JP3780407B2 - Sludge volume reduction method - Google Patents
Sludge volume reduction method Download PDFInfo
- Publication number
- JP3780407B2 JP3780407B2 JP2001052554A JP2001052554A JP3780407B2 JP 3780407 B2 JP3780407 B2 JP 3780407B2 JP 2001052554 A JP2001052554 A JP 2001052554A JP 2001052554 A JP2001052554 A JP 2001052554A JP 3780407 B2 JP3780407 B2 JP 3780407B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- heating
- aerobic treatment
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
Landscapes
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、下水、産業排水、生活排水などの有機性排水を生物学的に処理する有機物除去において、有機物除去に伴った発生する余剰汚泥を減容化する方法に関する。
【0002】
【従来の技術】
有機性排水の生物学的処理では、排水中の有機物は分解されると同時に、その一部は排水処理に関与する微生物の増殖に利用される。排水処理に必要な量以上に増殖した微生物は、余剰汚泥として処理される。
【0003】
余剰汚泥の処理方法としては、従来から、濃縮、脱水後に埋め立て、焼却もしくは嫌気性消化などが実施されている。従来の方法で余剰汚泥を埋め立て処理する例を、比較例1として図4のフロー図に基づいて後述する。
【0004】
【発明が解決しようとする課題】
従来の方法では、汚泥の濃縮、脱水という煩雑な操作が必要である上に、埋め立てを行うには埋め立て地の確保が必要であり、焼却を行うには多大なエネルギーが必要であるという問題があった。また、嫌気性消化を行う場合には、約30日間という長期間の処理日数を必要とし、汚泥の減容化率も約50%と低かった。
【0005】
【課題を解決するための手段】
本発明は、有機性排水を好気的に生物処理する好気性処理槽から汚泥混合液を汚泥加熱槽に導いて、ここで汚泥混合液を加熱して汚泥を好気的に生物分解容易な形態に変化させ、その後同混合液を好気性処理槽へ返送して、ここで汚泥を好気的に生物処理して減容化する方法であって、汚泥加熱槽での加熱温度を65〜95℃、加熱時間を2〜8時間とし、汚泥加熱槽に導く汚泥混合液のpHを7〜10とし、汚泥加熱槽から排出された汚泥混合液のpHを5〜8に調整した後に好気性処理槽へ返送することを特徴とする方法である。
【0006】
汚泥加熱槽で汚泥混合液を加熱することで、汚泥を好気的に生物分解容易な形態に変化させることができる。一般的に汚泥が好気的に生物分解されにくい理由は、汚泥が堅い細胞壁に囲まれており、その細胞壁が好気的に生物分解困難であるからである。従って、加熱によりその細胞壁を好気的に生物分解容易な形態に変化させれば、汚泥混合液を再び好気性処理槽へ返送することによって、好気性処理槽で汚泥を好気的に生物処理して減容化することができる。
【0007】
ここで「加熱時間」とは、連続処理の場合は汚泥加熱槽における汚泥混合液の滞留時間を意味する。
【0008】
好気性処理槽と汚泥加熱槽の間に熱交換器を設けることが好ましい。この熱交換器の設置によって、汚泥混合液を汚泥加熱槽へ導くときの汚泥混合液の加熱、汚泥混合液を汚泥加熱槽から好気性処理槽へ返送するときの汚泥混合液の冷却が効率よく行われ、結果として外部から汚泥加熱槽への投入熱量を低減することができる。
【0009】
汚泥加熱槽に導く汚泥混合液のpHは7〜10に調整する。汚泥の主たる構成成分は有機物であるため、中性からアルカリ性のpH範囲で汚泥混合液を加熱すると、汚泥を好気的に生物分解容易な形態に効果的に変化させることができる。
【0010】
汚泥加熱槽から排出された汚泥混合液は、pHが5〜8に調整された後に、好気性処理槽へ返送される。このpH調整は好気性処理槽の通常のpH条件に合わせるためである。
【0011】
汚泥混合液を好気性処理槽から汚泥加熱槽へ導く量は、排水処理の原水に由来する余剰汚泥発生量をBOD乾燥重量に換算し、その1倍〜10倍に相当するBODを含む量とするのが好ましい。
【0013】
好気性処理槽の内部には、排水中の有機物が分解されて得られた処理水を分離する膜分離装置が配設されている。これによって好気性処理槽内の汚泥混合物の汚泥濃度を高く維持することが可能となる。膜分離装置を利用すると、SRT(汚泥滞留時間)が長くなるので、汚泥の減容化に極めて有利である。
【0014】
【発明の効果】
以上のように、本発明によって、従来必要であった汚泥沈殿槽、余剰汚泥引き抜き装置、汚泥返送ポンプ、汚泥濃縮設備、汚泥処理設備が不要となり、余剰汚泥処理プロセスが簡略化されると共に、有機物除去装置によって排水と汚泥の同時処理が可能となるという効果が得られる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。ただし、本発明は、その要旨を越えない限り、実施例のものに限定されるものではない。
【0016】
実施例1
図1は本発明による汚泥の減容化方法の一例を示すフロー図である。
【0017】
排水は排水供給ポンプ(1) によって有機物除去槽(2) へ供給され、曝気処理によって排水中の有機物が分解される。有機物除去槽(2) 内には膜分離装置(3) が配設され、排水中に浸漬されている。膜分離装置(3) の下には散気装置(4) が配置されており、散気装置に空気を送り込むブロア(5) が槽外に設けられている。
【0018】
有機物除去槽(2) 内の汚泥混合液の一部は、汚泥混合液引き抜きポンプ(6) で有機物除去槽(2) の下部から引き抜かれ、熱交換器(7) で加熱され、pH調整装置(8) でpH調整された後に汚泥加熱槽(9) で加熱処理される。この加熱処理によって、汚泥は生物学的に分解容易な形態に変化させられる。汚泥加熱槽(9) から排出された汚泥混合液は、pH調整装置(10)でpH調整された後に上記熱交換器(7) で冷却され、有機物除去槽(2) へ戻されて、汚泥混合液中の有機物は分解される。
【0019】
つぎに、図1に示す装置を用いて実施した具体的な操作例について説明をする。
【0020】
容積3リットルの有機物除去槽(2) にBOD濃度200mg/リットルの排水を6リットル/日の流量で供給した。有機物除去槽(2) から汚泥混合液引き抜きポンプ(6) によって汚泥混合液を引き抜き、容積45ミリリットルの汚泥加熱槽(9) に導いた。汚泥加熱槽(9) での加熱温度は90℃、加熱時間は5時間、汚泥混合液のpHは7とした。その後、汚泥加熱槽(9) から排出された汚泥混合液を有機物除去槽(2) へ戻した。
【0021】
比較例1
汚泥加熱槽を設置せず、したがって有機物除去槽(2) から汚泥加熱槽への汚泥混合液の引き抜きを行わない点を除いて、実施例1と同じ操作を行った。
【0022】
比較例2
従来の方法で余剰汚泥を埋め立て処理する例を図4に示す。
【0023】
排水は排水供給ポンプ(21)によって曝気槽(22)へ供給され、曝気処理によって、排水中の有機物が分解される。曝気槽内下部には曝気用の散気装置(23)が配置されており、散気装置(23)に空気を送り込むブロア(24)が槽外に設けられている。
【0024】
次いで、汚泥を含む処理水は曝気槽(22)から汚泥沈殿槽(25)へ移送され、ここに汚泥が沈殿する。同槽の上澄みは処理水引き抜きポンプ(26)で処理水として引き抜かれる。汚泥沈殿槽(25)に沈殿した汚泥の一部は、汚泥返送ポンプ(27)によって曝気槽(22)へ返送される。
【0025】
汚泥沈殿槽(25)内の余剰汚泥は余剰汚泥引き抜きポンプ(28)によって汚泥濃縮槽(29)へ送られ、ここで濃縮された汚泥は送泥ポンプ(30)で汚泥脱水機(31)へ送られる。汚泥脱水機(31)では、濃縮汚泥は脱水汚泥と脱水濾液とに分離される。脱水汚泥は埋め立て地で埋め立て処分され、脱水濾液は脱水濾液返送ポンプ(32)で曝気槽(22)へ戻され、曝気処理によって脱水濾液中の有機物が分解される。
【0026】
性能評価
実施例1および比較例1において、有機物除去槽(2) 内のMLSS(汚泥濃度)の経時変化をそれぞれ測定した。得られた測定結果を図2に示す。実施例1および比較例1ともに系外への余剰汚泥の引き抜きは実施していない。図2から明らかなように、汚泥濃度は比較例1では上昇しているのに対し、実施例1では減少しており、汚泥の有為な減容効果が認められる。
【0027】
実施例1および比較例1において、有機物除去槽内における汚泥の有機物含量の経時変化をそれぞれ測定した。得られた測定結果を図3に示す。
【0028】
槽内の有機物含量は比較例1では若干増加しているが、実施例1では低下している。これは有機物である汚泥が減容化され、結果として汚泥の有機物含量が低下しているためである。
【図面の簡単な説明】
【図1】本発明の実施例による汚泥の減容化方法を示すフロー図である。
【図2】有機物除去槽内のMLSS(汚泥濃度)の経時変化を表すグラフである。
【図3】有機物除去槽内の汚泥の有機物含量の経時変化を表すグラフである。
【図4】従来の方法で余剰汚泥を埋め立て処理する例を示すフロー図である。
【符号の説明】
(1) :排水供給ポンプ
(2) :有機物除去槽
(3) :膜分離装置
(4) :散気装置
(5) :ブロア
(6) :汚泥混合液引き抜きポンプ
(7) :熱交換器
(8) :pH調整装置
(9) :汚泥加熱槽
(10):pH調整装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing the volume of excess sludge generated due to organic matter removal in organic matter removal for biological treatment of organic wastewater such as sewage, industrial wastewater, and domestic wastewater.
[0002]
[Prior art]
In the biological treatment of organic wastewater, the organic matter in the wastewater is decomposed, and at the same time, part of it is used for the growth of microorganisms involved in wastewater treatment. Microorganisms that have grown in excess of the amount required for wastewater treatment are treated as excess sludge.
[0003]
As a method for treating surplus sludge, conventional methods such as landfill, incineration, or anaerobic digestion have been implemented after concentration and dehydration. An example in which surplus sludge is landfilled by a conventional method will be described later as Comparative Example 1 based on the flowchart of FIG.
[0004]
[Problems to be solved by the invention]
In the conventional method, in addition to the complicated operation of sludge concentration and dehydration, it is necessary to secure a landfill site for landfilling, and a large amount of energy is required for incineration. there were. In addition, when anaerobic digestion is performed, a long treatment period of about 30 days is required, and the sludge volume reduction rate is as low as about 50%.
[0005]
[Means for Solving the Problems]
The present invention introduces a sludge mixture from an aerobic treatment tank that aerobically biotreats organic wastewater to a sludge heating tank, where the sludge mixture is heated to aerobically biodegrade easily. It is a method of changing the form and then returning the same mixture to the aerobic treatment tank, where the sludge is subjected to aerobic biological treatment to reduce the volume, and the heating temperature in the sludge heating tank is 65 to 65. 95 ° C., the heating time was set to 2 to 8 hours, after which the pH of the sludge mixture which leads to the sludge heating tank and 7-10, to adjust the pH of the discharged sludge mixture from the sludge heating tank 5-8 It is a method characterized by returning to an aerobic treatment tank.
[0006]
By heating the sludge mixed solution in the sludge heating tank, the sludge can be aerobically changed to a form that is easily biodegradable. The reason why sludge is generally difficult to biodegrade aerobically is because sludge is surrounded by a hard cell wall, and the cell wall is difficult to aerobically biodegrade. Therefore, by changing the aerobically biodegradable easily form the cell wall by heating, by return sludge mixture again to aerobic treatment tank, aerobic biological treatment sludge aerobic treatment tank To reduce the volume.
[0007]
The "heating time" in here, in the case of continuous treatment means the residence time of the sludge mixture in the sludge heating tank.
[0008]
It is preferable to provide a heat exchanger between the aerobic treatment tank and the sludge heating tank. By installing this heat exchanger, heating of the sludge mixture when introducing the sludge mixture to the sludge heating tank and cooling of the sludge mixture when returning the sludge mixture from the sludge heating tank to the aerobic treatment tank are efficient. As a result, the heat input to the sludge heating tank from the outside can be reduced.
[0009]
The pH of the sludge mixed liquid led to the sludge heating tank is adjusted to 7-10. Since the main component of sludge is an organic substance, heating the sludge mixture in a neutral to alkaline pH range can effectively change the sludge into an aerobic and biodegradable form.
[0010]
The sludge mixed liquid discharged from the sludge heating tank is returned to the aerobic treatment tank after the pH is adjusted to 5-8. This pH adjustment is for adjusting to the normal pH condition of the aerobic treatment tank.
[0011]
The amount of the sludge mixed liquid introduced from the aerobic treatment tank to the sludge heating tank is calculated by converting the surplus sludge generation amount derived from the raw water of the wastewater treatment into the BOD dry weight, and the amount containing BOD corresponding to 1 to 10 times that amount. It is preferable to do this.
[0013]
Inside the aerobic treatment tank, a membrane separation device for separating treated water obtained by decomposing organic matter in the wastewater is disposed. This makes it possible to maintain a high sludge concentration in the sludge mixture in the aerobic treatment tank. When a membrane separator is used, SRT (sludge retention time) becomes long, which is extremely advantageous for reducing sludge volume.
[0014]
【The invention's effect】
As described above, according to the present invention, the sludge settling tank, the excess sludge extraction device, the sludge return pump, the sludge concentration equipment, and the sludge treatment equipment, which have been conventionally required, become unnecessary, and the surplus sludge treatment process is simplified and the organic matter is removed. The removal device can achieve the effect of allowing simultaneous treatment of waste water and sludge.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples unless it exceeds the gist.
[0016]
Example 1
FIG. 1 is a flowchart showing an example of a sludge volume reduction method according to the present invention.
[0017]
Wastewater is supplied to the organic matter removal tank (2) by the wastewater supply pump (1), and the organic matter in the wastewater is decomposed by aeration treatment. A membrane separation device (3) is disposed in the organic matter removal tank (2) and is immersed in the waste water. A diffuser (4) is disposed under the membrane separator (3), and a blower (5) for feeding air into the diffuser is provided outside the tank.
[0018]
Part of the sludge mixture in the organic matter removal tank (2) is drawn from the bottom of the organic substance removal tank (2) by the sludge mixture extraction pump (6), heated by the heat exchanger (7), and adjusted to pH After pH adjustment in (8), heat treatment is performed in the sludge heating tank (9). By this heat treatment, the sludge is changed into a biologically easily degradable form. The sludge mixture discharged from the sludge heating tank (9) is pH adjusted by the pH adjuster (10), cooled by the heat exchanger (7), returned to the organic matter removal tank (2), and sludge Organic substances in the mixed solution are decomposed.
[0019]
Next, a specific operation example performed using the apparatus shown in FIG. 1 will be described.
[0020]
Wastewater having a BOD concentration of 200 mg / liter was supplied to a 3 liter organic substance removal tank (2) at a flow rate of 6 liters / day. The sludge mixed liquid was drawn from the organic matter removing tank (2) by the sludge mixed liquid drawing pump (6) and led to the sludge heating tank (9) having a volume of 45 ml. The heating temperature in the sludge heating tank (9) was 90 ° C., the heating time was 5 hours, and the pH of the sludge mixed solution was 7. Thereafter, the sludge mixed liquid discharged from the sludge heating tank (9) was returned to the organic matter removing tank (2).
[0021]
Comparative Example 1
The same operation as in Example 1 was performed except that the sludge heating tank was not installed and therefore the sludge mixed liquid was not drawn from the organic matter removing tank (2) to the sludge heating tank.
[0022]
Comparative Example 2
An example in which surplus sludge is landfilled by a conventional method is shown in FIG.
[0023]
The wastewater is supplied to the aeration tank (22) by the wastewater supply pump (21), and the organic matter in the wastewater is decomposed by the aeration treatment. An aeration device (23) for aeration is disposed in the lower part of the aeration tank, and a blower (24) for sending air to the aeration device (23) is provided outside the tank.
[0024]
Next, the treated water containing sludge is transferred from the aeration tank (22) to the sludge settling tank (25), where the sludge is precipitated. The supernatant of the tank is withdrawn as treated water by a treated water extraction pump (26). A part of the sludge settled in the sludge settling tank (25) is returned to the aeration tank (22) by the sludge return pump (27).
[0025]
The excess sludge in the sludge settling tank (25) is sent to the sludge concentration tank (29) by the excess sludge extraction pump (28), and the concentrated sludge is sent to the sludge dewatering machine (31) by the mud feed pump (30). Sent. In the sludge dewatering machine (31), the concentrated sludge is separated into dehydrated sludge and dehydrated filtrate. The dehydrated sludge is landfilled at the landfill, the dehydrated filtrate is returned to the aeration tank (22) by the dehydrated filtrate return pump (32), and the organic matter in the dehydrated filtrate is decomposed by the aeration process.
[0026]
In performance evaluation example 1 and comparative example 1, the time-dependent change of MLSS (sludge density) in an organic substance removal tank (2) was measured, respectively. The obtained measurement results are shown in FIG. In both Example 1 and Comparative Example 1, the excess sludge was not drawn out of the system. As is apparent from FIG. 2, the sludge concentration is increased in Comparative Example 1, whereas it is decreased in Example 1, and a significant volume reduction effect of sludge is recognized.
[0027]
In Example 1 and Comparative Example 1, the change over time in the organic matter content of the sludge in the organic matter removing tank was measured. The obtained measurement results are shown in FIG.
[0028]
The organic matter content in the tank slightly increased in Comparative Example 1, but decreased in Example 1. This is because the sludge, which is an organic substance, is reduced in volume, and as a result, the organic substance content of the sludge is reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a sludge volume reduction method according to an embodiment of the present invention.
FIG. 2 is a graph showing a change with time of MLSS (sludge concentration) in an organic substance removal tank.
FIG. 3 is a graph showing the change over time in the organic content of sludge in the organic matter removal tank.
FIG. 4 is a flow chart showing an example in which surplus sludge is landfilled by a conventional method.
[Explanation of symbols]
(1): Wastewater supply pump
(2): Organic matter removal tank
(3): Membrane separator
(4): Air diffuser
(5): Blower
(6): Sludge mixture pump
(7): Heat exchanger
(8): pH adjuster
(9): Sludge heating tank
(10): pH adjuster
Claims (4)
汚泥加熱槽での加熱温度を65〜95℃、加熱時間を2〜8時間とし、汚泥加熱槽に導く汚泥混合液のpHを7〜10とし、汚泥加熱槽から排出された汚泥混合液のpHを5〜8に調整した後に好気性処理槽へ返送することを特徴とする、汚泥の減容化方法。The sludge mixture is introduced from the aerobic treatment tank that aerobically biotreats organic wastewater to the sludge heating tank, where the sludge mixture is heated to change the sludge into an aerobic and biodegradable form. Then, the mixed solution is returned to the aerobic treatment tank, where the sludge is aerobically biologically treated to reduce the volume,
The heating temperature in the sludge heating bath 65 to 95 ° C., the heating time was set to 2 to 8 hours, the pH of the sludge mixture which leads to the sludge heating tank and 7-10, the sludge mixture discharged from the sludge heating tank A method for reducing the volume of sludge, wherein the pH is adjusted to 5 to 8 and then returned to the aerobic treatment tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001052554A JP3780407B2 (en) | 2001-02-27 | 2001-02-27 | Sludge volume reduction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001052554A JP3780407B2 (en) | 2001-02-27 | 2001-02-27 | Sludge volume reduction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002248500A JP2002248500A (en) | 2002-09-03 |
JP3780407B2 true JP3780407B2 (en) | 2006-05-31 |
Family
ID=18913166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001052554A Expired - Fee Related JP3780407B2 (en) | 2001-02-27 | 2001-02-27 | Sludge volume reduction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3780407B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE481360T1 (en) | 2004-07-30 | 2010-10-15 | Eiwa Land Environment Co Ltd | WASTE WATER PURIFICATION DEVICE |
-
2001
- 2001-02-27 JP JP2001052554A patent/JP3780407B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002248500A (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9845260B2 (en) | Treatment of municipal wastewater with anaerobic digestion | |
JPH02245297A (en) | Two-stage treating method of waste water | |
WO2007139264A1 (en) | Apparatus and method for treatment of food waste | |
CA2418311C (en) | Method for purifying waste water, and purification plant for carrying out said method | |
KR102108870B1 (en) | Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus | |
KR20000021183A (en) | Method for managing wastewater including high concentrated organic matter. | |
JP2003033780A (en) | Method for wastewater treatment | |
JP3893654B2 (en) | Organic wastewater treatment method | |
KR100479649B1 (en) | The procces and apparatus of Livestock wastewater treatment. | |
JP2004008843A (en) | Method for treating organic waste water | |
JP3780407B2 (en) | Sludge volume reduction method | |
JP2004041953A (en) | Method and equipment for treating organic waste water | |
JP2003117597A (en) | Biological treating method for excess sludge by utilizing hydrothermal reaction | |
KR100666605B1 (en) | Wastewater treatment method for reducing waste-sludge utilizing an anaerobic digestion reactor and wastewater treatment system thereof | |
JP2004041902A (en) | Sludge treatment equipment and sludge treatment method | |
JPS59206092A (en) | Treating process of waste water | |
JP2001070983A (en) | Method and apparatus for treating wastewater | |
JPH10156398A (en) | Water treatment and water treating device | |
JPH10249376A (en) | Treatment of organic waste water such as sewage | |
KR200289075Y1 (en) | Apparatus of Livestock wastewater treatment. | |
KR970011365B1 (en) | Waste water treatment method and apparatus | |
JP5197901B2 (en) | Waste water treatment apparatus and waste water treatment method | |
JP2003326292A (en) | Waste water treatment method | |
JP2002011496A (en) | Method and device for treating waste water | |
JP2024121217A (en) | Organic wastewater treatment method and treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140317 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |