wastewater treatment device according to an embodiment of the present invention. 図1の排水処理装置の変形例を示す図である。It is a figure which shows the modification of the wastewater treatment apparatus of FIG. 図2の排水処理装置の変形例を示す図である。It is a figure which shows the modification of the wastewater treatment apparatus of FIG. 標準活性汚泥法による排水処理装置を概略的に示す図である。1 is a diagram schematically showing a wastewater treatment device using a standard activated sludge method.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

図1は、本発明の実施の形態に係る排水処理装置10を概略的に示す図である。 FIG. 1 is a diagram schematically showing a wastewater treatment device 10 according to an embodiment of the present invention.

図1の排水処理装置10は、沈砂池及びスクリーンから構成される設備1,メタン発酵設備2,エネルギー回収設備3,脱水設備4,消化汚泥調質設備5,接触混合設備6,分離濃縮設備7,水処理設備8を備える。まず、家庭や工場等から排出された下水は設備1(夾雑物分離手段)に移送され、設備1において下水中の粗大固形物(夾雑物)が沈砂及びし渣として除去される。スクリーンは、後述する接触混合設備6における活性汚泥による吸着が困難な粗大固形物を除くため、目開きが20~300μm、好ましくは50~200μmの微細目スクリーン設備を用いるのが好ましい。設備1は下水中の粗大固形物(夾雑物)を除去できる設備であれば特に限定されるものではない。沈砂池で分離された沈砂は砂分を含むため、沈砂は沈砂洗浄装置等により砂分を除去した後に、一部はメタン発酵設備2に移送され、残りは処分又は有効活用される。一方、スクリーンで分離されたし渣は有機物を多く含み砂分は少ないため、破砕機により破砕した後に、一部はメタン発酵設備2に移送され、残りは処分又は有効活用される。 The wastewater treatment device 10 in FIG. 1 includes a facility 1 comprising a settling basin and a screen, a methane fermentation facility 2, an energy recovery facility 3, a dewatering facility 4, a digested sludge conditioning facility 5, a contact mixing facility 6, and a separation/concentration facility 7. , water treatment equipment 8. First, sewage discharged from homes, factories, etc. is transferred to equipment 1 (impurity separation means), and in equipment 1, coarse solids (impurities) in the sewage are removed as sediment and sludge. As for the screen, it is preferable to use fine screen equipment with openings of 20 to 300 μm, preferably 50 to 200 μm, in order to remove coarse solids that are difficult to adsorb by activated sludge in contact mixing equipment 6, which will be described later. The equipment 1 is not particularly limited as long as it is capable of removing coarse solid matter (impurities) in sewage. Since the sediment separated in the settling pond contains sand, after the sand is removed by a sand cleaning device or the like, a portion is transferred to the methane fermentation equipment 2, and the remainder is disposed of or effectively utilized. On the other hand, the residue separated by the screen contains a large amount of organic matter and a small amount of sand, so after being crushed by a crusher, a portion is transferred to the methane fermentation equipment 2, and the remainder is disposed of or effectively utilized.

メタン発酵設備2(メタン発酵処理手段)は、砂分除去後の沈砂、破砕後のし渣、及び後述する分離濃縮汚泥に対しメタン発酵処理を実行する。メタン発酵処理はメタン菌(嫌気性細菌)が有機物を分解し、メタンを主体とする消化ガスと消化汚泥を生成させる消化反応を用いる処理である。具体的に、メタン菌は、まず有機物を加水分解して可溶性のアミノ酸等を生成する。次いで、生成したアミノ酸等が嫌気性細菌の細胞内に取り込まれて代謝分解され、酢酸や水素、二酸化炭素等が生成する。その後、酢酸や水素、二酸化炭素からバイオガスとしてのメタンが生成される。消化汚泥は汚泥中の有機物がメタン菌の働きで分解され消化ガスが発生した後に残る汚泥であり、メタン菌を含んでいる。この消化汚泥は非常に微細な粒子を多く含むため、生汚泥(初沈汚泥や余剰汚泥)に比べ難脱水性の性質を有する。 The methane fermentation equipment 2 (methane fermentation processing means) performs methane fermentation processing on the sediment after sand content removal, the residue after crushing, and the separated and concentrated sludge described below. Methane fermentation treatment is a treatment that uses a digestive reaction in which methane bacteria (anaerobic bacteria) decompose organic matter and produce digestive gas and digested sludge, mainly consisting of methane. Specifically, methane bacteria first hydrolyze organic matter to produce soluble amino acids and the like. Next, the produced amino acids and the like are taken into the cells of anaerobic bacteria and metabolically decomposed, producing acetic acid, hydrogen, carbon dioxide, and the like. Methane is then produced as biogas from acetic acid, hydrogen, and carbon dioxide. Digested sludge is the sludge that remains after organic matter in the sludge is decomposed by the action of methane bacteria and digestive gas is generated, and it contains methane bacteria. Since this digested sludge contains many very fine particles, it has a property of being more difficult to dewater than raw sludge (first-settled sludge and excess sludge).

メタン発酵設備2から排出された消化ガスはエネルギー回収設備3に移送され、そのまま燃料として利用されるか、又は発電装置に移送され電力として利用される。また、メタン発酵設備2から流出した消化汚泥は、一部は消化汚泥調質設備5に移送され、残りは脱水設備4に移送される。脱水設備4においては消化汚泥に凝集剤が添加されて脱水処理が実行される。消化汚泥に添加される凝集剤としては、例えば、ポリマーと称される有機高分子系の凝集剤が挙げられる。消化汚泥はカチオンを多く含みアルカリ度が高いことから、アニオン系ポリマー、両性ポリマー、又はアニオン系ポリマーとカチオン系ポリマーを併用した凝集剤が用いられる。 Digestion gas discharged from the methane fermentation equipment 2 is transferred to the energy recovery equipment 3 and used as fuel as is, or transferred to a power generation device and used as electric power. Furthermore, part of the digested sludge flowing out from the methane fermentation equipment 2 is transferred to the digested sludge conditioning equipment 5, and the rest is transferred to the dewatering equipment 4. In the dewatering equipment 4, a flocculant is added to the digested sludge to perform dewatering treatment. Examples of flocculants added to digested sludge include organic polymer flocculants called polymers. Since digested sludge contains many cations and has a high alkalinity, a flocculant using an anionic polymer, an amphoteric polymer, or a combination of an anionic polymer and a cationic polymer is used.

このように消化汚泥の一部を消化汚泥調質設備5に移送することにより、脱水設備4に供給する消化汚泥量を低減できるため、脱水処理に添加する凝集剤の量や脱水ケーキの発生量を低減させ、消化汚泥の脱水処理に要する費用を大幅に低減することができる。 By transferring a portion of the digested sludge to the digested sludge conditioning equipment 5 in this way, the amount of digested sludge supplied to the dewatering equipment 4 can be reduced, which reduces the amount of flocculant added to the dewatering process and the amount of dehydrated cake generated. It is possible to significantly reduce the cost required for dewatering digested sludge.

また、消化汚泥の一部を消化汚泥調質設備5に移送することにより、後述するように、設備1からの処理水とともに接触混合設備6に供給される調質汚泥(活性汚泥)の量を増やすことができ、その結果、調質汚泥に吸着する有機物の量が増え、メタン発酵処理により発生する消化ガス量を増やすことができる。消化ガスによるエネルギー回収量が増加すると、発電等に利用すればエネルギー自立可能な排水処理装置を提供することができる。 In addition, by transferring a portion of the digested sludge to the digested sludge conditioning equipment 5, the amount of tempered sludge (activated sludge) supplied to the contact mixing equipment 6 together with the treated water from the equipment 1 can be reduced, as will be described later. As a result, the amount of organic matter adsorbed to the conditioned sludge increases, and the amount of digestive gas generated by methane fermentation treatment can be increased. If the amount of energy recovered from the digestion gas increases, it is possible to provide a wastewater treatment device that can be energy independent if used for power generation or the like.

さらに、消化汚泥の一部を消化汚泥調質設備5に移送することにより、後述するように、消化汚泥が調質されて好気的な活性汚泥に変換されるため、バイオソープションに必要な活性汚泥量を確保することができる。 Furthermore, by transferring a part of the digested sludge to the digested sludge conditioning equipment 5, the digested sludge is conditioned and converted into aerobic activated sludge, as described later. The amount of activated sludge can be secured.

消化汚泥調質設備5(消化汚泥調質手段)は消化汚泥に対し調質処理を実行する。調質処理は消化汚泥を酸素存在下で活性汚泥と接触させる処理である。これにより、活性汚泥(好気性微生物)が消化汚泥(メタン菌や嫌気性細菌など)を分解及び捕食して自己増殖し、消化汚泥がバイオソープション効果のある好気的な活性汚泥(調質汚泥)に変換され、酸素溶存効率が高まる。活性汚泥は調質処理の種汚泥として機能し、短時間での調質を可能とする。消化汚泥には有機酸(プロピオン酸、酪酸、吉草酸など)、アンモニア、硫化水素、硫化物等の還元性物質が含まれているが、調質処理により消化汚泥中のこれら還元性物質も酸化される。 The digested sludge refining equipment 5 (digested sludge refining means) performs refining treatment on the digested sludge. Thermal treatment is a treatment in which digested sludge is brought into contact with activated sludge in the presence of oxygen. As a result, the activated sludge (aerobic microorganisms) decomposes and preys on the digested sludge (methane bacteria, anaerobic bacteria, etc.) and self-propagates, and the digested sludge becomes an aerobic activated sludge (conditioned microorganism) that has a biosorption effect. sludge), increasing oxygen dissolution efficiency. Activated sludge functions as a seed sludge for thermal refining treatment and enables thermal refining in a short time. Digested sludge contains reducing substances such as organic acids (propionic acid, butyric acid, valeric acid, etc.), ammonia, hydrogen sulfide, and sulfides, but these reducing substances in the digested sludge are also oxidized through tempering treatment. be done.

本実施の形態では、消化汚泥調質設備5に供給する活性汚泥は、後述する水処理設備8から排出された余剰汚泥を使用する。調質処理を効率的に実行するためには、消化汚泥調質設備5内に消化汚泥に対して十分な量の活性汚泥を存在させる必要がある。消化汚泥調質設備5に供給する消化汚泥と余剰汚泥の重量比率は1:0.5~1:10の範囲内とするのがよい。これにより、消化汚泥の活性汚泥への変換が効率的に進行すると考えられる。消化汚泥調質設備5の容量を小さくするためには、消化汚泥に対する余剰汚泥の比率を大きくすることが望ましい。また、消化汚泥調質設備5への余剰汚泥の供給量が少なく、消化汚泥に対する余剰汚泥の供給比率が小さい場合には、好気性微生物を維持するための担体や接触材を消化汚泥調質設備5内に設置するのが有効である。消化汚泥調質設備5に供給する消化汚泥の濃度は通常1~2重量%であり、消化汚泥調質設備5に供給する活性汚泥の濃度は通常0.2~0.5重量%である。混合汚泥消化汚泥調質設備5内の混合汚泥(消化汚泥及び活性汚泥)の濃度は、調質のし易さの観点から、1重量%以下、好ましくは0.4~0.6重量%に維持するのがよい。混合汚泥の濃度が1重量%を超えると汚泥の粘性が増加して酸素溶解効率が低下する傾向がある。混合汚泥の濃度の調整は、例えば、脱水設備4からの脱水ろ液を消化汚泥調質設備5に添加することにより行うことができる。 In this embodiment, activated sludge supplied to the digested sludge conditioning equipment 5 uses surplus sludge discharged from a water treatment equipment 8, which will be described later. In order to efficiently perform the refining process, it is necessary to have a sufficient amount of activated sludge present in the digested sludge refining equipment 5 relative to the digested sludge. The weight ratio of the digested sludge and surplus sludge supplied to the digested sludge conditioning equipment 5 is preferably within the range of 1:0.5 to 1:10. It is thought that this allows the conversion of digested sludge to activated sludge to proceed efficiently. In order to reduce the capacity of the digested sludge conditioning equipment 5, it is desirable to increase the ratio of surplus sludge to digested sludge. In addition, when the amount of excess sludge supplied to the digested sludge conditioning equipment 5 is small and the supply ratio of excess sludge to the digested sludge is small, carriers and contact materials for maintaining aerobic microorganisms may be transferred to the digested sludge conditioning equipment. It is effective to install it within 5. The concentration of the digested sludge supplied to the digested sludge conditioning equipment 5 is usually 1 to 2% by weight, and the concentration of activated sludge supplied to the digested sludge conditioning equipment 5 is usually 0.2 to 0.5% by weight. The concentration of the mixed sludge (digested sludge and activated sludge) in the mixed sludge digested sludge conditioning equipment 5 is 1% by weight or less, preferably 0.4 to 0.6% by weight, from the viewpoint of ease of conditioning. Better to maintain it. When the concentration of the mixed sludge exceeds 1% by weight, the viscosity of the sludge increases and the oxygen dissolution efficiency tends to decrease. The concentration of the mixed sludge can be adjusted, for example, by adding the dehydrated filtrate from the dewatering equipment 4 to the digested sludge conditioning equipment 5.

消化汚泥と活性汚泥との接触は、例えば、消化汚泥調質設備5内に曝気装置を配置し、空気を曝気しながら消化汚泥と活性汚泥とを混合する曝気撹拌により実施することができる。また、消化汚泥と活性汚泥との接触は、曝気撹拌に加え、例えば、スタティックミキサー等の静止型混合器(ラインミキサー)を用いたライン混合を行うこともできる。消化汚泥調質設備5内には汚泥流量調整手段を設けるのが好ましく、消化汚泥調質設備5内の混合汚泥(消化汚泥及び活性汚泥)の滞留時間は、消化汚泥と活性汚泥の混合比率、曝気装置の能力、接触材の有無等により変化するが、通常は3~12日間である。消化汚泥調質設備5から流出した調質汚泥は大部分が活性汚泥であり、接触混合設備6に移送される。標準活性汚泥法の設備を膜分離活性汚泥法(以下、MBR法という。)に改造する場合には、既存のエアレーションタンク(生物反応槽)の一部を消化汚泥調質設備5として利用することができる。 The contact between the digested sludge and the activated sludge can be carried out, for example, by arranging an aeration device in the digested sludge conditioning equipment 5 and aerating and stirring the digested sludge and activated sludge while aerating the air. Further, the contact between the digested sludge and the activated sludge can be carried out by, for example, line mixing using a stationary mixer (line mixer) such as a static mixer, in addition to aeration stirring. It is preferable to provide a sludge flow rate adjustment means in the digested sludge conditioning equipment 5, and the residence time of the mixed sludge (digested sludge and activated sludge) in the digested sludge conditioning equipment 5 is determined by the mixing ratio of the digested sludge and activated sludge, Although it varies depending on the capacity of the aeration equipment, the presence or absence of contact materials, etc., it is usually 3 to 12 days. The tempered sludge flowing out from the digested sludge conditioning equipment 5 is mostly activated sludge, and is transferred to the contact mixing equipment 6. When converting equipment for the standard activated sludge method to the membrane separation activated sludge method (hereinafter referred to as the MBR method), a part of the existing aeration tank (biological reaction tank) should be used as the digested sludge conditioning equipment 5. I can do it.

接触混合設備6(接触手段)は、設備1の処理水と消化汚泥調質設備5から移送される調質汚泥とを好気的な状態で接触混合させる手段である。接触混合は接触混合設備6内に曝気装置を配置して曝気撹拌により実施することができる。また、機械撹拌を追加的に行うこともでき、例えば、スタティックミキサー等の静止型混合器(ラインミキサー)を用いたライン混合を行うこともできる。この接触混合により、設備1から移送された処理水中の溶解性有機物が調質汚泥に吸着される。 The contact mixing equipment 6 (contact means) is a means for contact-mixing the treated water of the equipment 1 and the tempered sludge transferred from the digested sludge refinement equipment 5 in an aerobic state. Contact mixing can be performed by arranging an aeration device in the contact mixing equipment 6 and performing aeration and stirring. Further, mechanical stirring can be additionally performed, for example, line mixing using a static mixer (line mixer) such as a static mixer can also be performed. Due to this contact mixing, soluble organic matter in the treated water transferred from the equipment 1 is adsorbed to the tempered sludge.

接触混合設備6において、設備1から移送された処理水中の溶解性有機物の量と、消化汚泥調質設備5から移送された調質汚泥の量は、1:0.5~1:1.5、好ましくは1:0.6~1:1.3のようにほぼ同程度の重量比率となるよう維持するのがよい。これにより、接触混合設備6内において、設備1から移送された処理水中の溶解性有機物や微細固形物が調質汚泥に効率的に吸着される。 In the contact mixing equipment 6, the amount of dissolved organic matter in the treated water transferred from the equipment 1 and the amount of tempered sludge transferred from the digested sludge conditioning equipment 5 are 1:0.5 to 1:1.5. It is preferable to maintain the weight ratio to be approximately the same, preferably 1:0.6 to 1:1.3. Thereby, in the contact mixing equipment 6, dissolved organic substances and fine solids in the treated water transferred from the equipment 1 are efficiently adsorbed to the tempered sludge.

接触混合設備6から流出する混合液には溶解性有機物や微細固形物が吸着した調質汚泥が含まれている。この混合液の大部分は分離濃縮設備7に移送されるが、一部は分離濃縮設備7を経由せずにバイパス経路を経て水処理設備8に移送される。このようなバイパス経路を設けることにより、分離濃縮設備7に供給される混合液の量と、分離濃縮設備7を経由せずにバイパス経路に移行する混合液の量を調節し、水処理設備8に供給される活性汚泥の量を容易に制御することが可能となる。このようなバイパス経路を設置することにより、水処理施設8内のMLSS(活性汚泥浮遊物質)濃度を最適範囲に迅速に調節することができ、日間の負荷変動等に対しても安定した運転が可能となる。また、標準活性汚泥法の設備を改造する場合には、最初沈澱池の一部を接触混合設備6として利用することができる。 The mixed liquid flowing out from the contact mixing equipment 6 contains tempered sludge that has adsorbed soluble organic matter and fine solid matter. Most of this mixed liquid is transferred to the separation/concentration facility 7, but a portion is transferred to the water treatment facility 8 via a bypass route without passing through the separation/concentration facility 7. By providing such a bypass path, the amount of the mixed liquid supplied to the separation/concentration equipment 7 and the amount of the mixed liquid transferred to the bypass path without passing through the separation/concentration equipment 7 can be adjusted, and the amount of the mixed liquid supplied to the separation/concentration equipment 7 can be adjusted. It becomes possible to easily control the amount of activated sludge supplied to the By installing such a bypass route, the MLSS (activated sludge suspended solids) concentration in the water treatment facility 8 can be quickly adjusted to the optimum range, and stable operation can be achieved even with daily load fluctuations. It becomes possible. Furthermore, when modifying equipment for the standard activated sludge method, a part of the initial settling tank can be used as the contact mixing equipment 6.

分離濃縮設備7(分離濃縮手段)は、接触混合設備6から移送された混合液から、溶解性有機物や微細固形物を吸着した調質汚泥を分離濃縮するための手段であり、従来の最初沈澱池よりも有機物の分離効率が高い。分離濃縮処理においては鉄系やアルミ系の無機凝集剤や有機凝集剤を添加して有機物の分離効率を高めることも可能であるが、加圧浮上分離装置や遠心分離機を用いることで分離効率を更に高めることができる。特に、加圧浮上分離装置は凝集剤を用いなくても20~50μm以上の固形物を15~30分程度の短時間で効率的に分離濃縮できるため好ましいが、凝集剤を用いることによりコロイド領域の汚泥まで分離可能となり、更に有機物の分離効率が向上する。また、分離濃縮処理においてアルミニウムや鉄を含む無機系凝集剤を用いることによりリンを除去することが可能である。標準活性汚泥法の設備を改造する場合には、最初沈澱池の一部を分離濃縮設備7として利用することができる。 The separation and concentration equipment 7 (separation and concentration means) is a means for separating and concentrating tempered sludge that has adsorbed soluble organic matter and fine solids from the mixed liquid transferred from the contact mixing equipment 6, and is a means for separating and concentrating the tempered sludge that has adsorbed soluble organic matter and fine solids. The separation efficiency of organic matter is higher than that of ponds. In the separation and concentration process, it is possible to increase the separation efficiency of organic matter by adding iron-based or aluminum-based inorganic flocculants or organic flocculants, but the separation efficiency can be improved by using a pressure flotation device or a centrifugal separator. can be further increased. In particular, pressure flotation separation equipment is preferable because it can efficiently separate and concentrate solids of 20 to 50 μm or more in a short time of about 15 to 30 minutes without using a flocculant. sludge can be separated, further improving organic matter separation efficiency. Furthermore, phosphorus can be removed by using an inorganic flocculant containing aluminum or iron in the separation and concentration process. When modifying equipment for the standard activated sludge method, a part of the initial settling tank can be used as the separation and concentration equipment 7.

このような分離濃縮処理により、分離濃縮設備7に供給された混合液中の有機物は固形性も溶解性も含め多くが濃縮汚泥として分離され、また、得られた分離水は従来の水処理設備への流入水と比べ大幅に有機物の含有量が減少する。この分離水をバイパス経路を経由した混合水とともに水処理設備8に移送することにより、水処理設備8内の有機物量が減少するため、水処理設備8で使用する消費電力量を大幅に削減することができる。 Through such separation and concentration treatment, most of the organic matter in the mixed liquid supplied to the separation and concentration equipment 7, both solid and soluble, is separated as thickened sludge, and the resulting separated water is transferred to conventional water treatment equipment. The content of organic matter is significantly reduced compared to the inflow water. By transferring this separated water to the water treatment facility 8 along with the mixed water via the bypass route, the amount of organic matter in the water treatment facility 8 is reduced, thereby significantly reducing the amount of power consumed by the water treatment facility 8. be able to.

分離濃縮設備7で分離され多くの有機物を含む濃縮汚泥はメタン発酵設備2に移送され、設備1から移送された砂分除去後の沈砂及び破砕後のし渣とともにメタン発酵処理が実行される。分離濃縮設備7からメタン発酵設備2に移送される排水中の濃縮汚泥の濃度は分離濃縮手段にもよるが通常3~5重量%である。メタン発酵設備2における濃縮汚泥の消化率(メタンや二酸化炭素になってガス化する割合)は60~90重量%であるため、分離濃縮汚泥が消化汚泥に変化する割合は10~40重量%となる。したがって、メタン発酵設備2から排出される排水中の消化汚泥の濃度は通常0.3~2.0重量%となる。 The concentrated sludge separated in the separation and concentration equipment 7 and containing many organic substances is transferred to the methane fermentation equipment 2, where it is subjected to methane fermentation treatment together with the sand after sand removal and the residue after crushing, which were transferred from the equipment 1. The concentration of thickened sludge in the waste water transferred from the separation and concentration equipment 7 to the methane fermentation equipment 2 is usually 3 to 5% by weight, although it depends on the separation and concentration means. The digestibility of the thickened sludge in methane fermentation equipment 2 (the rate at which it is gasified into methane and carbon dioxide) is 60 to 90% by weight, so the rate at which the separated thickened sludge changes into digested sludge is 10 to 40% by weight. Become. Therefore, the concentration of digested sludge in the waste water discharged from the methane fermentation equipment 2 is usually 0.3 to 2.0% by weight.

水処理設備8は、分離濃縮設備7及びバイパス経路から移送された排水中の溶解性有機物を分解するための水処理を実行する。水処理設備8としては、例えば、標準活性汚泥法やMBR法の装置が用いられ、排水中の有機物が曝気下において活性汚泥により酸化分解される。活性汚泥は有機物の好気的な酸化分解により増殖した微生物主体の汚泥である。本発明ではコンパクトで窒素除去性能が高く省エネ運転が可能なMBR法、特に仕切板挿入型の膜分離活性汚泥法(以下、「B-MBR法」という。)の装置を用いるのが好ましい。MBR法やB-MBR法では、排水に含まれるアンモニアを酸素存在下で硝化細菌が亜硝酸や硝酸に変換する硝化反応と、亜硝酸や硝酸を脱窒細菌が無酸素状態で窒素に変換する脱窒反応が進行する。B-MBR法の装置は、硝化反応を実行する硝化反応領域と脱窒反応を実行する脱窒反応領域を区分する区分手段と、硝化反応領域に設置され、排水に含まれる固形分を分離除去する膜分離手段とを有する排水処理装置である。水処理設備8においてはMLSS濃度を所定濃度に、維持することが必要であり、曝気効率やBOD-MLSS負荷を考慮して4500~5500mg/Lに維持することが好ましい。水処理終了後は、活性汚泥は余剰汚泥として水処理設備8から排出され消化汚泥調質設備5に移送される。 The water treatment facility 8 performs water treatment to decompose soluble organic matter in the wastewater transferred from the separation and concentration facility 7 and the bypass route. As the water treatment equipment 8, for example, a standard activated sludge method or an MBR method is used, and organic matter in wastewater is oxidized and decomposed by activated sludge under aeration. Activated sludge is mainly microbial sludge that grows through aerobic oxidative decomposition of organic matter. In the present invention, it is preferable to use an MBR method that is compact, has high nitrogen removal performance, and can be operated in an energy-saving manner, particularly an apparatus using a membrane separation activated sludge method (hereinafter referred to as "B-MBR method") with a partition plate inserted. The MBR method and B-MBR method involve a nitrification reaction in which nitrifying bacteria convert ammonia contained in wastewater into nitrite and nitric acid in the presence of oxygen, and a nitrification reaction in which denitrifying bacteria convert nitrite and nitric acid into nitrogen in anoxic conditions. Denitrification reaction progresses. The B-MBR method equipment includes a dividing means that separates a nitrification reaction area for performing nitrification reaction and a denitrification reaction area for denitrification reaction, and a separation means installed in the nitrification reaction area to separate and remove solid content contained in wastewater. This is a wastewater treatment device having membrane separation means. In the water treatment facility 8, it is necessary to maintain the MLSS concentration at a predetermined concentration, and it is preferably maintained at 4500 to 5500 mg/L in consideration of aeration efficiency and BOD-MLSS load. After the water treatment is completed, the activated sludge is discharged from the water treatment equipment 8 as surplus sludge and transferred to the digested sludge conditioning equipment 5.

図2は、図1の排水処理装置の変形例を示す図である。 FIG. 2 is a diagram showing a modification of the wastewater treatment device shown in FIG. 1.

図2の排水処理装置は、メタン発酵設備2から流出した消化汚泥の全てを消化汚泥調質設備5に移送し、脱水設備4に消化汚泥ではなく消化汚泥調質設備5から流出した調質汚泥の一部を移送した点以外は、図1の排水処理装置と構成及び機能は同じである。以下に、図1の排水処理装置と異なる点について説明する。 The wastewater treatment equipment in FIG. 2 transfers all of the digested sludge flowing out from the methane fermentation facility 2 to the digested sludge conditioning facility 5, and transfers not the digested sludge to the dewatering facility 4, but the tempered sludge flowing out from the digested sludge conditioning facility 5. The structure and functions are the same as those of the wastewater treatment apparatus shown in FIG. 1, except that a part of the wastewater treatment apparatus was transferred. Below, the points that are different from the wastewater treatment apparatus shown in FIG. 1 will be explained.

図2において、メタン発酵設備2から流出し消化汚泥は全量が消化汚泥調質設備5に移送される。図1の排水処理装置に比べ消化汚泥調質設備5に移送される消化汚泥量が増えるため、消化汚泥調質設備5から流出し接触混合設備6に移送される調質汚泥(活性汚泥)の量も増大し、その結果、接触混合設備6において活性汚泥に吸着される有機物量も増大する。したがって、図2の排水処理装置は図1の排水処理装置に比べ、メタン発酵設備2において発生する消化ガス(メタンガス)量が多く、エネルギー回収効率が高くなる。 In FIG. 2, the entire amount of digested sludge flowing out from the methane fermentation facility 2 is transferred to the digested sludge conditioning facility 5. Since the amount of digested sludge transferred to the digested sludge conditioning equipment 5 is increased compared to the wastewater treatment equipment shown in FIG. The amount also increases, and as a result, the amount of organic matter adsorbed by the activated sludge in the contact mixing equipment 6 also increases. Therefore, compared to the wastewater treatment apparatus shown in FIG. 1, the wastewater treatment apparatus shown in FIG. 2 generates a larger amount of digestion gas (methane gas) in the methane fermentation equipment 2, and has higher energy recovery efficiency.

また、消化汚泥調質設備5から流出した調質汚泥(活性汚泥)は大部分は接触混合設備6に移送されるが、脱水設備4に対しこの調質汚泥の一部が供給される。このように、脱水設備4に凝集剤の添加率が高く脱水ケーキの発生量の多い消化汚泥ではなく、凝集剤の添加率が低く脱水ケーキの発生量が少ない活性汚泥を供給することにより、脱水処理及びその後の処理に要する費用を大幅に低減することができる。 Further, most of the tempered sludge (activated sludge) flowing out from the digested sludge conditioning facility 5 is transferred to the contact mixing facility 6, but a portion of this tempered sludge is supplied to the dewatering facility 4. In this way, by supplying activated sludge with a low flocculant addition rate and a small amount of dehydrated cake to the dewatering equipment 4, rather than digested sludge with a high flocculant addition rate and a large amount of dehydrated cake generated, the dewatering equipment 4 can be dehydrated. The costs required for treatment and subsequent treatment can be significantly reduced.

図3は、図2の排水処理装置の変形例を示す図である。 FIG. 3 is a diagram showing a modification of the wastewater treatment device shown in FIG. 2.

図3の排水処理装置は、水処理設備8が消化汚泥調質設備5を兼ね、消化汚泥を水処理設備8に供給するとともに、水処理設備8から排出される余剰汚泥を、一部は脱水設備4に移送し、残りを接触混合設備6に移送した点以外は、図2の排水処理装置と構成及び機能は同じである。以下に、図2の排水処理装置と異なる点について説明する。 In the wastewater treatment equipment shown in FIG. 3, the water treatment equipment 8 also serves as the digested sludge conditioning equipment 5, supplies digested sludge to the water treatment equipment 8, and dewaters some of the excess sludge discharged from the water treatment equipment 8. The structure and function are the same as those of the wastewater treatment apparatus shown in FIG. 2, except that the waste water was transferred to the equipment 4 and the rest was transferred to the contact mixing equipment 6. Below, points different from the wastewater treatment apparatus shown in FIG. 2 will be explained.

図3の排水処理装置では、消化汚泥調質設備5を独立して設けることはせず、水処理設備8が消化汚泥調質設備5を機能的に兼ね、水処理設備8内で水処理と消化汚泥調質処理とが実行される。すなわち、水処理設備8内には活性汚泥が存在するため、分離濃縮設備7及びバイパス経路から移送された排水中の有機物が水処理設備8内で活性汚泥により好気的に分解されるとともに、水処理設備8に供給された消化汚泥が曝気下(酸素存在下)において活性汚泥と接触して調質され、消化汚泥がバイオソープション効果のある好気的な活性汚泥に変換される。水処理設備8に供給される一日当たりの消化汚泥量は水処理設備8内の活性汚泥量の1/40~1/30であり、消化汚泥に対し十分な量の活性汚泥が存在するため消化汚泥の調質が容易に進行する。水処理設備8の容量は消化汚泥調質処理を実行するため図2の水処理設備よりも大きくするのがよい。 In the wastewater treatment equipment shown in FIG. 3, the digested sludge conditioning equipment 5 is not provided independently, and the water treatment equipment 8 functionally doubles as the digested sludge conditioning equipment 5. Digested sludge refining treatment is performed. That is, since activated sludge exists in the water treatment facility 8, the organic matter in the wastewater transferred from the separation and concentration facility 7 and the bypass route is aerobically decomposed by the activated sludge in the water treatment facility 8, and The digested sludge supplied to the water treatment facility 8 is refined by contacting activated sludge under aeration (in the presence of oxygen), and the digested sludge is converted into aerobic activated sludge with a biosorption effect. The amount of digested sludge supplied to the water treatment facility 8 per day is 1/40 to 1/30 of the amount of activated sludge in the water treatment facility 8, and there is a sufficient amount of activated sludge for the digested sludge. Sludge refining progresses easily. The capacity of the water treatment facility 8 is preferably larger than that of the water treatment facility shown in FIG. 2 in order to carry out the digested sludge refining treatment.

B-MBR法による水処理装置8の場合には、排水に含まれるアンモニアを酸素存在下で硝化細菌が亜硝酸や硝酸に変換する硝化反応と、亜硝酸や硝酸を脱窒細菌が無酸素状態で窒素に変換する脱窒反応が進行する。脱窒反応では水素供与体として有機物を必要とするが、図3のように消化汚泥を水処理設備8に供給することにより、消化汚泥中の有機物が脱窒反応に利用される。このような装置構成により、図3の装置は図2の装置に比べ装置全体がシンプルな構造となり、標準活性汚泥法の設備を改造することにより排水処理装置を容易に構築することができる。 In the case of water treatment equipment 8 using the B-MBR method, nitrification reactions occur in which nitrifying bacteria convert ammonia contained in wastewater into nitrite and nitric acid in the presence of oxygen, and denitrifying bacteria convert nitrite and nitric acid in anoxic conditions. The denitrification reaction that converts nitrogen into nitrogen proceeds. The denitrification reaction requires organic matter as a hydrogen donor, but by supplying the digested sludge to the water treatment facility 8 as shown in FIG. 3, the organic matter in the digested sludge is utilized for the denitrification reaction. Due to such an apparatus configuration, the apparatus shown in FIG. 3 has a simpler structure as a whole than the apparatus shown in FIG. 2, and the wastewater treatment apparatus can be easily constructed by modifying the standard activated sludge method equipment.

また、水処理設備8から調質処理が施された余剰汚泥(調質汚泥)が排出されるが、排出された余剰汚泥(調質汚泥)の一部は脱水設備4に移送され、残りは接触混合設備6に移送される。これにより、脱水設備4には凝集剤の添加率が高く脱水ケーキの発生量の多い消化汚泥ではなく、凝集剤の添加率が低く脱水ケーキの発生量が少ない調質汚泥(活性汚泥)が供給されるため、脱水処理及びその後の脱水ケーキの処理に要する費用を大幅に低減することができる。 In addition, surplus sludge (tempered sludge) that has been subjected to tempering treatment is discharged from the water treatment facility 8, but a part of the discharged surplus sludge (tempered sludge) is transferred to the dewatering facility 4, and the rest is Transferred to contact mixing equipment 6. As a result, the dewatering equipment 4 is supplied with tempered sludge (activated sludge) with a low flocculant addition rate and a small amount of dehydrated cake, rather than digested sludge with a high flocculant addition rate and a large amount of dehydrated cake generated. Therefore, the cost required for dehydration treatment and subsequent treatment of the dehydrated cake can be significantly reduced.

次に、本実施の形態の排水処理方法について図1の排水処理装置に従って説明する。 Next, the wastewater treatment method of this embodiment will be explained according to the wastewater treatment apparatus shown in FIG.

図1の排水処理装置10は、沈砂池及びスクリーン設備から構成される設備1,メタン発酵設備2,エネルギー回収設備3,脱水設備4,消化汚泥調質設備5,接触混合設備6,分離濃縮設備7,水処理設備8を備える。 The wastewater treatment equipment 10 in FIG. 1 includes equipment 1 consisting of a settling basin and screen equipment, methane fermentation equipment 2, energy recovery equipment 3, dewatering equipment 4, digested sludge conditioning equipment 5, contact mixing equipment 6, and separation and concentration equipment. 7. Equipped with water treatment equipment 8.

まず、家庭や工場等から排出された下水を設備1に連続的に供給し、沈砂池及びスクリーンにより粗大固形物(沈砂及びし渣)を分離する(夾雑物分離ステップ)。沈砂池で分離された沈砂は沈砂洗浄装置等により砂分を除去した後にメタン発酵設備2に移送する。一方、スクリーンで分離されたし渣は、破砕機により破砕した後にメタン発酵設備2に移送する。メタン発酵設備2では、砂分除去後の沈砂、破砕後のし渣、及び分離濃縮設備7から移送された前述の分離濃縮汚泥についてメタン発酵処理が実行される(メタン発酵処理ステップ)。このメタン発酵処理により消化ガスと消化汚泥が生成する。消化ガスはエネルギー回収設備3に移送し、消化汚泥は、一部を消化汚泥調質設備5に、残りを脱水設備4に移送する。設備1で粗大固形物と分離された処理水は接触混合設備6に移送する。 First, sewage discharged from homes, factories, etc. is continuously supplied to equipment 1, and coarse solids (sand and sludge) are separated using a settling basin and a screen (impurity separation step). The sand separated in the sand settling pond is transferred to the methane fermentation equipment 2 after sand content is removed by a sand washing device or the like. On the other hand, the residue separated by the screen is crushed by a crusher and then transferred to the methane fermentation equipment 2. In the methane fermentation equipment 2, methane fermentation processing is performed on the settled sand after sand content removal, the residue after crushing, and the above-mentioned separated and concentrated sludge transferred from the separation and concentration equipment 7 (methane fermentation processing step). This methane fermentation process produces digested gas and digested sludge. The digested gas is transferred to the energy recovery facility 3, and part of the digested sludge is transferred to the digested sludge conditioning facility 5 and the rest to the dewatering facility 4. The treated water separated from coarse solids in equipment 1 is transferred to contact mixing equipment 6.

消化汚泥調質設備5では、消化汚泥が水処理設備8から移送された余剰汚泥(活性汚泥)と酸素存在下で接触する調質処理が実行される。これにより、消化汚泥がバイオソープション効果のある好気的な活性汚泥(調質汚泥)に変換される(消化汚泥調質ステップ)。次いで、消化汚泥調質設備5から流出した調質汚泥は接触混合設備6に移送し、設備1からの処理水と曝気下で接触混合する(接触ステップ)。これにより、処理水に含まれていた溶解性有機物と微細固形物が調質汚泥に吸着される。その後、溶解性有機物と微細固形物が吸着した調質汚泥を含む混合液は、一部はバイパス経路に移送し、残りは分離濃縮設備7に移送する。 In the digested sludge conditioning equipment 5, conditioning treatment is performed in which the digested sludge comes into contact with surplus sludge (activated sludge) transferred from the water treatment facility 8 in the presence of oxygen. As a result, the digested sludge is converted into aerobic activated sludge (tempered sludge) that has a biosorption effect (digested sludge conditioning step). Next, the tempered sludge flowing out from the digested sludge conditioning equipment 5 is transferred to the contact mixing equipment 6, where it is contacted and mixed with the treated water from the equipment 1 under aeration (contact step). As a result, soluble organic matter and fine solid matter contained in the treated water are adsorbed to the tempered sludge. Thereafter, part of the mixed liquid containing tempered sludge with soluble organic matter and fine solid matter adsorbed is transferred to the bypass route, and the remaining part is transferred to the separation and concentration equipment 7.

分離濃縮設備7は加圧浮上分離装置を使用し、溶解性有機物と微細固形物が吸着した調質汚泥を濃縮して濃縮汚泥と分離水とに分離する(分離濃縮ステップ)。分離した濃縮汚泥はメタン発酵設備2に移送し(濃縮汚泥供給ステップ)、メタン発酵設備2において設備1から移送された粗大固形物とともにメタン発酵処理に供する(メタン発酵処理ステップ)。 The separation and concentration equipment 7 uses a pressurized flotation separator to concentrate the tempered sludge to which soluble organic matter and fine solid matter have been adsorbed and separate it into thickened sludge and separated water (separation and concentration step). The separated thickened sludge is transferred to the methane fermentation equipment 2 (thickened sludge supply step), and is subjected to methane fermentation treatment in the methane fermentation equipment 2 together with the coarse solids transferred from the equipment 1 (methane fermentation treatment step).

分離濃縮設備7から流出した分離水はバイパス経路を通過する接触混合設備6からの混合液とともに水処理設備8に供給する。水処理設備8は活性汚泥を収容し、活性汚泥が分離濃縮設備7及びバイパス経路から移送された排水中の溶解性有機物を曝気下で分解する(水処理ステップ)。その後、水処理設備8から排出された余剰汚泥(活性汚泥)を消化汚泥調質設備5に移送する。 The separated water flowing out from the separation and concentration equipment 7 is supplied to the water treatment equipment 8 together with the liquid mixture from the contact mixing equipment 6 which passes through the bypass route. The water treatment facility 8 accommodates activated sludge, and the activated sludge decomposes soluble organic matter in the wastewater transferred from the separation and concentration facility 7 and the bypass route under aeration (water treatment step). Thereafter, excess sludge (activated sludge) discharged from the water treatment facility 8 is transferred to the digested sludge conditioning facility 5.

一方、メタン発酵設備2から流出し脱水設備4に移送された消化汚泥には有機高分子系の凝集剤が添加され、脱水処理が実行される。脱水処理により脱水ケーキと脱水ろ液が生成し、脱水ろ液は設備1に移送される。 On the other hand, an organic polymer-based flocculant is added to the digested sludge flowing out from the methane fermentation equipment 2 and transferred to the dehydration equipment 4, and dehydration processing is performed. The dehydration process produces a dehydrated cake and a dehydrated filtrate, and the dehydrated filtrate is transferred to equipment 1.

以上のように、メタン発酵設備2から排出される消化汚泥の一部を消化汚泥調質設備5に移送することにより、脱水設備4に供給する消化汚泥の量を減らすことができる。その結果、脱水設備4における凝集剤の添加率と脱水ケーキの生成量を削減することができ、脱水処理に要する費用を大幅に低減することが可能となる。 As described above, by transferring part of the digested sludge discharged from the methane fermentation equipment 2 to the digested sludge conditioning equipment 5, the amount of digested sludge supplied to the dewatering equipment 4 can be reduced. As a result, the addition rate of the flocculant and the amount of dehydrated cake produced in the dehydration equipment 4 can be reduced, and the cost required for dehydration treatment can be significantly reduced.

また、消化汚泥の一部を消化汚泥調質設備5に移送し活性汚泥(調質汚泥)に変換することにより、接触混合設備6に供給される活性汚泥の量を増やすことができる。その結果、調質汚泥に吸着し分離濃縮後にメタン発酵設備2に移送される有機物の量が増え、メタン発酵設備2においてメタン発酵処理により発生する消化ガス量を増大させることができる。 Further, by transferring a portion of the digested sludge to the digested sludge conditioning equipment 5 and converting it into activated sludge (tempered sludge), the amount of activated sludge supplied to the contact mixing equipment 6 can be increased. As a result, the amount of organic matter adsorbed to the conditioned sludge and transferred to the methane fermentation equipment 2 after separation and concentration increases, and the amount of digested gas generated by the methane fermentation process in the methane fermentation equipment 2 can be increased.

さらに、消化汚泥の一部を消化汚泥調質設備5に移送することにより、消化汚泥が調質されて好気的な活性汚泥に変換されるため、バイオソープションに必要な十分な活性汚泥量を確保することが可能となる。 Furthermore, by transferring a part of the digested sludge to the digested sludge conditioning equipment 5, the digested sludge is conditioned and converted into aerobic activated sludge, so the amount of activated sludge necessary for biosorption is sufficient. It becomes possible to secure the following.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

図2の排水処理装置20を用いて下水の排水処理を行った。但し、設備1として細目スクリーン(目開き:15mm)及び微細目スクリーン(目開き:250μm)を使用した。まず、日最大汚水量100,000m3/日、日平均汚水量75,000m3/日の流入下水を設備1に連続的に供給し、スクリーンにより粗大固形物を分離した。次に、設備1で分離した粗大固形物を破砕機により破砕した後メタン発酵設備2に移送し、メタン発酵処理を実施した。このメタン発酵処理により消化ガスと消化汚泥が生成し、消化ガスはエネルギー回収設備3に移送するとともに、消化汚泥は全量を消化汚泥調質設備5に移送した。設備1で粗大固形物と分離された処理水は接触混合設備6に移送した。 Wastewater treatment of sewage was performed using the wastewater treatment apparatus 20 shown in FIG. However, as equipment 1, a fine screen (opening: 15 mm) and a fine screen (opening: 250 μm) were used. First, inflow sewage with a daily maximum amount of 100,000 m 3 /day and an average daily amount of 75,000 m 3 /day was continuously supplied to equipment 1, and coarse solids were separated using a screen. Next, the coarse solids separated in equipment 1 were crushed by a crusher and then transferred to methane fermentation equipment 2, where methane fermentation treatment was performed. Digested gas and digested sludge were generated by this methane fermentation process, and the digested gas was transferred to the energy recovery facility 3, and the entire amount of the digested sludge was transferred to the digested sludge conditioning facility 5. The treated water separated from coarse solids in equipment 1 was transferred to contact mixing equipment 6.

消化汚泥調質設備5には曝気装置を設置し、水処理設備8から排出された余剰汚泥(活性汚泥)を供給した。消化汚泥調質設備5では、消化汚泥と余剰汚泥(活性汚泥)とを曝気下で混合することにより接触させる調質処理を実行した。このとき、消化汚泥調質設備5に供給した消化汚泥と余剰汚泥の重量比率は1:0.66であった。この調質処理により、消化汚泥が好気的な活性汚泥(調質汚泥)に変換された。次いで、消化汚泥調質設備5から流出した調質汚泥(調質汚泥濃度:6,576mg/L)の一部を脱水設備4に移送し、残りの調質汚泥を接触混合設備6に移送した(接触混合設備6への調質汚泥注入量570m3/日)。 An aeration device was installed in the digested sludge conditioning equipment 5, and excess sludge (activated sludge) discharged from the water treatment equipment 8 was supplied thereto. In the digested sludge conditioning equipment 5, conditioning treatment was performed in which the digested sludge and excess sludge (activated sludge) were mixed under aeration and brought into contact with each other. At this time, the weight ratio of the digested sludge and excess sludge supplied to the digested sludge conditioning equipment 5 was 1:0.66. This tempering treatment converted the digested sludge into aerobic activated sludge (tempered sludge). Next, a part of the tempered sludge (tempered sludge concentration: 6,576 mg/L) flowing out from the digested sludge conditioning equipment 5 was transferred to the dewatering equipment 4, and the remaining tempered sludge was transferred to the contact mixing equipment 6 ( Amount of tempered sludge injected into contact mixing equipment 6: 570 m 3 /day).

接触混合設備6には曝気装置を設置し、設備1からの処理水と消化汚泥が曝気下で撹拌混合され、処理水に含まれていた溶解性有機物と微細固形物が調質汚泥に吸着された。接触混合設備6において、設備1から移送された処理水中の溶解性有機物量は、消化汚泥調質設備5から移送された調質汚泥量とほぼ同程度であった。その後、溶解性有機物と微細固形物が吸着した調質汚泥を含む混合液は、一部をバイパス経路に移送し、残りを分離濃縮設備7に移送した。 An aeration device is installed in contact mixing equipment 6, and the treated water and digested sludge from equipment 1 are stirred and mixed under aeration, and the soluble organic matter and fine solids contained in the treated water are adsorbed into the tempered sludge. Ta. In the contact mixing equipment 6, the amount of soluble organic matter in the treated water transferred from the equipment 1 was approximately the same as the amount of tempered sludge transferred from the digested sludge conditioning equipment 5. Thereafter, part of the liquid mixture containing tempered sludge with soluble organic matter and fine solid matter adsorbed was transferred to a bypass route, and the remaining part was transferred to separation and concentration equipment 7.

分離濃縮設備7は加圧浮上分離装置を使用し、溶解性有機物と微細固形物が吸着した調質汚泥を濃縮して濃縮汚泥と分離水とに分離した。分離した濃縮汚泥(13,350kg/日、濃度:4重量%)はメタン発酵設備2に移送し、メタン発酵設備2において設備1から移送された粗大固形物とともにメタン発酵処理を施した(メタン発酵設備投入汚泥:394m3/日)。メタン発酵設備2から流出した消化汚泥(3,270kg/日)は全量を消化汚泥調質設備5に移送した。 The separation and concentration equipment 7 used a pressurized flotation separator to concentrate the tempered sludge to which soluble organic matter and fine solid matter had been adsorbed and separate it into concentrated sludge and separated water. The separated thickened sludge (13,350 kg/day, concentration: 4% by weight) was transferred to methane fermentation equipment 2, where it was subjected to methane fermentation treatment along with the coarse solids transferred from equipment 1. Input sludge: 394m3 /day). The entire amount of digested sludge (3,270 kg/day) flowing out from methane fermentation equipment 2 was transferred to digested sludge conditioning equipment 5.

分離濃縮設備7から流出した分離水はバイパス経路を通過した接触混合設備6からの混合液とともに水処理設備8に供給した。水処理設備8(BOD-MLSS負荷:0.043kg/kg/日、MSLL濃度:5,000mg/L)は活性汚泥を収容するB-MBR法の装置であり、活性汚泥が分離濃縮設備7及びバイパス経路から移送された排水中の溶解性有機物を曝気下で分解した。その後、水処理設備8から排出された余剰汚泥(活性汚泥)(2,160kg/日)を消化汚泥調質設備5に移送した。 The separated water flowing out from the separation and concentration equipment 7 was supplied to the water treatment equipment 8 together with the liquid mixture from the contact mixing equipment 6 that had passed through the bypass route. Water treatment equipment 8 (BOD-MLSS load: 0.043 kg/kg/day, MSLL concentration: 5,000 mg/L) is a B-MBR method equipment that accommodates activated sludge, and activated sludge is separated and concentrated equipment 7 and bypass route Dissolved organic matter in the wastewater transferred from the plant was decomposed under aeration. Thereafter, excess sludge (activated sludge) (2,160 kg/day) discharged from the water treatment facility 8 was transferred to the digested sludge conditioning facility 5.

一方、消化汚泥調質設備5から調質汚泥が移送された脱水設備4においては、有機高分子系の凝集剤(17kg/日)を添加して調質汚泥(脱水汚泥量:255m3/日)の脱水処理を実行した。脱水処理により脱水ケーキ(7.6m3/日)と脱水ろ液が生成し、脱水ろ液は設備1に移送するとともに、脱水ケーキは放流又は有効活用した。 On the other hand, in the dewatering facility 4 to which the conditioned sludge is transferred from the digested sludge conditioning facility 5, organic polymer flocculant (17 kg/day) is added to conditioned sludge (dehydrated sludge amount: 255 m 3 /day). ) was dehydrated. The dehydration process produced a dehydrated cake (7.6 m 3 /day) and a dehydrated filtrate, and the dehydrated filtrate was transferred to equipment 1, and the dehydrated cake was discharged or effectively utilized.

なお、同じ日最大汚水量及び日平均汚水量の流入下水を従来の標準活性汚泥法の装置(図4)を用いて処理した場合には、脱水設備4に添加される凝集剤の量は87kg/日であり、脱水ケーキの生成量は29.2m3/日である。図2の排水処理装置を用いることにより、凝集剤の削減量は70kg/日、脱水ケーキ生成量の削減量21.6m3/日となるため、消化汚泥の脱水処理に要する費用を大幅に低減することができた。 In addition, when inflowing sewage with the same daily maximum sewage volume and daily average sewage volume is treated using the conventional standard activated sludge method equipment (Figure 4), the amount of flocculant added to the dewatering equipment 4 is 87 kg. /day, and the amount of dehydrated cake produced is 29.2m 3 /day. By using the wastewater treatment equipment shown in Figure 2, the amount of flocculant used will be reduced by 70 kg/day and the amount of dehydrated cake produced will be reduced by 21.6 m 3 /day, significantly reducing the cost required for dewatering digested sludge. I was able to do that.

下記表1に、本実施例で使用した各設備の容量と滞留時間(HRT)を示す。 Table 1 below shows the capacity and residence time (HRT) of each equipment used in this example.

Figure 2023162977000002
Figure 2023162977000002

また下記表2に、流入下水及び各設備の処理済水の水質を示す。 Table 2 below shows the quality of inflowing sewage and treated water from each facility.

Figure 2023162977000003
Figure 2023162977000003

本実施例と同じ日最大汚水量及び日平均汚水量の流入下水を標準活性汚泥法の装置(図4)を用いて処理した場合には、水処理後の処理水のBODは14mg/L、D-BOD(溶解性BOD)は8mg/L、SS(懸濁物質)は12mg/Lであることから、図2の排水処理装置は従来の標準活性汚泥法による装置に比べ水質の良好な処理水を得ることができた。 When inflowing sewage with the same daily maximum sewage volume and daily average sewage volume as in this example was treated using the standard activated sludge method equipment (Figure 4), the BOD of the treated water after water treatment was 14 mg/L, Since D-BOD (soluble BOD) is 8 mg/L and SS (suspended solids) is 12 mg/L, the wastewater treatment equipment shown in Figure 2 has better water quality than equipment using the conventional standard activated sludge method. I was able to get water.

以上の結果から、メタン発酵設備2から流出した消化汚泥を消化汚泥調質設備5に移送して水処理設備8からの余剰汚泥と接触させ、調質された調質汚泥(活性汚泥)の一部を脱水設備4に移送することにより、凝集剤の使用量と脱水ケーキの生成量を削減することができ、脱水処理に要する費用を大幅に低減することができた。 From the above results, the digested sludge flowing out from the methane fermentation equipment 2 is transferred to the digested sludge conditioning equipment 5 and brought into contact with the excess sludge from the water treatment equipment 8, and part of the tempered sludge (activated sludge) is By transferring the sample to the dehydration equipment 4, it was possible to reduce the amount of flocculant used and the amount of dehydrated cake produced, and the cost required for dehydration treatment could be significantly reduced.

また、消化汚泥を消化汚泥調質設備5に移送して活性汚泥(調質汚泥)に変換することにより、接触混合設備6に供給される活性汚泥の量を増やすことができた。その結果、調質汚泥に吸着し分離濃縮後にメタン発酵設備2に移送される有機物の量が増え、メタン発酵処理により発生する消化ガス量を増やすことができた。すなわち、消化汚泥と余剰汚泥を接触させて調質する消化汚泥調質設備5を設けることにより、メタン発酵設備2で発生する消化ガス量を増大させ、エネルギー回収率の高い排水処理装置を提供することができた。 Further, by transferring the digested sludge to the digested sludge conditioning equipment 5 and converting it into activated sludge (tempered sludge), the amount of activated sludge supplied to the contact mixing equipment 6 could be increased. As a result, the amount of organic matter adsorbed to the conditioned sludge and transferred to the methane fermentation equipment 2 after separation and concentration increased, making it possible to increase the amount of digestion gas generated by the methane fermentation process. That is, by providing the digested sludge conditioning equipment 5 that brings digested sludge and surplus sludge into contact and refines them, the amount of digestion gas generated in the methane fermentation equipment 2 is increased, thereby providing a wastewater treatment device with a high energy recovery rate. I was able to do that.

さらに、消化汚泥を消化汚泥調質設備5に移送することにより、消化汚泥が調質されて好気的な活性汚泥に変換されたため、バイオソープションに必要な十分な活性汚泥(余剰汚泥)量を確保することができた。 Furthermore, by transferring the digested sludge to the digested sludge conditioning equipment 5, the digested sludge is conditioned and converted into aerobic activated sludge, so that the amount of activated sludge (surplus sludge) necessary for biosorption is sufficient. were able to secure it.

本実施例で使用した図2の排水処理装置20は標準活性汚泥法による既存の装置を改修して構築することができる。例えば、接触混合設備6及び分離濃縮設備7は最初沈殿池を改造し、消化汚泥調質設備5及び水処理設備8(B-MBR法)は生物反応槽(エアレーションタンク)を改造して構築することができる。また、本実施の形態の排水処理装置を用いることにより、有機物の除去効率の低い最初沈殿池を有さない装置を構築することができる。 The wastewater treatment device 20 shown in FIG. 2 used in this example can be constructed by modifying an existing device using the standard activated sludge method. For example, the contact mixing equipment 6 and the separation concentration equipment 7 are constructed by modifying the initial settling tank, and the digested sludge conditioning equipment 5 and water treatment equipment 8 (B-MBR method) are constructed by modifying the biological reaction tank (aeration tank). be able to. Furthermore, by using the wastewater treatment apparatus of this embodiment, it is possible to construct an apparatus that does not have a primary settling tank with low organic matter removal efficiency.

以上、本発明について、上述した実施の形態を用いて説明したが、本発明は上述した実施の形態に限定されるものではない。 Although the present invention has been described above using the embodiments described above, the present invention is not limited to the embodiments described above.

1 沈砂池及びスクリーン設備
2 メタン発酵設備
3 エネルギー回収設備
4 脱水設備
5 消化汚泥調質設備
6 接触混合設備
7 分離濃縮設備
8 水処理設備
10,20,30,40 排水処理装置
1 Sediment basin and screen equipment 2 Methane fermentation equipment 3 Energy recovery equipment 4 Dewatering equipment 5 Digested sludge conditioning equipment 6 Contact mixing equipment 7 Separation and concentration equipment 8 Water treatment equipment 10, 20, 30, 40 Wastewater treatment equipment

Claims (13)

夾雑物、有機物及び水分を含む排水を処理する排水処理装置であって、
夾雑物と有機物及び水分とを分離する夾雑物分離手段と、
前記夾雑物分離手段により分離された夾雑物をメタン発酵処理するメタン発酵処理手段と、
前記夾雑物分離手段により得られた有機物及び水分を含む処理水を水処理する水処理手段と、を備える排水処理装置において、
前記メタン発酵処理手段により得られた消化汚泥の少なくとも一部を酸素存在下で活性汚泥と接触させて調質する消化汚泥調質手段を有することを特徴とする排水処理装置。
A wastewater treatment device that processes wastewater containing impurities, organic matter, and moisture,
a contaminant separation means for separating contaminants from organic matter and moisture;
Methane fermentation processing means for methane fermentation processing of the impurities separated by the impurity separation means;
A wastewater treatment device comprising a water treatment means for treating treated water containing organic matter and water obtained by the impurity separation means,
A wastewater treatment device comprising a digested sludge conditioning means for conditioning at least a portion of the digested sludge obtained by the methane fermentation treatment device by contacting it with activated sludge in the presence of oxygen.
前記消化汚泥調質手段により得られた調質汚泥と前記夾雑物分離手段により得られた処理水とを接触混合させる接触手段を有することを特徴とする請求項1記載の排水処理装置。 The wastewater treatment apparatus according to claim 1, further comprising contact means for contacting and mixing the tempered sludge obtained by the digested sludge conditioning means and the treated water obtained by the impurity separation means. 前記接触手段により得られた混合液を濃縮汚泥と分離水とに分離する分離濃縮手段を有することを特徴とする請求項2記載の排水処理装置。 The wastewater treatment apparatus according to claim 2, further comprising separation and concentration means for separating the mixed liquid obtained by the contacting means into thickened sludge and separated water. 前記接触手段により得られた混合液の一部を前記分離濃縮手段を経由せずに前記水処理手段に供給するバイパス経路を設けることを特徴とする請求項3記載の排水処理装置。 4. The wastewater treatment apparatus according to claim 3, further comprising a bypass path for supplying a part of the liquid mixture obtained by the contacting means to the water treatment means without passing through the separation and concentration means. 前記分離濃縮手段により分離された濃縮汚泥をメタン発酵処理手段に供給することを特徴とする請求項3記載の排水処理装置。 The wastewater treatment apparatus according to claim 3, wherein the concentrated sludge separated by the separation and concentration means is supplied to a methane fermentation treatment means. 前記夾雑物分離手段が沈砂池及び/又はスクリーン装置であることを特徴とする請求項1記載の排水処理装置。 The wastewater treatment device according to claim 1, wherein the foreign matter separation means is a settling basin and/or a screen device. 前記水処理手段が活性汚泥処理法を用いた手段であり、前記消化汚泥調質手段において前記消化汚泥と接触させる前記活性汚泥が前記水処理手段から排出された余剰汚泥であることを特徴とする請求項1記載の排水処理装置。 The water treatment means is a means using an activated sludge treatment method, and the activated sludge brought into contact with the digested sludge in the digested sludge conditioning means is surplus sludge discharged from the water treatment means. The wastewater treatment device according to claim 1. 前記消化汚泥調質手段に供給する前記消化汚泥と前記活性汚泥との重量比率が1:0.5~1:10であることを特徴とする請求項1記載の排水処理装置。 The wastewater treatment apparatus according to claim 1, wherein the weight ratio of the digested sludge and the activated sludge supplied to the digested sludge refining means is 1:0.5 to 1:10. 前記分離濃縮手段が加圧浮上分離装置であることを特徴とする請求項3記載の排水処理装置。 The wastewater treatment apparatus according to claim 3, wherein the separation and concentration means is a pressure flotation separator. 前記排水処理装置が最初沈殿池を有しないことを特徴とする請求項1記載の排水処理装置。 The wastewater treatment device according to claim 1, wherein the wastewater treatment device does not have a primary settling tank. 請求項1~10のいずれか1項に記載の排水処理装置を用いた排水処理方法において、
前記夾雑物と前記有機物及び水分とを分離する夾雑物分離ステップと、
前記夾雑物分離ステップにおいて分離された夾雑物をメタン発酵処理するメタン発酵処理ステップと、
前記夾雑物分離ステップにより得られた有機物及び水分を含む処理水を水処理する水処理ステップと、
前記メタン発酵処理ステップにより得られた消化汚泥の少なくとも一部を酸素存在下で活性汚泥と接触させて調質する消化汚泥調質ステップと、
を有することを特徴とする排水処理方法。
In the wastewater treatment method using the wastewater treatment device according to any one of claims 1 to 10,
a contaminant separation step of separating the contaminants from the organic matter and moisture;
a methane fermentation treatment step in which the impurities separated in the impurity separation step are subjected to methane fermentation;
a water treatment step of treating the treated water containing organic matter and water obtained in the impurity separation step;
a digested sludge conditioning step in which at least a portion of the digested sludge obtained in the methane fermentation treatment step is conditioned by contacting it with activated sludge in the presence of oxygen;
A wastewater treatment method characterized by having the following.
前記消化汚泥調質ステップにより得られた調質汚泥と前記夾雑物分離ステップにより得られた処理水とを接触混合させる接触ステップと、
前記接触ステップにより得られた混合液を濃縮汚泥と分離水とに分離する分離濃縮ステップと、
前記分離濃縮ステップにより分離された濃縮汚泥を前記メタン発酵処理ステップに供給する濃縮汚泥供給ステップと、
を有することを特徴とする請求項11記載の排水処理方法。
a contacting step of contacting and mixing the tempered sludge obtained in the digested sludge conditioning step and the treated water obtained in the impurity separation step;
a separation and concentration step of separating the liquid mixture obtained in the contacting step into thickened sludge and separated water;
a thickened sludge supplying step of supplying the thickened sludge separated in the separation and concentration step to the methane fermentation treatment step;
The wastewater treatment method according to claim 11, characterized by comprising:
前記水処理ステップが活性汚泥処理法を用いたステップであり、前記消化汚泥調質において前記消化汚泥と接触させる前記活性汚泥が前記水処理ステップから排出された余剰汚泥であることを特徴とする請求項11記載の排水処理方法。 A claim characterized in that the water treatment step is a step using an activated sludge treatment method, and the activated sludge that is brought into contact with the digested sludge in the digested sludge conditioning is surplus sludge discharged from the water treatment step. The wastewater treatment method according to item 11.
JP2022073727A 2022-04-27 2022-04-27 Wastewater treatment system and wastewater treatment method Pending JP2023162977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022073727A JP2023162977A (en) 2022-04-27 2022-04-27 Wastewater treatment system and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022073727A JP2023162977A (en) 2022-04-27 2022-04-27 Wastewater treatment system and wastewater treatment method

Publications (1)

Publication Number Publication Date
JP2023162977A true JP2023162977A (en) 2023-11-09

Family

ID=88651013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022073727A Pending JP2023162977A (en) 2022-04-27 2022-04-27 Wastewater treatment system and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2023162977A (en)

Similar Documents

Publication Publication Date Title
US11001517B2 (en) Bioreactor for treating sewage and sewage treatment system comprising the same
JP4489589B2 (en) Method and equipment for treating sludge from biological water treatment equipment
CN109311714B (en) Combined regenerative digestion and contact tank and dissolved air flotation method
JP2003245689A (en) Method and apparatus for treating wastewater
JPH07106360B2 (en) Method and equipment for cleaning wastewater, especially urban wastewater
JP2003033780A (en) Method for wastewater treatment
JP2004501739A (en) Wastewater treatment method with additional sludge treatment by ozone treatment and plant thereof
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
KR950004165B1 (en) Waste water treatment method
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP2023162977A (en) Wastewater treatment system and wastewater treatment method
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
KR100714825B1 (en) Method for treating sewage and high organic loading wastewater by anaerobic/oxic process with membrane and biological aerated filter
JP3672091B2 (en) Organic wastewater treatment method and equipment
KR20190134583A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
KR100666605B1 (en) Wastewater treatment method for reducing waste-sludge utilizing an anaerobic digestion reactor and wastewater treatment system thereof
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
KR100377947B1 (en) Aqua-composting BNR Device and Method for Clearing Wastewater Employing the Same
JP2003117597A (en) Biological treating method for excess sludge by utilizing hydrothermal reaction
KR20190001090A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP7282920B2 (en) Wastewater treatment system and wastewater treatment method
KR20180137960A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JPH10249376A (en) Treatment of organic waste water such as sewage
JP2001070983A (en) Method and apparatus for treating wastewater