JP2003110391A - Surface acoustic wave device and method of manufacturing the same - Google Patents

Surface acoustic wave device and method of manufacturing the same

Info

Publication number
JP2003110391A
JP2003110391A JP2001302315A JP2001302315A JP2003110391A JP 2003110391 A JP2003110391 A JP 2003110391A JP 2001302315 A JP2001302315 A JP 2001302315A JP 2001302315 A JP2001302315 A JP 2001302315A JP 2003110391 A JP2003110391 A JP 2003110391A
Authority
JP
Japan
Prior art keywords
electrode
cap member
hole
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001302315A
Other languages
Japanese (ja)
Other versions
JP3975430B2 (en
Inventor
Yusuke Kinoshita
裕介 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001302315A priority Critical patent/JP3975430B2/en
Publication of JP2003110391A publication Critical patent/JP2003110391A/en
Application granted granted Critical
Publication of JP3975430B2 publication Critical patent/JP3975430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave device which can secure airtight reliability, be low in cost and have superior mechanical strength, and a method for manufacturing the device. SOLUTION: The device includes a piezoelectric substrate 10, IDT electrodes 14 and electrode pads 16 formed on a SAW propagation surface 12 of the substrate 10, with the electrodes 14 being electrically connected to the pads 16, a sealing electrode 18 formed on the peripheral edge of the SAW propagation surface 12, a glass substrate 20 for airtightly holding the SAW propagation surface 12, through-holes 24 made in the glass substrate 20 to communicate with formation positions of outer electrodes on the opposite side of the pads 16 to the substrate 20, a metal plate 32 anodically bonded to the substrate 20 as an external electrode, and metal brazing materials 34 disposed in the interior of the through-holes 24 for electrically connecting the metallic plate 32 and the pads 16 together.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、弾性表面波装置お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に弾性表面波(SAW)装置は、圧
電基板のSAW伝搬面に、IDT(Interdigital Trans
ducer)電極およびこのIDT電極に通電する電極パッ
ドを、アルミ等の金属材料により形成している。このI
DT電極が酸化されると周波数特性が変化するため、キ
ャップ部材により気密性を確保するとともに、SAW伝
搬面を不活性ガス中または真空中に保持している。一方
でIDT電極に通電するため、パッケージ部材の外側に
外部電極を形成した上で、電極パッドとの導通を確保し
ている。
2. Description of the Related Art Generally, a surface acoustic wave (SAW) device has an IDT (Interdigital Transducer) on the SAW propagation surface of a piezoelectric substrate.
The electrode) and the electrode pad for energizing the IDT electrode are made of a metal material such as aluminum. This I
Since the frequency characteristic changes when the DT electrode is oxidized, the airtightness is secured by the cap member, and the SAW propagation surface is held in an inert gas or vacuum. On the other hand, in order to energize the IDT electrode, an external electrode is formed on the outside of the package member, and electrical continuity with the electrode pad is secured.

【0003】特開平8−213874号公報には、弾性
表面波装置およびその製造方法が提案されている。図9
に同公報に係る弾性表面波装置の説明図を示す。同図
(1)は側面断面図であり、同図(2)はその一部拡大
図である。同公報に係る弾性表面波装置は、IDT電極
214の周囲全体に陽極接合部218を形成し、ガラス
板製のカバー基板220を陽極接合して、IDT電極2
14を封止したものである。
Japanese Unexamined Patent Publication No. 8-213874 proposes a surface acoustic wave device and a method for manufacturing the same. Figure 9
An explanatory view of the surface acoustic wave device according to the publication is shown in FIG. FIG. 1A is a side sectional view, and FIG. 2B is a partially enlarged view thereof. In the surface acoustic wave device according to the publication, an anodic bonding part 218 is formed around the entire IDT electrode 214, and a cover plate 220 made of a glass plate is anodic bonded to form the IDT electrode 2.
14 is sealed.

【0004】一方、図9(2)に示すように、カバー基
板220の下面には、スパッタリングによりTiの下層
膜232bおよびCuの上層膜232aを順次成膜し
て、外部電極232を形成している。なお、Ti膜23
2bはカバー基板220を構成するガラス板との濡れ性
を確保するために、Cu膜232aは導電性を確保する
ために、それぞれ必要となる。
On the other hand, as shown in FIG. 9B, a Ti lower layer film 232b and a Cu upper layer film 232a are sequentially formed on the lower surface of the cover substrate 220 by sputtering to form an external electrode 232. There is. The Ti film 23
2b is necessary to ensure wettability with the glass plate forming the cover substrate 220, and the Cu film 232a is necessary to ensure conductivity.

【0005】また、カバー基板220は電極パッド21
6に至る貫通孔224を有している。この貫通孔224
の内周面および貫通孔224に露出している電極パッド
216の表面に対しても、上記と同時にTi膜およびC
u膜を成膜する。これにより、外部電極232と電極パ
ッド216との導通が確保される。なおCu膜の上に
は、弾性表面波装置の実装用に、導電性ペーストからな
る印刷電極236を形成している。
Further, the cover substrate 220 has an electrode pad 21.
6 has through holes 224. This through hole 224
At the same time as described above, the Ti film and the C
A u film is formed. This ensures electrical continuity between the external electrode 232 and the electrode pad 216. A printed electrode 236 made of a conductive paste is formed on the Cu film for mounting the surface acoustic wave device.

【0006】[0006]

【発明が解決しようとする課題】ここで、カバー基板2
20と電極パッド216とは接合されていないので、貫
通孔224の形成部分における気密性を確保するのは、
印刷電極236の形成前にはTi膜およびCu膜のみで
ある。Ti膜およびCu膜の厚さは両者合わせて2μ程
度であるから、気密信頼性の確保が困難であるという問
題がある。特に、IDT電極214を真空に保持する場
合には、気密信頼性の確保が著しく困難である。
The cover substrate 2 will now be described.
Since the 20 and the electrode pad 216 are not joined, it is necessary to ensure the airtightness in the portion where the through hole 224 is formed.
Before forming the printed electrode 236, only the Ti film and the Cu film are formed. Since the total thickness of the Ti film and the Cu film is about 2 μ, there is a problem that it is difficult to secure the airtight reliability. In particular, when the IDT electrode 214 is held in vacuum, it is extremely difficult to ensure airtight reliability.

【0007】また、スパッタリングによりTi膜および
Cu膜を形成するため、2度の真空プロセスが必要とな
る。真空プロセスには真空ポンプが必要であり、またワ
ークを交換する度に真空ポンプを運転する必要があるこ
とから、多くの設備コストおよび製造コストがかかると
いう問題がある。
Further, since the Ti film and the Cu film are formed by sputtering, the vacuum process is required twice. Since the vacuum process requires a vacuum pump and the vacuum pump needs to be operated every time a workpiece is replaced, there is a problem that a lot of equipment costs and manufacturing costs are required.

【0008】さらに、Ti膜およびCu膜は機械的強度
が弱く、弾性表面波装置の製造中または製造後に衝撃力
が作用すると、簡単に破壊されてしまうという問題があ
る。本発明は上記問題点に着目し、気密信頼性の確保が
可能であり、低コストであり、また機械的強度に優れた
弾性表面波装置およびその製造方法の提供を目的とす
る。
Further, the Ti film and the Cu film have weak mechanical strength, and there is a problem that they are easily destroyed when an impact force acts during or after the manufacturing of the surface acoustic wave device. The present invention focuses on the above-mentioned problems, and an object thereof is to provide a surface acoustic wave device capable of ensuring airtight reliability, low in cost, and excellent in mechanical strength, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る弾性表面波装置の製造方法は、圧電基
板のSAW伝搬面にIDT電極およびこのIDT電極に
通電する電極パッドを形成し、前記SAW伝搬面の周縁
部に封止用電極を形成し、前記SAW伝搬面を気密に保
持するキャップ部材を形成し、前記電極パッドと前記キ
ャップ部材を挟んで反対側の外部電極形成位置とを連通
する貫通孔を前記キャップ部材に形成し、前記貫通孔に
導電性材料を挿入し、外部電極としての金属板を前記外
部電極形成位置に配置して前記キャップ部材と陽極接合
し、さらに前記封止用電極と前記キャップ部材とを陽極
接合する構成とした。
In order to achieve the above object, a method of manufacturing a surface acoustic wave device according to the present invention comprises forming an IDT electrode and an electrode pad for energizing the IDT electrode on a SAW propagation surface of a piezoelectric substrate. A sealing electrode is formed on a peripheral portion of the SAW propagation surface, a cap member that hermetically holds the SAW propagation surface is formed, and an external electrode formation position on the opposite side of the electrode pad and the cap member is formed. A through hole that communicates with the cap member, a conductive material is inserted into the through hole, a metal plate as an external electrode is arranged at the external electrode forming position to perform anodic bonding with the cap member, and The sealing electrode and the cap member are anodically bonded.

【0010】陽極接合により金属板とキャップ部材との
密着性を確保できるので、貫通孔形成部分における気密
信頼性を確保することができる。また、外部電極として
および電極パッドとの導通手段としてTi膜およびCu
膜を形成する必要がないので、2回の真空プロセスは不
要である。従って設備コストおよび製造コストを削減す
ることができる。さらに、外部電極として金属板を使用
するので、Ti膜およびCu膜に比べて高い機械的強度
が確保できる。
Since the adhesion between the metal plate and the cap member can be secured by the anodic bonding, the airtightness reliability in the through hole forming portion can be secured. Further, a Ti film and Cu are used as an external electrode and as a means for conducting with the electrode pad.
No vacuum process is required twice because no film has to be formed. Therefore, the equipment cost and the manufacturing cost can be reduced. Further, since the metal plate is used as the external electrode, higher mechanical strength can be secured as compared with the Ti film and the Cu film.

【0011】また、加熱して前記導電性材料を熔解させ
つつ前記金属板と前記キャップ部材とを陽極接合し、加
熱して前記導電性材料を熔解させつつ前記封止用電極と
前記キャップ部材とを陽極接合する構成とした。加熱し
て導電性材料を熔解させることにより、導電性材料と金
属板および電極パッドとの接触部分に両者の合金が形成
されて、両者間の導通を確保することができる。よって
Ti膜およびCu膜を形成する必要がなく、設備コスト
および製造コストを削減することができる。また、導電
性材料を熔解するための加熱と、陽極接合に必要な加熱
とを同時に行うことにより、製造コストを削減すること
ができる。
Also, the metal plate and the cap member are anodically bonded while heating to melt the conductive material, and the sealing electrode and the cap member are heated to melt the conductive material while being anodically bonded. Is configured to be anodically bonded. By heating and melting the conductive material, an alloy of the conductive material and the metal plate and the electrode pad is formed in the contact portion, so that electrical continuity between them can be secured. Therefore, it is not necessary to form the Ti film and the Cu film, and the equipment cost and the manufacturing cost can be reduced. Further, the heating for melting the conductive material and the heating required for anodic bonding are simultaneously performed, whereby the manufacturing cost can be reduced.

【0012】また、前記キャップ部材の下方に前記金属
板を配置して陽極接合した後、前記キャップ部材を上下
反転させ前記キャップ部材の下方に前記圧電基板を配置
して前記封止用電極を陽極接合する構成とした。まずキ
ャップ部材の下方に金属板を配置して陽極接合すること
により、熔解した導電性材料が貫通孔から流出すること
がない。また、金属板と導電性材料との導通を確保する
ことができる。さらに、導電性材料と貫通孔の内周面と
を陽極接合することができる。一方、キャップ部材を上
下反転させキャップ部材の下方に圧電基板を配置して封
止用電極を陽極接合することにより、再度熔解した導電
性材料が電極パッド側に堆積し、電極パッドとの導通を
確保することができる。以上により、導電性材料の体積
が貫通孔の容積より少ない場合でも、金属板と電極パッ
ドとの導通を確保することができる。よってTi膜およ
びCu膜を形成する必要がなく、設備コストおよび製造
コストを削減することができる。
Further, after the metal plate is arranged below the cap member for anodic bonding, the cap member is turned upside down and the piezoelectric substrate is arranged below the cap member so that the sealing electrode is anodized. It is configured to be joined. First, by disposing the metal plate below the cap member and performing anodic bonding, the melted conductive material does not flow out from the through hole. In addition, conduction between the metal plate and the conductive material can be secured. Further, the conductive material and the inner peripheral surface of the through hole can be anodically bonded. On the other hand, by flipping the cap member upside down and arranging the piezoelectric substrate below the cap member and anodic bonding the sealing electrode, the re-melted conductive material is deposited on the electrode pad side and conducts with the electrode pad. Can be secured. As described above, even when the volume of the conductive material is smaller than the volume of the through hole, it is possible to secure the conduction between the metal plate and the electrode pad. Therefore, it is not necessary to form the Ti film and the Cu film, and the equipment cost and the manufacturing cost can be reduced.

【0013】また、前記貫通孔は、前記外部電極形成位
置側開口部の寸法を前記電極パッド側開口部の寸法より
大きく形成し、前記導電性材料は、前記貫通孔の前記外
部電極形成位置側開口部の寸法より小さく、なおかつ前
記電極パッド側開口部の寸法より大きく形成し、前記貫
通孔の前記外部電極形成位置側開口部を上にして前記貫
通孔に前記導電性材料を投入し、前記外部電極形成位置
に前記金属板を配置することにより前記導電性材料を封
入する構成とした。これにより、貫通孔の金属板側開口
部から投入した導電性材料は、電極パッド側開口部から
落下することなく、貫通孔の内部に留まることになる。
また、製造工程でキャップ部材を移動させた場合でも、
導電性材料が貫通孔から流出することがない。よって製
造工程での製品の扱いが容易になり製造コストを削減す
ることができる。
Further, the through hole is formed such that the size of the opening on the external electrode forming position side is larger than the size of the opening on the electrode pad side, and the conductive material is formed on the external electrode forming position side of the through hole. It is formed to be smaller than the dimension of the opening and larger than the dimension of the electrode pad side opening, and the conductive material is charged into the through hole with the external electrode formation position side opening of the through hole facing upward, By disposing the metal plate at the external electrode forming position, the conductive material is enclosed. As a result, the conductive material introduced from the opening on the metal plate side of the through hole remains inside the through hole without dropping from the opening on the electrode pad side.
Also, even if the cap member is moved in the manufacturing process,
The conductive material does not flow out from the through hole. Therefore, the product can be easily handled in the manufacturing process, and the manufacturing cost can be reduced.

【0014】また、複数の弾性表面波装置を同時に製造
する方法であって、圧電基板における複数のSAW伝搬
面にそれぞれIDT電極およびこのIDT電極に通電す
る電極パッドを形成し、前記各SAW伝搬面の周縁部に
それぞれ封止用電極を形成するとともに、全ての前記封
止用電極に通電可能な封止用電極パッドを形成し、前記
各SAW伝搬面をそれぞれ気密に保持するキャップ部材
を一体形成し、前記各電極パッドと前記キャップ部材を
挟んで反対側の外部電極形成位置とを連通する複数の貫
通孔を前記キャップ部材に形成し、前記各貫通孔に導電
性材料を挿入し、前記各外部電極形成位置に金属板を配
置可能な金属基板を一体形成し、前記金属基板と前記キ
ャップ部材とを陽極接合し、さらに前記各封止用電極と
前記キャップ部材とを陽極接合した後、前記各弾性表面
波装置に切断する構成とした。これにより、製造コスト
を削減することができる。
In addition, in the method of simultaneously manufacturing a plurality of surface acoustic wave devices, an IDT electrode and an electrode pad for energizing the IDT electrode are formed on each of the plurality of SAW propagation surfaces of the piezoelectric substrate, and each of the SAW propagation surfaces is formed. A sealing electrode is formed on each of the peripheral portions of the, and a sealing electrode pad capable of conducting electricity is formed on all of the sealing electrodes, and a cap member that holds each SAW propagation surface airtight is integrally formed. Then, a plurality of through-holes that communicate the respective electrode pads and the external electrode forming positions on the opposite side with the cap member interposed therebetween are formed in the cap member, and a conductive material is inserted into each of the through-holes. A metal substrate on which a metal plate can be arranged is integrally formed at the external electrode forming position, the metal substrate and the cap member are anodically bonded, and the sealing electrodes and the cap member are further formed. The After anodic bonding, and configured to cut the each surface acoustic wave device. Thereby, the manufacturing cost can be reduced.

【0015】一方、本発明に係る弾性表面波装置は、圧
電基板と、この圧電基板のSAW伝搬面に形成したID
T電極およびこのIDT電極に導通する電極パッドと、
前記SAW伝搬面の周縁部に形成した封止用電極と、こ
の封止用電極に陽極接合され前記SAW伝搬面を気密に
保持するキャップ部材と、前記電極パッドと前記キャッ
プ部材を挟んで反対側の外部電極形成位置とを連通する
前記キャップ部材に穿設された貫通孔と、前記外部電極
として前記キャップ部材に陽極接合された金属板と、前
記貫通孔の内部に配置され前記金属板と前記電極パッド
とを導通する導電性材料とを有する構成とした。これに
より、気密信頼性の確保が可能となり、コスト削減が可
能となり、また機械的強度に優れた弾性表面波装置を提
供することができる。
On the other hand, the surface acoustic wave device according to the present invention includes a piezoelectric substrate and an ID formed on the SAW propagation surface of the piezoelectric substrate.
An electrode pad electrically connected to the T electrode and the IDT electrode,
A sealing electrode formed on the peripheral portion of the SAW propagation surface, a cap member that is anodically bonded to the sealing electrode and hermetically holds the SAW propagation surface, and an opposite side with the electrode pad and the cap member interposed therebetween. Through hole formed in the cap member that communicates with the external electrode forming position, a metal plate anodically bonded to the cap member as the external electrode, the metal plate disposed inside the through hole, and the metal plate. It has a configuration including a conductive material that conducts to the electrode pad. As a result, it is possible to ensure airtight reliability, reduce costs, and provide a surface acoustic wave device having excellent mechanical strength.

【0016】また前記貫通孔は、前記外部電極形成位置
側開口部の寸法が前記電極パッド側開口部の寸法より大
きく形成されている構成とした。また、前記貫通孔の内
周面上に形成された導電性膜を有する構成とした。これ
により、金属板と電極パッドとの導通を確保することが
できる。
Further, the through hole is formed such that the size of the opening on the external electrode forming position side is larger than the size of the opening on the electrode pad side. In addition, it is configured to have a conductive film formed on the inner peripheral surface of the through hole. As a result, electrical continuity between the metal plate and the electrode pad can be ensured.

【0017】[0017]

【発明の実施の形態】本発明に係る弾性表面波装置およ
びその製造方法の好ましい実施の形態を、添付図面に従
って詳細に説明する。なお以下に記載するのは本発明の
実施形態の一態様にすぎず、本発明はこれらに限定され
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a surface acoustic wave device and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings. It should be noted that what is described below is only one aspect of the embodiment of the present invention, and the present invention is not limited thereto.

【0018】最初に、第1実施形態について説明する。
図1に第1実施形態に係る弾性表面波装置の説明図を示
す。同図(1)はA−A線における側面断面図であり、
同図(2)はB−B線における底面断面図である。第1
実施形態に係る弾性表面波装置は、圧電基板10と、こ
の圧電基板10のSAW伝搬面12に形成したIDT電
極14およびこのIDT電極14に通電する電極パッド
16と、SAW伝搬面12の周縁部に形成した封止用電
極18と、SAW伝搬面12を気密に保持するガラス基
板20と、電極パッド16とガラス基板20を挟んで反
対側の外部電極形成位置とを連通するガラス基板20に
穿設された貫通孔24と、外部電極としてガラス基板2
0に陽極接合された金属板32と、貫通孔24の内部に
配置され金属板32と電極パッド16とを導通する金属
ロウ材34とを有するものである。
First, the first embodiment will be described.
FIG. 1 shows an explanatory view of the surface acoustic wave device according to the first embodiment. FIG. 1A is a side sectional view taken along line AA,
FIG. 2B is a bottom cross-sectional view taken along the line BB. First
The surface acoustic wave device according to the embodiment includes a piezoelectric substrate 10, an IDT electrode 14 formed on the SAW propagation surface 12 of the piezoelectric substrate 10, an electrode pad 16 that conducts electricity to the IDT electrode 14, and a peripheral portion of the SAW propagation surface 12. The sealing electrode 18 formed in the above, the glass substrate 20 that holds the SAW propagation surface 12 in an airtight manner, and the glass substrate 20 that connects the electrode pad 16 and the glass substrate 20 on the opposite side to the external electrode forming position are formed. The through hole 24 provided and the glass substrate 2 as an external electrode
It has a metal plate 32 anodically bonded to 0 and a metal brazing material 34 arranged inside the through hole 24 and electrically connecting the metal plate 32 and the electrode pad 16.

【0019】まず、圧電基板10のSAW伝搬面12に
IDT電極14およびこのIDT電極14に通電する電
極パッド16を形成する。圧電基板10は水晶等の圧電
材料からなる。IDT電極14は、アルミ等の金属材料
により圧電基板10の下面中央部に形成する。またID
T電極14は、くし歯状の正極側電極および負極側電極
からなり、両電極のくし歯を交互に組み合わせ平行に配
置して形成する。電極パッド16は、IDT電極14の
両端部に形成し、各電極に接続して通電可能とする。そ
して、上記IDT電極14および電極パッド16を取り
囲むように、圧電基板10のSAW伝搬面12の周縁部
に、封止用電極18を形成する。
First, the IDT electrode 14 and the electrode pad 16 that conducts electricity to the IDT electrode 14 are formed on the SAW propagation surface 12 of the piezoelectric substrate 10. The piezoelectric substrate 10 is made of a piezoelectric material such as crystal. The IDT electrode 14 is formed of a metal material such as aluminum at the center of the lower surface of the piezoelectric substrate 10. Also ID
The T electrode 14 is composed of a comb-shaped positive electrode and a negative electrode, and is formed by alternately combining comb teeth of both electrodes and arranging them in parallel. The electrode pads 16 are formed on both ends of the IDT electrode 14 and are connected to the respective electrodes so that they can be energized. Then, a sealing electrode 18 is formed on the peripheral portion of the SAW propagation surface 12 of the piezoelectric substrate 10 so as to surround the IDT electrode 14 and the electrode pad 16.

【0020】なおIDT電極14の両端部には、図2に
示すように、複数の短絡電極15aを平行に配置した反
射器15を形成するのが一般である。以下の図面では、
簡単のためこの反射器を省略して記載する。
In general, reflectors 15 each having a plurality of short-circuit electrodes 15a arranged in parallel are formed on both ends of the IDT electrode 14, as shown in FIG. In the drawings below,
For simplicity, this reflector is omitted in the description.

【0021】一方、SAW伝搬面を気密に保持するキャ
ップ部材としてのガラス基板20を形成する。ガラス基
板20は、NaやLi等のアルカリ金属を含むガラス材
料により、圧電基板10と同等の大きさに形成する。な
お、ガラス基板20と圧電基板10に形成した封止用電
極18との間は、後述する方法で陽極接合する。ガラス
基板20の中央部には、IDT電極14との接触を回避
するため、キャビティ26を設ける。またキャビティ2
6の両端部には、後述する外部電極としての金属板32
と電極パッド16とを連通する貫通孔(スルーホール)
24を穿設する。貫通孔24は、金属板32側の開口径
を電極パッド16側の開口径より大きくして、その側面
断面形状がテーパ状になるように形成する。
On the other hand, a glass substrate 20 is formed as a cap member that keeps the SAW propagation surface airtight. The glass substrate 20 is made of a glass material containing an alkali metal such as Na or Li and has the same size as the piezoelectric substrate 10. The glass substrate 20 and the sealing electrode 18 formed on the piezoelectric substrate 10 are anodically bonded by a method described later. A cavity 26 is provided at the center of the glass substrate 20 to avoid contact with the IDT electrode 14. Also cavity 2
A metal plate 32 as an external electrode, which will be described later, is provided at both ends of
Through hole that connects the electrode pad 16 to the electrode pad 16
24 is drilled. The through hole 24 is formed so that the opening diameter on the side of the metal plate 32 is larger than the opening diameter on the side of the electrode pad 16 and the side surface cross-sectional shape is tapered.

【0022】ガラス基板20の下面両端部には、外部電
極としての金属板32を陽極接合する。金属板32とし
て、NiまたはNiおよびFeの合金等の片面にAuメ
ッキを施したもの等を使用する。なお、金属板32にお
けるガラス基板20との陽極接合面には、Auメッキは
不要である。また貫通孔24の内部には、金属板32と
電極パッド16とを導通する導電性材料として金属ロウ
材34を配置する。金属ロウ材34として、例えばAu
とSnとの合金等を使用することにより、比較的低温で
熔解させることができる。なお、金属板32と電極パッ
ド16との導通が確保できれば、金属ロウ材34を貫通
孔24の内部全体に装填する必要はない。例えば図1
(1)に示すように、貫通孔24の内部に気泡34aが
あってもよい。
Metal plates 32 as external electrodes are anodically bonded to both ends of the lower surface of the glass substrate 20. As the metal plate 32, a plate such as Ni or an alloy of Ni and Fe plated with Au on one surface is used. It should be noted that Au plating is not required on the anodic bonding surface of the metal plate 32 with the glass substrate 20. Further, inside the through hole 24, a metal brazing material 34 is arranged as a conductive material for electrically connecting the metal plate 32 and the electrode pad 16. As the metal brazing material 34, for example, Au
By using the alloy of Sn and Sn, it is possible to melt at a relatively low temperature. It should be noted that it is not necessary to load the metal brazing material 34 into the entire inside of the through hole 24 as long as the conduction between the metal plate 32 and the electrode pad 16 can be secured. Figure 1
As shown in (1), there may be bubbles 34a inside the through hole 24.

【0023】なお、金属板と電極パッドとの導通をより
確実なものとするため、貫通孔の内周面に導電性膜とし
て金属膜を形成してもよい。金属膜として、Ti、N
i、Cr、Au、Ag等の材料が使用可能である。な
お、金属膜と貫通孔内周面とは陽極接合されるため濡れ
性は問題とならず、金属膜の内側には金属ロウ材を配置
するので導電性も問題とならない。従って、金属膜には
一応の導電性があればよい。これにより、貫通孔内に配
置した金属ロウ材の体積が、貫通孔の容積の半分以下で
あっても、金属板と電極パッドとの導通を確保すること
ができる。
A metal film may be formed as a conductive film on the inner peripheral surface of the through hole in order to ensure the conduction between the metal plate and the electrode pad. As a metal film, Ti, N
Materials such as i, Cr, Au and Ag can be used. Since the metal film and the inner peripheral surface of the through hole are anodically bonded, the wettability does not matter, and since the metal brazing material is arranged inside the metal film, the conductivity does not matter either. Therefore, the metal film only needs to have a certain conductivity. As a result, even if the volume of the metal brazing material arranged in the through hole is not more than half the volume of the through hole, the conduction between the metal plate and the electrode pad can be ensured.

【0024】第1実施形態に係る弾性表面波装置は、以
下の方法で製造する。図3に第1実施形態に係る弾性表
面波装置の製造方法のフローチャートを示し、図4およ
び図5に製造方法の説明図を示す。まず、圧電基板のS
AW伝搬面にIDT電極、電極パッドおよび封止用電極
を形成する(ステップ70)。
The surface acoustic wave device according to the first embodiment is manufactured by the following method. FIG. 3 shows a flowchart of a method of manufacturing the surface acoustic wave device according to the first embodiment, and FIGS. 4 and 5 show explanatory views of the method of manufacturing. First, S of the piezoelectric substrate
An IDT electrode, an electrode pad and a sealing electrode are formed on the AW propagation surface (step 70).

【0025】次に、図4(1)に示すように、ガラス基
板20を形成する(ステップ72)。上述したように、
ガラス基板20の中央部にはキャビティ26を形成し、
キャビティ26の両端部には貫通孔24を形成する。キ
ャビティ26および貫通孔24の形成は、サンドブラス
ト加工またはエッチング加工等の方法で行う。なお、貫
通孔の内周面に導電性膜として金属膜を形成する場合に
は、この段階で形成する。金属膜の形成は、貫通孔の内
周面以外の部分にマスクを施した上で、スパッタ法や蒸
着法等により行う。なお貫通孔24の側面断面形状がテ
ーパ状になるように形成すれば、貫通孔の内周面上に金
属膜の材料が付着しやすくなり、成膜時間を短縮するこ
とができる。
Next, as shown in FIG. 4A, the glass substrate 20 is formed (step 72). As mentioned above,
A cavity 26 is formed at the center of the glass substrate 20,
Through holes 24 are formed at both ends of the cavity 26. The cavity 26 and the through hole 24 are formed by a method such as sandblasting or etching. When a metal film is formed as a conductive film on the inner peripheral surface of the through hole, it is formed at this stage. The metal film is formed by a sputtering method, a vapor deposition method, or the like after masking a portion other than the inner peripheral surface of the through hole. If the side surface of the through hole 24 is formed in a tapered shape, the material of the metal film easily adheres to the inner peripheral surface of the through hole, and the film forming time can be shortened.

【0026】次に、図4(2)に示すように、ガラス基
板20を上下反転する(ステップ76)。これにより、
ガラス基板20の金属板装着側が上になる。そして、貫
通孔24の内部に金属ロウ材34を投入する(ステップ
78)。金属ロウ材34はあらかじめ、その寸法が貫通
孔24の電極パッド側開口部24aの寸法より大きく、
なおかつ金属板側開口部24bの寸法より小さい粒状に
形成しておく。これにより、貫通孔24の金属板側開口
部24bから投入した金属ロウ材34は、電極パッド側
開口部24aから落下することなく、貫通孔24の内部
に留まることになる。次に、金属板32を配置する(ス
テップ80)。これにより、金属ロウ材34が貫通孔2
4の内部に封入されるので、製造工程でガラス基板20
を移動させた場合でも、金属ロウ材34が貫通孔24か
ら流出することがない。
Next, as shown in FIG. 4B, the glass substrate 20 is turned upside down (step 76). This allows
The side of the glass substrate 20 on which the metal plate is mounted faces upward. Then, the metal brazing material 34 is put into the through hole 24 (step 78). The size of the metal brazing material 34 is larger than the size of the electrode pad side opening 24a of the through hole 24 in advance,
Further, it is formed in a granular shape smaller than the size of the opening 24b on the metal plate side. As a result, the metal brazing material 34 introduced from the metal plate side opening 24b of the through hole 24 stays inside the through hole 24 without dropping from the electrode pad side opening 24a. Next, the metal plate 32 is arranged (step 80). As a result, the metal brazing material 34 becomes
4 is sealed inside the glass substrate 20 during the manufacturing process.
Even when is moved, the metal brazing material 34 does not flow out from the through hole 24.

【0027】次に、図4(3)に示すように、金属板3
2とともにガラス基板20を上下反転する(ステップ8
2)。これにより、金属板32はガラス基板の下方に配
置される。そして、金属板32とガラス基板20とを陽
極接合する(ステップ84)。具体的には、まずガラス
基板20の上側全面にマイナス電極42を配置して、全
体を数百度の高温に保持する。次に、直流電源のプラス
側を金属板32に接続し、両電極間に数百から千ボルト
の電圧を印加する。すると、ガラス基板20内のアルカ
リ金属のカチオンがマイナス電極42側に引き寄せら
れ、ガラス基板20における金属板32との接触面付近
に電荷空乏層が形成される。よって静電引力により、金
属板32とガラス基板20とを密着させることができ
る。このとき、ガラス中の全てのアルカリ成分が析出し
きらない内に、電圧の印加を終了する。上記により、図
4(3)の×印の部分が陽極接合される。なお、マイナ
ス電極42とガラス基板20とは接合されない。
Next, as shown in FIG. 4C, the metal plate 3
The glass substrate 20 is turned upside down together with 2 (step 8).
2). Thereby, the metal plate 32 is arranged below the glass substrate. Then, the metal plate 32 and the glass substrate 20 are anodically bonded (step 84). Specifically, first, the minus electrode 42 is arranged on the entire upper surface of the glass substrate 20, and the whole is kept at a high temperature of several hundred degrees. Next, the positive side of the DC power supply is connected to the metal plate 32, and a voltage of several hundred to 1,000 volts is applied between both electrodes. Then, the cations of the alkali metal in the glass substrate 20 are attracted to the negative electrode 42 side, and a charge depletion layer is formed near the contact surface of the glass substrate 20 with the metal plate 32. Therefore, the electrostatic attraction can bring the metal plate 32 and the glass substrate 20 into close contact with each other. At this time, the application of the voltage is completed before all the alkali components in the glass are completely deposited. By the above, the portion marked with X in FIG. 4C is anodically bonded. The minus electrode 42 and the glass substrate 20 are not joined.

【0028】なお、陽極接合時の加熱により金属ロウ材
34が熔解して、貫通孔24内部の金属板32側に堆積
する。そして、金属板32と金属ロウ材34との接触部
分には両者の合金が形成されて、両者間の導通が確保さ
れる。これに伴って、金属ロウ材34と貫通孔24の内
周面との間にも電位差が生じ、両者間を陽極接合するこ
とができる。
The metal brazing material 34 is melted by heating during the anodic bonding and deposited on the metal plate 32 inside the through hole 24. Then, an alloy of the metal plate 32 and the metal brazing material 34 is formed in the contact portion between the metal plate 32 and the metal brazing material 34, and conduction between the both is secured. Along with this, a potential difference also occurs between the metal brazing material 34 and the inner peripheral surface of the through hole 24, and it is possible to perform anodic bonding between the two.

【0029】次に、図5(1)に示すように、ガラス基
板20の上方に圧電基板10を配置して、全体を上下反
転する(ステップ86)。なお、上下反転したガラス基
板20の下方に、上下反転した圧電基板10を配置して
もよい。次に、全体を不活性ガス中または真空中に保持
する(ステップ90)。そして、圧電基板10に形成し
た封止用電極18とガラス基板20とを陽極接合する
(ステップ92)。具体的には、まず全体を数百度の高
温に保持する。次に、直流電源のプラス側を封止用電極
18に接続するとともに、マイナス側を金属板32に接
続して、両電極間に数百から千ボルトの電圧を印加す
る。すると、ガラス中にアルカリ成分が残されている
為、上記と同様のメカニズムにより封止用電極18とガ
ラス基板20とを陽極接合させることができる。なお、
図5(1)の×印の部分が陽極接合された部分である。
Next, as shown in FIG. 5A, the piezoelectric substrate 10 is arranged above the glass substrate 20 and the whole is turned upside down (step 86). The vertically inverted piezoelectric substrate 10 may be disposed below the vertically inverted glass substrate 20. Next, the whole is kept in an inert gas or a vacuum (step 90). Then, the sealing electrode 18 formed on the piezoelectric substrate 10 and the glass substrate 20 are anodically bonded (step 92). Specifically, first, the whole is kept at a high temperature of several hundred degrees. Next, the positive side of the DC power source is connected to the sealing electrode 18, the negative side is connected to the metal plate 32, and a voltage of several hundred to 1,000 volts is applied between both electrodes. Then, since the alkaline component remains in the glass, the sealing electrode 18 and the glass substrate 20 can be anodically bonded by the same mechanism as described above. In addition,
The part marked with X in FIG. 5 (1) is the part that is anodically bonded.

【0030】なお、陽極接合時の加熱により金属ロウ材
34が再度熔解する。もっとも、貫通孔24の内周面と
陽極接合した金属ロウ材は流れ落ちず、貫通孔24の中
央部に位置する金属ロウ材のみが熔解して電極パッド1
6側に堆積する。そして、電極パッド16と金属ロウ材
34との接触部分には両者の合金が形成されて、両者間
の導通が確保される。これにより金属板32から、貫通
孔内周面と陽極接合した金属ロウ材および電極パッド側
に堆積した金属ロウ材を介して、電極パッド16との導
通を確保することができる。
The metal brazing material 34 is melted again by heating during the anodic bonding. However, the metal brazing material anodically bonded to the inner peripheral surface of the through hole 24 does not flow down, and only the metal brazing material located in the central portion of the through hole 24 melts and the electrode pad 1
Deposit on the 6 side. Then, an alloy of the electrode pad 16 and the metal brazing material 34 is formed in a contact portion between the electrode pad 16 and the metal brazing material 34, and electrical continuity between the both is secured. As a result, it is possible to secure electrical continuity with the electrode pad 16 from the metal plate 32 via the metal brazing material anodically bonded to the inner peripheral surface of the through hole and the metal brazing material deposited on the electrode pad side.

【0031】そして、図5(2)に示すように全体を反
転させれば、第1実施形態に係る弾性表面波装置が完成
する(ステップ96)。上記のように構成した第1実施
形態に係る弾性表面波装置を、上記の方法に従って製造
することにより、SAW伝搬面を気密に保持することが
できる。この点、特開平8−213874号公報に係る
弾性表面波装置では、貫通孔形成部分においてTi膜お
よびCu膜のみで気密性を確保するほかなく、気密信頼
性の確保が困難であった。しかし、第1実施形態に係る
弾性表面波装置は、外部電極としての金属板をガラス基
板に陽極接合した構成とした。陽極接合により金属板と
ガラス基板との密着性を確保できるので、貫通孔形成部
分における気密信頼性を確保することができる。
Then, as shown in FIG. 5 (2), the entire surface is inverted to complete the surface acoustic wave device according to the first embodiment (step 96). The SAW propagation surface can be kept airtight by manufacturing the surface acoustic wave device according to the first embodiment configured as described above according to the above method. In this respect, in the surface acoustic wave device according to Japanese Patent Application Laid-Open No. 8-213874, it is difficult to secure the airtightness in the through hole formation portion only by securing the airtightness by the Ti film and the Cu film. However, the surface acoustic wave device according to the first embodiment has a configuration in which a metal plate as an external electrode is anodically bonded to a glass substrate. Since the adhesion between the metal plate and the glass substrate can be secured by the anodic bonding, the airtightness reliability in the through hole forming portion can be secured.

【0032】また、第1実施形態に係る弾性表面波装置
では、外部電極としておよび電極パッドとの導通手段と
してTi膜およびCu膜を形成する必要がないので、2
回の真空プロセスは不要である。従って設備コストおよ
び製造コストを削減することができる。さらに、第1実
施形態に係る弾性表面波装置では、外部電極として金属
板を使用するので、Ti膜およびCu膜に比べて高い機
械的強度が確保できる。
Further, in the surface acoustic wave device according to the first embodiment, since it is not necessary to form the Ti film and the Cu film as the external electrodes and as the means for connecting with the electrode pad,
No vacuum process is required. Therefore, the equipment cost and the manufacturing cost can be reduced. Further, in the surface acoustic wave device according to the first embodiment, since the metal plate is used as the external electrode, higher mechanical strength can be secured as compared with the Ti film and the Cu film.

【0033】一方、第1実施形態に係る弾性表面波装置
の製造方法では、加熱して金属ロウ材を熔解させつつ金
属板とガラス基板とを陽極接合し、加熱して金属ロウ材
を熔解させつつ封止用電極とガラス基板とを陽極接合す
る構成とした。加熱して金属ロウ材を熔解させることに
より、金属ロウ材と金属板および電極パッドとの接触部
分に両者の合金が形成されて、両者間の導通を確保する
ことができる。よってTi膜およびCu膜を形成する必
要がなく、設備コストおよび製造コストを削減すること
ができる。また、金属ロウ材を熔解するための加熱と、
陽極接合に必要な加熱とを同時に行うことにより、製造
コストを削減することができる。
On the other hand, in the method of manufacturing a surface acoustic wave device according to the first embodiment, the metal plate and the glass substrate are anodically bonded while heating to melt the metal brazing material, and the metal brazing material is melted by heating. Meanwhile, the sealing electrode and the glass substrate are anodically bonded. By heating and melting the metal brazing material, an alloy of the metal brazing material and the metal plate and the electrode pad is formed in the contact portion, so that electrical continuity between the both can be secured. Therefore, it is not necessary to form the Ti film and the Cu film, and the equipment cost and the manufacturing cost can be reduced. Also, heating for melting the metal brazing material,
By simultaneously performing the heating required for anodic bonding, the manufacturing cost can be reduced.

【0034】また、ガラス基板の下方に金属板を配置し
て陽極接合した後、ガラス基板を上下反転させガラス基
板の下方に圧電基板を配置して封止用電極を陽極接合す
る構成とした。まずガラス基板の下方に金属板を配置し
て陽極接合することにより、熔解した金属ロウ材が貫通
孔から流出することがない。また、金属板と金属ロウ材
との導通を確保することができる。さらに、金属ロウ材
と貫通孔の内周面とを陽極接合することができる。これ
により、ガラス基板の濡れ性が悪い場合でも金属ロウ材
を固着することができる。一方、ガラス基板を上下反転
させガラス基板の下方に圧電基板を配置して封止用電極
を陽極接合することにより、再度熔解した金属ロウ材が
電極パッド側に堆積し、電極パッドとの導通を確保する
ことができる。以上により、貫通孔に投入した金属ロウ
材の体積が、貫通孔の容積より少ない場合であっても、
貫通孔の容積の半分以上であれば、金属板と電極パッド
との導通を確保することができる。よってTi膜および
Cu膜を形成する必要がなく、設備コストおよび製造コ
ストを削減することができる。
In addition, after the metal plate is arranged below the glass substrate and anodic bonding is performed, the glass substrate is turned upside down and the piezoelectric substrate is arranged below the glass substrate to anodic bond the sealing electrode. First, by disposing the metal plate below the glass substrate and performing anodic bonding, the melted metal brazing material does not flow out from the through hole. Further, it is possible to secure the conduction between the metal plate and the metal brazing material. Further, the metal brazing material and the inner peripheral surface of the through hole can be anodically bonded. As a result, the metal brazing material can be fixed even if the glass substrate has poor wettability. On the other hand, by flipping the glass substrate upside down and arranging the piezoelectric substrate below the glass substrate and anodically bonding the sealing electrode, the remelted metal brazing material is deposited on the electrode pad side and conducts with the electrode pad. Can be secured. From the above, even when the volume of the metal brazing material charged into the through hole is smaller than the volume of the through hole,
If the volume of the through hole is at least half, the electrical continuity between the metal plate and the electrode pad can be ensured. Therefore, it is not necessary to form the Ti film and the Cu film, and the equipment cost and the manufacturing cost can be reduced.

【0035】また、貫通孔は金属板側開口部の寸法を電
極パッド側開口部の寸法より大きく形成し、金属ロウ材
原料は貫通孔の金属板側開口部の寸法より小さくなおか
つ電極パッド側開口部の寸法より大きく形成し、貫通孔
の金属板側開口部を上にして貫通孔に金属ロウ材原料を
投入する構成とした。これにより、貫通孔の金属板側開
口部から投入した金属ロウ材は、電極パッド側開口部か
ら落下することなく、貫通孔の内部に留まることにな
る。また、金属板を配置することにより金属ロウ材を封
入する構成とした。これにより、製造工程でガラス基板
を移動させた場合でも、金属ロウ材が貫通孔から流出す
ることがない。よって製造工程での製品の取り扱いが容
易となり製造コストを削減することができる。
Further, the through hole is formed such that the size of the opening on the metal plate side is larger than the size of the opening on the electrode pad side, and the raw material of the metal brazing material is smaller than the size of the opening on the metal plate side of the through hole and the opening on the electrode pad side. The metal brazing material raw material is introduced into the through hole with the through hole having a metal plate side opening facing upward. As a result, the metal brazing material introduced from the opening on the metal plate side of the through hole remains inside the through hole without dropping from the opening on the electrode pad side. Further, a metal brazing material is enclosed by disposing a metal plate. Thereby, even when the glass substrate is moved in the manufacturing process, the metal brazing material does not flow out from the through hole. Therefore, the product can be easily handled in the manufacturing process, and the manufacturing cost can be reduced.

【0036】次に、第2実施形態について説明する。図
6に第2実施形態に係る弾性表面波装置の製造方法の説
明図を示す。第2実施形態に係る弾性表面波装置の製造
方法は、第1実施形態に係る弾性表面波装置を、同時に
複数個製造する方法であって、圧電基板110における
複数のSAW伝搬面にそれぞれIDT電極およびこのI
DT電極に通電する電極パッドを形成し、各SAW伝搬
面の周縁部にそれぞれ封止用電極118を形成するとと
もに、全ての封止用電極118に通電可能な封止用電極
パッド119(図8参照)を形成し、各SAW伝搬面を
それぞれ気密に保持するガラス基板120を一体形成
し、各電極パッドとガラス基板120を挟んで反対側の
外部電極形成位置とを連通する複数の貫通孔をガラス基
板120に形成し、各貫通孔に導電性材料を挿入し、各
外部電極形成位置に金属板を配置可能な金属基板132
を一体形成し、金属基板132とガラス基板120とを
陽極接合し、さらに各封止用電極118とガラス基板1
20とを陽極接合した後、各弾性表面波装置に切断する
構成とした。
Next, the second embodiment will be described. FIG. 6 shows an explanatory view of the method for manufacturing the surface acoustic wave device according to the second embodiment. The method of manufacturing the surface acoustic wave device according to the second embodiment is a method of manufacturing a plurality of surface acoustic wave devices according to the first embodiment at the same time, and the IDT electrodes are respectively formed on the plurality of SAW propagation surfaces of the piezoelectric substrate 110. And this I
Electrode pads for energizing the DT electrodes are formed, encapsulating electrodes 118 are formed on the peripheral portions of each SAW propagation surface, and encapsulating electrode pads 119 capable of energizing all of the encapsulating electrodes 118 (FIG. 8). Glass substrate 120 for holding each SAW propagation surface in an airtight manner integrally with each other, and forming a plurality of through holes for communicating each electrode pad with the external electrode forming position on the opposite side with the glass substrate 120 interposed therebetween. A metal substrate 132 which is formed on the glass substrate 120, a conductive material is inserted into each through hole, and a metal plate can be arranged at each external electrode formation position.
Are integrally formed, the metal substrate 132 and the glass substrate 120 are anodically bonded, and further, each sealing electrode 118 and the glass substrate 1 are formed.
After anodic bonding 20 and 20, the surface acoustic wave device is cut.

【0037】図6(1)に示すように、第2実施形態に
おけるガラス基板120は、弾性表面波装置複数個分の
大きさに一体的に形成する。そのガラス基板120に弾
性表面波装置1個分の形成領域120aを複数設定し、
全領域に対して同時に第1実施形態と同じキャビティお
よび貫通孔を形成する。なお以下の各工程でも、全領域
に対して同時に第1実施形態と同じ作業を行う。
As shown in FIG. 6A, the glass substrate 120 according to the second embodiment is integrally formed to have the size of a plurality of surface acoustic wave devices. A plurality of formation regions 120a for one surface acoustic wave device are set on the glass substrate 120,
The same cavities and through holes as in the first embodiment are simultaneously formed in all regions. In each of the following steps, the same work as in the first embodiment is performed on all areas at the same time.

【0038】次に、各貫通孔に粒状の金属ロウ材を投入
し、ガラス基板120の外部電極形成位置に金属板を配
置可能な金属基板132を一体的に形成し、金属基板1
32とガラス基板120とを陽極接合する。図7に第2
実施形態における金属基板の説明図を示す。同図(1)
は金属基板の平面図の一部であり、同図(2)は弾性表
面波装置1個分の外部電極の平面図である。図7(1)
に示すように、金属基板132もガラス基板120と同
様に、弾性表面波装置複数個分の大きさに形成し、弾性
表面波装置1個分の形成領域132aを複数設定する。
このように、金属基板132を一体的に形成することに
より、ガラス基板120上に簡単に配置できるととも
に、簡単に電圧を印加して陽極接合することができる。
Next, a granular metal brazing material is introduced into each through hole to integrally form a metal substrate 132 on which a metal plate can be arranged at the external electrode forming position of the glass substrate 120.
32 and the glass substrate 120 are anodically bonded. Second in FIG.
The explanatory view of the metal substrate in an embodiment is shown. Same figure (1)
Is a part of a plan view of a metal substrate, and FIG. 2B is a plan view of an external electrode for one surface acoustic wave device. Figure 7 (1)
Similarly to the glass substrate 120, the metal substrate 132 is formed to have a size corresponding to a plurality of surface acoustic wave devices, and a plurality of formation regions 132a for one surface acoustic wave device are set.
Thus, by integrally forming the metal substrate 132, the metal substrate 132 can be easily arranged on the glass substrate 120, and a voltage can be easily applied to perform anodic bonding.

【0039】なお図7(2)に示すように、弾性表面波
装置の外部電極は、正極側と負極側とに分離して形成す
る必要がある。そこで図7(1)に示すように、各弾性
表面波装置の形成領域132aには、当該領域を分断す
る電極分離穴133を形成する。ここで、隣接する電極
分離穴133が相互に干渉しないように各電極分離穴1
33を形成すれば、金属基板132の剛性が高くなって
取り扱いが容易になり、また弾性表面波装置における外
部電極の位置精度を向上することができる。
As shown in FIG. 7B, the external electrode of the surface acoustic wave device needs to be formed separately on the positive electrode side and the negative electrode side. Therefore, as shown in FIG. 7A, an electrode separation hole 133 that divides the surface acoustic wave device forming region 132a is formed in the forming region 132a. Here, the electrode separation holes 1 are arranged so that the adjacent electrode separation holes 133 do not interfere with each other.
When 33 is formed, the rigidity of the metal substrate 132 is increased, the handling is facilitated, and the positional accuracy of the external electrodes in the surface acoustic wave device can be improved.

【0040】次に、図6(2)に示すように、圧電基板
110に形成した封止用電極118とガラス基板120
とを陽極接合する。圧電基板110もガラス基板120
と同様に、弾性表面波装置複数個分の大きさに形成し、
弾性表面波装置1個分の形成領域110aを複数設定す
る。そして各弾性表面波装置の形成領域110aには、
IDT電極および電極パッドを形成するとともに、これ
を取り囲むように封止用電極118を形成する。図8に
第2実施形態における封止用電極の説明図を示す。封止
用電極118は、各弾性表面波装置の形成領域110a
の境界線に沿って格子状に形成する。なお、各形成領域
110aの境界線をまたぐように封止用電極118を形
成することにより、後に境界線で切断する際にダイシン
グソーが封止用電極118を破壊することがなくなる。
Next, as shown in FIG. 6B, the sealing electrode 118 formed on the piezoelectric substrate 110 and the glass substrate 120.
And anodic bonding. The piezoelectric substrate 110 is also the glass substrate 120.
Similarly, the surface acoustic wave device is formed into the size of a plurality of devices,
A plurality of formation regions 110a for one surface acoustic wave device are set. Then, in the formation region 110a of each surface acoustic wave device,
An IDT electrode and an electrode pad are formed, and a sealing electrode 118 is formed so as to surround the IDT electrode and the electrode pad. FIG. 8 shows an explanatory view of the sealing electrode in the second embodiment. The sealing electrode 118 is provided in the formation region 110a of each surface acoustic wave device.
It is formed in a grid shape along the boundary line of. By forming the sealing electrode 118 so as to straddle the boundary line of each formation region 110a, the dicing saw does not break the sealing electrode 118 when cutting at the boundary line later.

【0041】一方、格子状に連続形成した封止用電極1
18の端部には封止用電極パッド119が接続され、封
止用電極118全体への通電が可能とされている。よっ
て、この封止用電極パッド119と上述した金属基板1
32との間に電圧を印加することにより、封止用電極1
18とガラス基板112とを陽極接合することができ
る。
On the other hand, the sealing electrode 1 continuously formed in a grid pattern.
A sealing electrode pad 119 is connected to the end portion of 18 so that the entire sealing electrode 118 can be energized. Therefore, this sealing electrode pad 119 and the above-described metal substrate 1
By applying a voltage between 32 and 32, the sealing electrode 1
18 and the glass substrate 112 can be anodically bonded.

【0042】最後に、各形成領域の境界線で切断し、図
6(3)に示すような1個ずつの弾性表面波装置に分離
する。上記のように構成した第2実施形態に係る弾性表
面波装置の製造方法により、同時に複数個の弾性表面波
装置を製造することができるので、製造コストの削減が
可能となる。
Finally, cutting is performed at the boundary line of each formation region, and each surface acoustic wave device is separated as shown in FIG. 6 (3). By the method of manufacturing a surface acoustic wave device according to the second embodiment configured as described above, a plurality of surface acoustic wave devices can be manufactured at the same time, so that the manufacturing cost can be reduced.

【0043】[0043]

【発明の効果】圧電基板のSAW伝搬面にIDT電極お
よびこのIDT電極に通電する電極パッドを形成し、前
記SAW伝搬面の周縁部に封止用電極を形成し、前記S
AW伝搬面を気密に保持するキャップ部材を形成し、前
記電極パッドと前記キャップ部材を挟んで反対側の外部
電極形成位置とを連通する貫通孔を前記キャップ部材に
形成し、前記貫通孔に導電性材料を挿入し、外部電極と
しての金属板を前記外部電極形成位置に配置して前記キ
ャップ部材と陽極接合し、さらに前記封止用電極と前記
キャップ部材とを陽極接合する構成としたので、気密信
頼性の確保が可能となり、コスト削減が可能となり、ま
た機械的強度に優れた弾性表面波装置を提供することが
できる。
EFFECTS OF THE INVENTION An IDT electrode and an electrode pad for energizing the IDT electrode are formed on the SAW propagation surface of a piezoelectric substrate, and a sealing electrode is formed on the peripheral portion of the SAW propagation surface.
A cap member that holds the AW propagation surface airtight is formed, and a through hole that connects the electrode pad and an external electrode formation position on the opposite side with the cap member sandwiched is formed in the cap member, and the through hole is electrically conductive. Since a metallic material is inserted, a metal plate as an external electrode is arranged at the external electrode forming position to be anodically bonded to the cap member, and further, the sealing electrode and the cap member are anodically bonded, Airtight reliability can be ensured, cost can be reduced, and a surface acoustic wave device having excellent mechanical strength can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施形態に係る弾性表面波装置の説明図
であり、(1)はA−A線における側面断面図であり、
(2)はB−B線における底面断面図である。
FIG. 1 is an explanatory view of a surface acoustic wave device according to a first embodiment, (1) is a side sectional view taken along line AA,
(2) is a bottom cross-sectional view taken along the line BB.

【図2】 反射器を形成した弾性表面波装置の、B−B
線相当部分における底面断面図である。
FIG. 2 is a BB of a surface acoustic wave device having a reflector.
It is a bottom face sectional view in a line equivalent part.

【図3】 第1実施形態に係る弾性表面波装置の製造方
法のフローチャートである。
FIG. 3 is a flowchart of a method of manufacturing the surface acoustic wave device according to the first embodiment.

【図4】 第1実施形態に係る弾性表面波装置の製造方
法の第1説明図である。
FIG. 4 is a first explanatory diagram of the method of manufacturing the surface acoustic wave device according to the first embodiment.

【図5】 第1実施形態に係る弾性表面波装置の製造方
法の第2説明図である。
FIG. 5 is a second explanatory view of the method of manufacturing the surface acoustic wave device according to the first embodiment.

【図6】 第2実施形態に係る弾性表面波装置の製造方
法の説明図である。
FIG. 6 is an explanatory diagram of a method of manufacturing the surface acoustic wave device according to the second embodiment.

【図7】 第2実施形態における金属板の説明図であ
り、(1)は平面図の一部であり、(2)は弾性表面波
装置1個分の外部電極の平面図である。
7A and 7B are explanatory views of a metal plate according to a second embodiment, FIG. 7A is a part of a plan view, and FIG. 7B is a plan view of external electrodes for one surface acoustic wave device.

【図8】 第2実施形態における封止用電極の平面図の
一部である。
FIG. 8 is a part of a plan view of a sealing electrode according to a second embodiment.

【図9】 特開平8−213874号公報に係る弾性表
面波装置の側面断面図であり、(1)は側面断面図であ
り、(2)はその一部拡大図である。
FIG. 9 is a side sectional view of a surface acoustic wave device according to Japanese Patent Application Laid-Open No. 8-213874, (1) is a side sectional view, and (2) is a partially enlarged view thereof.

【符号の説明】[Explanation of symbols]

10………圧電基板、12………SAW伝搬面、14…
……IDT電極、15………反射器、15a………短絡
電極、16………電極パッド、18………封止用電極、
20………ガラス基板、24………貫通孔、24a……
…電極パッド側開口部、24b………金属板側開口部、
26………キャビティ、32………金属板、34………
金属ロウ材、34a………気泡、42………マイナス電
極、110………圧電基板、110a………形成領域、
118………封止用電極、119………封止用電極パッ
ド、120………ガラス基板、120a………形成領
域、132………金属基板、132a………形成領域、
133………電極分離穴、212………SAW伝搬面、
216………電極パッド、218………封止用電極、2
20………キャップ部材、224………貫通孔、232
………外部電極、232a………Cu膜、232b……
…Ti膜、236………印刷電極
10 ... Piezoelectric substrate, 12 ... SAW propagation surface, 14 ...
...... IDT electrode, 15 ... Reflector, 15a ... Short circuit electrode, 16 ... Electrode pad, 18 ... Sealing electrode,
20 ... Glass substrate, 24 ... Through hole, 24a ...
… Electrode pad side opening, 24b ……… Metal plate side opening,
26 ... Cavity, 32 ... Metal plate, 34 ...
Metal brazing material, 34a, ... Bubbles, 42, ... Negative electrode, 110, ... Piezoelectric substrate, 110a ,.
118 ... Encapsulating electrode, 119 ... Encapsulating electrode pad, 120 ... Glass substrate, 120a ... Forming region, 132 ... Metal substrate, 132a ... Forming region,
133 ... Electrode separation hole, 212 ... SAW propagation surface,
216 ... Electrode pad, 218 ... Sealing electrode, 2
20: Cap member, 224: Through hole, 232
……… External electrodes, 232a ……… Cu film, 232b ……
… Ti film, 236 ………… Printed electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板のSAW伝搬面にIDT電極お
よびこのIDT電極に通電する電極パッドを形成し、前
記SAW伝搬面の周縁部に封止用電極を形成し、 前記SAW伝搬面を気密に保持するキャップ部材を形成
し、前記電極パッドと前記キャップ部材を挟んで反対側
の外部電極形成位置とを連通する貫通孔を前記キャップ
部材に形成し、 前記貫通孔に導電性材料を挿入し、外部電極としての金
属板を前記外部電極形成位置に配置して前記キャップ部
材と陽極接合し、さらに前記封止用電極と前記キャップ
部材とを陽極接合する、 ことを特徴とする弾性表面波装置の製造方法。
1. An IDT electrode and an electrode pad for energizing the IDT electrode are formed on a SAW propagation surface of a piezoelectric substrate, and a sealing electrode is formed on a peripheral portion of the SAW propagation surface to hermetically seal the SAW propagation surface. A cap member for holding is formed, a through hole that connects the electrode pad and the external electrode forming position on the opposite side with the cap member interposed therebetween is formed in the cap member, and a conductive material is inserted into the through hole. A metal plate as an external electrode is arranged at the external electrode forming position to be anodically bonded to the cap member, and further, the sealing electrode and the cap member are anodically bonded to each other. Production method.
【請求項2】 加熱して前記導電性材料を熔解させつつ
前記金属板と前記キャップ部材とを陽極接合し、加熱し
て前記導電性材料を熔解させつつ前記封止用電極と前記
キャップ部材とを陽極接合することを特徴とする請求項
1に記載の弾性表面波装置の製造方法。
2. The metal plate and the cap member are anodically bonded while heating to melt the conductive material, and the sealing electrode and the cap member are heated to melt the conductive material. The method for manufacturing a surface acoustic wave device according to claim 1, further comprising:
【請求項3】 前記キャップ部材の下方に前記金属板を
配置して陽極接合した後、前記キャップ部材を上下反転
させ前記キャップ部材の下方に前記圧電基板を配置して
前記封止用電極を陽極接合することを特徴とする請求項
1または2に記載の弾性表面波装置の製造方法。
3. The metal plate is disposed below the cap member for anodic bonding, and then the cap member is turned upside down to dispose the piezoelectric substrate below the cap member so that the sealing electrode is anodized. The method of manufacturing a surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is bonded.
【請求項4】 前記貫通孔は、前記外部電極形成位置側
開口部の寸法を前記電極パッド側開口部の寸法より大き
く形成し、 前記導電性材料は、前記貫通孔の前記外部電極形成位置
側開口部の寸法より小さく、なおかつ前記電極パッド側
開口部の寸法より大きく形成し、 前記貫通孔の前記外部電極形成位置側開口部を上にして
前記貫通孔に前記導電性材料を投入し、前記外部電極形
成位置に前記金属板を配置することにより前記導電性材
料を封入する、 ことを特徴とする請求項1ないし3のいずれかに記載の
弾性表面波装置の製造方法。
4. The through hole is formed such that the size of the opening on the external electrode formation position side is larger than the size of the opening on the electrode pad side, and the conductive material is formed on the external electrode formation position side of the through hole. It is formed to be smaller than the dimension of the opening and larger than the dimension of the electrode pad side opening, and the conductive material is charged into the through hole with the external electrode forming position side opening of the through hole facing upward, The method for manufacturing a surface acoustic wave device according to claim 1, wherein the conductive material is enclosed by disposing the metal plate at a position where an external electrode is formed.
【請求項5】 複数の弾性表面波装置を同時に製造する
方法であって、 圧電基板における複数のSAW伝搬面にそれぞれIDT
電極およびこのIDT電極に通電する電極パッドを形成
し、前記各SAW伝搬面の周縁部にそれぞれ封止用電極
を形成するとともに、全ての前記封止用電極に通電可能
な封止用電極パッドを形成し、 前記各SAW伝搬面をそれぞれ気密に保持するキャップ
部材を一体形成し、前記各電極パッドと前記キャップ部
材を挟んで反対側の外部電極形成位置とを連通する複数
の貫通孔を前記キャップ部材に形成し、 前記各貫通孔に導電性材料を挿入し、前記各外部電極形
成位置に金属板を配置可能な金属基板を一体形成し、前
記金属基板と前記キャップ部材とを陽極接合し、さらに
前記各封止用電極と前記キャップ部材とを陽極接合した
後、前記各弾性表面波装置に切断する、 ことを特徴とする弾性表面波装置の製造方法。
5. A method for simultaneously manufacturing a plurality of surface acoustic wave devices, wherein IDTs are respectively formed on a plurality of SAW propagation surfaces of a piezoelectric substrate.
An electrode and an electrode pad that conducts electricity to the IDT electrode are formed, and a sealing electrode is formed on each of the peripheral portions of the SAW propagation surfaces, and a sealing electrode pad that can conduct electricity to all the sealing electrodes is formed. And forming a cap member integrally holding each SAW propagation surface in an airtight manner, and forming a plurality of through holes communicating the respective electrode pads with the external electrode forming positions on the opposite side with the cap member interposed therebetween. Forming a member, inserting a conductive material into each of the through holes, integrally forming a metal substrate capable of disposing a metal plate at each external electrode formation position, anodically bonding the metal substrate and the cap member, Further, after the respective sealing electrodes and the cap member are anodically bonded, the surface acoustic wave device is cut into the surface acoustic wave devices.
【請求項6】 圧電基板と、この圧電基板のSAW伝搬
面に形成したIDT電極およびこのIDT電極に導通す
る電極パッドと、前記SAW伝搬面の周縁部に形成した
封止用電極と、 この封止用電極に陽極接合され前記SAW伝搬面を気密
に保持するキャップ部材と、前記電極パッドと前記キャ
ップ部材を挟んで反対側の外部電極形成位置とを連通す
る前記キャップ部材に穿設された貫通孔と、 前記外部電極として前記キャップ部材に陽極接合された
金属板と、前記貫通孔の内部に配置され前記金属板と前
記電極パッドとを導通する導電性材料と、 を有することを特徴とする弾性表面波装置。
6. A piezoelectric substrate, an IDT electrode formed on the SAW propagation surface of the piezoelectric substrate, an electrode pad conducting to the IDT electrode, a sealing electrode formed on the peripheral portion of the SAW propagation surface, and A cap member that is anodically bonded to a stop electrode and that hermetically holds the SAW propagation surface, and a penetrating hole formed in the cap member that communicates the electrode pad and the external electrode formation position on the opposite side with the cap member interposed therebetween. A hole, a metal plate anodically bonded to the cap member as the external electrode, and a conductive material disposed inside the through hole to electrically connect the metal plate and the electrode pad. Surface acoustic wave device.
【請求項7】 前記貫通孔は、前記外部電極形成位置側
開口部の寸法が前記電極パッド側開口部の寸法より大き
く形成されていることを特徴とする請求項6に記載の弾
性表面波装置。
7. The surface acoustic wave device according to claim 6, wherein the through hole is formed such that the size of the opening on the external electrode formation position side is larger than the size of the opening on the electrode pad side. .
【請求項8】 前記貫通孔の内周面上に形成された導電
性膜を有することを特徴とする請求項6または7に記載
の弾性表面波装置。
8. The surface acoustic wave device according to claim 6, further comprising a conductive film formed on an inner peripheral surface of the through hole.
JP2001302315A 2001-09-28 2001-09-28 Manufacturing method of surface acoustic wave device Expired - Fee Related JP3975430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302315A JP3975430B2 (en) 2001-09-28 2001-09-28 Manufacturing method of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302315A JP3975430B2 (en) 2001-09-28 2001-09-28 Manufacturing method of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2003110391A true JP2003110391A (en) 2003-04-11
JP3975430B2 JP3975430B2 (en) 2007-09-12

Family

ID=19122579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302315A Expired - Fee Related JP3975430B2 (en) 2001-09-28 2001-09-28 Manufacturing method of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3975430B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742353A1 (en) * 2005-07-06 2007-01-10 Seiko Epson Corporation Method for manufacturing a piezoelectric vibration device
EP1783902A2 (en) * 2005-10-31 2007-05-09 Samsung Electronics Co., Ltd. Wafer level package for surface acoustic wave device and fabrication method thereof
US7554242B2 (en) 2005-01-17 2009-06-30 Seiko Epson Corporation Surface acoustic wave chip, surface acoustic wave device, and manufacturing method for implementing the same
JP2009164153A (en) * 2007-12-28 2009-07-23 Kyocera Kinseki Corp Through hole filling method for substrate for electronic component
US7622684B2 (en) 2005-11-02 2009-11-24 Panasonic Corporation Electronic component package
US7652214B2 (en) 2005-11-02 2010-01-26 Panasonic Corporation Electronic component package
DE102004042782B4 (en) * 2003-10-27 2010-02-18 Mitsubishi Denki K.K. Driver circuit and semiconductor device
EP2475053A1 (en) * 2009-09-01 2012-07-11 Tohoku University Wiring connection method and functional device
CN109004083A (en) * 2018-08-10 2018-12-14 付伟 Chip-packaging structure and preparation method thereof with single cofferdam and scolding tin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042782B4 (en) * 2003-10-27 2010-02-18 Mitsubishi Denki K.K. Driver circuit and semiconductor device
US7554242B2 (en) 2005-01-17 2009-06-30 Seiko Epson Corporation Surface acoustic wave chip, surface acoustic wave device, and manufacturing method for implementing the same
KR100822096B1 (en) * 2005-07-06 2008-04-15 세이코 엡슨 가부시키가이샤 Method for manufacturing a piezoelectric vibration device
EP1742353A1 (en) * 2005-07-06 2007-01-10 Seiko Epson Corporation Method for manufacturing a piezoelectric vibration device
US7421767B2 (en) 2005-07-06 2008-09-09 Seiko Epson Corporation Method for manufacturing a piezoelectric vibration device
EP1783902A3 (en) * 2005-10-31 2008-01-23 Samsung Electronics Co., Ltd. Wafer level package for surface acoustic wave device and fabrication method thereof
EP1783902A2 (en) * 2005-10-31 2007-05-09 Samsung Electronics Co., Ltd. Wafer level package for surface acoustic wave device and fabrication method thereof
US7755151B2 (en) 2005-10-31 2010-07-13 Samsung Electronics Co., Ltd. Wafer level package for surface acoustic wave device and fabrication method thereof
US7622684B2 (en) 2005-11-02 2009-11-24 Panasonic Corporation Electronic component package
US7652214B2 (en) 2005-11-02 2010-01-26 Panasonic Corporation Electronic component package
JP2009164153A (en) * 2007-12-28 2009-07-23 Kyocera Kinseki Corp Through hole filling method for substrate for electronic component
EP2475053A1 (en) * 2009-09-01 2012-07-11 Tohoku University Wiring connection method and functional device
EP2475053A4 (en) * 2009-09-01 2014-09-17 Univ Tohoku Wiring connection method and functional device
CN109004083A (en) * 2018-08-10 2018-12-14 付伟 Chip-packaging structure and preparation method thereof with single cofferdam and scolding tin

Also Published As

Publication number Publication date
JP3975430B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP5369887B2 (en) Electronic component package, piezoelectric device, and manufacturing method thereof
WO2007023685A1 (en) Piezoelectric device
JP4060972B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP3989663B2 (en) Piezoelectric vibrator and method of manufacturing the piezoelectric vibrator
JP3975430B2 (en) Manufacturing method of surface acoustic wave device
JP3390348B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2001119264A (en) Crystal oscillator
JP5550373B2 (en) Package manufacturing method
EP0665642B1 (en) An electronic component device and its manufacturing method
JP5465002B2 (en) Lid member wafer manufacturing method and lid member manufacturing method
CN112970195B (en) Vibrator and method for manufacturing vibrator
JPH1022773A (en) Vibrator and manufacture therefor
JP5276411B2 (en) Piezoelectric device
JP2009071655A (en) Piezoelectric device and method of manufacturing piezoelectric device
JP2002246493A (en) Package for electronic component and its manufacturing method
JPH0786867A (en) Electronic parts and production thereof
JP2007335468A (en) Hollow sealed element, and its manufacturing method
WO2013128496A1 (en) Crystal resonator, and production method therefor
JP2001110922A (en) Package for electronic component
JPH10284972A (en) In-package support structure for piezoelectric vibrator
JP2015167222A (en) Electronic part
JP2015153834A (en) Electronic component
JP6741434B2 (en) Piezoelectric device manufacturing method
JP2007173973A (en) Manufacturing method of crystal device
JP2006074567A (en) Piezoelectric device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees