JP2003104703A - Method for lowering carbon monoxide concentration and fuel cell system - Google Patents

Method for lowering carbon monoxide concentration and fuel cell system

Info

Publication number
JP2003104703A
JP2003104703A JP2001301040A JP2001301040A JP2003104703A JP 2003104703 A JP2003104703 A JP 2003104703A JP 2001301040 A JP2001301040 A JP 2001301040A JP 2001301040 A JP2001301040 A JP 2001301040A JP 2003104703 A JP2003104703 A JP 2003104703A
Authority
JP
Japan
Prior art keywords
carbon monoxide
gas
reaction
catalyst
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001301040A
Other languages
Japanese (ja)
Other versions
JP4582976B2 (en
Inventor
Tomoaki Adachi
倫明 足立
Kibiko Ishizuki
貴美香 石月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2001301040A priority Critical patent/JP4582976B2/en
Publication of JP2003104703A publication Critical patent/JP2003104703A/en
Application granted granted Critical
Publication of JP4582976B2 publication Critical patent/JP4582976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for lowering carbon monoxide by oxidizing selectively carbon monoxide in a source gas containing carbon monoxide and hydrogen and a fuel cell system using it. SOLUTION: Carbon monoxide concentration can be lowered by oxidizing selectively carbon monoxide in a source gas containing carbon monoxide and hydrogen by at least two-stage oxidizing steps such as the first step to perform an oxidation reaction with a catalyst which supports ruthenium on an inorganic oxide and the second step to perform the oxidation reaction with the catalyst which supports ruthenium and platinum on the inorganic oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一酸化炭素および水
素を含有する原料ガスから一酸化炭素を選択的に酸化す
ることにより原料ガス中の一酸化炭素濃度を低減する方
法およびその方法を用いた燃料電池システムに関する。
TECHNICAL FIELD The present invention uses a method for reducing the concentration of carbon monoxide in a source gas by selectively oxidizing carbon monoxide from a source gas containing carbon monoxide and hydrogen, and a method thereof. The present invention relates to a fuel cell system.

【0002】[0002]

【従来の技術】燃料電池は燃料の燃焼反応による自由エ
ネルギー変化を直接電気エネルギーとして取り出せるた
め、高い効率が得られるという特徴がある。さらに有害
物質を排出しないことも相俟って、様々な用途への展開
が図られている。特に固体高分子形燃料電池は、出力密
度が高く、コンパクトで、しかも低温で作動するのが特
徴である。
2. Description of the Related Art A fuel cell is characterized in that it can obtain a high efficiency because a free energy change due to a combustion reaction of a fuel can be directly taken out as an electric energy. Furthermore, in combination with the fact that harmful substances are not emitted, it is being developed for various uses. In particular, polymer electrolyte fuel cells are characterized by high power density, compact size, and low temperature operation.

【0003】一般的に燃料電池用の燃料ガスとしては水
素を主成分とするガスが用いられるが、その原料には天
然ガス、LPG、ナフサ、灯油等の炭化水素、メタノー
ル、エタノール等のアルコール、およびジメチルエーテ
ル等のエーテル等が用いられる。しかし、これらの原料
中には水素以外の元素も存在するため、燃料電池への燃
料ガス中に炭素由来の不純物が混入することは避けられ
ない。中でも一酸化炭素は燃料電池の電極触媒として使
われている白金系貴金属を被毒するため、燃料ガス中に
一酸化炭素が存在すると充分な発電特性が得られなくな
る。特に低温作動させる燃料電池ほど一酸化炭素吸着は
強く、被毒を受けやすい。このため固体高分子形燃料電
池を用いたシステムでは燃料ガス中の一酸化炭素の濃度
が低減されていることが必要不可欠である。
Generally, a gas containing hydrogen as a main component is used as a fuel gas for a fuel cell, and its raw materials are natural gas, hydrocarbons such as LPG, naphtha and kerosene, alcohols such as methanol and ethanol, And ethers such as dimethyl ether are used. However, since elements other than hydrogen are also present in these raw materials, it is inevitable that impurities derived from carbon are mixed in the fuel gas to the fuel cell. Above all, carbon monoxide poisons the platinum-based noble metal used as the electrode catalyst of the fuel cell, so that if carbon monoxide is present in the fuel gas, sufficient power generation characteristics cannot be obtained. In particular, a fuel cell operated at a low temperature has a stronger carbon monoxide adsorption and is more likely to be poisoned. For this reason, it is essential that the concentration of carbon monoxide in the fuel gas be reduced in a system using a polymer electrolyte fuel cell.

【0004】一酸化炭素濃度を低減させる方法として
は、原料を改質して得られた改質ガス中の一酸化炭素を
水蒸気と反応させ、水素と二酸化炭素に転化する方法、
いわゆる水性ガスシフト反応を用いることが考えられる
が、通常、この方法では0.1〜1vol%程度までし
か一酸化炭素濃度を低減することができない。しかし、
燃料電池電極に用いられる触媒の一酸化炭素耐性は用い
られる金属種にも依るが、燃料電池が効率よく作動する
ためには燃料ガス中の一酸化炭素濃度は100volp
pm以下であることが望ましく、水性ガスシフト反応の
みでは不充分である。そこで、水性ガスシフト反応によ
り0.1〜1vol%程度にまで下げた一酸化炭素濃度
をさらに低減することが求められる。
As a method for reducing the concentration of carbon monoxide, a method of reacting carbon monoxide in a reformed gas obtained by reforming a raw material with steam to convert it into hydrogen and carbon dioxide,
It is considered to use a so-called water gas shift reaction, but usually, this method can reduce the carbon monoxide concentration only to about 0.1 to 1 vol%. But,
The carbon monoxide resistance of the catalyst used in the fuel cell electrode depends on the metal species used, but in order for the fuel cell to operate efficiently, the carbon monoxide concentration in the fuel gas is 100 volp.
It is preferably pm or less, and the water gas shift reaction alone is insufficient. Therefore, it is required to further reduce the carbon monoxide concentration lowered to about 0.1 to 1 vol% by the water gas shift reaction.

【0005】[0005]

【発明が解決しようとする課題】一酸化炭素濃度をさら
に低減する方法としては、一酸化炭素を吸着分離する方
法や膜分離する方法が考えられる。しかし、これらの方
法では得られる水素純度は高いものの、装置コストが高
く、装置サイズも大きくなるという問題があり、現実的
でない。
As a method of further reducing the concentration of carbon monoxide, a method of adsorbing and separating carbon monoxide or a method of membrane separation can be considered. However, although the hydrogen purity obtained by these methods is high, there are problems that the apparatus cost is high and the apparatus size is large, which is not realistic.

【0006】これに対し化学的な方法はより現実的な方
法である。化学的方法としては、一酸化炭素をメタン化
する方法、酸化して二酸化炭素に転化する方法などが考
えられる。しかし、前者のメタン化する方法では燃料電
池の燃料となる水素をロスすることから、効率的には適
当ではない。従って、後者の一酸化炭素を酸化して二酸
化炭素とする方法を採用するのが適当である。この方法
においてポイントとなるのは、大過剰に存在する水素中
に微量ないし少量混在する一酸化炭素を選択的に酸化処
理できるかである。本発明者らはかかる課題について鋭
意研究した結果、本発明を完成したものである
On the other hand, the chemical method is a more realistic method. As a chemical method, a method of methanating carbon monoxide, a method of oxidizing and converting to carbon dioxide, and the like are considered. However, the former method for methanation is not efficient because it loses hydrogen as a fuel for the fuel cell. Therefore, it is appropriate to adopt the latter method of oxidizing carbon monoxide to carbon dioxide. The point of this method is whether or not a small amount or a small amount of carbon monoxide mixed in the hydrogen present in a large excess can be selectively oxidized. The present inventors have completed the present invention as a result of earnestly researching such problems.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の第1
は、一酸化炭素および水素を含有する原料ガスから一酸
化炭素濃度を低減する方法であって、該原料ガスに酸素
含有ガスを加え、無機酸化物にルテニウムを担持した触
媒の存在下に酸化反応を行なう第一工程、および無機酸
化物にルテニウムおよび白金を担持した触媒の存在下に
酸化反応を行なう第二工程の少なくとも二段階の酸化工
程により、一酸化炭素を選択的に酸化して該原料ガスか
ら一酸化炭素濃度を低減する方法に関する。
That is, the first aspect of the present invention
Is a method for reducing the concentration of carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, in which an oxygen-containing gas is added to the raw material gas to carry out an oxidation reaction in the presence of a catalyst having ruthenium supported on an inorganic oxide. Carbon monoxide is selectively oxidized by at least two-step oxidation step of the first step of carrying out the oxidation reaction and the second step of carrying out the oxidation reaction in the presence of a catalyst in which ruthenium and platinum are supported on an inorganic oxide. A method for reducing carbon monoxide concentration from a gas.

【0008】本発明の第1においては、前記第二工程の
前に酸素含有ガスを追加供給することが好ましい。また
本発明の第1においては、酸素と原料ガス中の一酸化炭
素の比がモル比で0.5〜3であることが好ましい。ま
た本発明の第1においては、原料ガスが炭化水素、アル
コールまたはエーテルを脱硫反応、改質反応および水性
ガスシフト反応することにより得られたものであること
が好ましい。また本発明の第1においては、原料ガス中
の一酸化炭素濃度が0.1〜2vol%であることが好
ましい。また本発明の第1においては、酸化処理後の生
成ガス中の一酸化炭素濃度が100volppm以下で
あることが好ましい。
In the first aspect of the present invention, it is preferable to additionally supply the oxygen-containing gas before the second step. Further, in the first aspect of the present invention, the molar ratio of oxygen to carbon monoxide in the raw material gas is preferably 0.5 to 3. Further, in the first aspect of the present invention, the raw material gas is preferably obtained by subjecting hydrocarbon, alcohol or ether to a desulfurization reaction, a reforming reaction and a water gas shift reaction. Further, in the first aspect of the present invention, the carbon monoxide concentration in the raw material gas is preferably 0.1 to 2 vol%. Further, in the first aspect of the present invention, it is preferable that the concentration of carbon monoxide in the produced gas after the oxidation treatment is 100 volppm or less.

【0009】本発明の第2は、炭化水素、アルコールお
よびエーテルから選ばれる燃料を脱硫処理、改質反応お
よび水性ガスシフト反応を行って得られる一酸化炭素お
よび水素を含有する原料ガスに酸素含有ガスを加え、無
機酸化物にルテニウムを担持した触媒の存在下に酸化反
応を行なう第一工程および無機酸化物にルテニウムおよ
び白金を担持した触媒の存在下に酸化反応を行なう第二
工程からなる二段階酸化工程により得られる燃料ガスを
陰極側燃料として供給することを特徴とする燃料電池シ
ステムに関する。
The second aspect of the present invention is to use an oxygen-containing gas as a raw material gas containing carbon monoxide and hydrogen obtained by subjecting a fuel selected from hydrocarbons, alcohols and ethers to desulfurization treatment, reforming reaction and water gas shift reaction. And a second step of performing an oxidation reaction in the presence of a catalyst supporting ruthenium on the inorganic oxide and a second step performing the oxidation reaction in the presence of a catalyst supporting ruthenium and platinum on the inorganic oxide. The present invention relates to a fuel cell system characterized by supplying a fuel gas obtained by an oxidation process as cathode side fuel.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の第1は、一酸化炭素および水素を含有す
る原料ガスから一酸化炭素濃度を低減する方法であっ
て、該原料ガスに酸素含有ガスを加え、無機酸化物にル
テニウムを担持した触媒の存在下に酸化反応を行なう第
一工程、および無機酸化物にルテニウムおよび白金を担
持した触媒の存在下に酸化反応を行なう第二工程の少な
くとも二段階の酸化工程により、一酸化炭素を選択的に
酸化して該原料ガスから一酸化炭素濃度を低減する方法
に関する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. A first aspect of the present invention is a method for reducing the concentration of carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, which comprises adding an oxygen-containing gas to the raw material gas to form a catalyst having ruthenium supported on an inorganic oxide. Carbon monoxide is selectively removed by at least two steps of oxidation processes, namely, a first process in which the oxidation reaction is performed in the presence of the catalyst, and a second process in which the oxidation reaction is performed in the presence of a catalyst having ruthenium and platinum supported on an inorganic oxide. The present invention relates to a method of oxidizing to reduce the concentration of carbon monoxide from the source gas.

【0011】一酸化炭素および水素を含有する原料ガス
としては、通常、燃料電池用の燃料ガスの出発原料(原
燃料)として用いられる炭化水素、あるいはアルコール
やエーテル等の含酸素炭化水素等を各種方法により改質
反応を行って得られる水素を主成分とするガスが用いら
れる。原燃料としては、天然ガス、LPG、ナフサ、灯
油、ガソリンまたはこれらに相当する各種溜分や、メタ
ン、エタン、プロパン、ブタン等の炭化水素、メタノー
ル、エタノール等の各種アルコール、およびジメチルエ
ーテル等のエーテル等が用いられる。
As the raw material gas containing carbon monoxide and hydrogen, there are various kinds of hydrocarbons usually used as a starting raw material (raw fuel) of a fuel gas for fuel cells, or oxygen-containing hydrocarbons such as alcohol and ether. A gas containing hydrogen as a main component obtained by performing a reforming reaction by the method is used. As the raw fuel, natural gas, LPG, naphtha, kerosene, gasoline or various fractions corresponding thereto, hydrocarbons such as methane, ethane, propane and butane, various alcohols such as methanol and ethanol, and ethers such as dimethyl ether. Etc. are used.

【0012】前記原燃料を改質する方法としては、特に
限定されるものではなく、水蒸気改質方法、部分酸化改
質方法、オートサーマルリフォーミング等の各種方法が
挙げられる。本発明においてはこれらのいずれの方法も
採用することができる。
The method for reforming the raw fuel is not particularly limited, and various methods such as steam reforming method, partial oxidation reforming method, autothermal reforming and the like can be mentioned. Any of these methods can be adopted in the present invention.

【0013】なお、硫黄を含んでいる原燃料をそのまま
改質工程に供給してしまうと、改質触媒が被毒を受け、
改質触媒の活性が発現せず、また寿命も短くなるため、
改質反応に先だって、原燃料を脱硫処理しておくことが
好ましい。脱硫反応の条件は、原燃料の状態および硫黄
含有量によって異なるため一概には言えないが、通常、
反応温度は常温〜450℃が好ましく、特に常温〜30
0℃が好ましい。反応圧力は常圧〜1MPaが好まし
く、特に常圧〜0.2MPaが好ましい。SVは原料が
液体の場合では、0.01〜15h-1が好ましく、0.
05〜5h-1がさらに好ましく、0.1〜3h-1が特に
好ましい。また気体原料の場合では、100〜1000
0h-1が好ましく、200〜5000h-1がさらに好ま
しく、300〜2000h-1が特に好ましい。
If the raw fuel containing sulfur is directly supplied to the reforming process, the reforming catalyst is poisoned,
Since the activity of the reforming catalyst is not expressed and the life is shortened,
Prior to the reforming reaction, the raw fuel is preferably desulfurized. The conditions of the desulfurization reaction differ depending on the state of the raw fuel and the sulfur content, so it cannot be said unequivocally.
The reaction temperature is preferably room temperature to 450 ° C., particularly room temperature to 30 ° C.
0 ° C is preferred. The reaction pressure is preferably atmospheric pressure to 1 MPa, particularly preferably atmospheric pressure to 0.2 MPa. When the raw material is a liquid, SV is preferably 0.01 to 15 h −1 , and is 0.1.
05-5 h −1 is more preferable, and 0.1-3 h −1 is particularly preferable. Moreover, in the case of a gas raw material, it is 100-1000.
0 h −1 is preferable, 200 to 5000 h −1 is more preferable, and 300 to 2000 h −1 is particularly preferable.

【0014】また改質反応条件も必ずしも限定されるも
のではないが、通常、反応温度は400〜1,000℃
が好ましく、特に500〜850℃が好ましい。反応圧
力は常圧〜1MPaが好ましく、特に常圧〜0.2MP
aが好ましい。SVは0.01〜40h-1が好ましく、
特に0.1〜10h-1が好ましい。改質反応により得ら
れるガス(改質ガス)は、主成分として水素を含むもの
の、他の成分としては、一酸化炭素、二酸化炭素、水蒸
気等が含有される。
Although the reforming reaction conditions are not necessarily limited, the reaction temperature is usually 400 to 1,000 ° C.
Is preferable, and 500-850 degreeC is especially preferable. The reaction pressure is preferably atmospheric pressure to 1 MPa, particularly atmospheric pressure to 0.2 MPa.
a is preferred. SV is preferably 0.01 to 40 h −1 ,
Particularly, 0.1 to 10 h -1 is preferable. The gas (reformed gas) obtained by the reforming reaction contains hydrogen as a main component, but contains carbon monoxide, carbon dioxide, steam and the like as other components.

【0015】本発明においては、原料ガスとして前記改
質ガスを直接用いることも可能であるが、かかる改質ガ
スを予め前処理して一酸化炭素濃度をある程度低減させ
たものを用いてもよい。かかる前処理としては、改質ガ
ス中の一酸化炭素濃度を低減させるため、改質ガス中の
一酸化炭素を水蒸気と反応させ、水素と二酸化炭素に転
化する方法、いわゆる水性ガスシフト反応が挙げられ
る。水性ガスシフト反応以外の前処理としては、一酸化
炭素を吸着分離する方法、あるいは膜分離する方法等が
挙げられる。
In the present invention, the above-mentioned reformed gas can be directly used as the raw material gas. However, such reformed gas may be pretreated in advance to reduce the carbon monoxide concentration to some extent. . Examples of such pretreatment include a method of reacting carbon monoxide in the reformed gas with steam to convert the carbon monoxide in the reformed gas into steam and converting it into hydrogen and carbon dioxide, a so-called water gas shift reaction. . Examples of the pretreatment other than the water gas shift reaction include a method of adsorbing and separating carbon monoxide, a method of separating a membrane, and the like.

【0016】本発明においては、改質ガス中の一酸化炭
素を低減し、かつ水素を増やすためにも、改質ガスをさ
らに水性ガスシフト反応したものを原料ガスとするのが
好ましく、これにより一酸化炭素濃度の低減をより効果
的にすることができる。水性ガスシフト反応は改質ガス
の組成等によって、必ずしも反応条件は限定されるもの
ではないが、通常、反応温度は120〜500℃が好ま
しく、特に150〜450℃が好ましい。反応圧力は常
圧〜1MPaが好ましく、特に常圧〜0.2MPaが好
ましい。SVは100〜50,000h-1が好ましく、
特に300〜10,000h-1が好ましい。
In the present invention, in order to reduce carbon monoxide in the reformed gas and increase hydrogen, it is preferable that the reformed gas is further subjected to a water gas shift reaction as a raw material gas. The reduction of the carbon oxide concentration can be made more effective. The reaction conditions of the water gas shift reaction are not necessarily limited depending on the composition of the reformed gas and the like, but usually the reaction temperature is preferably 120 to 500 ° C, and particularly preferably 150 to 450 ° C. The reaction pressure is preferably atmospheric pressure to 1 MPa, particularly preferably atmospheric pressure to 0.2 MPa. SV is preferably 100 to 50,000 h −1 ,
Particularly, 300 to 10,000 h -1 is preferable.

【0017】本発明において用いる原料ガスは、一酸化
炭素および水素を含有するものであるが、一酸化炭素濃
度は、通常0.1〜2vol%、好ましくは0.5〜1
vol%である。一方、水素濃度は通常40〜85vo
l%、好ましくは50〜75vol%である。また、一
酸化炭素および水素以外の成分として、例えば窒素、二
酸化炭素等が含まれていても良い。
The raw material gas used in the present invention contains carbon monoxide and hydrogen, and the carbon monoxide concentration is usually 0.1 to 2 vol%, preferably 0.5 to 1
vol%. On the other hand, the hydrogen concentration is usually 40 to 85 vo
1%, preferably 50 to 75 vol%. Further, as components other than carbon monoxide and hydrogen, for example, nitrogen, carbon dioxide, etc. may be contained.

【0018】本発明においては、原料ガスから一酸化炭
素を酸化反応により除去するためには酸素含有ガスを原
料ガスに加える。酸素含有ガスは少なくとも前段の第一
工程の前に原料ガスに導入するが、後段の第二工程の前
にも追加導入することもできる。酸素含有ガスとして
は、特に限定されないが、空気や酸素が挙げられる。導
入する酸素含有ガスは、全酸素量と原料ガス中の一酸化
炭素の濃度比(モル比)が0.5〜3.0の範囲とする
ことが好ましく、特に0.5〜2.0が好ましい。前記
濃度比が0.5より小さい場合は、化学量論的に酸素が
足りないため一酸化炭素との酸化反応が十分に進行しな
い。また、前記濃度比が3.0より大きい場合は、水素
の酸化により、水素濃度の低下、水素の酸化熱により反
応温度の上昇、メタンの生成などの副反応が起こりやす
くなるため好ましくない。
In the present invention, an oxygen-containing gas is added to the source gas in order to remove carbon monoxide from the source gas by an oxidation reaction. The oxygen-containing gas is introduced into the raw material gas at least before the first step of the former stage, but it may be additionally introduced before the second step of the latter stage. The oxygen-containing gas is not particularly limited, but may be air or oxygen. The oxygen-containing gas to be introduced is preferably such that the total oxygen amount and the concentration ratio (molar ratio) of carbon monoxide in the raw material gas are in the range of 0.5 to 3.0, particularly 0.5 to 2.0. preferable. When the concentration ratio is less than 0.5, the oxygen reaction is insufficient stoichiometrically and the oxidation reaction with carbon monoxide does not proceed sufficiently. On the other hand, if the concentration ratio is more than 3.0, it is not preferable because the hydrogen concentration is lowered by the oxidation of hydrogen, the reaction temperature is raised by the heat of oxidation of hydrogen, and side reactions such as methane production are likely to occur.

【0019】本発明における2段階の酸化反応において
は、前段には無機酸化物にルテニウム(Ru)を担持し
た触媒、後段には無機酸化物にルテニウム(Ru)およ
び白金(Pt)を担持した触媒を用いるのが重要であ
る。。前段及び後段の触媒において担体として用いられ
る無機酸化物としては、特に限定するものではないが、
それぞれ個別に、各種アルミナ、シリカ、チタニア、等
の単独酸化物や、モルデナイトや各種ゼオライトに代表
されるシリカアルミナなどの複合酸化物、または塩基性
酸化物等を用いることができる。無機酸化物の形状、大
きさ、成型方法についても、特に限定されるものではな
い。また成型時に適度なバインダーを添加して成形性を
高めてもよい。
In the two-step oxidation reaction of the present invention, the catalyst having ruthenium (Ru) supported on the inorganic oxide in the first stage, and the catalyst having ruthenium (Ru) and platinum (Pt) supported on the inorganic oxide in the second stage. It is important to use. . The inorganic oxide used as the carrier in the catalyst in the first and second stages is not particularly limited,
Individual oxides such as various aluminas, silicas and titanias, complex oxides such as mordenite and silica-alumina represented by various zeolites, basic oxides and the like can be used individually. The shape, size, and molding method of the inorganic oxide are not particularly limited. Further, an appropriate binder may be added at the time of molding to enhance the moldability.

【0020】前段および後段の触媒に担持するRuの担
持量は、それぞれ個別に、0.05〜5.0質量%、好
ましくは0.1〜1.0質量%、さらに好ましくは0.
1〜0.3質量%である。後段の触媒に担持するPtの
担持量は、0.01〜1.0質量%、好ましくは0.0
1〜0.5質量%、さらに好ましくは0.01〜0.1
質量%である。後段における触媒中のRu/Pt質量比
は、10/1〜1/10、好ましくは5/1〜1/1、
さらに好ましくは5/1〜2/1である。
The amount of Ru supported on the catalysts in the first and second stages is individually 0.05 to 5.0% by mass, preferably 0.1 to 1.0% by mass, and more preferably 0.1.
It is 1 to 0.3 mass%. The amount of Pt supported on the latter catalyst is 0.01 to 1.0% by mass, preferably 0.0.
1 to 0.5 mass%, more preferably 0.01 to 0.1
It is% by mass. The Ru / Pt mass ratio in the catalyst in the latter stage is 10/1 to 1/10, preferably 5/1 to 1/1,
More preferably, it is 5/1 to 2/1.

【0021】前段の触媒においては、担持する金属とし
てRu以外に、第二成分としてパラジウム(Pd)ある
いはロジウム(Rh)を添加しても良い。また後段の触
媒に担持する金属としてRuおよびPt以外に、第三成
分としてPdを添加しても良い。
In the catalyst in the first stage, palladium (Pd) or rhodium (Rh) may be added as the second component in addition to Ru as the metal to be supported. In addition to Ru and Pt as the metal supported on the catalyst in the subsequent stage, Pd may be added as the third component.

【0022】本発明において、触媒の形状は特に限定す
るものではなく、球状、ハニカム状、ワイヤーメッシュ
状等の各種形状のものを用いることができる。触媒の調
製方法も特に限定するものではなく、通常の含浸法、イ
オン交換法など公知の方法を用いることができる。例え
ば含浸法を用いた場合、通常、塩化物、硝酸塩、各種有
機酸塩など、具体的には塩化ルテニウム、塩化白金酸の
ような化合物を、水、エタノール、アセトンなどの溶媒
に溶解させ、担体に含浸させた後、乾燥、焼成、還元処
理を行なうことで実施できる。
In the present invention, the shape of the catalyst is not particularly limited, and various shapes such as spherical shape, honeycomb shape and wire mesh shape can be used. The method for preparing the catalyst is also not particularly limited, and a known method such as an ordinary impregnation method or an ion exchange method can be used. For example, when the impregnation method is used, usually, chlorides, nitrates, various organic acid salts, and the like, specifically, compounds such as ruthenium chloride and chloroplatinic acid are dissolved in a solvent such as water, ethanol, and acetone to form a carrier. It can be carried out by impregnating with, followed by drying, firing, and reduction treatment.

【0023】第一工程および第二工程における一酸化炭
素の酸化反応の際の反応圧力は、燃料電池システムの経
済性、安全性等も考慮し、常圧〜1MPaの範囲が好ま
しく、特に常圧〜0.2MPaが好ましい。反応温度と
しては、一酸化炭素濃度を低下させる温度であれば、特
に限定はないが、低温では反応速度が遅くなり、高温で
は選択性が低下するため、通常は80〜350℃が好ま
しく、特に100〜300℃が好ましい。GHSVは過
剰に高すぎると一酸化炭素の酸化反応が進行しにくくな
り、一方低すぎると装置が大きくなりすぎるため、1,
000〜50,000h-1の範囲が好ましく、特に3,
000〜30,000h-1の範囲が好ましい。第一工程
および第二工程における反応器の形態は特に限定するも
のではないが、例えば、流通式固定床反応器を用いるこ
とができる。反応器の形状としては、円筒状、平板上な
どそれぞれのプロセスの目的に応じた公知のいかなる形
状を取ることができる。
The reaction pressure during the carbon monoxide oxidation reaction in the first step and the second step is preferably in the range of atmospheric pressure to 1 MPa in consideration of economical efficiency and safety of the fuel cell system, particularly atmospheric pressure. -0.2 MPa is preferable. The reaction temperature is not particularly limited as long as it lowers the concentration of carbon monoxide, but the reaction rate is slow at low temperature and the selectivity is decreased at high temperature. 100-300 degreeC is preferable. If GHSV is too high, the oxidation reaction of carbon monoxide will not proceed easily, while if it is too low, the equipment will be too large.
The range of 000 to 50,000 h −1 is preferable, and especially 3,
The range of 000 to 30,000 h -1 is preferable. The form of the reactor in the first step and the second step is not particularly limited, but for example, a flow type fixed bed reactor can be used. The reactor may have any known shape such as a cylindrical shape or a flat plate shape depending on the purpose of each process.

【0024】本発明の方法により、出発原料ガスの一酸
化炭素濃度を100volppm以下、好ましくは50
volppm以下、最も好ましくは10volppm以
下にまで低減することができる。そのため、本発明の方
法により得られる一酸化炭素濃度が低減された燃料ガス
は、燃料電池の電極に用いられている貴金属系触媒の被
毒、劣化を抑制し、発電効率を高く保ちながら、長寿命
を維持することが可能となる。
According to the method of the present invention, the carbon monoxide concentration of the starting material gas is 100 volppm or less, preferably 50.
It can be reduced to not more than 10 volppm, most preferably not more than 10 volppm. Therefore, the fuel gas having a reduced carbon monoxide concentration obtained by the method of the present invention suppresses poisoning and deterioration of the noble metal-based catalyst used in the electrode of the fuel cell, and keeps the power generation efficiency at a high level for a long time. It becomes possible to maintain the life.

【0025】本発明の第2は、炭化水素、アルコールお
よびエーテルから選ばれる燃料を脱硫処理、改質反応お
よび水性ガスシフト反応を行って得られる一酸化炭素お
よび水素を含有する原料ガスに酸素含有ガスを加え、無
機酸化物にルテニウムを担持した触媒の存在下に酸化反
応を行なう第一工程および無機酸化物にルテニウムおよ
び白金を担持した触媒の存在下に酸化反応を行なう第二
工程からなる二段階酸化反応を行って得られる燃料ガス
を陰極側燃料として供給することを特徴とする燃料電池
システムに関する。
The second aspect of the present invention is to use an oxygen-containing gas as a raw material gas containing carbon monoxide and hydrogen obtained by subjecting a fuel selected from hydrocarbons, alcohols and ethers to desulfurization treatment, reforming reaction and water gas shift reaction. And a second step of performing an oxidation reaction in the presence of a catalyst supporting ruthenium on the inorganic oxide and a second step performing the oxidation reaction in the presence of a catalyst supporting ruthenium and platinum on the inorganic oxide. The present invention relates to a fuel cell system characterized in that a fuel gas obtained by carrying out an oxidation reaction is supplied as a cathode side fuel.

【0026】本発明の燃料電池システムを以下に説明す
る。図1は、本発明の燃料電池システムの一例を示す概
略図である。燃料タンク3内の原燃料は燃料ポンプ4を
経て脱硫器5に流入する。この時、必要であれば選択酸
化反応器11からの水素含有ガスを添加できる。脱硫器
5内には例えば銅−亜鉛系あるいはニッケル−亜鉛系の
収着剤などを充填することができる。脱硫器5で脱硫さ
れた原燃料は水タンク1から水ポンプ2を経た水と混合
した後、気化器6に導入され、改質器7に送り込まれ
る。
The fuel cell system of the present invention will be described below. FIG. 1 is a schematic diagram showing an example of the fuel cell system of the present invention. The raw fuel in the fuel tank 3 flows into the desulfurizer 5 via the fuel pump 4. At this time, if necessary, the hydrogen-containing gas from the selective oxidation reactor 11 can be added. The desulfurizer 5 can be filled with, for example, a copper-zinc-based or nickel-zinc-based sorbent. The raw fuel desulfurized by the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, and then introduced into the vaporizer 6 and fed into the reformer 7.

【0027】改質器7は加温用バーナー18で加温され
る。加温用バーナー18の燃料には主に燃料電池17の
アノードオフガスを用いるが必要に応じて燃料ポンプ4
から吐出される燃料を補充することもできる。改質器7
に充填する触媒としてはニッケル系、ルテニウム系、ロ
ジウム系などの触媒を用いることができる。この様にし
て製造された水素と一酸化炭素を含有する原料ガスは高
温シフト反応器9および低温シフト反応器10により改
質反応が行われる。高温シフト反応器9には鉄−クロム
系触媒、低温シフト反応器10には銅−亜鉛系触媒等の
触媒が充填されている。
The reformer 7 is heated by a heating burner 18. The anode off gas of the fuel cell 17 is mainly used as the fuel for the heating burner 18, but the fuel pump 4 may be used as necessary.
It is also possible to supplement the fuel discharged from the. Reformer 7
As a catalyst to be filled in, a nickel-based, ruthenium-based, rhodium-based catalyst or the like can be used. The raw material gas containing hydrogen and carbon monoxide thus produced is subjected to the reforming reaction by the high temperature shift reactor 9 and the low temperature shift reactor 10. The high temperature shift reactor 9 is filled with an iron-chromium catalyst, and the low temperature shift reactor 10 is filled with a catalyst such as a copper-zinc catalyst.

【0028】高温シフト反応器9および低温シフト反応
器10により改質されたガスは、次に選択酸化反応器1
1に導かれる。選択酸化反応器11は前段と後段の2工
程になっており、前段には無機酸化物にルテニウムを担
持した触媒が、後段には無機酸化物にルテニウムおよび
白金を担持した触媒が充填されている。改質ガスは空気
ブロアー8から供給される空気と混合され、前記触媒の
存在下に一酸化炭素の選択酸化が行われ、一酸化炭素濃
度は燃料電池の特性に影響を及ぼさない程度まで低減さ
れる。
The gas reformed by the high temperature shift reactor 9 and the low temperature shift reactor 10 is then fed to the selective oxidation reactor 1.
Guided to 1. The selective oxidation reactor 11 has two steps, a front stage and a rear stage. The front stage is filled with a catalyst in which ruthenium is supported on an inorganic oxide, and the rear stage is filled with a catalyst in which ruthenium and platinum are supported on an inorganic oxide. . The reformed gas is mixed with the air supplied from the air blower 8, and the selective oxidation of carbon monoxide is performed in the presence of the catalyst, and the carbon monoxide concentration is reduced to such an extent that it does not affect the characteristics of the fuel cell. It

【0029】固体高分子形燃料電池17はアノード1
2、カソード13、固体高分子電解質14からなり、ア
ノード側には上記の方法で得られた一酸化炭素濃度が低
減された高純度の水素を含有する燃料ガスが、カソード
側には空気ブロアー8から送られる空気が、それぞれ必
要であれば適当な加湿処理を行なったあと(加湿装置は
図示していない)導入される。この時、アノードでは水
素ガスがプロトンとなり電子を放出する反応が進行し、
カソードでは酸素ガスが電子とプロトンを得て水となる
反応が進行する。これらの反応を促進するため、それぞ
れ、アノードには白金黒、活性炭担持のPt触媒あるい
はPt−Ru合金触媒などが、カソードには白金黒、活
性炭担持のPt触媒などが用いられる。通常アノード、
カソードの両触媒とも、必要に応じてポリテトラフロロ
エチレン、低分子の高分子電解質膜素材、活性炭などと
共に多孔質触媒層に成形される。
The polymer electrolyte fuel cell 17 has an anode 1
2, a cathode 13, a solid polymer electrolyte 14, a fuel gas containing high-purity hydrogen with a reduced carbon monoxide concentration obtained by the above method on the anode side, and an air blower 8 on the cathode side. The air sent from each of them is introduced, if necessary, after performing an appropriate humidification treatment (a humidification device is not shown). At this time, in the anode, a reaction in which hydrogen gas becomes a proton to release an electron proceeds,
At the cathode, a reaction proceeds in which oxygen gas obtains electrons and protons and becomes water. In order to accelerate these reactions, platinum black, Pt catalyst or Pt-Ru alloy catalyst supporting active carbon is used for the anode, and platinum black, Pt catalyst supporting active carbon is used for the cathode, respectively. Normal anode,
Both catalysts of the cathode are formed into a porous catalyst layer together with polytetrafluoroethylene, a low molecular weight polymer electrolyte membrane material, activated carbon, etc., if necessary.

【0030】次いでNafion(デュポン社製)、G
ore(ゴア社製)、Flemion(旭硝子社製)、
Aciplex(旭化成社製)等の商品名で知られる高
分子電解質膜の両側に前述の多孔質触媒層を積層しME
A(Membrane Electrode Assem
bly)が形成される。さらにMEAを金属材料、グラ
ファイト、カーボンコンポジットなどからなるガス供給
機能、集電機能、特にカソードにおいては重要な排水機
能等を持つセパレータで挟み込むことで燃料電池が組み
立てられる。電気負荷15はアノード、カソードと電気
的に連結される。アノードオフガスは加温用バーナー1
8において消費される。カソードオフガスは排気口16
から排出される。
Next, Nafion (manufactured by DuPont), G
ore (manufactured by Gore), Flemion (manufactured by Asahi Glass Co., Ltd.),
ME is prepared by laminating the above-mentioned porous catalyst layers on both sides of a polymer electrolyte membrane known under the trade name such as Aciplex (manufactured by Asahi Kasei).
A (Membrane Electrode Assembly)
bly) is formed. Further, the fuel cell is assembled by sandwiching the MEA with a separator made of a metal material, graphite, carbon composite or the like, which has a gas supply function, a current collecting function, and particularly an important drainage function in the cathode. The electric load 15 is electrically connected to the anode and the cathode. Anode burner 1 for heating off gas
8 consumed. Exhaust port 16 for cathode off gas
Emitted from.

【0031】[0031]

【発明の効果】本発明の方法により、一酸化炭素および
水素を含有する原料ガスから一酸化炭素を選択的に酸化
するため、生成燃料ガス中の一酸化炭素濃度は100v
olppm以下、好ましくは50volppm以下、特
に好ましくは10volppm以下に低減されるため、
得られる燃料ガスは特に固体高分子形燃料電池を用いた
燃料電池システムとして好適に採用できる。
According to the method of the present invention, carbon monoxide is selectively oxidized from a source gas containing carbon monoxide and hydrogen, so that the carbon monoxide concentration in the produced fuel gas is 100 v.
olppm or less, preferably 50 volppm or less, particularly preferably 10 volppm or less,
The obtained fuel gas can be suitably used particularly as a fuel cell system using a polymer electrolyte fuel cell.

【0032】[0032]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

【0033】(実施例1)1〜2mm球に成型したアル
ファアルミナ5.0gおよび塩化ルテニウム0.013
gを26.65mlのエタノールに溶解させた溶液に投
入し、3時間攪拌しながら含浸し、ろ別した後、空気雰
囲気下、120℃で15時間、次に700℃で3時間水
素処理して触媒(1)を得た。担持されたルテニウム量
は0.04質量%であった。次に1〜2mm球に成型し
たアルファアルミナ5.0g、塩化ルテニウム0.04
2gおよびヘキサクロロ白金酸六水和物0.004gを
106.6mlのエタノールに溶解させた溶液に投入
し、3時間攪拌しながら含浸し、ろ別した後、空気雰囲
気下、120℃で15時間、次に700℃で3時間水素
処理して触媒(2)を得た。担持されたルテニウム量は
0.13質量%、白金量は0.03質量%であった。
(Example 1) 5.0 g of alpha-alumina and 0.013 of ruthenium chloride molded into 1-2 mm spheres
g was added to a solution dissolved in 26.65 ml of ethanol, impregnated with stirring for 3 hours, filtered off, and then hydrogenated at 120 ° C. for 15 hours and then at 700 ° C. for 3 hours in an air atmosphere. A catalyst (1) was obtained. The amount of ruthenium supported was 0.04% by mass. Next, 5.0 g of alpha alumina molded into 1-2 mm spheres, 0.04 of ruthenium chloride
2 g and 0.004 g of hexachloroplatinic acid hexahydrate were added to a solution prepared by dissolving 106.6 ml of ethanol, impregnated with stirring for 3 hours, filtered, and then filtered at 120 ° C. for 15 hours in an air atmosphere. Then, hydrogen treatment was performed at 700 ° C. for 3 hours to obtain a catalyst (2). The amount of supported ruthenium was 0.13% by mass, and the amount of platinum was 0.03% by mass.

【0034】1段目の反応管にルテニウム担持触媒
(1)3.0cm3を充填し、2段目の反応管にルテニ
ウム−白金担持触媒(2)3.0cm3を充填し、水素
気流中、350℃で1時間還元した後、一酸化炭素除去
反応評価を行った。試験ガスとしては、灯油を水蒸気改
質し、水性ガスシフト反応して得られた原料ガスに酸素
を加えたものを用いた。試験ガス中には、水素58vo
l%、一酸化炭素0.5vol%、二酸化炭素18vo
l%、酸素0.5vol%、水21vol%が含まれて
いた。反応評価条件は常圧、GHSV=10,000h
-1、試験ガス中の一酸化炭素濃度6000ppm(ドラ
イベース)の条件で、20時間後の生成ガス中の一酸化
炭素濃度の極小値およびその時の反応温度を表1に示し
た。
The ruthenium catalyst in the reaction tube of the first stage (1) 3.0 cm 3 was filled with ruthenium in a reaction tube of the second stage - supported platinum catalyst (2) 3.0 cm 3 was filled, a hydrogen stream After reduction at 350 ° C. for 1 hour, carbon monoxide removal reaction was evaluated. As the test gas, a source gas obtained by steam-reforming kerosene and subjecting it to a water gas shift reaction and adding oxygen was used. Hydrogen 58 vo in the test gas
1%, carbon monoxide 0.5 vol%, carbon dioxide 18 vo
It contained 1% of oxygen, 0.5 vol% of oxygen, and 21 vol% of water. Reaction evaluation conditions are normal pressure, GHSV = 10,000h
-1 , the minimum value of the carbon monoxide concentration in the produced gas after 20 hours and the reaction temperature at that time are shown in Table 1 under the condition of the carbon monoxide concentration in the test gas of 6000 ppm (dry base).

【0035】(比較例1)1段目および2段目ともにル
テニウム担持触媒(1)3.0cm3をそれぞれ充填
し、実施例1と同様に一酸化炭素除去反応評価を行っ
た。
(Comparative Example 1) The ruthenium-supported catalyst (1) (3.0 cm 3 ) was charged in both the first and second stages, and the carbon monoxide removal reaction was evaluated in the same manner as in Example 1.

【0036】(比較例2)1段目および2段目ともにル
テニウム−白金担持触媒(2)3.0cm3をそれぞれ
充填し、実施例1と同様に一酸化炭素除去反応評価を行
った。
(Comparative Example 2) The ruthenium-platinum-supported catalyst (2) (3.0 cm 3 ) was filled in each of the first and second stages, and the carbon monoxide removing reaction was evaluated in the same manner as in Example 1.

【0037】(比較例3)1段目にルテニウム−白金担
持触媒(2)3.0cm3を充填し、2段目にルテニウ
ム担持触媒(1)3.0cm3を充填し、実施例1と同様
に一酸化炭素除去反応評価を行った。
[0037] (Comparative Example 3) ruthenium first stage - filling the platinum-carrying catalyst (2) 3.0 cm 3, filled with a ruthenium catalyst (1) 3.0 cm 3 in the second row, as in Example 1 Similarly, the carbon monoxide removal reaction was evaluated.

【0038】[0038]

【表1】 [Table 1]

【0039】(実施例2)図1の燃料電池システムにお
いて、実施例1で得られた触媒(1)および触媒(2)
を選択酸化反応器にそれぞれ前段と後段の2段階に充填
し、灯油を原燃料とした発電試験を行なった。20時間
の運転中、選択酸化反応器が正常に作動し、触媒の活性
低下は認められなかった。燃料電池も正常に作動し電気
負荷15も順調に運転された。
Example 2 In the fuel cell system of FIG. 1, the catalyst (1) and the catalyst (2) obtained in Example 1 were used.
Was charged into the selective oxidation reactor in two stages, a front stage and a rear stage, and a power generation test was performed using kerosene as a raw fuel. During the operation for 20 hours, the selective oxidation reactor worked normally, and no decrease in the activity of the catalyst was observed. The fuel cell also operated normally, and the electric load 15 also operated smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池システムの一例を示す概略図
である。
FIG. 1 is a schematic diagram showing an example of a fuel cell system of the present invention.

【符号の説明】[Explanation of symbols]

1 水タンク 2 水ポンプ 3 燃料タンク 4 燃料ポンプ 5 脱硫器 6 気化器 7 改質器 8 空気ブロアー 9 高温シフト反応器 10 低温シフト反応器 11 選択酸化反応器 12 アノード 13 カソード 14 固体高分子電解質 15 電気負荷 16 排気口 17 固体高分子形燃料電池 18 加温用バーナー 1 water tank 2 water pump 3 fuel tank 4 fuel pump 5 desulfurizer 6 vaporizer 7 reformer 8 air blowers 9 High temperature shift reactor 10 Low temperature shift reactor 11 Selective oxidation reactor 12 Anode 13 cathode 14 Solid polymer electrolyte 15 Electric load 16 exhaust port 17 Polymer electrolyte fuel cell 18 Heating burner

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C10K 3/00 C10K 3/00 5H027 H01M 8/10 H01M 8/10 Fターム(参考) 4G040 EA02 EA03 EA06 EB01 EB31 EB32 4G069 AA03 AA08 BA01B BC70A BC70B BC75A BC75B CC26 EA02Y EE09 FA02 FB14 FB44 4H060 AA01 AA08 BB08 BB11 BB21 CC15 DD01 EE03 FF02 GG02 5H018 AA06 AS02 BB17 EE03 HH05 5H026 AA06 BB10 EE02 EE17 HH05 5H027 AA06 BA01 BA17 Continuation of front page (51) Int.Cl. 7 identification code FI theme code (reference) // C10K 3/00 C10K 3/00 5H027 H01M 8/10 H01M 8/10 F term (reference) 4G040 EA02 EA03 EA06 EB01 EB31 EB32 4G069 AA03 AA08 BA01B BC70A BC70B BC75A BC75B CC26 EA02Y EE09 FA02 FB14 FB44 4H060 AA01 AA08 BB08 BB11 BB21 CC15 DD01 EE03 FF02 GG02 5H018 BAH17 A07HA06 EE02 HH05 5H017 AH06 5A018 A02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一酸化炭素および水素を含有する原料ガ
スから一酸化炭素濃度を低減する方法であって、該原料
ガスに酸素含有ガスを加え、無機酸化物にルテニウムを
担持した触媒の存在下に酸化反応を行なう第一工程、お
よび無機酸化物にルテニウムおよび白金を担持した触媒
の存在下に酸化反応を行なう第二工程の少なくとも二段
階の酸化工程により、一酸化炭素を選択的に酸化して該
原料ガスから一酸化炭素濃度を低減する方法。
1. A method for reducing the concentration of carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, which comprises adding an oxygen-containing gas to the raw material gas and presenting a catalyst in which ruthenium is supported on an inorganic oxide. Carbon monoxide is selectively oxidized by at least two steps of the oxidation reaction in the first step, and the second step in which the oxidation reaction is performed in the presence of a catalyst having ruthenium and platinum supported on an inorganic oxide. And a method for reducing the carbon monoxide concentration from the source gas.
【請求項2】 第二工程の前に酸素含有ガスを追加供給
することを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein an oxygen-containing gas is additionally supplied before the second step.
【請求項3】 酸素と原料ガス中の一酸化炭素の比がモ
ル比で0.5〜3であることを特徴とする請求項1又は
2に記載の方法。
3. The method according to claim 1, wherein the molar ratio of oxygen to carbon monoxide in the raw material gas is 0.5 to 3.
【請求項4】 原料ガスが炭化水素、アルコールまたは
エーテルを脱硫反応、改質反応および水性ガスシフト反
応することにより得られたものであることを特徴とする
請求項1〜3のいずれかの項に記載の方法。
4. The method according to claim 1, wherein the raw material gas is obtained by subjecting hydrocarbon, alcohol or ether to a desulfurization reaction, a reforming reaction and a water gas shift reaction. The method described.
【請求項5】 原料ガス中の一酸化炭素濃度が0.1〜
2vol%であることを特徴とする請求項1〜4のいず
れかの項に記載の方法。
5. The carbon monoxide concentration of the raw material gas is 0.1 to 10.
It is 2 vol%, The method in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】 酸化処理後の生成ガス中の一酸化炭素濃
度が100volppm以下であることを特徴とする請
求項1〜5のいずれかの項に記載の方法。
6. The method according to claim 1, wherein the concentration of carbon monoxide in the produced gas after the oxidation treatment is 100 volppm or less.
【請求項7】 炭化水素、アルコールおよびエーテルか
ら選ばれる燃料を脱硫処理、改質反応および水性ガスシ
フト反応を行って得られる一酸化炭素および水素を含有
する原料ガスに酸素含有ガスを加え、無機酸化物にルテ
ニウムを担持した触媒の存在下に酸化反応を行なう第一
工程および無機酸化物にルテニウムおよび白金を担持し
た触媒の存在下に酸化反応を行なう第二工程からなる一
酸化炭素の二段階酸化反応を行って得られる燃料ガスを
陰極側燃料として供給することを特徴とする燃料電池シ
ステム。
7. Inorganic oxidation by adding an oxygen-containing gas to a raw material gas containing carbon monoxide and hydrogen obtained by subjecting a fuel selected from hydrocarbons, alcohols and ethers to desulfurization treatment, reforming reaction and water gas shift reaction. -Step oxidation of carbon monoxide consisting of a first step in which the oxidation reaction is carried out in the presence of a catalyst supporting ruthenium on the product and a second step in which the oxidation reaction is carried out in the presence of a catalyst supporting ruthenium and platinum on the inorganic oxide A fuel cell system characterized in that a fuel gas obtained by carrying out a reaction is supplied as cathode-side fuel.
JP2001301040A 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration Expired - Fee Related JP4582976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301040A JP4582976B2 (en) 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301040A JP4582976B2 (en) 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration

Publications (2)

Publication Number Publication Date
JP2003104703A true JP2003104703A (en) 2003-04-09
JP4582976B2 JP4582976B2 (en) 2010-11-17

Family

ID=19121518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301040A Expired - Fee Related JP4582976B2 (en) 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration

Country Status (1)

Country Link
JP (1) JP4582976B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032605A (en) * 2003-07-07 2005-02-03 Sony Corp Carbon monoxide remover, fuel cell, and fuel cell device
JP2005150085A (en) * 2003-11-13 2005-06-09 Samsung Sdi Co Ltd Catalyst support consisting of metal oxide-carbon composite, and fuel cell utilizing this

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133702A (en) * 1994-10-31 1996-05-28 Aqueous Res:Kk Carbon monoxide removing device and method therefor
JPH10302821A (en) * 1997-04-25 1998-11-13 Toshiba Corp Carbon monoxide reducing device for solid high polymer fuel cell and its operating method
JPH11310402A (en) * 1998-04-27 1999-11-09 Toyota Motor Corp Carbon monoxide concentration reducing system, carbon monoxide concentration reduction, and production of carbon monoxide selectively oxidative catalyst
JP2000044204A (en) * 1998-07-29 2000-02-15 Matsushita Electric Ind Co Ltd Hydrogen purifying device
JP2001068136A (en) * 1999-08-25 2001-03-16 Osaka Gas Co Ltd Solid high-polymer fuel cell system and operating method therefor
JP2001226107A (en) * 2000-02-18 2001-08-21 Ishikawajima Harima Heavy Ind Co Ltd Device and method for selectively removing co

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133702A (en) * 1994-10-31 1996-05-28 Aqueous Res:Kk Carbon monoxide removing device and method therefor
JPH10302821A (en) * 1997-04-25 1998-11-13 Toshiba Corp Carbon monoxide reducing device for solid high polymer fuel cell and its operating method
JPH11310402A (en) * 1998-04-27 1999-11-09 Toyota Motor Corp Carbon monoxide concentration reducing system, carbon monoxide concentration reduction, and production of carbon monoxide selectively oxidative catalyst
JP2000044204A (en) * 1998-07-29 2000-02-15 Matsushita Electric Ind Co Ltd Hydrogen purifying device
JP2001068136A (en) * 1999-08-25 2001-03-16 Osaka Gas Co Ltd Solid high-polymer fuel cell system and operating method therefor
JP2001226107A (en) * 2000-02-18 2001-08-21 Ishikawajima Harima Heavy Ind Co Ltd Device and method for selectively removing co

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032605A (en) * 2003-07-07 2005-02-03 Sony Corp Carbon monoxide remover, fuel cell, and fuel cell device
JP2005150085A (en) * 2003-11-13 2005-06-09 Samsung Sdi Co Ltd Catalyst support consisting of metal oxide-carbon composite, and fuel cell utilizing this

Also Published As

Publication number Publication date
JP4582976B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP5105937B2 (en) Method for reducing carbon monoxide concentration
US8093178B2 (en) Catalyst for reducing carbon monoxide concentration
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5204633B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4227779B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP4210130B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2003265956A (en) Catalyst for selectively oxidizing carbon monoxide, method of reducing concentration of carbon monoxide, and fuel cell system
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP4227780B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP4037122B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2007167828A (en) Catalyst for selectively oxidizing carbon monoxide, method for decreasing concentration of carbon monoxide and fuel cell system
JP4567930B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2004223415A (en) Catalyst for selective oxidation of carbon monoxide, method for decreasing carbon monoxide concentration, and fuel cell system
JP4011886B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP5537232B2 (en) Method for reducing carbon monoxide concentration, hydrogen production apparatus, and fuel cell system
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4881078B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2003284950A (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing concentration of carbon monoxide, and fuel battery system
JP5041781B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees