JP4496652B2 - Surface acoustic wave device and manufacturing method thereof - Google Patents

Surface acoustic wave device and manufacturing method thereof Download PDF

Info

Publication number
JP4496652B2
JP4496652B2 JP2001029079A JP2001029079A JP4496652B2 JP 4496652 B2 JP4496652 B2 JP 4496652B2 JP 2001029079 A JP2001029079 A JP 2001029079A JP 2001029079 A JP2001029079 A JP 2001029079A JP 4496652 B2 JP4496652 B2 JP 4496652B2
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
wave device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001029079A
Other languages
Japanese (ja)
Other versions
JP2002232260A (en
Inventor
昭彦 南波
慶治 大西
康博 菅谷
克典 守時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001029079A priority Critical patent/JP4496652B2/en
Priority to CNB028030648A priority patent/CN1221076C/en
Priority to EP02711321.6A priority patent/EP1361657B1/en
Priority to PCT/JP2002/000949 priority patent/WO2002063763A1/en
Priority to US10/399,305 priority patent/US6969945B2/en
Publication of JP2002232260A publication Critical patent/JP2002232260A/en
Priority to US11/220,815 priority patent/US7246421B2/en
Application granted granted Critical
Publication of JP4496652B2 publication Critical patent/JP4496652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、携帯電話、キーレスエントリー等の通信機器に搭載される周波数フィルタ、共振器として用いられる弾性表面波装置に関するものである。
【0002】
【従来の技術】
近年、携帯電話に代表される通信機器の小型、軽量化が急速に進んできており、機器に搭載されるフィルタ、共振器等の弾性表面波装置にも装置面積を小さくする、装置の高さを小さくするといった小型化が求められてきている。
【0003】
代表的な従来の弾性表面波装置を図10に示す。図10において、圧電基板901上には、弾性表面波を励振するための櫛型電極902が設けられており、また、櫛型電極902に電気信号を伝送するための電極パッド903が設けられている。電極パッド903はパッケージに設けられた電極パッド905とワイヤー904により個々に接続されている。ワイヤー904は通常、金、アルミニウム等からなる。ここで、パッケージはアルミナ等のセラミック908、909、9108の積層体で構成されており、電極パッド905から内部電極906を通って端子電極907と導通が取られている。また、図示されていないが、圧電基板901はセラミック基板908とシリコーン等の樹脂接着材料により接着されている。また、911は、セラミック、或いは金属等からなる蓋体である。
【0004】
次に、図10の装置よりも小型化が可能となる従来装置を図11に示す。ここでは、圧電基板901、櫛型電極902、電極パッド903で構成される弾性表面波素子をフェイスダウンで実装している。基板912との接続は、導電性のバンプ914で行っている。これらの積層体に対して図11に示すように樹脂913を流し込んで、素子と基板との固定を強化している。
【0005】
【発明が解決しようとする課題】
しかしながら、図10に示した従来例による構造では、ワイヤー904を横方向、高さ方向に配線する必要があり、また、ワイヤーを打つためには、電極パッド903、905の面積を大きくしなければならず、装置の小型化が大きく阻害される。更に、装置の高周波化に伴い、ワイヤー904の持っている寄生インダクタンスが素子特性を劣化させる原因にもなる。また、製造工程でも、ワイヤー904を対応する電極パッドに一本一本打っていかなければならず、低コスト化を阻害する要因となっていた。
【0006】
これに対して図11の従来例では、図10の従来例よりも小型化が可能であるが、この構造では配線基板912自体の厚みが必要となるため、低背化を図ることができない。また、例えば基板912での製造時に、基板912の基材と内部電極906の電極ペーストの硬化収縮の挙動が異なるため、内部電極906が基板の厚み方向に突起あるいは陥没するため、バンプ914と内部電極906の形成位置を図11に示すX方向にずらして設ける必要があった。
【0007】
本発明は上記課題に鑑み、装置の小面積化、低背化といった装置の小型化を実現し、更には、低コスト化、信頼性の確保を可能とする弾性表面波装置の構造、及びその製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の弾性表面波装置は、圧電基板と、前記圧電基板の一主面上に設けられた弾性表面波を励振するための櫛型電極と、前記櫛型電極部に設けられた空間形成部と、前記圧電基板の前記一主面上に設けられた複数の突起電極と、前記圧電基板の前記一主面と対向して設けられた端子電極とからなり、前記突起電極と前記端子電極が直接電気的に接続されており、前記圧電基板と前記端子電極間に絶縁材料が充填されていることを特徴とする。
【0009】
さらに、請求項2に記載の発明は、突起電極の電極材料が、金、すず、銅、鉛、銀の群から選ばれる少なくとも1つ以上の成分を有する金属からなることを特徴とする請求項1記載の弾性表面波装置である。
【0010】
さらに、請求項3に記載の発明は、少なくとも櫛型電極部分に空間形成がなされていることを特徴とする請求項1記載の弾性表面波装置である。
【0011】
さらに、請求項4に記載の発明は、圧電基板の一主面とは反対の主面が樹脂材料で覆われていることを特徴とする請求項1記載の弾性表面波装置である。
【0012】
さらに、請求項5に記載の発明は、端子電極が絶縁材料の面よりも窪んでいることを特徴とする請求項1記載の弾性表面波装置である。
【0013】
また、請求項6に記載の弾性表面波装置の製造方法は、弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、前記圧電基板の前記一主面と端子電極が形成されたセパレータ基板とを対向させ、前記突起電極と前記端子電極とを電気的に導通させる工程と、前記圧電基板と前記セパレータ基板との間に液状の樹脂材料を流し込む工程と、前記樹脂材料を硬化後にセパレータ基板を除去する工程と、を含むことを特徴とする。
【0014】
さらに、請求項7に記載の発明は、弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、端子電極が形成されたセパレータ基板上に液状の樹脂材料を乗せる工程と、前記圧電基板の前記一主面と前記液状の樹脂材料が乗せられた前記セパレータ基板とを対向させ、前記突起電極と前記端子電極とを電気的に導通させる工程と、前記樹脂材料を硬化後に前記セパレータ基板を除去する工程と、を含むことを特徴とする。
【0015】
さらに、請求項8に記載の発明は、弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、前記圧電基板の前記一主面と後工程で除去するセパレータ基板とを対向させ、前記突起電極を前記セパレータ基板に押し当てる工程と、前記圧電基板と前記セパレータ基板との間に液状の樹脂材料を流し込む工程と、前記樹脂材料を硬化後に前記セパレータ基板を除去する工程と、前記突起電極と電気的に導通がとれるように前記樹脂材料の上に端子電極を設ける工程と、を含むことを特徴とする。
【0016】
さらに、請求項9に記載の発明は、弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、後工程で除去するセパレータ基板、或いは前記圧電基板の一主面、の上に液状の樹脂材料を乗せる工程と、前記圧電基板の前記一主面と前記セパレータ基板とを対向させ、前記突起電極を前記セパレータ基板に押し当てる工程と、前記樹脂材料を硬化後にセパレータ基板を除去する工程と、前記突起電極と電気的に導通がとれるように前記樹脂材料の上に端子電極を設ける工程と、を含むことを特徴とする。
【0017】
さらに、請求項10に記載の発明は、突起電極と端子電極とを電気的に導通させる工程が超音波により接続される工程であることを特徴とする請求項6または請求項7に記載の弾性表面波装置の製造方法である。
【0018】
さらに、請求項11に記載の発明は、突起電極、及び端子電極の少なくとも前記突起電極と接触する部分、が金からなり、前記端子電極の金が電解めっきで形成されることを特徴とする請求項10に記載の弾性表面波装置の製造方法である。
【0019】
さらに、請求項12に記載の発明は、突起電極と端子電極とを電気的に導通させる工程が、加熱による金属溶融により接続される工程であることを特徴とする請求項6または請求項7に記載の弾性表面波装置の製造方法である。
【0020】
さらに、請求項13に記載の発明は、端子電極とセパレータ基板が電気的に導通していることを特徴とする請求項6または請求項7に記載の弾性表面波装置の製造方法である。
【0021】
さらに、請求項14に記載の発明は、セパレータ基板が導電体であることを特徴とする請求項8または請求項9に記載の弾性表面波装置の製造方法である。
【0022】
さらに、請求項15に記載の発明は、圧電基板がウエハである請求項6から請求項9のいずれかに記載の弾性表面波装置の製造方法である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0024】
(実施の形態1)
本実施の形態1では、本発明の弾性表面波装置についての一例を、図1〜図3を用いて説明する。図1において、(a)は本発明の弾性表面波装置の断面図、(b)は当該装置の上面図、(c)は圧電基板上の弾性表面波素子を説明する図である。図2は本発明の弾性表面波装置の製造方法を示す図であり、製造工程の各工程を断面図にて示している。図3は端子電極部を形成する方法を説明する図であり、断面図のみを示している。
【0025】
以下に、本実施の形態1における弾性表面波装置の構造を説明する。
【0026】
101は圧電基板であり、例えば、大きさが1.5×1.0mmで、厚みが0.3mmである。但し、ここでいう大きさとは、装置の2次元的な大きさを指し、これは、他の実施の形態、実施例でも同様である。圧電基板としては、例えば、タンタル酸リチウム、ニオブ酸リチウム、水晶、ニオブ酸カリウム、ランガサイト等の単結晶圧電材料や、特定の基板上に酸化亜鉛、窒化アルミニウム等の薄膜材料が設けられた圧電基板材料が用いられるが、本実施の形態では、36°Yカットのタンタル酸リチウムを用いている。
【0027】
ここで、カット角度について図8を用いて説明する。図8(a)は圧電単結晶をウエハに切断する前の状態を示し、X、Y、Z軸が図に示した状態であるとする。ここで、圧電単結晶はC軸方向、つまり、Z軸方向に自発分極している。例えば、36°Yカットタンタル酸リチウムは、図8(b)に示すように、X軸を回転軸としてY軸を36°回転させて新たにY’軸とし、同時にZ軸も36°回転させてZ’軸とした時、Y’軸を法線方向とするように、切断された基板である。
【0028】
102は弾性表面波を励振するための櫛型電極である。図1(c)では、片側3本の電極しか示していないが、実際は、数十本以上の電極対が交互に交差した形状となっている。また、図では、2つの櫛型電極群しか示していないが、フィルタ等では、通常、このような櫛型電極群を複数配置し、素子を構成している。103は圧電基板101上に設けられた電極パッド(図1(a)断面図には図示なし)であり、この上に、突起電極104が設けられる(破線部)。突起電極104は導電性の材料なら良く、金、はんだ、銅、すず、鉛、銀、等が選ばれ、これらの少なくとも1つ以上の成分を有する金属からなるものである。
【0029】
105は端子電極である。この端子電極105は、突起電極104との導通をとり、外部からの電気信号の入出力用の電極である。106は樹脂基材等の絶縁材料であり、圧電基板101と端子電極105の間の空隙を埋めるように設けられている。107は弾性表面波素子の機能領域であり、弾性表面波の伝播する領域、つまり、櫛型電極102の配置された領域を指す。108は空間形成部であり、機能領域107を保護するために設けられ、ドライフィルムレジスト等により形成されている。なお、本実施の形態では圧電基板101と端子電極105の間隔は60μmとなっている。
【0030】
以上のような構造を採用することにより、本実施の形態1による弾性表面波装置によれば、以下のような効果がある。
【0031】
配線基板が必要ないため、従来の装置よりもさらに低背化することが可能である。また、突起電極104と端子電極105を一直線上に、かつ、直接導通させるため、素子の小型化、低背化が可能となる。また、絶縁材料106が薄く、体積も小さくできるため、樹脂基材106の効果収縮や硬化後の熱応力による装置の反りを大幅に軽減でき、半田リフロー等による他の配線基板への実装(以下、2次実装)が容易になり信頼性が向上する。また、同様の理由により、電極パッド103と突起電極104との接続部、および突起電極104と端子電極105との接続部の残留応力を小さくでき、熱衝撃試験、落下試験などに対する耐性が上がる。従って、2次実装後の信頼性が大幅に向上する。
【0032】
また、端子電極105の下面を樹脂基材106の下面と同一面か、或いは、樹脂基材106の下面よりも窪んだ状態とすることで、2次実装後の配線基板と弾性表面波装置の間の空隙を小さくすることができ、更なる、低背化が可能となる。また、2次実装後に、樹脂により配線基板をモールドした場合でも、配線基板と弾性表面波装置の間の空隙が小さいため、吸湿試験後に続けてリフロー試験を行うような試験(以下、吸湿リフロー試験)に対する耐性が上がり、装置の信頼性が向上する。
【0033】
なお、2次実装時の配線基板は、携帯電話等で用いられる通常のプリント基板であっても良いし、特定の素子のみ搭載された基板であっても良い。後者の場合、例えば、セラミックの積層フィルタを構成した素子上の表層に、半導体装置や、本実施の形態の弾性表面波装置等を実装する端子を設けて基板とした場合がある。これは、いわゆる高周波モジュールと呼ばれる装置で、本実施の形態のような小型、低背の可能な装置を実装することで、高周波モジュールの小型、低背化が可能となる。
【0034】
なお、以上説明した弾性表面波装置は本発明の弾性表面波装置の一例であり、本発明の弾性表面波装置は、以下の実施例で説明するように他の様々な形態を含む。
【0035】
(実施の形態2)
本実施の形態2では、本発明の弾性表面波装置の製造方法についての一例を、図2を用いて説明する。
【0036】
圧電基板101上に、スパッタリンング、フォトリソグラフィー等を用いて、櫛型電極102,電極パッド103の電極を形成する(図示なし)。櫛型電極102の電極材料としては、アルミニウムやアルミニウム合金、例えば、銅とアルミニウム、スカンジウムと銅とアルミニウム等の合金が用いられる。次に、図2(a)のように、ドライフィルムレジストをラミネートし、フォトリソグラフィーを用いて、パターニングし、空間形成部108を設ける。次に、図2(b)のように、圧電基板101上に突起電極104を設ける。本実施の形態では、金ワイヤーをボールボンディングし、引きちぎることにより、金バンプを形成し、突起電極とした。この突起電極の形成方法は、半田バンプによる方法、半田、銅などの金属ボールを用いる方法、メッキによる方法などを用いても良い。
【0037】
次に、図2(c)のように、セパレータ部材109上に端子電極105がパターニングされた基板上に、突起電極104を超音波を加えながら押し当てて突起電極104及び端子電極105を電気的に接続する。このセパレータ部材109と端子電極105からなる端子電極の形成された基板の製造方法については後述する。次に、図2(d)のように、アンダーフィル材を圧電基板101及び端子電極105の空隙に流し込み、硬化させて樹脂基材106とし、セパレータ部材109を除去する。したがって、最終的に製造された弾性表面波装置には、端子電極105に対して当該装置の反対側(アンダーフィル材が存在しない側)には基板(セパレータ部材)は存在しない。
【0038】
次に、端子電極の形成された基板の製造方法について、図3を用いて説明する。図3(a)のように、セパレータ部材109上に、電極110が全面に渡って形成される。電極110は金属材料からなり、例えば銅である。また、セパレータ部材109は特に材質には制限はなく、例えば銅である。ここで、電極110とセパレータ部材109の間には、後の工程で分離しやすいように、薄い離型層を設けておく(図示なし)。次に図3(b)のように、基板上にフォトリソグラフィーにより、ドライフィルムレジスト112をパターニングする。
【0039】
次に図3(c)のように、電極110上にメッキにより、電極111を設ける。電極111は後工程で突起電極104との超音波接続を行うため、ニッケル、金の順に積層されたものである。この時のメッキは電解メッキ法を用いて行った。本実施の形態の場合、電極111を電気的にショートしておかなくても良く、工程の簡略化が図れる。また、電解メッキ法により、電極111の金部分の厚みを厚くできるため、超音波接続の際のセパレータ部材109、及び、剥離層を導電性の材料で構成しているため、電極接合強度を大幅に上昇させることが可能となる。なお、この金属の材料、及び、接続方式はこれに限定されるものではない。次に、図3(d)のようにドライフィルム112を除去し、図3(e)のように、電極110をエッチングする。
【0040】
以上の工程により、端子電極の形成された基板が完成する。ここで、電極110のエッチングで、セパレート部材109もエッチング可能としておくと、セパレート部材109も同時にエッチングできる。このエッチング量を制御することで、実施の形態1で説明した端子電極105が樹脂基材106の下面よりも窪んだ状態に制御することが容易に可能となる。また、エッチングしないことで、同一面とすることも容易にできる。これにより、2次実装時の半田による端子間のショートの不具合が軽減される。例えば、本実施の形態では、端子電極105と樹脂基材106の下面の段差が5μm程度になるように制御している。
【0041】
なお、本実施の形態2の製造方法は本発明の製造方法の一例であり、本発明の製造方法は以下の実施例で説明するように他の形態を含む。本発明の製造方法では、圧電基板、櫛形電極、電極パッド、突起電極、絶縁材料、端子電極として、実施の形態1で説明したものを用いることができる。
【0042】
以上説明した実施の形態により、簡易な方法で、小型、低背の弾性表面波装置を製造でき、素子の低コスト化が実現できる。
【0043】
以下に、本発明の実施例を説明する。
【0044】
(実施の形態3)
本発明の弾性表面波装置の実施の形態3を図4を用いて説明する。なお本実施の形態は、既に詳述した実施の形態1(図1)と同様の構成をしており、ここではその相違する点のみについて行うこととする。図4において、113は樹脂材料であり、圧電基板101を覆うようにして設けられている。その他の構成は図1と同じである。これにより、実施の形態1で説明した硬化に加え、落下による耐衝撃性があがる。また、熱容量が増えるため、櫛型電極102の焦電破壊が軽減される。また、圧電基板101を全体にわたって樹脂材料で覆うことになり、装置の反りが軽減され、2次実装時の不良を軽減させる効果がある。
【0045】
(実施の形態4)
本発明の弾性表面波装置の実施の形態4を図5を用いて説明する。本実施の形態も、既に詳述した実施の形態1(図1)と同様の構成をしており、ここではその相違する点のみについて行うこととする。本実施の形態は、図1と図5を対比すると明らかなように、図1の示す端子電極105、樹脂基材106の側部を切り取ったものである。従って、実施の形態1よりも、更に、モジュール(装置)としての小型化が可能となる。また、このような小型化により、装置の反りも実施の形態1よりも更に軽減される。
【0046】
(実施の形態5)
本発明の弾性表面波装置の製造方法について、他の実施の形態を説明する。なお本実施の形態は、既に詳述した実施の形態2(図2)と同様の構成をしており、ここではその相違する点のみについて行うこととする。本実施の形態では、突起電極104は金バンプとし、端子電極105をすず電極とした。このような電極にて、図2(c)で説明した工程において、突起電極104と端子電極105の接続を行う前に、液状の樹脂である絶縁材料106をセパレータ部材109、及び端子電極105の上に流し、その状態で、突起電極104を端子電極105に、超音波を加えながら押し当てる。この時、同時に、温度も加え、超音波接続を完了させる。なお、この時、樹脂の硬化も同時に行った。
【0047】
このように、本実施の形態では、実施の形態2で説明した製造方法とは異なり、狭い空隙に絶縁材料106を流し込む必要がなくなるため、空間形成部108とセパレータ部材109の間隔を非常に小さくすることが容易となり、装置の更なる低背化が可能となる。また、製造のタクトを短くすることができ、装置の低コスト化につながる。
【0048】
(実施の形態6)
本発明の弾性表面波装置の製造方法について、他の実施の形態を図6を用いて説明する。なお本実施の形態は、既に詳述した実施の形態2(図2)と同様の構成をしており、ここではその相違する点のみについて行うこととする。本実施の形態では、図1に示した圧電基板101、櫛型電極102、電極パッド103、突起電極104からなる弾性表面素子を図6のように複数個実装し、セパレータ部材109を除去した後、ダイシングにより個々の装置に切断する。但し、図6はセパレータ部材109を除去した工程後の形状を示しており、破線は、この後でダイシングされる部分である。この方法により、実施の形態4(図5)で説明した弾性表面波装置を容易に製造できる。すなわち、本実施の形態の如く、装置を個別に単体で製造するのではなく、複数個の装置を同時に一括して製造することにより、絶縁材料106の注入工程、セパレータ部材109の除去工程を一括ででき、低コスト化が可能となる、等の優れた効果がある。なお、絶縁材料106に関しては、圧電基板101とセパレータ部材109の空隙に注入する材料と、圧電基板101の全面を覆う材料とを異なるものとしても良い。また、図1のように、圧電基板101を覆わないようにしても良い。なお、図6においては、装置が2つ分のみの例を示したが、実際は複数個の装置が2次元的に配置された形態となる。
【0049】
(実施の形態7)
本発明の弾性表面波装置の製造方法について、他の実施の形態を図7を用いて説明する。本実施の形態では、圧電基板101、櫛型電極102、電極パッド103、突起電極104が形成されたウエハの状態で工程を進めていく点が実施の形態2と異なり、その他については同様である。セパレータ部材109を除去した後、ダイシングにより個々の装置に切断する。また、突起電極104には、半田バンプを用い、セパレータ部材109除去後、リフロー工程において、突起電極104と端子電極105の最終接続を行っている。
【0050】
以上のように本実施の形態の製造方法により、ウエハ単位での一括処理が可能となり、製造コストの大幅な削減を図ることができる。
【0051】
(実施の形態8)
本発明の弾性表面波装置の製造方法について、他の実施の形態を図9を用いて説明する。但し、図9は簡略的に、ウエハ中の一つの装置のみを示した図であり、図7でいう破線部で仕切られた部分のみを示した図である。
【0052】
まず、図9(a)にの如く、実施の形態2(図2)で説明したように、空間形成部108を形成する。次に、図9(b)のように、金からなる突起電極104を設ける。次に、図9(c)のように、セパレータ部材109に突起電極104を押し付ける。この工程により、突起電極104の先端は変形して平坦になる。更に、圧電基板101とセパレータ部材109の間隙に樹脂106を注入し、硬化させる。
【0053】
次に、図9(d)のように、セパレータ部材109を除去する。セパレータ部材109が除去された面には、樹脂106で囲まれた突起電極104の平坦部が露出した状態となる。次に、図9(e)のように、突起電極104の露出部分と少なくとも一部が交差するように端子電極105を形成する。端子電極105はスパッタリングにより形成した。
【0054】
なお、端子電極105は、真空蒸着等の他の成膜方法や、導電性樹脂などを印刷、焼成による形成方法や、メッキによる形成方法を用いても良い。また、それらの工法を複数組み合わせた方法、例えば、スパッタリングで形成した薄膜電極上に、更に、印刷、焼成により厚膜電極を形成する方法を用いても良い。本実施形態によれば、実装時の端子電極105と突起電極104の位置合わせが必要なく、製造工程が容易になり、また、タクトもあがって製造コストを下げることが可能となる。
【0055】
以上説明した製造方法により、突起電極104と端子電極105の接続工程がなくなる。この工程は、通常は、加熱、或いは加圧、或いは超音波印加、或いはそれらの組み合わせにより行うことが多く、素子にダメージを与える場合がある。例えば、圧電基板101のサイズが大きい場合や、絶縁材料106の弾性率が大きい場合に素子にダメージを与えることがあるが、本発明の実施形態の方法によればそのような問題は生じない。
【0056】
なお、以上説明した実施の形態では、ウエハ単位、或いは装置単位、或いは、複数の装置群の製造方法を説明したが、本発明は上述した各々の説明に限定されるものではなく、どのような単位で製造しても構わない。
【0057】
【発明の効果】
以上、詳述した説明より明らかなように、本発明の弾性表面波装置及びその製造方法によれば、従来の装置では困難であった、装置の小面積化、低背化といった装置の一層の小型化を実現し、更には、低コスト化、信頼性の確保を実現することができるものであり、その工業的価値は大なるものがある。
【図面の簡単な説明】
【図1】本発明の弾性表面波装置の実施の形態(実施の形態1)を示す構造図
【図2】本発明の弾性表面波装置の製造方法の実施の形態(実施の形態2)を説明する製造工程図
【図3】本発明の弾性表面波装置の製造方法の実施の形態(実施の形態2)を説明する製造工程図
【図4】本発明の弾性表面波装置の実施の形態(実施の形態3)を示す構造図
【図5】本発明の弾性表面波装置の実施の形態(実施の形態4)を示す構造図
【図6】本発明の弾性表面波装置の製造方法の実施の形態(実施の形態6)を説明するための構造図
【図7】本発明の弾性表面波装置の製造方法の実施の形態(実施の形態7)を説明するための構造図
【図8】圧電単結晶をウエハにする前においてカット角度を説明する図
【図9】本発明の弾性表面波装置の製造方法の実施の形態(実施の形態8)を説明するための製造工程図
【図10】従来の弾性表面波装置を示す構造図
【図11】他の従来の弾性表面波装置を示す構造図
【符号の説明】
101 圧電基板
102 櫛型電極
103 電極パッド
104 突起電極
105 端子電極
106 絶縁材料
107 機能領域
108 空間形成部
109 セパレータ部材
110 電極
111 電極
112 ドライフィルム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device used as a frequency filter and a resonator mounted on a communication device such as a mobile phone and a keyless entry.
[0002]
[Prior art]
In recent years, communication devices typified by mobile phones have been rapidly becoming smaller and lighter, and the surface area of surface acoustic wave devices such as filters and resonators mounted on devices has also been reduced. There is a demand for downsizing such as reducing the size of the device.
[0003]
A typical conventional surface acoustic wave device is shown in FIG. In FIG. 10, a comb-shaped electrode 902 for exciting a surface acoustic wave is provided on a piezoelectric substrate 901, and an electrode pad 903 for transmitting an electric signal to the comb-shaped electrode 902 is provided. Yes. The electrode pads 903 are individually connected to the electrode pads 905 provided on the package by wires 904. The wire 904 is usually made of gold, aluminum or the like. Here, the package is composed of a laminated body of ceramics 908, 909, 9108 such as alumina, and is electrically connected to the terminal electrode 907 from the electrode pad 905 through the internal electrode 906. Although not shown, the piezoelectric substrate 901 is bonded to the ceramic substrate 908 with a resin adhesive material such as silicone. Reference numeral 911 denotes a lid made of ceramic or metal.
[0004]
Next, FIG. 11 shows a conventional apparatus that can be made smaller than the apparatus of FIG. Here, a surface acoustic wave element including a piezoelectric substrate 901, a comb electrode 902, and an electrode pad 903 is mounted face down. Connection to the substrate 912 is made by conductive bumps 914. Resin 913 is poured into these laminates as shown in FIG. 11 to strengthen the fixing between the element and the substrate.
[0005]
[Problems to be solved by the invention]
However, in the structure according to the conventional example shown in FIG. 10, it is necessary to wire the wire 904 in the horizontal direction and the height direction, and in order to hit the wire, the area of the electrode pads 903 and 905 must be increased. In other words, downsizing of the apparatus is greatly hindered. Furthermore, as the frequency of the device increases, the parasitic inductance possessed by the wire 904 also causes the element characteristics to deteriorate. Also in the manufacturing process, the wires 904 must be struck one by one on the corresponding electrode pads, which has been a factor that hinders cost reduction.
[0006]
In contrast, the conventional example of FIG. 11 can be made smaller than the conventional example of FIG. 10, but this structure requires the thickness of the wiring board 912 itself, and thus cannot be reduced in height. Further, for example, when the substrate 912 is manufactured, since the behavior of the curing shrinkage of the base material of the substrate 912 and the electrode paste of the internal electrode 906 is different, the internal electrode 906 protrudes or sinks in the thickness direction of the substrate. The formation position of the electrode 906 must be shifted in the X direction shown in FIG.
[0007]
In view of the above-mentioned problems, the present invention realizes downsizing of a device such as a reduction in area and height of the device, and further, a structure of a surface acoustic wave device capable of reducing cost and ensuring reliability, and its The object is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a surface acoustic wave device according to claim 1 includes a piezoelectric substrate, a comb electrode provided on one main surface of the piezoelectric substrate for exciting a surface acoustic wave, A space forming portion provided in the comb-shaped electrode portion; a plurality of protruding electrodes provided on the one principal surface of the piezoelectric substrate; and a terminal electrode provided to face the one principal surface of the piezoelectric substrate; The protruding electrode and the terminal electrode are directly electrically connected, and an insulating material is filled between the piezoelectric substrate and the terminal electrode.
[0009]
Furthermore, the invention described in claim 2 is characterized in that the electrode material of the protruding electrode is made of a metal having at least one component selected from the group consisting of gold, tin, copper, lead, and silver. The surface acoustic wave device according to claim 1.
[0010]
Further, the invention according to claim 3 is the surface acoustic wave device according to claim 1, wherein a space is formed at least in the comb-shaped electrode portion.
[0011]
Furthermore, the invention according to claim 4 is the surface acoustic wave device according to claim 1, wherein a principal surface opposite to one principal surface of the piezoelectric substrate is covered with a resin material.
[0012]
Further, the invention according to claim 5 is the surface acoustic wave device according to claim 1, wherein the terminal electrode is recessed from the surface of the insulating material.
[0013]
The method for manufacturing a surface acoustic wave device according to claim 6 is characterized in that a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode are mainly used for a piezoelectric substrate. A step of forming on the surface, a step of causing the one main surface of the piezoelectric substrate and the separator substrate on which the terminal electrode is formed to face each other, and electrically connecting the protruding electrode and the terminal electrode; and the piezoelectric substrate And a step of pouring a liquid resin material between the separator substrate and the separator substrate, and a step of removing the separator substrate after the resin material is cured.
[0014]
Furthermore, the invention described in claim 7 is a step of forming a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode on one main surface of the piezoelectric substrate. A step of placing a liquid resin material on the separator substrate on which the terminal electrode is formed, the one main surface of the piezoelectric substrate and the separator substrate on which the liquid resin material is placed, and the protruding electrode And the step of electrically connecting the terminal electrode and the step of removing the separator substrate after the resin material is cured.
[0015]
The invention according to claim 8 is a step of forming a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode on one main surface of the piezoelectric substrate. A liquid resin between the piezoelectric substrate and the separator substrate, the one main surface of the piezoelectric substrate and a separator substrate to be removed in a subsequent process are opposed to each other, and the protruding electrode is pressed against the separator substrate. Including a step of pouring a material, a step of removing the separator substrate after curing the resin material, and a step of providing a terminal electrode on the resin material so as to be electrically connected to the protruding electrode. Features.
[0016]
Furthermore, the invention according to claim 9 is a step of forming a plurality of comb electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb electrodes on one main surface of the piezoelectric substrate. And a step of placing a liquid resin material on a separator substrate to be removed in a later step or one main surface of the piezoelectric substrate, the one main surface of the piezoelectric substrate facing the separator substrate, and the protrusion A step of pressing an electrode against the separator substrate, a step of removing the separator substrate after curing the resin material, a step of providing a terminal electrode on the resin material so as to be electrically connected to the protruding electrode, It is characterized by including.
[0017]
Furthermore, the invention described in claim 10 is characterized in that the step of electrically connecting the protruding electrode and the terminal electrode is a step of connecting by ultrasonic waves. It is a manufacturing method of a surface acoustic wave device.
[0018]
Furthermore, the invention according to claim 11 is characterized in that the protruding electrode and at least a portion of the terminal electrode that contacts the protruding electrode are made of gold, and the gold of the terminal electrode is formed by electrolytic plating. Item 11. A method for manufacturing a surface acoustic wave device according to Item 10.
[0019]
Furthermore, the invention described in claim 12 is characterized in that the step of electrically connecting the protruding electrode and the terminal electrode is a step of connecting by metal melting by heating. It is a manufacturing method of the surface acoustic wave apparatus of description.
[0020]
The invention according to claim 13 is the method for manufacturing the surface acoustic wave device according to claim 6 or 7, wherein the terminal electrode and the separator substrate are electrically connected.
[0021]
The invention according to claim 14 is the method for manufacturing the surface acoustic wave device according to claim 8 or 9, wherein the separator substrate is a conductor.
[0022]
The invention described in claim 15 is the method for manufacturing the surface acoustic wave device according to any one of claims 6 to 9, wherein the piezoelectric substrate is a wafer.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0024]
(Embodiment 1)
In the first embodiment, an example of the surface acoustic wave device of the present invention will be described with reference to FIGS. 1A is a cross-sectional view of a surface acoustic wave device according to the present invention, FIG. 1B is a top view of the device, and FIG. 1C is a diagram illustrating a surface acoustic wave element on a piezoelectric substrate. FIG. 2 is a diagram showing a method for manufacturing a surface acoustic wave device according to the present invention, and shows each step of the manufacturing process in a sectional view. FIG. 3 is a view for explaining a method of forming the terminal electrode portion, and shows only a sectional view.
[0025]
The structure of the surface acoustic wave device according to the first embodiment will be described below.
[0026]
A piezoelectric substrate 101 has a size of 1.5 × 1.0 mm and a thickness of 0.3 mm, for example. However, the size here refers to the two-dimensional size of the apparatus, and this also applies to other embodiments and examples. Examples of the piezoelectric substrate include single crystal piezoelectric materials such as lithium tantalate, lithium niobate, crystal, potassium niobate, and langasite, and piezoelectric materials in which a thin film material such as zinc oxide and aluminum nitride is provided on a specific substrate. Although a substrate material is used, in this embodiment, 36 ° Y-cut lithium tantalate is used.
[0027]
Here, the cut angle will be described with reference to FIG. FIG. 8A shows a state before the piezoelectric single crystal is cut into a wafer, and the X, Y, and Z axes are in the state shown in the drawing. Here, the piezoelectric single crystal is spontaneously polarized in the C-axis direction, that is, the Z-axis direction. For example, as shown in FIG. 8 (b), 36 ° Y-cut lithium tantalate rotates the Y axis 36 ° by using the X axis as a rotation axis to make a new Y ′ axis, and simultaneously rotates the Z axis 36 °. In this case, the substrate is cut so that the Y ′ axis is the normal direction when the Z ′ axis is used.
[0028]
Reference numeral 102 denotes a comb electrode for exciting a surface acoustic wave. In FIG. 1C, only three electrodes on one side are shown, but in actuality, several tens or more electrode pairs are alternately intersected. Although only two comb-shaped electrode groups are shown in the figure, a filter or the like normally includes a plurality of such comb-shaped electrode groups arranged to constitute an element. Reference numeral 103 denotes an electrode pad (not shown in the sectional view of FIG. 1A) provided on the piezoelectric substrate 101, and a protruding electrode 104 is provided thereon (broken line portion). The protruding electrode 104 may be a conductive material, and is selected from gold, solder, copper, tin, lead, silver, and the like, and is made of a metal having at least one of these components.
[0029]
Reference numeral 105 denotes a terminal electrode. The terminal electrode 105 is an electrode for inputting / outputting an electric signal from the outside, which is electrically connected to the protruding electrode 104. An insulating material 106 such as a resin base material is provided so as to fill a gap between the piezoelectric substrate 101 and the terminal electrode 105. Reference numeral 107 denotes a functional region of the surface acoustic wave element, which indicates a region where the surface acoustic wave propagates, that is, a region where the comb electrode 102 is disposed. A space forming unit 108 is provided to protect the functional region 107 and is formed of a dry film resist or the like. In this embodiment, the distance between the piezoelectric substrate 101 and the terminal electrode 105 is 60 μm.
[0030]
By adopting the above structure, the surface acoustic wave device according to the first embodiment has the following effects.
[0031]
Since a wiring board is not required, it is possible to further reduce the height of the conventional device. Further, since the protruding electrode 104 and the terminal electrode 105 are directly connected in a straight line, the element can be reduced in size and height. Further, since the insulating material 106 is thin and the volume can be reduced, the warpage of the device due to the effective shrinkage of the resin base material 106 and the thermal stress after curing can be greatly reduced, and mounting on other wiring boards by solder reflow or the like (hereinafter referred to as “reflow”) Secondary mounting) becomes easy and reliability is improved. For the same reason, the residual stress at the connecting portion between the electrode pad 103 and the protruding electrode 104 and the connecting portion between the protruding electrode 104 and the terminal electrode 105 can be reduced, and the resistance to a thermal shock test, a drop test and the like is improved. Therefore, the reliability after secondary mounting is greatly improved.
[0032]
Further, by making the lower surface of the terminal electrode 105 the same surface as the lower surface of the resin base material 106 or depressed from the lower surface of the resin base material 106, the wiring board after the secondary mounting and the surface acoustic wave device The gap between them can be reduced, and the profile can be further reduced. In addition, even when the wiring board is molded with resin after the secondary mounting, since the gap between the wiring board and the surface acoustic wave device is small, a test for performing a reflow test after the moisture absorption test (hereinafter referred to as a moisture absorption reflow test). ) And the reliability of the device is improved.
[0033]
In addition, the wiring board at the time of secondary mounting may be a normal printed board used in a mobile phone or the like, or a board on which only specific elements are mounted. In the latter case, for example, a substrate on which a semiconductor device or a surface acoustic wave device according to the present embodiment is mounted may be provided on a surface layer on an element constituting a ceramic multilayer filter. This is a device called a so-called high-frequency module. By mounting a small and low-profile device like this embodiment, the high-frequency module can be made small and low-profile.
[0034]
The surface acoustic wave device described above is an example of the surface acoustic wave device of the present invention, and the surface acoustic wave device of the present invention includes various other forms as described in the following embodiments.
[0035]
(Embodiment 2)
In the second embodiment, an example of the method for manufacturing the surface acoustic wave device of the present invention will be described with reference to FIG.
[0036]
The electrodes of the comb electrode 102 and the electrode pad 103 are formed on the piezoelectric substrate 101 using sputtering, photolithography, or the like (not shown). As an electrode material of the comb electrode 102, aluminum or an aluminum alloy, for example, an alloy of copper and aluminum, scandium, copper and aluminum, or the like is used. Next, as shown in FIG. 2A, a dry film resist is laminated and patterned using photolithography to provide a space forming portion 108. Next, as shown in FIG. 2B, the protruding electrode 104 is provided on the piezoelectric substrate 101. In the present embodiment, a gold bump is formed by ball bonding and tearing a gold wire to form a protruding electrode. As a method for forming the protruding electrode, a method using a solder bump, a method using a metal ball such as solder or copper, or a method using plating may be used.
[0037]
Next, as shown in FIG. 2C, the protruding electrode 104 and the terminal electrode 105 are electrically connected by pressing the protruding electrode 104 onto the substrate on which the terminal electrode 105 is patterned on the separator member 109 while applying ultrasonic waves. Connect to. A method of manufacturing the substrate on which the terminal electrode composed of the separator member 109 and the terminal electrode 105 is formed will be described later. Next, as shown in FIG. 2D, an underfill material is poured into the gap between the piezoelectric substrate 101 and the terminal electrode 105 and cured to form a resin base material 106, and the separator member 109 is removed. Therefore, in the finally manufactured surface acoustic wave device, there is no substrate (separator member) on the opposite side of the device with respect to the terminal electrode 105 (the side where no underfill material is present).
[0038]
Next, the manufacturing method of the board | substrate with which the terminal electrode was formed is demonstrated using FIG. As shown in FIG. 3A, the electrode 110 is formed over the entire surface of the separator member 109. The electrode 110 is made of a metal material, for example, copper. The material of the separator member 109 is not particularly limited, and is, for example, copper. Here, a thin release layer is provided between the electrode 110 and the separator member 109 so as to facilitate separation in a later step (not shown). Next, as shown in FIG. 3B, the dry film resist 112 is patterned on the substrate by photolithography.
[0039]
Next, as shown in FIG. 3C, an electrode 111 is provided on the electrode 110 by plating. The electrode 111 is laminated in the order of nickel and gold in order to perform ultrasonic connection with the protruding electrode 104 in a later step. The plating at this time was performed using an electrolytic plating method. In the case of this embodiment, the electrode 111 does not have to be electrically short-circuited, and the process can be simplified. In addition, since the thickness of the gold portion of the electrode 111 can be increased by electrolytic plating, the separator member 109 and the release layer at the time of ultrasonic connection are made of a conductive material. It is possible to raise it. The metal material and connection method are not limited to this. Next, the dry film 112 is removed as shown in FIG. 3D, and the electrode 110 is etched as shown in FIG.
[0040]
Through the above steps, the substrate on which the terminal electrodes are formed is completed. Here, if the separation member 109 can also be etched by etching the electrode 110, the separation member 109 can also be etched simultaneously. By controlling the etching amount, it is possible to easily control the terminal electrode 105 described in Embodiment 1 to be depressed from the lower surface of the resin base material 106. Further, it is possible to easily make the same surface by not etching. As a result, a short circuit between terminals due to solder during secondary mounting is reduced. For example, in this embodiment, control is performed so that the step between the terminal electrode 105 and the lower surface of the resin base material 106 is about 5 μm.
[0041]
In addition, the manufacturing method of this Embodiment 2 is an example of the manufacturing method of this invention, and the manufacturing method of this invention includes another form so that it may demonstrate with a following example. In the manufacturing method of the present invention, the piezoelectric substrate, comb electrode, electrode pad, protruding electrode, insulating material, and terminal electrode described in Embodiment 1 can be used.
[0042]
According to the embodiment described above, a small and low-profile surface acoustic wave device can be manufactured by a simple method, and the cost of the element can be reduced.
[0043]
Examples of the present invention will be described below.
[0044]
(Embodiment 3)
A surface acoustic wave device according to a third embodiment of the present invention will be described with reference to FIG. Note that this embodiment has the same configuration as that of the first embodiment (FIG. 1) already described in detail, and only the differences will be described here. In FIG. 4, reference numeral 113 denotes a resin material, which is provided so as to cover the piezoelectric substrate 101. Other configurations are the same as those in FIG. Thereby, in addition to the hardening demonstrated in Embodiment 1, the impact resistance by dropping increases. Further, since the heat capacity increases, pyroelectric breakdown of the comb electrode 102 is reduced. In addition, since the piezoelectric substrate 101 is entirely covered with a resin material, the warpage of the apparatus is reduced, and there is an effect of reducing defects during secondary mounting.
[0045]
(Embodiment 4)
A surface acoustic wave device according to a fourth embodiment of the present invention will be described with reference to FIG. This embodiment also has the same configuration as that of the first embodiment (FIG. 1) already described in detail, and only the differences will be described here. In this embodiment, as is apparent from the comparison between FIG. 1 and FIG. 5, the side portions of the terminal electrode 105 and the resin base material 106 shown in FIG. 1 are cut out. Therefore, the module (device) can be further reduced in size as compared with the first embodiment. Further, the warpage of the apparatus is further reduced as compared with the first embodiment due to such miniaturization.
[0046]
(Embodiment 5)
Another embodiment of the method for manufacturing a surface acoustic wave device of the present invention will be described. Note that the present embodiment has the same configuration as that of the second embodiment (FIG. 2) already described in detail, and only the differences will be described here. In the present embodiment, the protruding electrode 104 is a gold bump, and the terminal electrode 105 is a tin electrode. With such an electrode, before the protruding electrode 104 and the terminal electrode 105 are connected in the step described with reference to FIG. 2C, the insulating material 106 that is a liquid resin is applied to the separator member 109 and the terminal electrode 105. In this state, the protruding electrode 104 is pressed against the terminal electrode 105 while applying ultrasonic waves. At the same time, the temperature is also applied to complete the ultrasonic connection. At this time, the resin was cured at the same time.
[0047]
Thus, unlike the manufacturing method described in the second embodiment, the present embodiment eliminates the need to pour the insulating material 106 into a narrow gap, so that the space between the space forming portion 108 and the separator member 109 is very small. This makes it possible to reduce the height of the apparatus. Further, the manufacturing tact can be shortened, leading to cost reduction of the apparatus.
[0048]
(Embodiment 6)
Another embodiment of the method for manufacturing a surface acoustic wave device of the present invention will be described with reference to FIG. Note that the present embodiment has the same configuration as that of the second embodiment (FIG. 2) already described in detail, and only the differences will be described here. In the present embodiment, a plurality of elastic surface elements including the piezoelectric substrate 101, the comb electrode 102, the electrode pad 103, and the protruding electrode 104 shown in FIG. 1 are mounted as shown in FIG. 6, and the separator member 109 is removed. Cut into individual devices by dicing. However, FIG. 6 shows the shape after the process of removing the separator member 109, and the broken line is a portion to be diced thereafter. By this method, the surface acoustic wave device described in the fourth embodiment (FIG. 5) can be easily manufactured. That is, as in the present embodiment, the apparatus is not manufactured individually, but a plurality of apparatuses are manufactured at the same time, so that the process of injecting the insulating material 106 and the process of removing the separator member 109 are performed collectively. It has an excellent effect such as being able to reduce the cost. As for the insulating material 106, the material injected into the gap between the piezoelectric substrate 101 and the separator member 109 may be different from the material covering the entire surface of the piezoelectric substrate 101. Further, as shown in FIG. 1, the piezoelectric substrate 101 may not be covered. Although FIG. 6 shows an example in which only two devices are provided, a plurality of devices are actually arranged two-dimensionally.
[0049]
(Embodiment 7)
Another embodiment of the method for manufacturing a surface acoustic wave device of the present invention will be described with reference to FIG. The present embodiment is different from the second embodiment in that the process is performed in the state of the wafer on which the piezoelectric substrate 101, the comb-shaped electrode 102, the electrode pad 103, and the protruding electrode 104 are formed. . After the separator member 109 is removed, it is cut into individual devices by dicing. Also, solder bumps are used for the protruding electrodes 104, and after the separator member 109 is removed, the protruding electrodes 104 and the terminal electrodes 105 are finally connected in a reflow process.
[0050]
As described above, according to the manufacturing method of the present embodiment, batch processing can be performed in units of wafers, and the manufacturing cost can be greatly reduced.
[0051]
(Embodiment 8)
Another embodiment of the method for manufacturing the surface acoustic wave device of the present invention will be described with reference to FIG. However, FIG. 9 is a diagram simply showing only one device in the wafer, and is a diagram showing only a portion partitioned by a broken line portion in FIG.
[0052]
First, as shown in FIG. 9A, the space forming portion 108 is formed as described in the second embodiment (FIG. 2). Next, as shown in FIG. 9B, a protruding electrode 104 made of gold is provided. Next, as shown in FIG. 9C, the protruding electrode 104 is pressed against the separator member 109. By this step, the tip of the protruding electrode 104 is deformed and flattened. Further, the resin 106 is injected into the gap between the piezoelectric substrate 101 and the separator member 109 and cured.
[0053]
Next, as shown in FIG. 9D, the separator member 109 is removed. On the surface from which the separator member 109 has been removed, the flat portion of the protruding electrode 104 surrounded by the resin 106 is exposed. Next, as shown in FIG. 9E, the terminal electrode 105 is formed so that at least a part of the exposed portion of the protruding electrode 104 intersects. The terminal electrode 105 was formed by sputtering.
[0054]
Note that the terminal electrode 105 may be formed by another film formation method such as vacuum deposition, a formation method by printing or baking a conductive resin, or a formation method by plating. Moreover, you may use the method which combined those construction methods, for example, the method of forming a thick film electrode further by printing and baking on the thin film electrode formed by sputtering. According to the present embodiment, it is not necessary to align the terminal electrode 105 and the protruding electrode 104 at the time of mounting, the manufacturing process becomes easy, and the manufacturing cost can be increased and the manufacturing cost can be reduced.
[0055]
With the manufacturing method described above, the connection step between the protruding electrode 104 and the terminal electrode 105 is eliminated. This step is usually performed by heating, pressurizing, applying ultrasonic waves, or a combination thereof, and may damage the element. For example, the element may be damaged when the size of the piezoelectric substrate 101 is large or when the elastic modulus of the insulating material 106 is large, but such a problem does not occur according to the method of the embodiment of the present invention.
[0056]
In the embodiment described above, the method of manufacturing a wafer unit, a device unit, or a plurality of device groups has been described. However, the present invention is not limited to each of the above descriptions, and You may manufacture by a unit.
[0057]
【The invention's effect】
As can be seen from the above detailed description, according to the surface acoustic wave device and the method of manufacturing the same of the present invention, it is difficult for the conventional device to further reduce the area of the device and reduce the height of the device. Miniaturization can be realized, and further, cost reduction and reliability can be ensured, and the industrial value is great.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing an embodiment (Embodiment 1) of a surface acoustic wave device according to the invention.
FIG. 2 is a manufacturing process diagram for explaining an embodiment (Embodiment 2) of a method for manufacturing a surface acoustic wave device according to the present invention;
FIG. 3 is a manufacturing process diagram illustrating an embodiment (Embodiment 2) of a method for manufacturing a surface acoustic wave device according to the present invention.
FIG. 4 is a structural diagram showing an embodiment (Embodiment 3) of a surface acoustic wave device according to the present invention.
FIG. 5 is a structural diagram showing an embodiment (Embodiment 4) of a surface acoustic wave device according to the invention.
FIG. 6 is a structural diagram for explaining an embodiment (Embodiment 6) of a method for manufacturing a surface acoustic wave device according to the present invention;
FIG. 7 is a structural diagram for explaining an embodiment (Embodiment 7) of a method for manufacturing a surface acoustic wave device according to the invention;
FIG. 8 is a diagram for explaining a cut angle before a piezoelectric single crystal is made into a wafer.
FIG. 9 is a manufacturing process diagram for explaining an embodiment (Embodiment 8) of a method for manufacturing a surface acoustic wave device according to the present invention;
FIG. 10 is a structural diagram showing a conventional surface acoustic wave device.
FIG. 11 is a structural diagram showing another conventional surface acoustic wave device.
[Explanation of symbols]
101 Piezoelectric substrate
102 Comb electrode
103 electrode pads
104 Projection electrode
105 terminal electrode
106 Insulating material
107 Functional area
108 Space forming part
109 Separator member
110 electrodes
111 electrodes
112 Dry film

Claims (14)

圧電基板と、前記圧電基板の一主面上に設けられた弾性表面波を励振するための櫛型電極と、前記櫛型電極部に設けられた空間形成部と、前記圧電基板の前記一主面上に設けられた複数の突起電極と、前記圧電基板の前記一主面と対向して設けられた端子電極とからなり、前記突起電極と前記端子電極が直接電気的に接続されており、前記圧電基板と前記端子電極間に絶縁材料が充填されており、前記端子電極が前記絶縁材料の面よりも窪んでいることを特徴とする弾性表面波装置。A piezoelectric substrate; a comb-shaped electrode for exciting a surface acoustic wave provided on one main surface of the piezoelectric substrate; a space forming portion provided in the comb-shaped electrode portion; and the main substrate of the piezoelectric substrate. A plurality of protruding electrodes provided on a surface, and a terminal electrode provided to face the one main surface of the piezoelectric substrate, and the protruding electrodes and the terminal electrodes are directly electrically connected, The surface acoustic wave device is characterized in that an insulating material is filled between the piezoelectric substrate and the terminal electrode, and the terminal electrode is recessed from the surface of the insulating material . 突起電極の電極材料が、金、すず、銅、鉛、銀の群から選ばれる少なくとも1つ以上の成分を有する金属からなることを特徴とする請求項1記載の弾性表面波装置。2. The surface acoustic wave device according to claim 1, wherein the electrode material of the protruding electrode is made of a metal having at least one component selected from the group consisting of gold, tin, copper, lead, and silver. 少なくとも櫛型電極部分に空間形成がなされていることを特徴とする請求項1記載の弾性表面波装置。2. The surface acoustic wave device according to claim 1, wherein a space is formed at least in the comb-shaped electrode portion. 圧電基板の一主面とは反対の主面が樹脂材料で覆われていることを特徴とする請求項1記載の弾性表面波装置。2. The surface acoustic wave device according to claim 1, wherein a main surface opposite to one main surface of the piezoelectric substrate is covered with a resin material. 弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、
前記圧電基板の前記一主面と、端子電極が形成されたセパレータ基板とを対向させ、前記突起電極と前記端子電極とを電気的に導通させる工程と、
前記圧電基板と前記セパレータ基板との間に液状の樹脂材料を流し込む工程と、
前記樹脂材料を硬化後に前記セパレータ基板を除去する工程と、
を含むことを特徴とする弾性表面波装置の製造方法。
Forming a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode on one main surface of the piezoelectric substrate;
The one main surface of the piezoelectric substrate and a separator substrate on which a terminal electrode is formed, and electrically connecting the protruding electrode and the terminal electrode;
Pouring a liquid resin material between the piezoelectric substrate and the separator substrate;
Removing the separator substrate after curing the resin material;
A method for manufacturing a surface acoustic wave device, comprising:
弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、
端子電極が形成されたセパレータ基板上に液状の樹脂材料を乗せる工程と、
前記圧電基板の前記一主面と、前記樹脂材料が乗せられた前記セパレータ基板とを対向させ、前記突起電極と前記端子電極とを電気的に導通させる工程と、
前記樹脂材料を硬化後にセパレータ基板を除去する工程と、
を含むことを特徴とする弾性表面波装置の製造方法。
Forming a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode on one main surface of the piezoelectric substrate;
Placing a liquid resin material on the separator substrate on which the terminal electrodes are formed;
Making the one main surface of the piezoelectric substrate face the separator substrate on which the resin material is placed, and electrically connecting the protruding electrode and the terminal electrode;
Removing the separator substrate after curing the resin material;
A method for manufacturing a surface acoustic wave device, comprising:
弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、
前記圧電基板の前記一主面と後工程で除去するセパレータ基板とを対向させ、前記突起電極を前記セパレータ基板に押し当てる工程と、
前記圧電基板と前記セパレータ基板との間に液状の樹脂材料を流し込む工程と、
前記樹脂材料を硬化後に前記セパレータ基板を除去する工程と、
前記突起電極と電気的に導通がとれるように前記樹脂材料の上に端子電極を設ける工程と、
を含むことを特徴とする弾性表面波装置の製造方法。
Forming a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode on one main surface of the piezoelectric substrate;
The one main surface of the piezoelectric substrate and a separator substrate to be removed in a subsequent step are opposed to each other, and the protruding electrode is pressed against the separator substrate;
Pouring a liquid resin material between the piezoelectric substrate and the separator substrate;
Removing the separator substrate after curing the resin material;
Providing a terminal electrode on the resin material so as to be electrically connected to the protruding electrode;
A method for manufacturing a surface acoustic wave device, comprising:
弾性表面波を励振するための複数の櫛形電極と、前記櫛形電極と電気的に接続された突起電極とを圧電基板の一主面上に形成する工程と、
後工程で除去するセパレータ基板、或いは前記圧電基板の一主面、の上に液状の樹脂材料を乗せる工程と、
前記圧電基板の前記一主面と前記セパレータ基板とを対向させ、前記突起電極を前記セパレータ基板に押し当てる工程と、
前記樹脂材料を硬化後に前記セパレータ基板を除去する工程と、
前記突起電極と電気的に導通がとれるように前記樹脂材料の上に端子電極を設ける工程と、
を含むことを特徴とする弾性表面波装置の製造方法。
Forming a plurality of comb-shaped electrodes for exciting surface acoustic waves and a protruding electrode electrically connected to the comb-shaped electrode on one main surface of the piezoelectric substrate;
A step of placing a liquid resin material on a separator substrate to be removed in a later step or one main surface of the piezoelectric substrate;
The one main surface of the piezoelectric substrate and the separator substrate are opposed to each other, and the protruding electrode is pressed against the separator substrate;
Removing the separator substrate after curing the resin material;
Providing a terminal electrode on the resin material so as to be electrically connected to the protruding electrode;
A method for manufacturing a surface acoustic wave device, comprising:
突起電極と端子電極とを電気的に導通させる工程が超音波により接続される工程であることを特徴とする請求項または請求項に記載の弾性表面波装置の製造方法。The method of manufacturing a surface acoustic wave device according to claim 5 or claim 6, wherein the step of electrically conducting the protruding electrodes and the terminal electrodes is a process which is connected by ultrasound. 突起電極、及び端子電極の少なくとも前記突起電極と接触する部分、が金からなり、前記端子電極の金が電解めっきで形成されることを特徴とする請求項に記載の弾性表面波装置の製造方法。10. The surface acoustic wave device according to claim 9 , wherein the protruding electrode and at least a portion of the terminal electrode that contacts the protruding electrode are made of gold, and the gold of the terminal electrode is formed by electrolytic plating. Method. 突起電極と端子電極とを電気的に導通させる工程が、加熱による金属溶融により接続される工程であることを特徴とする請求項または請求項に記載の弾性表面波装置の製造方法。The method of manufacturing a surface acoustic wave device according to claim 5 or claim 6, wherein the step of electrically conducting the protruding electrodes and the terminal electrodes, a process to be connected by the metal melt by heating. 端子電極とセパレータ基板が電気的に導通していることを特徴とする請求項または請求項に記載の弾性表面波装置の製造方法。The method for manufacturing a surface acoustic wave device according to claim 5 or 6 , wherein the terminal electrode and the separator substrate are electrically connected to each other. セパレータ基板が導電体であることを特徴とする請求項または請求項に記載の弾性表面波装置の製造方法。The method of manufacturing a surface acoustic wave device according to claim 7 or 8 , wherein the separator substrate is a conductor. 圧電基板がウエハである請求項から請求項のいずれかに記載の弾性表面波装置の製造方法。The method of manufacturing a surface acoustic wave device according to claim 8 of claims 5 to the piezoelectric substrate is a wafer.
JP2001029079A 2001-02-06 2001-02-06 Surface acoustic wave device and manufacturing method thereof Expired - Fee Related JP4496652B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001029079A JP4496652B2 (en) 2001-02-06 2001-02-06 Surface acoustic wave device and manufacturing method thereof
CNB028030648A CN1221076C (en) 2001-02-06 2002-02-06 Surface acoustic wave device, its mfg. method, and electronic circuit device
EP02711321.6A EP1361657B1 (en) 2001-02-06 2002-02-06 Surface acoustic wave device
PCT/JP2002/000949 WO2002063763A1 (en) 2001-02-06 2002-02-06 Surface acoustic wave device, its manufacturing method, and electronic circuit device
US10/399,305 US6969945B2 (en) 2001-02-06 2002-02-06 Surface acoustic wave device, method for manufacturing, and electronic circuit device
US11/220,815 US7246421B2 (en) 2001-02-06 2005-09-07 Method for manufacturing surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029079A JP4496652B2 (en) 2001-02-06 2001-02-06 Surface acoustic wave device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002232260A JP2002232260A (en) 2002-08-16
JP4496652B2 true JP4496652B2 (en) 2010-07-07

Family

ID=18893465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029079A Expired - Fee Related JP4496652B2 (en) 2001-02-06 2001-02-06 Surface acoustic wave device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4496652B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702961B2 (en) * 2002-10-04 2005-10-05 東洋通信機株式会社 Manufacturing method of surface mount type SAW device
JP2007325013A (en) 2006-06-01 2007-12-13 Alps Electric Co Ltd Surface acoustic wave device and method for manufacturing the same
JP4712632B2 (en) 2006-07-24 2011-06-29 太陽誘電株式会社 Elastic wave device and manufacturing method thereof
JP5113394B2 (en) * 2007-01-23 2013-01-09 太陽誘電株式会社 Elastic wave device
JP4460612B2 (en) * 2008-02-08 2010-05-12 富士通メディアデバイス株式会社 Surface acoustic wave device and manufacturing method thereof
JP5185004B2 (en) * 2008-07-28 2013-04-17 太陽誘電株式会社 Boundary acoustic wave device, method for manufacturing the same, and method for manufacturing duplexer
JP5507870B2 (en) * 2009-04-09 2014-05-28 信越化学工業株式会社 Method for manufacturing substrate for surface acoustic wave device
JP5694080B2 (en) * 2011-07-29 2015-04-01 京セラ株式会社 Electronic component having an acoustic wave device
JP2014099781A (en) * 2012-11-15 2014-05-29 Nippon Dempa Kogyo Co Ltd Piezoelectric component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261284A (en) * 1999-03-05 2000-09-22 Kyocera Corp Surface acoustic wave device and its production
JP2000323603A (en) * 1999-05-07 2000-11-24 Nec Corp Semiconductor circuit device and manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270975A (en) * 1996-03-08 1998-10-09 Matsushita Electric Ind Co Ltd Electronic part and its manufacture
JP3514361B2 (en) * 1998-02-27 2004-03-31 Tdk株式会社 Chip element and method of manufacturing chip element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261284A (en) * 1999-03-05 2000-09-22 Kyocera Corp Surface acoustic wave device and its production
JP2000323603A (en) * 1999-05-07 2000-11-24 Nec Corp Semiconductor circuit device and manufacture thereof

Also Published As

Publication number Publication date
JP2002232260A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP6290850B2 (en) Elastic wave device and elastic wave module
JP3677409B2 (en) Surface acoustic wave device and manufacturing method thereof
US7042056B2 (en) Chip-size package piezoelectric component
US6710682B2 (en) Surface acoustic wave device, method for producing the same, and circuit module using the same
JP2002261582A (en) Surface acoustic wave device, its manufacturing method, and circuit module using the same
JP4377500B2 (en) Surface acoustic wave device and method of manufacturing surface acoustic wave device
US20130057361A1 (en) Surface acoustic wave device and production method therefor
JP5206377B2 (en) Electronic component module
JP2015156626A (en) Acoustic wave element, demultiplexer, and communication device
JP4496652B2 (en) Surface acoustic wave device and manufacturing method thereof
US11646712B2 (en) Bulk acoustic wave structure and bulk acoustic wave device
JP2004129224A (en) Piezoelectric component and manufacturing method thereof
US8022594B2 (en) Surface acoustic wave device
JP2007081555A (en) Surface acoustic wave device
US9941461B2 (en) Electronic component element and composite module including the same
JP2005130341A (en) Piezoelectric component and its manufacturing method, communications equipment
JP4012753B2 (en) Surface acoustic wave device
JP4195605B2 (en) Surface acoustic wave device
JP2009183008A (en) Method of manufacturing piezoelectric component
US11139795B2 (en) Electronic component and module including the same
JP4722204B2 (en) Surface acoustic wave device and method of manufacturing surface acoustic wave device
WO2018221172A1 (en) Filter device
JP4130314B2 (en) Manufacturing method of surface acoustic wave device
JP4582922B2 (en) Electronic component device and manufacturing method thereof
JP5794778B2 (en) Electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees