JP2003098135A - 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法 - Google Patents

粒子状物質センサ−およびこれを用いた粒子状物質の測定方法

Info

Publication number
JP2003098135A
JP2003098135A JP2001295694A JP2001295694A JP2003098135A JP 2003098135 A JP2003098135 A JP 2003098135A JP 2001295694 A JP2001295694 A JP 2001295694A JP 2001295694 A JP2001295694 A JP 2001295694A JP 2003098135 A JP2003098135 A JP 2003098135A
Authority
JP
Japan
Prior art keywords
particulate matter
matter sensor
exhaust gas
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001295694A
Other languages
English (en)
Inventor
Hiroji Kamisaka
博二 上坂
Ichiro Asano
一朗 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2001295694A priority Critical patent/JP2003098135A/ja
Publication of JP2003098135A publication Critical patent/JP2003098135A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

(57)【要約】 【課題】 排ガス中のPMをリアルタイムにかつ高精度
に測定することのできるコンパクトな粒子状物質センサ
−およびこれを用いた粒子状物質の測定方法を提供する
こと。 【解決手段】 耐熱性および電気絶縁性を有する多孔質
の基体2に多数の孔3を形成し、これらの孔3の隣接す
るものどうしにおいて両端部が交互に電極4a,4bで
封止されるとともに両端部が交互に開口5a,5bし、
前記基体2の両端面において各電極4a,4bが電気的
に結合され、さらに、排ガスGが流れる排気管19内に
設けられる程度の大きさに形成されている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、例えば自動車の
排ガス中に含まれる粒子状物質を測定するための粒子状
物質センサ−およびこれを用いた粒子状物質の測定方法
に関する。
【0002】
【従来の技術】例えば、自動車のディーゼルエンジンか
ら排出されるガス中に含まれる粒子状物質(Parti
culate Matter、以下、PMという)を測
定する手法の一つに、図8に示すように、排ガスGが流
れる排気管51の出口にサンプリング用の管路52を挿
入接続し、この管路52にサンプリング用の吸引ポンプ
53と、内部に筒状の外部電極54と棒状の内部電極5
5とを同心円状に配置してなる測定装置56とを直列に
設け、吸引ポンプ53によって吸引した排ガスGの一部
を測定装置56内に導入して、前記外部電極54と内部
電極55との間の電気抵抗をモニターするようにしたも
のがある。
【0003】前記測定の原理は、前記PMの大部分は、
スート(Soot)と呼ばれる無機炭素と、SOF(S
oluble Organic Fraction)と
呼ばれる炭化水素およびサルフェートと呼ばれる硫化水
和物から構成されており、このうち、スートは導電性を
有している。したがって、PMの付着による二つの電極
54、55間の電気抵抗の大きさの変化をモニターする
ことにより、PMの量を測定することができるのであ
る。
【0004】
【発明が解決しようとする課題】しかしながら、上記従
来のPM測定方法においては、排ガスGをサンプリング
するための管路52や吸引ポンプ53が必要になり構成
が大がかりになるとともに、管路52の内壁や吸引ポン
プ53内の流路にPMが付着し、測定結果に誤差が生ず
るといった課題がある。そして、サンプリングによるハ
ンドリングタイムのため、測定結果に時間遅れ(デッド
タイム)が生ずる。なお、前記PMの付着を防止するた
め、管路52や吸引ポンプ53を所定温度に加熱し保温
することが考えられるが、その場合、ヒータが必要にな
りサンプリング系統が大がかりになる。
【0005】この発明は、上述の事柄に留意してなされ
たもので、その目的は、排ガス中のPMをリアルタイム
にかつ高精度に測定することのできるコンパクトな粒子
状物質センサ−およびこれを用いた粒子状物質の測定方
法を提供することである。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、この発明の粒子状物質センサ−は、耐熱性および電
気絶縁性を有する多孔質の基体に多数の孔を形成し、こ
れらの孔の隣接するものどうしにおいて両端部が交互に
電極で封止されるとともに両端部が交互に開口し、前記
基体の両端面において各電極が電気的に結合され、さら
に、排ガスが流れる排気管内に設けられる程度の大きさ
に形成されてなることを特徴としている(請求項1)。
【0007】上記粒子状物質センサ−は、基体が耐熱性
を有しているので、高温の排ガスがが流れる排気管内に
当該排ガスに直接接触する状態で設けることができる。
したがって、排ガス中のPMをリアルタイムにかつ高精
度に測定することができる。そして、この粒子状物質セ
ンサ−はコンパクトであるので、排気管内における排ガ
スの流れに悪影響を与えたりするおそれがない。
【0008】そして、前記粒子状物質センサ−には、粒
子状物質等が付着するのを抑制しかつ付着物を焼き切る
ためのヒータを設けてあってもよく(請求項2または
3)、この場合、請求項2に記載のように、電極の少な
くとも一方が前記ヒータを兼ねている場合、別途ヒータ
を設ける場合に比べて部品点数が少なくて済む。
【0009】また、この発明の粒子状物質の測定方法
は、前記粒子状物質センサ−を、孔内を排ガスが流れる
ように、排気管内に設け、上流側の電極と下流側の電極
との間の電気抵抗に基づいて前記排ガスに含まれる粒子
状物質の量を測定するようにしたことを特徴としてい
る。
【0010】上記測定方法によれば、排ガス中のPMを
リアルタイムにかつ高精度にしかも連続的に測定するこ
とができる。
【0011】
【発明の実施の形態】以下、この発明の詳細を、図を参
照しながら説明する。図1〜図3は、この発明の一つの
実施の形態を示す。まず、図1は、この発明の粒子状物
質センサ−1の一例を示すもので、この粒子状物質セン
サ−1は自動車の排気管に挿入し得る程度の大きさであ
る。すなわち、図1において、2は耐熱性に優れ、かつ
高電気絶縁性を有する多孔質な基体で、例えば多孔質セ
ラミックよりなり、その平面視形状は例えば正方形で、
一辺の長さXが例えば10mmであり、Z方向の長さ
(厚み)が例えば2〜5mm程度である。
【0012】前記基体2には、その一方の面2a側から
他方の面2b側に、つまり、厚み方向に貫通するように
して、平面視正六角形状の多数の孔(セル)3が互いに
独立した状態でハニカム状に形成されている(図1の部
分拡大部分A参照)。この孔3は、例えば4ミル/40
0セル(壁厚4ミルで1インチ平方に400セル)とい
った密度で形成されている。
【0013】そして、前記基体2の孔3は、図2に示す
ように、隣接するものどうしにおいて両端部が交互に電
極4a,4bで封止されており、したがって、孔3の隣
接するものどうしにおいて両端部が交互に開口5a,5
bしている。前記電極4a,4bは、適宜のヒータ材料
を用いスパッタ法など公知の手法により形成される。そ
して、基体2の一方の端面2aに形成される各電極4a
は、図1の部分拡大部分Aに示すように、導電部6aに
よって電気的に結合されている。また、図示してない
が、基体2の他方の端面2bに形成される各電極4bも
同様に導電部6b(図示していない)によって電気的に
結合されている。つまり、基体2の端面2a,2bのそ
れぞれには、孔3を封止する部材によって電極4a,4
bがそれぞれ交互に形成されるとともに、孔3の開口部
5a,5bが交互に形成されている。7a,7bは前記
電極4a,4bまたは導電部6a,6bに接続される外
部接続端子である。
【0014】上記構成の粒子状物質センサ−1は、図3
に示すように、自動車8のエンジン9に連なる排気管1
0内に設けられる。より詳しくは、図4に示すように、
排気管10の出口端に適宜の筒体11をねじ部材12で
固定し、この筒体11の内側に設けられた保持部材13
に、孔3が排気管10の長手方向(排ガスGの流れる方
向)に沿うように、基体2の一方の端面2aが上流側
(エンジン9側)に位置し、他方の端面2bが下流側
(排気出口側)に位置するように、着脱できるようにし
て取り付けられる。なお、14は外部接続ボックスで、
前記外部接続端子7a,7bに電圧を供給するためのケ
ーブルなどが接続されるとともに、コンピュータなどの
演算処理部(図示していない)への配線が接続される。
【0015】上述のようにして粒子状物質センサ−1を
排気管10内に取り付け、ヒータを兼ねた電極4a,4
b間に通電し、粒子状物質センサ−1を190℃程度に
なるように加熱する。この状態でエンジン9を動作させ
ると、その排ガスGの一部が粒子状物質センサ−1の基
体2の上流側の端面2aの開口5aから孔3内に入る
が、当該孔の下流側は電極4bで封止されているので、
図2において矢印aで示すように、多孔質素材よりなる
基体2の隔壁2’を経て隣接する孔3に入る。この孔3
の下流側には開口5bが形成されているので、前記排ガ
スGは、粒子状物質センサ−1の一方の端面2a側から
他方の端面2b側に通り抜けることができる。つまり、
前記基体2における孔3は、フィルタの働きをしてい
る。
【0016】このとき、排ガスGに含まれるPMは、多
孔質素材よりなる基体2を通り抜けることができないの
で、孔3の内壁に堆積していく。そして、上流側の端面
2a側の電極(上流側電極)4aと下流側の端面2b側
の電極(下流側電極)4bには一定の電圧が印加させて
いるため、前記堆積したPMの電極4a,4bへの接触
により、絶縁状態にある電極4a,4b間に電流が流
れ、この電流と前記電極4a,4b間に印加される電圧
とから電極4a,4b間の電気抵抗が分かる。そして、
この電極4a,4b間の電気抵抗の大きさは、堆積した
PM量と相関関係があるので、前記電気抵抗に基づいて
PM量を定量することができる。そして、この場合、P
Mの量は、図5に示すような積算曲線Cとして得られる
ので、瞬時値はこの積算曲線Cを微分することによって
得ることができる。
【0017】そして、上記実施の形態においては、ヒー
タを兼ねた電極4a,4bが基体2の平面全体に設けら
れており、粒子状物質センサ−1が190℃程度になる
ように加熱されているので、PM等の堆積物が基体2や
孔3内に付着するのが抑制される。その結果、ゼロ点の
変動が抑制されるとともに、電極4a,4bに流れる電
流に誤差が生ずることがなく、PMを精度よく定量する
ことができる。また、ヒータを兼ねた電極4a,4bが
基体2の平面全体に設けられていることにより、基体2
における温度分布が均一になるとともに、短時間で昇温
する。さらに、基体2を最小限の電力で所定の温度にま
で昇温させることができる。
【0018】また、基体2に形成されている孔3がハニ
カム状であるので、通過する排ガスGの抵抗を低くする
ことができる。そして、この孔3の個数を多くすること
により、排ガスGをより層流状態で流すことができると
ともに、信号量が大きくかつ平均化される。
【0019】上述したように、PMの測定時において、
粒子状物質センサ−1を190℃程度に加熱している
が、この加熱によってもPM等が多少付着することがあ
る。その場合、メンテナンスの焼き切り時に、電極4
a,4bに通電を行って、粒子状物質センサ−1を80
0℃程度にまで高温加熱し、付着したPM等を焼き切る
ようにすればよい。
【0020】なお、上記実施の形態においては、電極4
a,4bのいずれをもヒータに兼用させていたが、これ
らのうちの一方のみをヒータに兼用させてあってもよ
い。
【0021】上述のように、基体2の端面2a,2bに
形成される電極4a,4bの一方をヒータに兼用させて
もよいが、これに代えて、図6に示すように、電極4
a,4bは単にPMの検出のために用い、基体2を加熱
してPM等が付着するのを抑制しかつそれらの付着物を
焼き切るためのヒータ15を基体2の厚み方向の外周に
周設してもよい。この場合におけるヒータ15による加
熱温度の調整は、上述した実施の形態における場合と同
様である。そして、この実施の形態における効果は、前
記実施の形態における効果と同様であるので、その詳細
な説明は省略する。
【0022】この発明は、上述の実施の形態に限られる
ものではなく、例えば、基体2に形成される孔3は、ハ
ニカム状で平面視六角形であったが、図7(A)に示す
ように、平面視四角形や、同図(B)に示すように、平
面視円形であってもよいことはいうまでもない。また、
粒子状物質センサ−1における基体2の大きさや基体2
に形成される孔3の大きさは、任意に設定することがで
きるが、粒子状物質センサ−1が少なくとも自動車8の
排気管10内に着脱自在に挿入できる程度の大きさにな
るようにしておく必要がある。
【0023】
【発明の効果】以上説明したように、この発明によれ
ば、排ガス中のPMをリアルタイムにかつ高精度にしか
も連続的に測定することができる。
【図面の簡単な説明】
【図1】この発明の粒子状物質センサ−の一例を部分拡
大図とともに示す断面図である。
【図2】前記粒子状物質センサ−の要部を拡大して示す
断面図である。
【図3】前記粒子状物質センサ−を自動車に取付けた状
態を示す図である。
【図4】図3の要部を拡大して示す断面図である。
【図5】前記粒子状物質センサ−の動作説明図である。
【図6】この発明の粒子状物質センサ−の他の例を部分
拡大図とともに示す断面図である。
【図7】この発明の粒子状物質センサ−の基体における
孔の平面視形状の他の例を拡大して示す図である。
【図8】従来技術の説明図である。
【符号の説明】
1…粒子状物質センサ−、2…基体、2a,2b…端
面、3…孔、4a,4b…電極、5a,5b…開口、1
0…排気管、15…ヒータ、G…排ガス。
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F035 AA02 HA01 HB07 2G060 AA03 AD05 AE40 AF07 AG11 GA04 HB03 JA07 KA09 3G091 BA00 CA00

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 耐熱性および電気絶縁性を有する多孔質
    の基体に多数の孔を形成し、これらの孔の隣接するもの
    どうしにおいて両端部が交互に電極で封止されるととも
    に両端部が交互に開口し、前記基体の両端面において各
    電極が電気的に結合され、さらに、排ガスが流れる排気
    管内に設けられる程度の大きさに形成されてなることを
    特徴とする粒子状物質センサ−。
  2. 【請求項2】 電極の少なくとも一方は、粒子状物質等
    が付着するのを抑制しかつ付着物を焼き切るためのヒー
    タを兼ねている請求項1に記載の粒子状物質センサ−。
  3. 【請求項3】 粒子状物質等が付着するのを抑制しかつ
    付着物を焼き切るためのヒータを本体の外周に設けてな
    る請求項1に記載の粒子状物質センサ−。
  4. 【請求項4】 請求項1〜3のいずれかに記載の粒子状
    物質センサ−を、孔内を排ガスが流れるように、排気管
    内に設け、上流側の電極と下流側の電極との間の電気抵
    抗に基づいて前記排ガスに含まれる粒子状物質の量を測
    定するようにしたことを特徴とする粒子状物質の測定方
    法。
JP2001295694A 2001-09-27 2001-09-27 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法 Pending JP2003098135A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295694A JP2003098135A (ja) 2001-09-27 2001-09-27 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295694A JP2003098135A (ja) 2001-09-27 2001-09-27 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法

Publications (1)

Publication Number Publication Date
JP2003098135A true JP2003098135A (ja) 2003-04-03

Family

ID=19117082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295694A Pending JP2003098135A (ja) 2001-09-27 2001-09-27 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法

Country Status (1)

Country Link
JP (1) JP2003098135A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512661A (ja) * 2004-09-07 2008-04-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 粒子センサに対するセンサ素子および該センサ素子を作動する方法
JP2010078378A (ja) * 2008-09-24 2010-04-08 Honda Motor Co Ltd 粒子状物質検出センサ
WO2015198884A1 (ja) * 2014-06-23 2015-12-30 いすゞ自動車株式会社 センサ
JP2016061679A (ja) * 2014-09-18 2016-04-25 いすゞ自動車株式会社 診断装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512661A (ja) * 2004-09-07 2008-04-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 粒子センサに対するセンサ素子および該センサ素子を作動する方法
JP4922169B2 (ja) * 2004-09-07 2012-04-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 粒子センサに対するセンサ素子および該センサ素子を作動する方法
JP2010078378A (ja) * 2008-09-24 2010-04-08 Honda Motor Co Ltd 粒子状物質検出センサ
WO2015198884A1 (ja) * 2014-06-23 2015-12-30 いすゞ自動車株式会社 センサ
JP2016008863A (ja) * 2014-06-23 2016-01-18 いすゞ自動車株式会社 センサ
CN107076692A (zh) * 2014-06-23 2017-08-18 五十铃自动车株式会社 传感器
US10364730B2 (en) 2014-06-23 2019-07-30 Isuzu Motors Limited Sensor
CN107076692B (zh) * 2014-06-23 2020-06-30 五十铃自动车株式会社 传感器
JP2016061679A (ja) * 2014-09-18 2016-04-25 いすゞ自動車株式会社 診断装置

Similar Documents

Publication Publication Date Title
US7977955B2 (en) Particulate matter sensor
US8860439B2 (en) Method and device for detecting particulate matter contained in a gas to be measured
US7891232B2 (en) Rigid particulate matter sensor
US7963106B2 (en) Method and apparatus for the defined regeneration of sooty surfaces
US8182665B2 (en) Sensor element for gas sensors and method for operating same
US4656832A (en) Detector for particulate density and filter with detector for particulate density
KR20140045951A (ko) 수트 센서 시스템
US20160363522A1 (en) Particulate matter sensor and exhaust gas purification system using the same
JPS60500549A (ja) ガス中の粒子含有量の検出および/または測定方法および装置
JP2003098136A (ja) 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法
JP2011080926A (ja) パティキュレート検出素子
KR20150058252A (ko) 입자 검출용 센서
JPS59196453A (ja) パテイキユレ−ト検出素子
EP2258931B1 (en) Particulate matter reducing apparatus for diesel engine
EP2072973B1 (en) Fluid flow rate measurement apparatus
JP2011033577A (ja) 微粒子センサ
JP2011080780A (ja) パティキュレート検出素子
JP2012068148A (ja) 粒子状物質検出センサ
JP2003098135A (ja) 粒子状物質センサ−およびこれを用いた粒子状物質の測定方法
US20220298947A1 (en) Honeycomb substrate with electrode
JP2004177407A (ja) 流体中、特に内燃エンジンの排気ガス中に含まれている粒子の量を測定する装置
JPS5960018A (ja) パテイキユレ−ト検出素子及びパテイキユレ−ト検出フイルタ
JP6968266B2 (ja) 露出されたプレーナ型のコロナ放電電極を有する粒子センサ
KR101610167B1 (ko) 입자상 물질 센서
JP6784050B2 (ja) センサ