JP2007335468A - Hollow sealed element, and its manufacturing method - Google Patents

Hollow sealed element, and its manufacturing method Download PDF

Info

Publication number
JP2007335468A
JP2007335468A JP2006162641A JP2006162641A JP2007335468A JP 2007335468 A JP2007335468 A JP 2007335468A JP 2006162641 A JP2006162641 A JP 2006162641A JP 2006162641 A JP2006162641 A JP 2006162641A JP 2007335468 A JP2007335468 A JP 2007335468A
Authority
JP
Japan
Prior art keywords
sealing element
hollow sealing
internal electrode
electrode
cover base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006162641A
Other languages
Japanese (ja)
Inventor
Kunio Matsumoto
邦夫 松本
Shohei Hata
昌平 秦
Kazushi Watanabe
一志 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP2006162641A priority Critical patent/JP2007335468A/en
Publication of JP2007335468A publication Critical patent/JP2007335468A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow sealed element that is superior in airtight sealing property, as well as its manufacturing method. <P>SOLUTION: A function section 20 having a mechanical movable part, an internal electrode 30 connected to the function section 20, and a sealing section 40 enclosing the function section 20 and the internal electrode 30, are formed on an insulative substrate 10. A cover substrate 50 is placed on the function section 20, the internal electrode 30, and the sealing section 40, thus forming an air gap 70 between the function section 20 and the cover substrate 50. In this case, bonding interfaces are made by anode bonding 80 between the internal electrode 30 and the cover substrate 50, and between the sealing section 40 and the cover substrate 50. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば携帯電話機等の移動通信機器などに使用する表面弾性波(SAW)素子,バルク弾性波(BAW)素子あるいは超小型スイッチを構成するマイクロ電気−機械システム(MEMS)など、機能部に機械的可動部が存在するため、中空封止が必要な素子の小型化パッケージ技術に関する。   The present invention relates to a functional unit such as a surface acoustic wave (SAW) element, a bulk acoustic wave (BAW) element, or a micro electro-mechanical system (MEMS) constituting a micro switch used in a mobile communication device such as a mobile phone. The present invention relates to a downsizing package technology for an element that requires hollow sealing.

中空封止パッケージの代表例として、携帯電話機などに搭載されるSAW素子のパッケージ技術を例にとって説明する。   As a typical example of the hollow sealed package, description will be made by taking as an example the package technology of a SAW element mounted on a mobile phone or the like.

SAW素子は圧電基板上に形成された櫛歯電極部を低損失で振動させる必要があるため、パッケージングの際にデバイス表面を封止樹脂などで直接モールドするようなパッケージングはできない。   Since the SAW element needs to vibrate the comb-teeth electrode portion formed on the piezoelectric substrate with low loss, it is impossible to package the device surface by directly molding the device surface with a sealing resin or the like.

そこで従来は、セラミック筐体にSAW素子チップをフェースアップでダイポンディングし、ワイヤボンディングで電気的に接続した後、金属キャップを被せてシーム溶接または半田封止してパッケージングしていた。最近ではデバイスの小型化を図るため、SAW素子チップをAuバンプまたは半田バンプにより配線基板にフリップチップボンディング(フェースダウンボンディング)し、櫛歯電極部上に空隙を形成しながら樹脂などで封止する小型パッケージデバイスが実用化されている。   Therefore, conventionally, a SAW element chip is die-bonded face-up to a ceramic casing, electrically connected by wire bonding, and then covered with a metal cap and packaged by seam welding or solder sealing. Recently, in order to reduce the size of the device, the SAW element chip is flip-chip bonded (face-down bonding) to the wiring substrate by Au bumps or solder bumps, and sealed with resin or the like while forming a gap on the comb-tooth electrode portion. Small package devices are in practical use.

さらに最近ではデバイスの小型低背化を図るため、櫛歯電極が形成された圧電ウエハ全体を櫛歯電極上に空隙を形成しながらガラス板で封止し、外部電極を形成した後、ダイシングにより個別のデバイスに分離した超小型パッケージデバイスが提案されている。   More recently, in order to reduce the size and height of the device, the entire piezoelectric wafer on which the comb electrodes are formed is sealed with a glass plate while forming gaps on the comb electrodes, and external electrodes are formed, followed by dicing. Ultra-small package devices that have been separated into individual devices have been proposed.

例えば下記の特許文献1に記載されているSAW素子は前述した超小型パッケージデバイスであり、図14にそのデバイスの全体の断面構造を示し、図15に図14の点線部分の拡大断面構造を示す。   For example, the SAW element described in the following Patent Document 1 is the above-described ultra-small package device. FIG. 14 shows an overall cross-sectional structure of the device, and FIG. .

図14に示すように圧電材料からなる素子基板10の上に、櫛歯電極で構成される機能部20と、それと電気的に接続された内部電極30が形成されている。素子基板10の周縁にはAlを主成分とする封止部40が形成され、機能部20の上に空隙部70を形成しながら機能部20を保護するカバー基体50が前記内部電極30から封止部40にわたって載置される。カバー基体50の前記内部電極30と対向する位置には予め貫通孔60が形成され、その貫通孔60を埋める形で外部電極90と印刷電極95を重ねて形成することにより、外部電極90を介して前記内部電極30と印刷電極95とが電気的に接続される。   As shown in FIG. 14, on the element substrate 10 made of a piezoelectric material, a functional unit 20 composed of comb-shaped electrodes and an internal electrode 30 electrically connected thereto are formed. A sealing portion 40 containing Al as a main component is formed on the periphery of the element substrate 10, and a cover base 50 that protects the functional portion 20 while forming the gap portion 70 on the functional portion 20 is sealed from the internal electrode 30. It is placed over the stop 40. A through hole 60 is formed in advance on the cover base 50 at a position facing the internal electrode 30, and the external electrode 90 and the printed electrode 95 are formed so as to fill the through hole 60. Thus, the internal electrode 30 and the printing electrode 95 are electrically connected.

このデバイスの封止は、素子基板10上にカバー基体50を載置し、350℃において前記封止部40に陽極電極を接続し、前記カバー基体50に陰極電極を接続して、500Vを印加することにより陽極接合することにより、封止を完了していた。図15中の80は、封止部40とそれと接触しているカバー基体50の部分との界面に形成された陽極接合部である。
特開1996−213874号公報 特開2003−110391号公報
The device is sealed by placing a cover base 50 on the element substrate 10, connecting an anode electrode to the sealing portion 40 at 350 ° C., connecting a cathode electrode to the cover base 50, and applying 500 V. Thus, sealing was completed by anodic bonding. Reference numeral 80 in FIG. 15 denotes an anodic bonding portion formed at the interface between the sealing portion 40 and the portion of the cover base 50 in contact therewith.
Japanese Patent Laid-Open No. 1996-213874 JP 2003-110391 A

前記図14、図15に示す従来の中空パッケージ構造には次のような問題点がある。
先ず図14に示すように陽極接合されるのは封止部40とカバー基体50の接合界面のみであり、内部電極30とカバー基体50の接合界面は接合されず、未接合部85となっている。
The conventional hollow package structure shown in FIGS. 14 and 15 has the following problems.
First, as shown in FIG. 14, only the bonding interface between the sealing portion 40 and the cover base 50 is anodic bonded, and the bonding interface between the internal electrode 30 and the cover base 50 is not bonded, resulting in an unbonded portion 85. Yes.

内部電極30と外部電極90の接合は、スパッタプロセスによるTi,Cu積層膜で形成される。しかしこの部分の膜厚は約2μmと薄く、接合はリング状封止部35の僅かな部分に限定される。スパッタプロセスは通常高温で行なわれるため、スパッタ後室温に戻す過程で素子基板10とカバー基体50の熱膨張差による内部応力の発生で前記Ti,Cu積層膜からなるリング状封止部35に亀裂が生じ、気密性が損なわれる虞がある。   The junction between the internal electrode 30 and the external electrode 90 is formed by a Ti, Cu laminated film by a sputtering process. However, the thickness of this portion is as thin as about 2 μm, and the bonding is limited to a small portion of the ring-shaped sealing portion 35. Since the sputtering process is usually performed at a high temperature, the ring-shaped sealing portion 35 made of the Ti and Cu laminated film is cracked due to the generation of internal stress due to the difference in thermal expansion between the element substrate 10 and the cover base 50 in the process of returning to room temperature after sputtering. May occur and airtightness may be impaired.

また貫通孔60は窪み状に形成されており、そこにCuを主体とするペースト印刷で印刷電極95を形成する際にボイドが発生し、これによっても気密性が損なわれる虞がある。   In addition, the through hole 60 is formed in a hollow shape, and voids are generated when the printing electrode 95 is formed there by paste printing mainly composed of Cu, which may impair airtightness.

この貫通孔60の気密封止性の確保については、前記特許文献2に次のような解決策が提案されている。この方法は、カバー基体に形成された貫通孔の一方の開口部を予め陽極接合により外部電極となる金属板で封止し、この貫通孔に金属ロウを投入する。櫛歯電極、内部電極および封止部が形成された素子基板に前記カバー基体を載置して、前記封止部とカバー基体を陽極接合するとともに、貫通孔にある金属ロウを溶融し、その金属ロウを介して前記内部電極と外部電極とを電気的に接続する。しかしこの方法では陽極接合を2回行なう必要があり、そのため工程が煩雑になり、作業能率の低下をきたす。   Regarding the securing of the airtight sealability of the through hole 60, the following solution is proposed in Patent Document 2. In this method, one opening of a through hole formed in a cover base is sealed in advance with a metal plate serving as an external electrode by anodic bonding, and a metal braze is introduced into the through hole. The cover base is placed on the element substrate on which the comb electrode, the internal electrode and the sealing portion are formed, and the sealing portion and the cover base are anodically bonded, and the metal brazing in the through hole is melted, The internal electrode and the external electrode are electrically connected through a metal solder. However, in this method, it is necessary to perform anodic bonding twice, which complicates the process and lowers the work efficiency.

次の問題は、櫛歯電極などの機能部20、内部電極30および封止部40が形成された素子基板10と貫通孔60などが形成されたカバー基体50とをウエハサイズで精密に位置合わせをした状態で陽極接合しなければならず、そのため高価な製造装置が必要である。   The next problem is that the element substrate 10 on which the functional part 20 such as the comb-teeth electrode, the internal electrode 30 and the sealing part 40 are formed and the cover base 50 on which the through hole 60 and the like are precisely aligned with the wafer size. In this state, anodic bonding must be performed, and therefore an expensive manufacturing apparatus is required.

さらに図16に示すように広い素子基板10上には多数の素子が整列して形成されており、各素子の封止部40に陽極接合用の電圧を一度に印加するために統合用の陽極接合端子45を形成する必要がある。このとき各素子間には封止部40を電気的に接続するため、例えば封止部40と同じAlを主成分とする導電材料からなる接続部を設ける必要がある。この接続部は必ずダイシングライン140と重なるため、素子基板10と導電材料からなる接続部との硬度の異なる異種材料を同時にダイシングしなければならず、そのためにチッピングが発生したり、ダイシングブレードの耐用寿命が短いなどの問題がある。   Further, as shown in FIG. 16, a large number of elements are formed in alignment on a wide element substrate 10, and an integration anode is used to apply a voltage for anodic bonding to the sealing portion 40 of each element at a time. It is necessary to form the junction terminal 45. At this time, in order to electrically connect the sealing portion 40 between the elements, for example, it is necessary to provide a connection portion made of a conductive material mainly composed of Al, which is the same as the sealing portion 40. Since this connecting portion always overlaps with the dicing line 140, different materials having different hardnesses between the element substrate 10 and the connecting portion made of the conductive material must be diced at the same time. There are problems such as short life.

本発明の目的は、気密封止性の高い中空封止素子およびその製造方法を提供することである。   An object of the present invention is to provide a hollow sealing element having a high hermetic sealing property and a manufacturing method thereof.

前記目的を達成するため本発明の第1の手段は、機械的可動部を有する機能部と、その機能部と電気的に接続された内部電極と、前記機能部ならびに内部電極を取り囲む封止部とを後述する素子基板などの絶縁性基体の上に形成し、
前記機能部、内部電極ならびに封止部の上にカバー基体を載置して、前記機能部とカバー基体の間に空隙部を形成するとともに、前記封止部とカバー基体の接合界面を封止する中空封止素子において、
前記内部電極とカバー基体の接合界面ならびに前記封止部とカバー基体の接合界面をともに陽極接合したことを特徴とするものである。
In order to achieve the above object, the first means of the present invention includes a functional part having a mechanically movable part, an internal electrode electrically connected to the functional part, and a sealing part surrounding the functional part and the internal electrode. Are formed on an insulating substrate such as an element substrate described later,
A cover base is placed on the functional part, the internal electrode, and the sealing part to form a gap between the functional part and the cover base, and the bonding interface between the sealing part and the cover base is sealed. In the hollow sealing element to be
The bonding interface between the internal electrode and the cover substrate and the bonding interface between the sealing portion and the cover substrate are both anodic bonded.

本発明の第2の手段は前記第1の手段において、前記内部電極が前記機能部よりも厚く形成され、前記封止部が前記内部電極とほぼ同じ厚さを有し、前記カバー基体が同じ厚さを有する板材で構成されていることを特徴とするものである。   According to a second means of the present invention, in the first means, the internal electrode is formed thicker than the functional part, the sealing part has substantially the same thickness as the internal electrode, and the cover base is the same It is comprised by the board | plate material which has thickness.

本発明の第3の手段は前記第1または第2の手段において、前記カバー基体がガラスから構成されていることを特徴とするものである。   According to a third means of the present invention, in the first or second means, the cover base is made of glass.

本発明の第4の手段は前記第1ないし第3の手段において、前記内部電極ならびに封止部がアルミニウムを主成分とする材料で構成されていることを特徴とするものである。   According to a fourth means of the present invention, in the first to third means, the internal electrode and the sealing portion are made of a material containing aluminum as a main component.

本発明の第5の手段は前記第1ないし第4の手段において、前記絶縁性基体の電気抵抗率が1×10‐7Ω・cm〜1×10‐13Ω・cmの範囲に規制されていることを特徴とするものである。 According to a fifth means of the present invention, in the first to fourth means, the electrical resistivity of the insulating substrate is restricted to a range of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm. It is characterized by being.

本発明の第6の手段は前記第1の手段において、前記カバー基体の前記内部電極の中央部と対向する位置に電極接続用の貫通孔が形成され、その貫通孔の周辺部分の内部電極との接合界面が陽極接合されていることを特徴とするものである。   According to a sixth means of the present invention, in the first means, a through hole for electrode connection is formed at a position facing the central portion of the internal electrode of the cover base, and the internal electrode in the peripheral portion of the through hole The bonding interface is anodically bonded.

本発明の第7の手段は前記第6の手段において、前記貫通孔に後述するように電気メッキあるいは無電解メッキなどにより外部電極が形成されていることを特徴とするものである。   According to a seventh means of the present invention, in the sixth means, an external electrode is formed in the through hole by electroplating or electroless plating as will be described later.

本発明の第8の手段は前記第1ないし第7の手段において、前記機能部が互いに対向する櫛歯電極対で構成されて、前記中空封止素子が弾性表面波素子であることを特徴とするものである。   According to an eighth means of the present invention, in any of the first to seventh means, the functional part is composed of a pair of comb electrodes facing each other, and the hollow sealing element is a surface acoustic wave element. To do.

本発明の第9の手段は、機械的可動部を有する機能部と、その機能部と電気的に接続された内部電極と、前記機能部ならびに内部電極を取り囲む封止部とを1組にして絶縁性基体の上に所定の隙間をおいて多数組形成する工程と、
各組の内部電極ならびに封止部と接するように前記絶縁性基体上にカバー基体を載置して、各機能部とカバー基体との間に空隙部を形成する工程と、
前記絶縁性基体の下面に陽極電極を当接し、前記カバー基体の上面に陰極電極を当接して、前記陽極電極と陰極電極との間に電圧を印加して、各内部電極とカバー基体との接合界面ならびに各封止部とカバー基体との接合界面を陽極接合する工程と、
前記陽極電極と陰極電極を外して、前記各組の隙間上のダイシングラインに沿ってカバー基体ならびに絶縁性基体をダイシングして個別の中空封止素子に分離する工程とを
含むことを特徴とするものである。
According to a ninth means of the present invention, a functional part having a mechanically movable part, an internal electrode electrically connected to the functional part, and a sealing part surrounding the functional part and the internal electrode are made into one set. Forming a large number of sets on the insulating substrate with a predetermined gap;
A step of placing a cover base on the insulating base so as to be in contact with each set of internal electrode and sealing part, and forming a gap between each functional part and the cover base;
An anode electrode is in contact with the lower surface of the insulating substrate, a cathode electrode is in contact with the upper surface of the cover substrate, a voltage is applied between the anode electrode and the cathode electrode, and each internal electrode and the cover substrate are A step of anodic bonding the bonding interface and the bonding interface between each sealing portion and the cover base;
Removing the anode electrode and the cathode electrode, and dicing the cover base and the insulating base along the dicing lines in the gaps of the respective sets to separate them into individual hollow sealing elements. Is.

本発明の第10の手段は前記第9の手段において、前記内部電極が前記機能部よりも厚く形成され、前記封止部が前記内部電極とほぼ同じ厚さを有し、前記カバー基体が同じ厚さを有する板材で構成されていることを特徴とするものである。   According to a tenth means of the present invention, in the ninth means, the internal electrode is formed thicker than the functional part, the sealing part has substantially the same thickness as the internal electrode, and the cover base is the same. It is comprised by the board | plate material which has thickness.

本発明の第11の手段は前記第9または第10の手段において、前記カバー基体がガラスから構成されていることを特徴とするものである。   The eleventh means of the present invention is the ninth or tenth means characterized in that the cover base is made of glass.

本発明の第12の手段は前記第9ないし第11の手段において、前記内部電極ならびに封止部がアルミニウムを主成分とする材料で構成されていることを特徴とするものである。   A twelfth means of the present invention is characterized in that, in the ninth to eleventh means, the internal electrode and the sealing portion are made of a material mainly composed of aluminum.

本発明の第13の手段は前記第9ないし第12の手段において、前記絶縁性基体の電気抵抗率が1×10‐7Ω・cm〜1×10‐13Ω・cmの範囲に規制されていることを特徴とするものである。 According to a thirteenth means of the present invention, in the ninth to twelfth means, the electrical resistivity of the insulating substrate is restricted to a range of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm. It is characterized by being.

本発明の第14の手段は前記第9の手段において、前記陽極接合工程後に、前記カバー基体の前記内部電極の中央部と対向する位置に電極接続用の貫通孔を形成する工程を含み、
その貫通孔の周辺部分の内部電極との接合界面に陽極接合部が残っていることを特徴とするものである。
The fourteenth means of the present invention includes the step of forming a through hole for electrode connection at a position facing the central portion of the internal electrode of the cover base after the anodic bonding step in the ninth means,
The anodic bonding portion remains at the bonding interface with the internal electrode in the peripheral portion of the through hole.

本発明の第15の手段は前記第14の手段において、前記貫通孔形成工程後に、前記貫通孔に外部電極を形成する工程を含むことを特徴とするものである。   The fifteenth means of the present invention is characterized in that in the fourteenth means, after the through hole forming step, a step of forming an external electrode in the through hole is provided.

本発明の第16の手段は前記第9ないし第15の手段において、前記機能部が互いに対向する櫛歯電極対で構成されて、前記中空封止素子が弾性表面波素子であることを特徴とするものである。   The sixteenth means of the present invention is characterized in that, in the ninth to fifteenth means, the functional part is composed of a pair of comb electrodes facing each other, and the hollow sealing element is a surface acoustic wave element. To do.

本発明は前述のように、内部電極とカバー基体の接合界面ならびに封止部とカバー基体の接合界面をともに陽極接合することにより、気密封止性の高い中空封止素子およびその製造方法を提供することができる。   As described above, the present invention provides a hollow sealing element having a high hermetic sealing property and a method for manufacturing the same by anodic bonding the bonding interface between the internal electrode and the cover substrate and the bonding interface between the sealing portion and the cover substrate. can do.

次に本発明の実施形態を図と共に説明する。図1は、本発明の実施形態に係る中空封止素子の代表例であるSAW素子の製造方法を説明するための工程図である。   Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram for explaining a method of manufacturing a SAW element that is a representative example of a hollow sealing element according to an embodiment of the present invention.

(1)先ず、電気抵抗率の低い素子基板10を準備する。この素子基板10としてタンタル酸リチウム(LiTaO3)のウエハが用いられ、本実施形態では電気抵抗率が1×10‐7Ω・cm〜1×10‐13Ω・cmのウエハ、好ましくは1×10‐8Ω・cm〜1×10‐10Ω・cmのウエハが用いられる。この電気抵抗率は、従来常用されていたLiTaO3の電気抵抗率1×10‐14Ω・cmよりも7桁〜1桁低い。 (1) First, an element substrate 10 having a low electrical resistivity is prepared. A wafer of lithium tantalate (LiTaO 3 ) is used as the element substrate 10. In this embodiment, a wafer having an electrical resistivity of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm, preferably 1 × A wafer of 10 −8 Ω · cm to 1 × 10 −10 Ω · cm is used. This electrical resistivity is 7 to 1 digit lower than that of LiTaO 3 which has been conventionally used, which is 1 × 10 −14 Ω · cm.

このように電気抵抗率の低い圧電材料ウエハは、例えば亜鉛などの金属からなる蒸気中に前記圧電材料ウエハを置いて、そのウエハを当該ウエハのキュリー温度未満の温度(例えばキュリー温度よりも数度低い温度)で所定時間加熱することにより得られる。電気抵抗率を前述の範囲に調整するためには、例えば前記圧電材料ウエハに対する前記金属の量、加熱温度、加熱時間、昇温時間、ガス雰囲気などの諸条件をコントロールすればよい。   In this way, a piezoelectric material wafer having a low electrical resistivity is placed in a vapor made of a metal such as zinc, and the wafer is placed at a temperature lower than the Curie temperature of the wafer (for example, several degrees below the Curie temperature). It is obtained by heating at a low temperature for a predetermined time. In order to adjust the electrical resistivity to the above-described range, for example, various conditions such as the amount of the metal, the heating temperature, the heating time, the heating time, and the gas atmosphere with respect to the piezoelectric material wafer may be controlled.

本発明者らの諸種の実験結果から、素子基板10の電気抵抗率を1×10‐7Ω・cmよりもさらに下げると素子基板10を通るリーク電流が増加し、所望の電気特性が得られなくなり、一方、電気抵抗率が1×10‐13Ω・cmよりも高いと従来の素子基板と同様に十分な陽極接合効果が得られないことが判明し、このような理由から素子基板10の電気抵抗率を1×10‐7Ω・cm〜1×10‐13Ω・cmの範囲に規制した。 From the various experimental results of the present inventors, when the electrical resistivity of the element substrate 10 is further lowered below 1 × 10 −7 Ω · cm, the leakage current passing through the element substrate 10 increases, and desired electrical characteristics can be obtained. On the other hand, when the electrical resistivity is higher than 1 × 10 −13 Ω · cm, it has been found that a sufficient anodic bonding effect cannot be obtained as in the case of the conventional element substrate. The electrical resistivity was regulated in the range of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm.

(2)次に素子基板10上に機能部20と、その機能部20と電気的に接続する内部電極30と、素子外周部においてこれらを取り囲む封止部40とを形成する(1層目)。SAW素子の場合、前記機能部20は互いに対向する櫛歯電極対であり、前記内部電極30は櫛歯電極に繋がるパッド状電極である。SAW素子では機能部20、内部電極30、封止部40はAlを主成分とする材料をスパッタまたは蒸着により成膜し、通常のフォトリソグラフィー工法により同時にパターンニングして形成する。膜厚はSAW素子の特性により調整されるが、通常、150nm〜500nmである。 (2) Next, the functional unit 20, the internal electrode 30 electrically connected to the functional unit 20, and the sealing unit 40 that surrounds the functional unit 20 are formed on the element substrate 10 (first layer). . In the case of a SAW element, the functional unit 20 is a pair of comb electrodes facing each other, and the internal electrode 30 is a pad electrode connected to the comb electrodes. In the SAW element, the functional unit 20, the internal electrode 30, and the sealing unit 40 are formed by sputtering or vapor deposition of a material mainly composed of Al and simultaneously patterning by a normal photolithography method. Although the film thickness is adjusted by the characteristics of the SAW element, it is usually 150 nm to 500 nm.

図3に示すように素子基板10は所定の大きさを有して、その上に前述の機能部20と内部電極30と封止部40を1組にしたものが所定の隙間をおいて整列された状態で多数個形成されている。   As shown in FIG. 3, the element substrate 10 has a predetermined size, and the functional unit 20, the internal electrode 30, and the sealing unit 40 described above are aligned with a predetermined gap therebetween. A large number are formed in the state of being formed.

(3)次に内部電極30と封止部40の上にさらにAlを主成分とする材料をスパッタまたは蒸着し、機能部20よりも1μm〜5μm程度厚くする(2層目)。パターンニングはリフトオフ法により所望の部分だけに材料が残るようにする方法が好適であるが、他のフォトリソグラフィー工法でもよい。図2は、このようにして機能部20、内部電極30ならびに封止部40を形成した素子の斜視図である。 (3) Next, a material mainly composed of Al is sputtered or vapor-deposited on the internal electrode 30 and the sealing portion 40 to make it thicker by about 1 μm to 5 μm than the functional portion 20 (second layer). The patterning is preferably performed by a lift-off method so that the material remains only in a desired portion, but other photolithography methods may be used. FIG. 2 is a perspective view of the element in which the functional part 20, the internal electrode 30, and the sealing part 40 are formed in this manner.

(4)次いで素子基板10上に封止用のガラス製カバー基体50を載置することにより、カバー基体50は各素子の内部電極30ならびに封止部40の上面と接触する。カバー基体50として本実施形態ではソーダガラスを用いて、その厚さは50μm〜300μmが好適で、図3に示す素子基板10とほぼ等しい広さを有している。カバー基体50はほぼ同じ厚さを有する単純な板材であるため、素子基板10上での精密な位置合わせは不要であり、しかもハンドリングが容易である。 (4) Next, by placing the sealing glass cover base 50 on the element substrate 10, the cover base 50 comes into contact with the internal electrode 30 of each element and the upper surface of the sealing portion 40. In this embodiment, soda glass is used as the cover base 50, and its thickness is preferably 50 μm to 300 μm, and has a width approximately equal to that of the element substrate 10 shown in FIG. Since the cover base 50 is a simple plate material having substantially the same thickness, precise alignment on the element substrate 10 is not necessary, and handling is easy.

前述のように内部電極30と封止部40は機能部20よりも厚く形成されているから、内部電極30,封止部40の上にカバー基体50を載置することにより、機能部20とカバー基体50の間に1μm〜5μm程度の空隙部70が形成される。   Since the internal electrode 30 and the sealing portion 40 are formed thicker than the functional portion 20 as described above, by placing the cover base 50 on the internal electrode 30 and the sealing portion 40, A gap 70 of about 1 μm to 5 μm is formed between the cover bases 50.

(5)次に板状のヒーター兼陽極電極110を素子基板10の下面に当接し、板状の陰極電極120をカバー基体50の上面に当接する。両電極110,120は基板10,50の広さと等しいかあるいはそれより若干広くなっている。両電極110,120を電圧印加装置100に接続し、200V〜1200V程度の直流電圧を印加するとともに、ヒーター兼陽極電極110により150℃〜300℃の比較的低い温度に維持して陽極接合を行なう。 (5) Next, the plate-like heater / anode electrode 110 is brought into contact with the lower surface of the element substrate 10, and the plate-like cathode electrode 120 is brought into contact with the upper surface of the cover base 50. Both electrodes 110 and 120 are equal to or slightly wider than the width of the substrates 10 and 50. Both electrodes 110 and 120 are connected to the voltage application device 100, and a DC voltage of about 200V to 1200V is applied, and the heater and anode electrode 110 is maintained at a relatively low temperature of 150 ° C to 300 ° C to perform anodic bonding. .

前述のように電気抵抗率が1×10‐7Ω・cm〜1×10‐13Ω・cmと比較的低い素子基板10が用いられ、しかも素子基板10とカバー基体50の全面に直流電圧が印加されるから、陽極接合は内部電極30とカバー基体50の接合界面ならびに封止部40とカバー基体50の接合界面の両方で同時に行なわれる。 As described above, the element substrate 10 having a relatively low electric resistivity of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm is used, and a DC voltage is applied to the entire surface of the element substrate 10 and the cover base 50. Therefore, anodic bonding is simultaneously performed at both the bonding interface between the internal electrode 30 and the cover base 50 and the bonding interface between the sealing portion 40 and the cover base 50.

前述のように素子基板10側を陽極、ガラス製のカバー基体50側を陰極にして、両者の間に電圧を印加することにより、カバー基体50中のナトリウムイオンなどの陽イオンを陰極側へドリフトさせることで生じた静電引力と、界面での反応により封止度の高いハーメチックシールがなされる。接合温度が150℃より低いと陽イオンのドリフトが進行し難くなり、一方、接合温度が300℃より高いと素子基板10とカバー基体50の熱膨張差による応力で、両者のどちらかまたは両方が割れることがあるから、接合温度は150℃〜300℃の範囲に規制する方がよい。   As described above, with the element substrate 10 side as the anode and the glass cover base 50 side as the cathode, a voltage is applied between the two, thereby drifting cations such as sodium ions in the cover base 50 to the cathode side. A hermetic seal with a high sealing degree is achieved by the electrostatic attraction generated by the reaction and the reaction at the interface. When the bonding temperature is lower than 150 ° C., it is difficult for cation drift to proceed. On the other hand, when the bonding temperature is higher than 300 ° C., either or both of the stresses are caused by the difference in thermal expansion between the element substrate 10 and the cover base 50. Since it may break, it is better to regulate the joining temperature in the range of 150 ° C to 300 ° C.

なお、内部電極30と封止部40はAlを主成分とする材料で構成されており、このAlは接合反応を促進するための軟質で活性な性質を有し、Alのメタライズ効果により接合界面での気密性が優れている。   The internal electrode 30 and the sealing portion 40 are made of a material mainly composed of Al. The Al has a soft and active property for promoting the bonding reaction, and the bonding interface is formed by the metallizing effect of Al. Excellent airtightness.

(6)次に前記ヒーター兼陽極電極110と陰極電極120を外し、通常のフォトリソグラフィ工法を用いて、内部電極30の中央部および素子分割用ダイシングライン140(図3参照)に相当した所を除いてカバー基体50の上面全体をサンドブラスト用レジストで覆い、上部からサンドブラスト130を吹きつけて研削し、カバー基体50の内部電極30の中央部に相当した個所に貫通孔60を形成するとともに、ダイシングライン140(図3参照)に沿って研削して、素子を個別に分離する。 (6) Next, the heater / anode electrode 110 and the cathode electrode 120 are removed, and a portion corresponding to the center portion of the internal electrode 30 and the element dividing dicing line 140 (see FIG. 3) is used by using a normal photolithography method. Except for the above, the entire upper surface of the cover base 50 is covered with a resist for sandblasting, and sandblast 130 is blown from above to be ground to form a through hole 60 at a location corresponding to the central portion of the internal electrode 30 of the cover base 50 and dicing. Grind along line 140 (see FIG. 3) to separate the elements individually.

サンドブラスト加工はガラスのような硬い脆性材料はよく研削でき、Alのような比較的柔らかい金属材料は研磨し難い性質があるため、貫通孔60の穴あけ加工はカバー基体50のみを研削し、その下側にある内部電極30は殆ど削られず、その形状を保ったままである。サンドブラスト加工後、サンドブラスト用レジストを除去する。図4は、このようにして製造された中空封止素子(SAW素子)の斜視図である。   In sandblasting, hard brittle materials such as glass can be ground well, and relatively soft metal materials such as Al are difficult to polish. Therefore, in the drilling of the through holes 60, only the cover base 50 is ground, The internal electrode 30 on the side is hardly shaved and remains in its shape. After sandblasting, the resist for sandblasting is removed. FIG. 4 is a perspective view of the hollow sealing element (SAW element) thus manufactured.

図5はこのようにして製造された中空封止素子(SAW素子)の断面図、図6は図5の点線部分の拡大断面図である。図6に示されているように、内部電極30とカバー基体50(貫通孔60の周辺部分)の接合界面ならびに封止部40とカバー基体50の接合界面に陽極接合部80が夫々形成され、高い気密封止状態を維持した中空封止素子1000が得られる。   FIG. 5 is a cross-sectional view of the hollow sealing element (SAW element) manufactured as described above, and FIG. 6 is an enlarged cross-sectional view of the dotted line portion of FIG. As shown in FIG. 6, anodic bonding portions 80 are formed at the bonding interface between the internal electrode 30 and the cover base 50 (the peripheral portion of the through hole 60) and the bonding interface between the sealing portion 40 and the cover base 50, respectively. A hollow sealing element 1000 that maintains a high hermetic sealing state is obtained.

このように中空封止素子1000は完全な気密封止になっているため、図7に示すように通常の樹脂モールドICのように内部電極リードフレーム2100の上に中空封止素子1000を載置し、貫通孔60から露呈している内部電極30に対してAuワイヤ2300をボンディング接続した後、モールド樹脂2200でトランスファーモールドして中空封止モールド部品2000を得ることができる。   Since the hollow sealing element 1000 is completely hermetically sealed as described above, the hollow sealing element 1000 is placed on the internal electrode lead frame 2100 like a normal resin mold IC as shown in FIG. Then, after the Au wire 2300 is bonded and connected to the internal electrode 30 exposed from the through hole 60, the hollow sealing mold component 2000 can be obtained by transfer molding with the mold resin 2200.

また中空封止素子1000は図8に示すように、Auバンプ2400を介して超音波ボンディングにより直接回路基板4000にフェースダウン実装することも可能である。図中の2500は半田、3000は回路基板4000に搭載された他のチップ部品、4100は回路基板4000上に形成された回路基板電極である。   Further, as shown in FIG. 8, the hollow sealing element 1000 can be directly face-down mounted on the circuit board 4000 through the Au bump 2400 by ultrasonic bonding. In the figure, 2500 is solder, 3000 is another chip component mounted on the circuit board 4000, and 4100 is a circuit board electrode formed on the circuit board 4000.

図9はさらに他の実施形態に係る中空封止素子の断面図、図10は図9の点線部分の拡大断面図である。これらの図に示されているようにカバー基体50の貫通孔60の部分に半田接続が可能な外部電極90を設けて、外部電極付き中空封止素子1100を構成している。このように半田接続が可能な外部電極90付きの中空封止素子1100を用いることにより、実装性を向上することができる。   9 is a cross-sectional view of a hollow sealing element according to still another embodiment, and FIG. 10 is an enlarged cross-sectional view of a dotted line portion of FIG. As shown in these drawings, a hollow sealing element 1100 with an external electrode is configured by providing an external electrode 90 that can be soldered to the through hole 60 of the cover base 50. By using the hollow sealing element 1100 with the external electrode 90 that can be soldered in this way, the mountability can be improved.

図11は、外部電極付き中空封止素子1100の適用例を示す断面図である。同図に示すように、外部電極付き中空封止素子1100は半田2500を介して回路基板4000上に他のチップ部品3000とともに実装されている。この外部電極付き中空封止素子1100を用いることにより、実装性が向上し、組立てコストの低減を図ることができる。   FIG. 11 is a cross-sectional view showing an application example of the hollow sealing element 1100 with external electrodes. As shown in the figure, a hollow sealing element 1100 with external electrodes is mounted on a circuit board 4000 together with other chip components 3000 via solder 2500. By using this hollow sealing element 1100 with an external electrode, the mountability can be improved and the assembly cost can be reduced.

図12と図13は、外部電極の構成例を示す一部拡大断面図である。図12に示す例は電気メッキ工法で外部電極90を形成する例であって、ウエハ状態の中空封止素子1000に対し、全面にTiを50nm、Cuを500nm重ねてスパッタして給電膜91を形成する。次に通常のフォトリソグラフィー工法で外部電極90部に相当する領域以外の領域に、メッキレジストをコートする。   12 and 13 are partially enlarged cross-sectional views showing examples of the configuration of the external electrodes. The example shown in FIG. 12 is an example in which the external electrode 90 is formed by an electroplating method, and a power supply film 91 is formed by sputtering a hollow sealing element 1000 in a wafer state by stacking 50 nm of Ti and 500 nm of Cu on the entire surface. Form. Next, a plating resist is coated on a region other than the region corresponding to the external electrode 90 portion by a normal photolithography method.

次にNiを3μm、さらにSnを主成分とする金属材料で貫通孔60が埋まる厚さ以上に電気メッキして電気メッキ電極92を形成し、その上に半田接続性を確保するためにAuを電気メッキして外部電極90とする。その後前記メッキレジストを除去し、外部電極90が形成されている領域以外の給電膜を選択的に除去して、最後にダイシングにより個々の外部電極付き中空封止素子1100を得る。   Next, an electroplating electrode 92 is formed by electroplating to a thickness that fills the through-hole 60 with a metal material containing Ni as a main component and further containing Sn as a main component, and Au is used to ensure solder connectivity thereon. The external electrode 90 is obtained by electroplating. Thereafter, the plating resist is removed, the power feeding film other than the region where the external electrode 90 is formed is selectively removed, and finally, each hollow sealing element 1100 with external electrodes is obtained by dicing.

図13に示す例は無電解メッキ工法で外部電極90を形成する例であって、ウエハ状態の中空封止素子1000に対し、貫通孔60の底部から露呈しているAlを主成分とする内部電極30をジンケート処理し、Zn置換膜93を形成する。次にこれを無電解Niメッキ液に浸漬し、Niを所望の厚さ付着して無電解メッキ電極94を形成し、その上に半田接続性を確保するためにAuを無電解メッキして外部電極90とする。最後にダイシングにより個々の外部電極付き中空封止素子1100を得る。   The example shown in FIG. 13 is an example in which the external electrode 90 is formed by an electroless plating method, and an internal component mainly composed of Al exposed from the bottom of the through hole 60 with respect to the hollow sealing element 1000 in a wafer state. The electrode 30 is subjected to a zincate process, and a Zn substitution film 93 is formed. Next, this is immersed in an electroless Ni plating solution, Ni is deposited to a desired thickness to form an electroless plating electrode 94, and Au is electrolessly plated thereon to ensure solder connectivity. The electrode 90 is used. Finally, individual hollow sealing elements 1100 with external electrodes are obtained by dicing.

前記実施形態では絶縁性基体としてタンタル酸リチウム(LiTaO3)を用いたが、本発明はこれに限定されるものではなく、例えばニオブ酸リチウム(LiNbO3)など他の材質のものを使用することも可能である。 In the above-described embodiment, lithium tantalate (LiTaO 3 ) is used as the insulating substrate. However, the present invention is not limited to this, and other materials such as lithium niobate (LiNbO 3 ) are used. Is also possible.

前記実施形態では封止部を機能部よりも若干厚く形成して、封止部上にカバー基体を載置することにより、機能部とカバー基体との間に空隙部を形成したが、図14に示すように、機能部と対向する部分に凹部(逃げ部)を設けたカバー基体を封止部上に載置することにより、機能部とカバー基体との間に空隙部を形成することも可能である。   In the embodiment, the sealing portion is formed to be slightly thicker than the functional portion and the cover base is placed on the sealing portion, thereby forming a gap between the functional portion and the cover base. As shown in FIG. 4, a gap portion may be formed between the functional unit and the cover base by placing a cover base having a recess (relief part) on the part facing the functional part on the sealing part. Is possible.

前記実施形態ではSAW素子について説明したが、本発明はこれに限定されるものではなく、機能部に機械的可動部が存在する中空封止素子全般に適用することができる。   Although the SAW element has been described in the above embodiment, the present invention is not limited to this, and can be applied to all hollow sealing elements in which a mechanically movable part is present in the functional part.

本発明の実施形態に係る中空封止素子の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the hollow sealing element which concerns on embodiment of this invention. その中空封止素子の製造過程途中における1素子の斜視図である。It is a perspective view of 1 element in the middle of the manufacture process of the hollow sealing element. その中空封止素子のダイシングラインを示す斜視図である。It is a perspective view which shows the dicing line of the hollow sealing element. 製造が終了した中空封止素子の斜視図である。It is a perspective view of the hollow sealing element which manufacture completed. その中空封止素子の断面図である。It is sectional drawing of the hollow sealing element. 図5の点線で囲んだ部分の拡大断面図である。It is an expanded sectional view of the part enclosed with the dotted line of FIG. その中空封止素子を用いて構成した中空封止モールド部品の断面図である。It is sectional drawing of the hollow sealing mold components comprised using the hollow sealing element. その中空封止素子を回路基板上に搭載した状態を示す断面図である。It is sectional drawing which shows the state which mounted the hollow sealing element on the circuit board. 本発明の実施形態に係る中空封止素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the hollow sealing element which concerns on embodiment of this invention. 図9の点線で囲んだ部分の拡大断面図である。It is an expanded sectional view of the part enclosed with the dotted line of FIG. その外部電極付き中空封止素子を回路基板上に搭載した状態を示す断面図である。It is sectional drawing which shows the state which mounted the hollow sealing element with the external electrode on the circuit board. その外部電極付き中空封止素子の外部電極の構成例を示す一部拡大断面図である。It is a partially expanded sectional view which shows the structural example of the external electrode of the hollow sealing element with the external electrode. その外部電極付き中空封止素子の他の外部電極の構成例を示す一部拡大断面図である。It is a partially expanded sectional view which shows the structural example of the other external electrode of the hollow sealing element with the external electrode. 従来提案された中空封止素子の断面図である。It is sectional drawing of the hollow sealing element proposed conventionally. 図14の点線で囲んだ部分の拡大断面図である。It is an expanded sectional view of the part enclosed with the dotted line of FIG. その中空封止素子のダイシングラインを示す斜視図である。It is a perspective view which shows the dicing line of the hollow sealing element.

符号の説明Explanation of symbols

10:素子基板、20:機能部、30:内部電極、40:封止部、50:カバー基体、60:貫通孔、70:空隙部、80:陽極接合部、90:外部電極、91:スパッタ給電膜、92:電気メッキ電極、93:Zn置換膜、94:無電解メッキ電極、95:印刷電極、100:電圧印加装置、110:ヒーター兼陽極電極、120:陰極電極、130:サンドブラスト、140:ダイシングライン、1000:中空封止素子、1100:外部電極付き中空封止素子、2000:中空封止モールド部品、2100:リードフレーム、2200:モールド樹脂、2300:Auワイヤ、2400:Auバンプ、2500:半田、3000:チップ部品、4000:回路基板、4100:回路基板電極。   10: element substrate, 20: functional part, 30: internal electrode, 40: sealing part, 50: cover base, 60: through-hole, 70: gap part, 80: anodic bonding part, 90: external electrode, 91: sputtering Feed film, 92: electroplating electrode, 93: Zn substitution film, 94: electroless plating electrode, 95: printing electrode, 100: voltage application device, 110: heater / anode electrode, 120: cathode electrode, 130: sandblast, 140 : Dicing line, 1000: Hollow sealing element, 1100: Hollow sealing element with external electrode, 2000: Hollow sealing mold component, 2100: Lead frame, 2200: Mold resin, 2300: Au wire, 2400: Au bump, 2500 : Solder, 3000: Chip component, 4000: Circuit board, 4100: Circuit board electrode.

Claims (16)

機械的可動部を有する機能部と、その機能部と電気的に接続された内部電極と、前記機能部ならびに内部電極を取り囲む封止部とを絶縁性基体の上に形成し、
前記機能部、内部電極ならびに封止部の上にカバー基体を載置して、前記機能部とカバー基体の間に空隙部を形成するとともに、前記封止部とカバー基体の接合界面を封止する中空封止素子において、
前記内部電極とカバー基体の接合界面ならびに前記封止部とカバー基体の接合界面をともに陽極接合したことを特徴とする中空封止素子。
A functional part having a mechanically movable part, an internal electrode electrically connected to the functional part, and a sealing part surrounding the functional part and the internal electrode are formed on an insulating substrate,
A cover base is placed on the functional part, the internal electrode, and the sealing part to form a gap between the functional part and the cover base, and the bonding interface between the sealing part and the cover base is sealed. In the hollow sealing element to be
A hollow sealing element characterized by anodically bonding the bonding interface between the internal electrode and the cover substrate and the bonding interface between the sealing portion and the cover substrate.
請求項1記載の中空封止素子において、前記内部電極が前記機能部よりも厚く形成され、前記封止部が前記内部電極とほぼ同じ厚さを有し、前記カバー基体が同じ厚さを有する板材で構成されていることを特徴とする中空封止素子。 The hollow sealing element according to claim 1, wherein the internal electrode is formed thicker than the functional part, the sealing part has substantially the same thickness as the internal electrode, and the cover base has the same thickness. A hollow sealing element comprising a plate material. 請求項1または2記載の中空封止素子において、前記カバー基体がガラスから構成されていることを特徴とする中空封止素子。 3. The hollow sealing element according to claim 1 or 2, wherein the cover base is made of glass. 請求項1ないし3の何れか1項記載の中空封止素子において、前記内部電極ならびに封止部がアルミニウムを主成分とする材料で構成されていることを特徴とする中空封止素子。 4. The hollow sealing element according to claim 1, wherein the internal electrode and the sealing portion are made of a material mainly composed of aluminum. 請求項1ないし4の何れか1項記載の中空封止素子において、前記絶縁性基体の電気抵抗率が1×10‐7Ω・cm〜1×10‐13Ω・cmの範囲に規制されていることを特徴とする中空封止素子。 5. The hollow sealing element according to claim 1, wherein an electrical resistivity of the insulating substrate is restricted to a range of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm. A hollow sealing element characterized by comprising: 請求項1記載の中空封止素子において、前記カバー基体の前記内部電極の中央部と対向する位置に電極接続用の貫通孔が形成され、その貫通孔の周辺部分の内部電極との接合界面が陽極接合されていることを特徴とする中空封止素子。 2. The hollow sealing element according to claim 1, wherein a through-hole for electrode connection is formed at a position facing the central portion of the internal electrode of the cover base, and a bonding interface with the internal electrode in a peripheral portion of the through-hole is formed. A hollow sealing element which is anodically bonded. 請求項6記載の中空封止素子において、前記貫通孔に外部電極が形成されていることを特徴とする中空封止素子。 The hollow sealing element according to claim 6, wherein an external electrode is formed in the through hole. 請求項1ないし7の何れか1項記載の中空封止素子において、前記機能部が互いに対向する櫛歯電極対で構成されて、前記中空封止素子が弾性表面波素子であることを特徴とする中空封止素子。 The hollow sealing element according to any one of claims 1 to 7, wherein the functional part is composed of a pair of comb electrodes facing each other, and the hollow sealing element is a surface acoustic wave element. A hollow sealing element. 機械的可動部を有する機能部と、その機能部と電気的に接続された内部電極と、前記機能部ならびに内部電極を取り囲む封止部とを1組にして絶縁性基体の上に所定の隙間をおいて多数組形成する工程と、
各組の内部電極ならびに封止部と接するように前記絶縁性基体上にカバー基体を載置して、各機能部とカバー基体との間に空隙部を形成する工程と、
前記絶縁性基体の下面に陽極電極を当接し、前記カバー基体の上面に陰極電極を当接して、前記陽極電極と陰極電極との間に電圧を印加して、各内部電極とカバー基体との接合界面ならびに各封止部とカバー基体との接合界面を陽極接合する工程と、
前記陽極電極と陰極電極を外して、前記各組の隙間上のダイシングラインに沿ってカバー基体ならびに絶縁性基体をダイシングして個別の中空封止素子に分離する工程とを
含むことを特徴とする中空封止素子の製造方法。
A functional unit having a mechanically movable unit, an internal electrode that is electrically connected to the functional unit, and a sealing unit that surrounds the functional unit and the internal electrode as a set and a predetermined gap on the insulating substrate. Forming a large number of sets, and
A step of placing a cover base on the insulating base so as to be in contact with each set of internal electrode and sealing part, and forming a gap between each functional part and the cover base;
An anode electrode is in contact with the lower surface of the insulating substrate, a cathode electrode is in contact with the upper surface of the cover substrate, a voltage is applied between the anode electrode and the cathode electrode, and each internal electrode and the cover substrate are A step of anodic bonding the bonding interface and the bonding interface between each sealing portion and the cover base;
Removing the anode electrode and the cathode electrode, and dicing the cover base and the insulating base along the dicing lines in the gaps of the respective sets to separate them into individual hollow sealing elements. Manufacturing method of hollow sealing element.
請求項9記載の中空封止素子の製造方法において、前記内部電極が前記機能部よりも厚く形成され、前記封止部が前記内部電極とほぼ同じ厚さを有し、前記カバー基体が同じ厚さを有する板材で構成されていることを特徴とする中空封止素子の製造方法。 10. The method of manufacturing a hollow sealing element according to claim 9, wherein the internal electrode is formed thicker than the functional part, the sealing part has substantially the same thickness as the internal electrode, and the cover base has the same thickness. A method for manufacturing a hollow sealing element, characterized by comprising a plate material having a thickness. 請求項9または10記載の中空封止素子の製造方法において、前記カバー基体がガラスから構成されていることを特徴とする中空封止素子の製造方法。 11. The method for manufacturing a hollow sealing element according to claim 9, wherein the cover base is made of glass. 請求項9ないし11の何れか1項記載の中空封止素子の製造方法において、前記内部電極ならびに封止部がアルミニウムを主成分とする材料で構成されていることを特徴とする中空封止素子の製造方法。 12. The method for manufacturing a hollow sealing element according to claim 9, wherein the internal electrode and the sealing portion are made of a material mainly composed of aluminum. Manufacturing method. 請求項9ないし12の何れか1項記載の中空封止素子の製造方法において、前記絶縁性基体の電気抵抗率が1×10‐7Ω・cm〜1×10‐13Ω・cmの範囲に規制されていることを特徴とする中空封止素子の製造方法。 The method for manufacturing a hollow sealing element according to any one of claims 9 to 12, wherein an electrical resistivity of the insulating substrate is in a range of 1 × 10 −7 Ω · cm to 1 × 10 −13 Ω · cm. A method for producing a hollow sealing element, characterized by being regulated. 請求項9記載の中空封止素子の製造方法において、前記陽極接合工程後に、前記カバー基体の前記内部電極の中央部と対向する位置に電極接続用の貫通孔を形成する工程を含み、
その貫通孔の周辺部分の内部電極との接合界面に陽極接合部が残っていることを特徴とする中空封止素子の製造方法。
The method for manufacturing a hollow sealing element according to claim 9, comprising a step of forming a through hole for electrode connection at a position facing the central portion of the internal electrode of the cover base after the anodic bonding step,
A method for manufacturing a hollow sealing element, characterized in that an anodic bonding portion remains at a bonding interface with an internal electrode in a peripheral portion of the through hole.
請求項14記載の中空封止素子の製造方法において、前記貫通孔形成工程後に、前記貫通孔に外部電極を形成する工程を含むことを特徴とする中空封止素子の製造方法。 The method for manufacturing a hollow sealing element according to claim 14, further comprising a step of forming an external electrode in the through hole after the through hole forming step. 請求項9ないし15の何れか1項記載の中空封止素子の製造方法において、前記機能部が互いに対向する櫛歯電極対で構成されて、前記中空封止素子が弾性表面波素子であることを特徴とする中空封止素子の製造方法。 The method for manufacturing a hollow sealing element according to any one of claims 9 to 15, wherein the functional part is composed of a pair of comb electrodes facing each other, and the hollow sealing element is a surface acoustic wave element. A method for producing a hollow sealing element characterized by the above.
JP2006162641A 2006-06-12 2006-06-12 Hollow sealed element, and its manufacturing method Pending JP2007335468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162641A JP2007335468A (en) 2006-06-12 2006-06-12 Hollow sealed element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162641A JP2007335468A (en) 2006-06-12 2006-06-12 Hollow sealed element, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007335468A true JP2007335468A (en) 2007-12-27

Family

ID=38934687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162641A Pending JP2007335468A (en) 2006-06-12 2006-06-12 Hollow sealed element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007335468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528878A (en) * 2008-07-23 2011-11-24 エムエスゲー リトグラス アクチエンゲゼルシャフト Method for forming dielectric layer on electroacoustic component and electroacoustic component
JP2017022473A (en) * 2015-07-08 2017-01-26 セイコーエプソン株式会社 Vibrator and manufacturing method of the same, oscillator, electronic device, and movable body
US10954591B2 (en) 2009-07-23 2021-03-23 Msg Lithoglas Ag Method for producing a structured coating on a substrate, coated substrate, and semi-finished product having a coated substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213874A (en) * 1995-02-03 1996-08-20 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacture
JP2000100980A (en) * 1998-09-21 2000-04-07 Mitsubishi Electric Corp Semiconductor device
JP2007019132A (en) * 2005-07-06 2007-01-25 Seiko Epson Corp Method of manufacturing piezoelectric vibrating device
JP2007194611A (en) * 2005-12-22 2007-08-02 Seiko Instruments Inc Three-dimensional wiring and its manufacturing method, and dynamic quantity sensor and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213874A (en) * 1995-02-03 1996-08-20 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacture
JP2000100980A (en) * 1998-09-21 2000-04-07 Mitsubishi Electric Corp Semiconductor device
JP2007019132A (en) * 2005-07-06 2007-01-25 Seiko Epson Corp Method of manufacturing piezoelectric vibrating device
JP2007194611A (en) * 2005-12-22 2007-08-02 Seiko Instruments Inc Three-dimensional wiring and its manufacturing method, and dynamic quantity sensor and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528878A (en) * 2008-07-23 2011-11-24 エムエスゲー リトグラス アクチエンゲゼルシャフト Method for forming dielectric layer on electroacoustic component and electroacoustic component
US8659206B2 (en) 2008-07-23 2014-02-25 Msg Lithoglas Ag Method for producing a dielectric layer in an electroacoustic component, and electroacoustic component
US10954591B2 (en) 2009-07-23 2021-03-23 Msg Lithoglas Ag Method for producing a structured coating on a substrate, coated substrate, and semi-finished product having a coated substrate
JP2017022473A (en) * 2015-07-08 2017-01-26 セイコーエプソン株式会社 Vibrator and manufacturing method of the same, oscillator, electronic device, and movable body

Similar Documents

Publication Publication Date Title
CN101272135B (en) Quartz crystal device and method for sealing the same
KR101841767B1 (en) Manufacturing method of electronic device package, electronic device package, and oscillator
TWI614207B (en) Electronic device and method of manufacturing electronic device
JP2001094390A (en) Surface acoustic wave device and its manufacturing method
EP2355343A2 (en) Method of manufacturing package and method of manufacturing piezoelectric vibrator
CN101110579B (en) Surface acoustic wave device
JP2004208236A (en) Piezoelectric device, manufacturing method therefor, portable telephone unit utilizing piezoelectric device and electronic equipment utilizing piezoelectric device
JP2007081555A (en) Surface acoustic wave device
TWI538268B (en) A method for connecting a first electronic component to a second component
JP2007335468A (en) Hollow sealed element, and its manufacturing method
JP4268480B2 (en) Electronic component sealing substrate and electronic device using the same
TW201531025A (en) Electronic device and method of manufacturing electronic device
JP4496652B2 (en) Surface acoustic wave device and manufacturing method thereof
JP5026016B2 (en) Method for manufacturing piezoelectric device
JP2012142688A (en) Piezoelectric device and method of manufacturing the same
JP4673670B2 (en) Method for manufacturing piezoelectric device
JP2017130827A (en) Piezoelectric device and method of manufacturing the same
JP2006074567A (en) Piezoelectric device
JP4434870B2 (en) Multi-cavity electronic component sealing substrate, electronic device, and method of manufacturing electronic device
JP4116954B2 (en) Electronic component sealing substrate and electronic device using the same
JPH10163800A (en) Surface acoustic wave device and its production
JP7048128B1 (en) Surface acoustic wave device
JP2008011309A (en) Piezoelectric oscillator
JP2008167123A (en) Method of manufacturing piezoelectric oscillator
JP6629660B2 (en) Ceramic package and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011