JP2003075640A - Method for manufacturing optical retardation film and optical retardation film - Google Patents

Method for manufacturing optical retardation film and optical retardation film

Info

Publication number
JP2003075640A
JP2003075640A JP2001271879A JP2001271879A JP2003075640A JP 2003075640 A JP2003075640 A JP 2003075640A JP 2001271879 A JP2001271879 A JP 2001271879A JP 2001271879 A JP2001271879 A JP 2001271879A JP 2003075640 A JP2003075640 A JP 2003075640A
Authority
JP
Japan
Prior art keywords
retardation film
film
polarized component
light
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001271879A
Other languages
Japanese (ja)
Other versions
JP4947532B2 (en
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2001271879A priority Critical patent/JP4947532B2/en
Priority to KR1020010084975A priority patent/KR100852224B1/en
Priority to TW090132305A priority patent/TW591249B/en
Priority to US10/026,432 priority patent/US6743487B2/en
Publication of JP2003075640A publication Critical patent/JP2003075640A/en
Priority to US10/782,958 priority patent/US7300687B2/en
Application granted granted Critical
Publication of JP4947532B2 publication Critical patent/JP4947532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a method for manufacturing an optical retardation film by irradiation of non-polarized light or ultraviolet rays in which a completely polarized component and a non-polarized component are mixed. SOLUTION: A film is formed by application (spin coating or casting) of a mixture of a photosensitive polymer and a low molecular weight compound. Although a side chain of the photosensitive polymer and the low molecular weight compound are not oriented in the film, the optical retardation film in which three principal refractive indexes nx, ny and nz of an index ellipsoid in the film and the slope of nx axis are controlled with respect to the direction normal to the film surface is manufactured by an irradiation operation of the non-polarized light or light in which the completely polarized component and the non-polarized component are mixed. The film is useful as the optical retardation film to enlarge a viewing angle of a liquid crystal display device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置の視
野角拡大に用いられるような位相差フィルムの製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a retardation film used for expanding the viewing angle of a liquid crystal display device.

【0002】[0002]

【従来の技術】位相差フィルムは、互いに垂直な主軸方
向に振動する直線偏光成分を透過させ、この二成分間に
必要な位相差を与える複屈折を有するフィルムである。
このような位相差フィルムでは、特定の光学特性を付与
することにより光学補償フィルムとして液晶表示装置の
視野角拡大に役立つ。このような位相差フィルムを製造
する従来技術が幾つか報告されている。例えば、特許登
録2640083号には、ラビング配向膜、SiO斜方
蒸着配向膜上に3つの主屈折率nx、ny、nzがnx
=ny>nzであるディスコティック液晶を傾斜配列さ
せた位相フィルムが記載されている。また、特開平10
−332933号では、3つの主屈折率がnx>ny=
nzである屈折率楕円体を有する液晶性高分子をラビン
グ配向膜、SiO斜方蒸着配向膜上に傾斜配列させたフ
ィルムと負の屈折率楕円体の層とによって構成される位
相差フィルムが記載されている。更に、特開2000−
121831号では、無機化合物である五酸化タンタル
を斜方蒸着した3つの主屈折率がnx>ny>nzであ
る2軸性の屈折率楕円体を傾斜配列させた位相差フィル
ムが記載されている。しかしながら、上記のような配向
膜を用いる方法では、配向膜の配向処理、液晶材料の配
向など工程が煩雑になるなどの問題があり、無機化合物
を斜方蒸着する方法では、長尺状シート上に連続して蒸
着膜を形成するには、装置が大掛かりになる、工程が煩
雑になるなどの問題がある。
2. Description of the Related Art Retardation films are films having birefringence that allow linearly polarized light components vibrating in mutually perpendicular principal axis directions to pass therethrough and give a required retardation between the two components.
By imparting specific optical characteristics, such a retardation film serves as an optical compensation film for expanding the viewing angle of a liquid crystal display device. Several conventional techniques for producing such a retardation film have been reported. For example, in Japanese Patent No. 2640083, three main refractive indices nx, ny, and nz are nx on a rubbing alignment film and a SiO oblique vapor deposition alignment film.
There is described a phase film in which discotic liquid crystal with = ny> nz is arranged in a tilted manner. In addition, JP-A-10
In −332933, the three main refractive indices are nx> ny =
A retardation film composed of a rubbing alignment film, a film in which a liquid crystal polymer having an index ellipsoid of nz is obliquely arranged on a SiO oblique vapor deposition alignment film, and a layer of a negative index ellipsoid is described. Has been done. Furthermore, JP-A-2000-
No. 121831 discloses a retardation film in which tantalum pentoxide, which is an inorganic compound, is obliquely vapor-deposited and three biaxial index ellipsoids each having a principal refractive index of nx>ny> nz are arranged obliquely. . However, the method using the alignment film as described above has a problem that the process such as the alignment treatment of the alignment film and the alignment of the liquid crystal material is complicated, and the method of obliquely vapor-depositing the inorganic compound is used on the long sheet. In order to continuously form the vapor-deposited film, there are problems that the apparatus becomes large and the process becomes complicated.

【0003】光照射により位相差を発現させる方法とし
て、特開平7−138308号にポリビニルシンナメー
トなどの感光性重合体に直線偏光性の光を照射する方法
が記載されており、また、本発明者も特開平10−27
8123号公報では感光性を有する側鎖型液晶性高分子
への直線偏光性の紫外線照射により、光軸の傾いた位相
差フィルムを製造する方法を提案したが、これら直線偏
光性の光を照射する方法では3つの主屈折率がnx>n
y=nzである屈折率楕円体を傾斜配向させた位相差フ
ィルムを製造することができる。しかしながら、該位相
差フィルムを液晶表示装置において視野角拡大の目的に
位相差フィルムを用いる場合、十分な効果が得られない
場合があり、十分な視野角拡大効果を得るには複屈折性
もしくは3つの主屈折率nx、ny、nzとX軸の傾き
を制御することが望ましい。
As a method of exhibiting a phase difference by light irradiation, JP-A-7-138308 describes a method of irradiating a photosensitive polymer such as polyvinyl cinnamate with linearly polarized light, and also the present invention. The person in charge of the invention is also JP-A-10-27
Japanese Patent No. 8123 proposes a method for producing a retardation film having an inclined optical axis by irradiating a side-chain type liquid crystalline polymer having photosensitivity with a linearly polarizing ultraviolet ray. In this method, the three main refractive indices are nx> n
It is possible to manufacture a retardation film in which a refractive index ellipsoid in which y = nz is tilt-oriented. However, when the retardation film is used for the purpose of enlarging the viewing angle in a liquid crystal display device, a sufficient effect may not be obtained, and birefringence or 3 It is desirable to control the two main refractive indices nx, ny, nz and the inclination of the X axis.

【0004】[0004]

【課題を解決するための手段】本発明では、図1に示す
ように正の屈折率楕円体構造を含有する感光性の重合体
ないしは該重合体と低分子化合物の混合体からなるフィ
ルム11に非偏光性の光またはP成分(Lp)とS成分
(Ls)からなる完全偏光成分と非偏光成分が混在する
光(L)を照射する操作により、複屈折性もしくはフィ
ルム中の屈折率楕円体の3つの主屈折率nx(1a)、
ny(1b)、nz(1c)とnx軸のフィルム面法線
方向に対する傾きを制御した位相差フィルムを提供でき
る。ここで、複屈折性を制御するとは、ベンド配向また
は傾斜配向した屈折率楕円体ないしはこれらと傾斜して
いない一軸性の屈折率楕円体とを組み合わせた場合と同
等の複屈折性を発現させることをいう。
In the present invention, as shown in FIG. 1, a film 11 made of a photosensitive polymer having a positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular weight compound is used. By the operation of irradiating non-polarizing light or light (L) in which a completely polarized component composed of P component (Lp) and S component (Ls) and a non-polarized component are mixed, birefringence or a refractive index ellipsoid in the film The three main refractive indices nx (1a) of
It is possible to provide a retardation film in which the inclinations of ny (1b), nz (1c) and the nx axis with respect to the film surface normal direction are controlled. Here, controlling the birefringence means expressing the birefringence equivalent to the case where a bend- or tilt-aligned index ellipsoid or a combination of these with a non-tilted uniaxial index ellipsoid. Say.

【0005】[0005]

【発明の実施の形態】以下に、本発明の詳細を説明す
る。本発明の位相差フィルムの製造には、本発明者が、
特開平11−189665号特許公報、特願2000−
400356号で記載したような、光の照射と加熱冷却
により複屈折を生じる材料を用いることができる。これ
らの材料は、液晶性高分子のメソゲン成分として多用さ
れているビフェニル、ターフェニル、フェニルベンゾエ
ート、アゾベンゼンなどの置換基と、シンナモイル基、
カルコン基、シンナミリデン基、β−(2−フリル)ア
クリロイル基(または、それらの誘導体)などの感光性
基を結合した構造を含む側鎖を有し、炭化水素、アクリ
レート、メタクリレート、マレイミド、N−フェニルマ
レイミド、シロキサンなどの構造を主鎖に有する高分子
が挙げられる。該重合体は同一の繰り返し単位からなる
単一重合体または構造の異なる側鎖を有する単位の共重
合体でもよく、あるいは感光性基を含まない側鎖を有す
る単位を共重合させることも可能である。また、低分子
化合物を混合する場合、該低分子化合物はメソゲン成分
として多用されているビフェニル、ターフェニル、フェ
ニルベンゾエート、アゾベンゼンなどの置換基を有する
結晶性または、液晶性を有する化合物が挙げられる。混
合する低分子化合物は、単一の化合物のみとは限らず複
数種の化合物を混合することも可能である。更には、液
晶性を損なわない程度に配向性を向上させるための配向
助剤や耐熱性を向上させるための架橋剤を添加すること
や、液晶性を損なうことなく液晶性を示さない単量体を
感光性の重合体に共重合してもかまわない。但し、感光
性の重合体と低分子化合物は、上記に限定されるもので
はない。これらの感光性の重合体は、特開平7−138
308号にポリビニルシンナメートなどの感光性重合体
に直線偏光性の光を照射し光反応のみで複屈折を発現さ
せるのとは異なり、光反応後、加熱冷却による配向を伴
い光の照射エネルギ量が少なくて済み、複屈折を発現の
原理は全く異なるものである。また、光照射により位相
差を発現させる提案はこれまで幾つかあるものの、光照
射により複屈折性ないしは屈折率楕円体の3つの主屈折
率を制御するとうい観点から、本発明の照射光の偏光度
によりこれらを達成した事例は全く無く、またこのよう
な位相差フィルムが液晶表示装置の視野角拡大に有効で
あることをはじめて確認した。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below. In the production of the retardation film of the present invention, the present inventor
Japanese Patent Application Laid-Open No. 11-189665, Japanese Patent Application 2000-
As described in No. 400356, a material that causes birefringence upon irradiation with light and heating / cooling can be used. These materials include substituents such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are often used as mesogenic components of liquid crystalline polymers, and cinnamoyl groups,
It has a side chain containing a structure in which a photosensitive group such as a chalcone group, a cinnamylidene group, a β- (2-furyl) acryloyl group (or a derivative thereof) is bonded, and has a hydrocarbon, acrylate, methacrylate, maleimide, N- Examples thereof include polymers having a structure such as phenylmaleimide and siloxane in the main chain. The polymer may be a homopolymer of the same repeating unit or a copolymer of units having side chains with different structures, or it is also possible to copolymerize units having side chains containing no photosensitive group. . When the low molecular weight compound is mixed, the low molecular weight compound may be a compound having a crystallinity or a liquid crystallinity, which has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are often used as mesogenic components. The low molecular weight compound to be mixed is not limited to a single compound, and a plurality of kinds of compounds can be mixed. Furthermore, addition of an alignment aid for improving the alignment property and a cross-linking agent for improving the heat resistance to the extent that the liquid crystallinity is not impaired, and a monomer that does not exhibit the liquid crystallinity without impairing the liquid crystallinity May be copolymerized with a photosensitive polymer. However, the photosensitive polymer and the low molecular weight compound are not limited to the above. These photosensitive polymers are disclosed in JP-A-7-138.
Unlike 308, in which a photosensitive polymer such as polyvinyl cinnamate is irradiated with linearly polarized light to develop birefringence only by a photoreaction, the irradiation energy amount of light is accompanied by alignment by heating and cooling after the photoreaction. However, the principle of manifesting birefringence is completely different. In addition, although there have been some proposals to develop a phase difference by light irradiation, from the viewpoint of controlling the three main refractive indices of birefringence or refractive index ellipsoid by light irradiation, polarization of irradiation light of the present invention It was confirmed for the first time that such a retardation film is effective for widening the viewing angle of a liquid crystal display device.

【0006】図2に基づいて、感光性の重合体と低分子
化合物の混合体を塗布(スピンコートないしキャスト)
し製膜されたフィルムについて説明する。図2は、製膜
後の膜(フィルム)を模式的に表したものである。膜
(22)は、製膜時には等方性であり、感光性の重合体
の側鎖部および低分子化合物は特定方向を向いていな
い。すなわち、膜(22)中で、長楕円で示される感光
基を有する側鎖(2a、2b)および円柱で示される低
分子化合物(2c)は無秩序に存在(共存)している。
この膜にP成分(Lp)とS成分(Ls)からなる完全
偏光成分と非偏光成分が混在する紫外線疑似平行光束
(L)を照射すると、照射紫外線の進行方向と垂直方向
に向いた側鎖(2a)は、平行方向を向いた側鎖(2
b)より感光しやすいため、選択的に反応が進む。これ
は、ベンゼン環などを含有する感光性部分の共役系が側
鎖の長軸方向に延びているためであり、このような側鎖
を光のような放射場に置いたとき、光の電界振動方向が
側鎖の長軸方向と一致する場合に相互作用が極大とな
り、光の進行方向と側鎖の長軸方向が一致した場合には
相互作用が極小となることによる。このことから、完全
偏光成分と非偏光成分が混在する紫外線の照射により、
特定方向の光反応を進めた膜とすることができる。この
光反応を進めるには、感光性基の部分が反応し得る波長
の光の照射を要する。この波長は、感光性基の種類によ
っても異なるが、一般に200-500nmであり、中
でも250-400nmの有効性が高い場合が多い。
Based on FIG. 2, a mixture of a photosensitive polymer and a low molecular weight compound is applied (spin coating or casting).
The film thus formed will be described. FIG. 2 schematically shows the film (film) after the film formation. The film (22) is isotropic at the time of film formation, and the side chain part of the photosensitive polymer and the low molecular weight compound are not oriented in a specific direction. That is, in the film (22), the side chains (2a, 2b) having a photosensitive group represented by a long ellipse and the low molecular weight compound (2c) represented by a cylinder are randomly present (coexisting).
When this film is irradiated with an ultraviolet pseudo-parallel light flux (L), which is a mixture of completely polarized components and non-polarized components of P component (Lp) and S component (Ls), side chains oriented in the direction perpendicular to the traveling direction of the irradiated ultraviolet rays. (2a) is a side chain (2
b) Since it is more sensitive to light, the reaction proceeds selectively. This is because the conjugated system of the photosensitive moiety containing a benzene ring etc. extends in the long axis direction of the side chain, and when such side chain is placed in a radiation field such as light, the electric field of light is changed. This is because the interaction becomes maximum when the vibration direction matches the long-axis direction of the side chain, and the interaction becomes minimum when the traveling direction of light and the long-axis direction of the side chain match. From this, the irradiation of ultraviolet rays containing a completely polarized component and a non-polarized component,
The film can be a film in which a photoreaction in a specific direction is advanced. In order to proceed with this photoreaction, it is necessary to irradiate light having a wavelength with which the photosensitive group moiety can react. This wavelength is generally 200 to 500 nm, although it depends on the type of the photosensitive group, and 250 to 400 nm is particularly effective in many cases.

【0007】図3は、図2の膜にP成分とS成分からな
る完全偏光成分と非偏光成分が混在する光紫外線を照射
した後の配向が促進された膜(33)の模式図を示す。
図3に示すように、膜(33)中の光反応をしなかった
側鎖(3b)または低分子化合物(3c)は、完全偏光
成分と非偏光成分が混在する紫外線の照射後の分子運動
により、特定方向の光反応が進んだ膜中に発現した異方
性の影響を受け配向する(側鎖(3a)は完全偏光成分
と非偏光成分が混在する光の照射により感光し反応した
側鎖、側鎖(3b)は照射紫外線の進行方向と平行方向
を向いたため反応しなかった側鎖をそれぞれ表してい
る。)。その結果、膜全体において複屈折が誘起され、
その複屈折性もしくは膜の3つの主屈折率nx、ny、
nzの比とnx軸のフィルム面法線方向に対する傾き
は、完全偏光成分と非偏光成分が混在する光のP成分と
S成分の比とその照射する角度および感光性の材料の特
性によって制御できる。更には、後述の実施例のような
感光性材料に非偏光性の光または完全偏光成分と非偏光
成分が混在する光を照射することにより、ベンド配向ま
たは傾斜配向した屈折率楕円体ないしはこれらと傾斜し
ていない一軸性の屈折率楕円体とを組み合わせた場合と
同等の複屈折性を発現させ得ることもできる。
FIG. 3 is a schematic view of a film (33) whose orientation is promoted after irradiation of the film of FIG. 2 with photo-ultraviolet light in which a completely polarized component composed of a P component and an S component and a non-polarized component are mixed. .
As shown in FIG. 3, the side chain (3b) or the low molecular weight compound (3c) in the film (33) that did not undergo photoreaction is the molecular motion after irradiation of ultraviolet rays in which a completely polarized component and a non-polarized component are mixed. Due to this, the film is oriented under the influence of anisotropy developed in the film in which the photoreaction in a specific direction has progressed (the side chain (3a) is exposed to light containing a mixture of a completely polarized component and a non-polarized component and reacted with it). The chain and the side chain (3b) represent the side chains that did not react because they were oriented in the direction parallel to the traveling direction of the irradiation ultraviolet light.). As a result, birefringence is induced in the entire film,
Its birefringence or the three principal indices of refraction of the film nx, ny,
The ratio of nz and the inclination of the nx axis with respect to the normal to the film surface can be controlled by the ratio of the P component and S component of the light in which the completely polarized component and the non-polarized component are mixed, the irradiation angle thereof, and the characteristics of the photosensitive material. . Furthermore, by irradiating a light-sensitive material such as an example described later with non-polarizing light or light in which a completely polarized component and a non-polarized component are mixed, a bend- or tilt-aligned refractive index ellipsoid or these It is also possible to exhibit the same birefringence as in the case of combining with a non-tilted uniaxial index ellipsoid.

【0008】非偏光性の光または完全偏光成分と非偏光
成分が混在する紫外線の照射後の分子運動による配向
は、膜を加熱すると促進される。膜の加熱温度は、光反
応した部分の軟化点より低く、光反応しなかった側鎖と
低分子の軟化点より高いことが望ましい。また、膜の配
向を促進するには加熱下(室温からTi+5℃まで)で
完全偏光成分と非偏光成分が混在する紫外線を照射する
ことも有効である。ここで、Tiは液晶相から等方相へ
変化するときの相転移温度を指す。好ましくはTi前後
で完全偏光成分と非偏光成分が混在する紫外線を照射す
ることが有効である。このように完全偏光成分と非偏光
成分が混在する紫外線を照射したのち加熱、または加熱
下で完全偏光成分と非偏光成分が混在する紫外線を照射
したフィルムを該高分子の軟化点以下まで冷却すると分
子が凍結され、本発明の位相差フィルムが得られる。
Alignment due to molecular motion after irradiation of non-polarizing light or ultraviolet rays in which a completely polarized component and a non-polarized component are mixed is promoted by heating the film. It is desirable that the heating temperature of the film is lower than the softening point of the photoreacted portion and higher than the softening points of the side chains and the low molecular weight which are not photoreacted. Further, in order to promote the orientation of the film, it is also effective to irradiate ultraviolet rays containing a completely polarized component and a non-polarized component under heating (from room temperature to Ti + 5 ° C.). Here, Ti indicates a phase transition temperature when the liquid crystal phase changes to an isotropic phase. Preferably, it is effective to irradiate with ultraviolet rays in which a completely polarized component and a non-polarized component are mixed before and after Ti. In this way, after irradiating ultraviolet rays containing a completely polarized component and a non-polarized component, heating, or by irradiating the film irradiated with ultraviolet rays having a completely polarized component and non-polarized component mixed under heating to a temperature below the softening point of the polymer. The molecules are frozen, and the retardation film of the present invention is obtained.

【0009】本発明において感光性の重合体に混合する
低分子化合物が低分子化合物同士、もしくは該重合体に
対して熱または光反応性を有している場合には、配向が
強固に固定されるため耐熱性の向上が期待される。この
ような場合、再配向時の分子運動を妨げないよう、露光
量を抑えるか反応性を調整するなどして、光反応点の密
度を制御する必要がある。低分子化合物は、適量ならば
曇り度を抑制する効果がある反面、過剰に添加すると曇
り度の増加、配向性の低下を引き起こす。このような観
点から、感光性の重合体または低分子化合物の種類にも
よるが、低分子化合物を0.1wt%〜80wt%添加
しても位相差フィルムは製造可能であるが、好ましくは
5wt%〜50wt%であることが望ましい。ここで、
感光性の重合体と低分子化合物の相溶性が十分でない場
合には、製膜時ないしは露光後の基板の加熱によって相
分離や可視光の散乱を誘起しうる大きさの結晶を生成し
曇り度の増加の原因となる。
In the present invention, when the low molecular weight compounds mixed with the photosensitive polymer have heat or photoreactivity with each other or with respect to the polymer, the orientation is firmly fixed. Therefore, improvement in heat resistance is expected. In such a case, it is necessary to control the density of photoreactive points by suppressing the exposure dose or adjusting the reactivity so as not to hinder the molecular movement during reorientation. The low molecular weight compound has an effect of suppressing the haze when it is added in an appropriate amount, but when added in an excessive amount, it causes an increase in the haze and a decrease in orientation. From such a viewpoint, although depending on the type of the photosensitive polymer or the low molecular weight compound, the retardation film can be produced by adding the low molecular weight compound in an amount of 0.1 wt% to 80 wt%, but preferably 5 wt%. % To 50 wt% is desirable. here,
If the photopolymer and the low-molecular compound are not sufficiently compatible, heating of the substrate during film formation or after exposure will produce crystals of a size that can induce phase separation or visible light scattering, resulting in haze. Cause the increase of.

【0010】膜厚を厚くしより大きな位相差のフィルム
を得る手法として、膜を積層する方法が挙げられる。こ
の場合には、先に製膜して完全偏光成分と非偏光成分が
混在する紫外線を照射した膜上に材料溶液を塗布し積層
する工程で、この先に形成された膜の破壊を防ぐため
に、溶解性を下げた溶媒に重合体および低分子化合物を
溶解し用いることが有効である。また、感光性化合物の
膜に表裏面から完全偏光成分と非偏光成分が混在する紫
外線を照射すると、複屈折がより効率よく発現するよう
になる。感光性の化合物は支持体上に塗布するなどして
製膜され、完全偏光成分と非偏光成分が混在する紫外線
の照射は化合物に直接または支持体を介してもよい。支
持体を介する場合には、支持体は感光性の化合物の反応
しうる波長の光の透過性を有している限りどのような材
料でも良いが、光透過率が高い程、照射量が少なくて済
み、製造工程上有利となる。また、剥離性の支持体上で
感光性の化合物を製膜し、剥離後、膜の表裏面より完全
偏光成分と非偏光成分が混在する紫外線を照射すること
もできる。
As a method of increasing the film thickness to obtain a film having a larger retardation, there is a method of laminating films. In this case, in order to prevent the destruction of the film formed earlier in the step of coating and laminating the material solution on the film irradiated with ultraviolet rays in which the completely polarized component and the non-polarized component are mixed, the film is first formed. It is effective to dissolve and use the polymer and the low molecular weight compound in a solvent having reduced solubility. Further, when the film of the photosensitive compound is irradiated from the front and back surfaces with ultraviolet rays in which a completely polarized component and a non-polarized component are mixed, birefringence is more efficiently developed. The photosensitive compound may be formed into a film by coating it on a support, and the compound may be directly or through the support irradiated with ultraviolet rays containing a completely polarized component and a non-polarized component. In the case of interposing a support, any material may be used as long as the support has a property of transmitting light having a wavelength at which a photosensitive compound can react, but the higher the light transmittance, the smaller the irradiation dose. The manufacturing process is advantageous. It is also possible to form a film of a photosensitive compound on a releasable support and, after peeling, irradiate the front and back surfaces of the film with ultraviolet rays in which a completely polarized component and a non-polarized component are mixed.

【0011】図4には、本発明の位相差フィルムの製造
方法(装置)を、例を挙げて示す。電源(42)によっ
て励起された紫外線ランプ(41)で発生した非偏光性
の紫外線(46)を、所望の偏光度が得られる偏光子を
介して支持体(45)上に塗布(コート)された感光性
の重合体と低分子化合物の混合体の膜(44)に照射す
る。実施例1から10は、本発明の製造法により複屈折
性またはフィルム中の3つの主屈折率nx、ny、nz
とnx軸のフィルム面法線方向に対する傾きを制御した
位相差フィルムを作製した各実施例である。 (実施例1)3.75重量%のポリ(4−メタクリロイ
ルオキシヘキシルオキシ−4’−シンナモイルオキシエ
チルオキシビフェニル)および1.25重量%の4,
4’−ビス(イソブチルオキシヘキシルオキシ)ビフェ
ニルをジクロロエタンに溶解し、ガラス基板上に約1.
5μmの厚さで塗布した。該基板を水平面に対して45
度傾くように配置し、偏光度:P−S/P+S(PとS
は、それぞれP成分とS成分の透過光強度であり、完全
偏光成分の強度はP−Sで示され、P+Sは完全偏光成
分と非偏光成分を合わせた全透過光強度である。)が1
5.6(%)である、紫外線を、水平面に対し垂直方向
から室温で基板の裏表両面からそれぞれ500mJ/c
2ずつ照射し後、100℃まで加熱し室温まで冷却し
た。続いて、未反応の感光性基の反応を促進し配向を強
固にするために非偏光性の紫外線を1J/cm2照射し
た。このようにして得られた基板の屈折率楕円体は、3
つの主屈折率の比がnx=1.6、ny=1.5、nz
=1.5であり、nx軸が基板面法線方向に対し0〜9
0°、ベンド配向した屈折率楕円体と3つの主屈折率の
比がnx=1.6、ny=1.5、nz=1.5であ
り、nx軸が基板面法線方向に対し0°である一軸配向
したフィルムを組み合わせたものと同等であった。
FIG. 4 shows an example of the method (apparatus) for producing the retardation film of the present invention. The non-polarizing ultraviolet ray (46) generated by the ultraviolet lamp (41) excited by the power source (42) is applied (coated) on the support (45) through a polarizer capable of obtaining a desired degree of polarization. The film (44) of the mixture of the photosensitive polymer and the low molecular weight compound is irradiated. Examples 1 to 10 are birefringent or have three main refractive indices nx, ny and nz in the film according to the production method of the present invention.
3A and 3B are each an example in which a retardation film in which the inclination of the nx axis with respect to the film surface normal direction is controlled is produced. Example 1 3.75% by weight of poly (4-methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4,
Dissolve 4′-bis (isobutyloxyhexyloxy) biphenyl in dichloroethane and deposit about 1.
It was applied in a thickness of 5 μm. Place the substrate on the horizontal plane 45
Arranged so as to incline, and the degree of polarization: P-S / P + S (P and S
Are the transmitted light intensities of the P component and the S component, respectively, and the intensity of the completely polarized component is indicated by P−S, and P + S is the total transmitted light intensity of the completely polarized component and the unpolarized component. ) Is 1
5.6 (%) of ultraviolet rays is applied from the direction perpendicular to the horizontal plane at room temperature to 500 mJ / c from both the front and back surfaces of the substrate.
After irradiating m 2 each, it was heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . The refractive index ellipsoid of the substrate thus obtained is 3
The ratio of the two main refractive indices is nx = 1.6, ny = 1.5, nz
= 1.5, and the nx axis is 0 to 9 with respect to the substrate surface normal direction.
0 °, the ratio of the bend-oriented refractive index ellipsoid and the three main refractive indices is nx = 1.6, ny = 1.5, nz = 1.5, and the nx axis is 0 with respect to the normal direction to the substrate surface. It was equivalent to a combination of uniaxially oriented films having a temperature of °.

【0012】(実施例2)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4,4’−ビス(イソブチリルオキシヘキシルオ
キシ)ビフェニルをジクロロエタンに溶解し、ガラス基
板上に約1.5μmの厚さで塗布した。該基板を水平面
に対して45度傾くように配置し、偏光度が−15.6
(%)である、紫外線を、水平面に対し垂直方向から室
温で基板の裏表両面からそれぞれ500mJ/cm2
つ照射し後、100℃まで加熱し室温まで冷却した。続
いて、未反応の感光性基の反応を促進し配向を強固にす
るために非偏光性の紫外線を1J/cm2照射した。こ
のようにして得られた基板の屈折率楕円体は、3つの主
屈折率の比がnx=1.55、ny=1.6、nz=
1.5であり、nx軸が基板面法線方向に対し45°傾
いているものであった。
Example 2 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4,4'-bis (isobutyryloxyhexyloxy) biphenyl are dissolved in dichloroethane and about 1. It was applied in a thickness of 5 μm. The substrate is arranged so as to be inclined by 45 degrees with respect to the horizontal plane, and the polarization degree is -15.6.
UV light (%) was irradiated at a room temperature in the direction perpendicular to the horizontal plane at room temperature from both front and back surfaces of the substrate at 500 mJ / cm 2, respectively, and then heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . The refractive index ellipsoid of the substrate thus obtained has a ratio of three main refractive indices of nx = 1.55, ny = 1.6, nz =
It was 1.5, and the nx axis was inclined by 45 ° with respect to the direction normal to the substrate surface.

【0013】(実施例3)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4,4’−ビス(イソブチリルオキシヘキシルオ
キシ)ビフェニルをジクロロエタンに溶解し、ガラス基
板上に約1.5μmの厚さで塗布した。該基板を水平面
に対して45度傾くように配置し、偏光度:P−S/P
+S(PとSは、それぞれP成分とS成分の透過光強度
であり、完全偏光成分の強度はP−Sで示され、P+S
は完全偏光成分と非偏光成分を合わせた全透過光強度で
ある。)が7.9(%)である、紫外線を、水平面に対
し垂直方向から室温で基板の裏表両面からそれぞれ50
0mJ/cm2ずつ照射し後、100℃まで加熱し室温
まで冷却した。続いて、未反応の感光性基の反応を促進
し配向を強固にするために非偏光性の紫外線を1J/c
2照射した。このようにして得られた基板の屈折率楕
円体は、3つの主屈折率の比がnx=1.65、ny=
1.51、nz=1.5であり、nx軸が基板面法線方
向に対し10〜40°ベンド配向した屈折率楕円の場合
と同等であった。。
Example 3 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4,4'-bis (isobutyryloxyhexyloxy) biphenyl are dissolved in dichloroethane and about 1. It was applied in a thickness of 5 μm. The substrate is arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and the polarization degree: PS / P
+ S (P and S are the transmitted light intensities of the P component and the S component, respectively, and the intensity of the completely polarized component is represented by P−S, P + S
Is the total transmitted light intensity including the completely polarized component and the non-polarized component. ) Is 7.9 (%), and ultraviolet rays are applied from the direction perpendicular to the horizontal plane at room temperature to 50
After irradiation with 0 mJ / cm 2 each, the mixture was heated to 100 ° C. and cooled to room temperature. Then, in order to promote the reaction of the unreacted photosensitive group and strengthen the alignment, 1 J / c of non-polarizing ultraviolet light is applied.
m 2 irradiation. The refractive index ellipsoid of the substrate thus obtained has a ratio of three main refractive indices of nx = 1.65 and ny =
It was 1.51 and nz = 1.5, which was the same as in the case of the refractive index ellipse in which the nx axis was bend-aligned with 10 to 40 ° with respect to the substrate surface normal direction. .

【0014】(実施例4)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4,4’−ビス(イソブチリルオキシヘキシルオ
キシ)ビフェニルをジクロロエタンに溶解し、ガラス基
板上に約1.5μmの厚さで塗布した。該基板を水平面
に対して45度傾くように配置し、偏光度が−7.9
(%)である、紫外線を、水平面に対し垂直方向から室
温で基板の裏表両面からそれぞれ500mJ/cm2
つ照射し後、100℃まで加熱し室温まで冷却した。続
いて、未反応の感光性基の反応を促進し配向を強固にす
るために非偏光性の紫外線を1J/cm2照射した。こ
のようにして得られた基板の屈折率楕円体は、3つの主
屈折率の比がnx=1.6、ny=1.54、nz=
1.5であり、nx軸が基板面法線方向に対し25°傾
いているものであった。
Example 4 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4,4'-bis (isobutyryloxyhexyloxy) biphenyl are dissolved in dichloroethane and about 1. It was applied in a thickness of 5 μm. The substrate is arranged so as to be inclined by 45 degrees with respect to the horizontal plane, and the polarization degree is -7.9.
UV light (%) was irradiated at a room temperature in the direction perpendicular to the horizontal plane at room temperature from both front and back surfaces of the substrate at 500 mJ / cm 2, respectively, and then heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . The refractive index ellipsoid of the substrate thus obtained has a ratio of three main refractive indices of nx = 1.6, ny = 1.54, nz =
It was 1.5, and the nx axis was inclined by 25 ° with respect to the normal direction to the substrate surface.

【0015】(実施例5)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4,4’−ビス(イソブチリルオキシヘキシルオ
キシ)ビフェニルをジクロロエタンに溶解し、ガラス基
板上に約1.5μmの厚さで塗布した。該基板を水平面
に対して45度傾くように配置し、非偏光性の紫外線
〔偏光度=0(%)〕を、水平面に対し垂直方向から室
温で基板の裏表両面からそれぞれ500mJ/cm2
つ照射し後、100℃まで加熱し室温まで冷却した。続
いて、未反応の感光性基の反応を促進し配向を強固にす
るために非偏光性の紫外線を1J/cm2照射した。こ
のようにして得られた基板の屈折率楕円体は、3つの主
屈折率の比がnx=1.6、ny=1.53、nz=
1.5であり、nx軸が基板面法線方向に対し32°傾
いているものであった。
Example 5 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4,4'-bis (isobutyryloxyhexyloxy) biphenyl are dissolved in dichloroethane and about 1. It was applied in a thickness of 5 μm. The substrate was placed so as to be inclined at 45 degrees with respect to the horizontal plane, and non-polarizing ultraviolet light [polarization degree = 0 (%)] was applied to each of the front and back surfaces of the substrate at 500 mJ / cm 2 at room temperature from the direction perpendicular to the horizontal plane. After irradiation, it was heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . In the index ellipsoid of the substrate thus obtained, the ratios of the three main refractive indices are nx = 1.6, ny = 1.53, and nz =
It was 1.5, and the nx axis was inclined by 32 ° with respect to the normal direction to the substrate surface.

【0016】(実施例6)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4−ペンチル−4’−シアノビフェニルをジクロ
ロエタンに溶解し、ガラス基板上に約1.5μmの厚さ
で塗布した。該基板を水平面に対して45度傾くように
配置し、偏光度:P−S/P+S(PとSは、それぞれ
P成分とS成分の透過光強度であり、完全偏光成分の強
度はP−Sで示され、P+Sは完全偏光成分と非偏光成
分を合わせた全透過光強度である。)が15.6(%)
である、紫外線を、水平面に対し垂直方向から室温で基
板の裏表両面からそれぞれ500mJ/cm2ずつ照射
し後、100℃まで加熱し室温まで冷却した。続いて、
未反応の感光性基の反応を促進し配向を強固にするため
に非偏光性の紫外線を1J/cm2照射した。このよう
にして得られた基板の複屈折性は、3つの主屈折率の比
がnx=1.6、ny=1.5、nz=1.5であり、
nx軸が基板面法線方向に対し50〜90°ベンド配向
した屈折率楕円と3つの主屈折率の比がnx=1.6、
ny=1.5、nz=1.5であり、nx軸が基板面法
線方向に対し0°である一軸配向したフィルムを組み合
わせたものと同等であった。
(Example 6) 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4-pentyl-4'-cyanobiphenyl are dissolved in dichloroethane and coated on a glass substrate to a thickness of about 1.5 μm. did. The substrate is arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and the polarization degree: P−S / P + S (P and S are the transmitted light intensities of the P component and the S component, respectively, and the intensity of the completely polarized component is P−. It is represented by S, and P + S is the total transmitted light intensity obtained by combining the completely polarized component and the non-polarized component.) Is 15.6 (%).
After irradiating the front and back surfaces of the substrate with 500 mJ / cm 2 each at room temperature from the direction perpendicular to the horizontal plane at room temperature, it was heated to 100 ° C. and cooled to room temperature. continue,
Irradiation with 1 J / cm 2 of non-polarizing ultraviolet rays was carried out in order to accelerate the reaction of unreacted photosensitive groups and strengthen the orientation. The birefringence of the substrate thus obtained is such that the ratios of the three main refractive indices are nx = 1.6, ny = 1.5 and nz = 1.5,
The ratio of the refractive index ellipse in which the nx axis is bend-aligned by 50 to 90 ° with respect to the substrate surface normal direction and the three main refractive indices is nx = 1.6,
It was ny = 1.5 and nz = 1.5, and was equivalent to a combination of uniaxially oriented films in which the nx axis was 0 ° with respect to the normal direction to the substrate surface.

【0017】(実施例7)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4−ペンチル−4’−シアノビフェニルをジクロ
ロエタンに溶解し、ガラス基板上に約1.5μmの厚さ
で塗布した。該基板を水平面に対して45度傾くように
配置し、偏光度が−15.6(%)である、紫外線を、
水平面に対し垂直方向から室温で基板の裏表両面からそ
れぞれ500mJ/cm2ずつ照射し後、100℃まで
加熱し室温まで冷却した。続いて、未反応の感光性基の
反応を促進し配向を強固にするために非偏光性の紫外線
を1J/cm2照射した。このようにして得られた基板
の屈折率楕円体は、3つの主屈折率の比がnx=1.
6、ny=1.59、nz=1.5であり、nx軸が基
板面法線方向に対し37°傾いているものであった。
Example 7 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4-pentyl-4'-cyanobiphenyl are dissolved in dichloroethane and coated on a glass substrate to a thickness of about 1.5 μm. did. The substrate is arranged so as to be inclined by 45 degrees with respect to the horizontal plane, and the ultraviolet ray having a polarization degree of -15.6 (%) is
After irradiating 500 mJ / cm 2 each from the front and back surfaces of the substrate at room temperature in the direction perpendicular to the horizontal plane, the substrate was heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . The refractive index ellipsoid of the substrate thus obtained has a ratio of three main refractive indices of nx = 1.
6, ny = 1.59, nz = 1.5, and the nx axis was tilted by 37 ° with respect to the substrate surface normal direction.

【0018】(実施例8)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4−ペンチル−4’−シアノビフェニルをジクロ
ロエタンに溶解し、ガラス基板上に約1.5μmの厚さ
で塗布した。該基板を水平面に対して45度傾くように
配置し、偏光度:P−S/P+S(PとSは、それぞれ
P成分とS成分の透過光強度であり、完全偏光成分の強
度はP−Sで示され、P+Sは完全偏光成分と非偏光成
分を合わせた全透過光強度である。)が7.9(%)で
ある、紫外線を、水平面に対し垂直方向から室温で基板
の裏表両面からそれぞれ500mJ/cm2ずつ照射し
後、100℃まで加熱し室温まで冷却した。続いて、未
反応の感光性基の反応を促進し配向を強固にするために
非偏光性の紫外線を1J/cm2照射した。このように
して得られた基板の複屈折性は、3つの主屈折率の比が
nx=1.58、ny=1.5、nz=1.5であり、
nx軸が基板面法線方向に対し0〜30°ベンド配向し
た屈折率楕円の場合と同等であった。
Example 8 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4-pentyl-4'-cyanobiphenyl are dissolved in dichloroethane and coated on a glass substrate to a thickness of about 1.5 μm. did. The substrate is arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and the polarization degree: P−S / P + S (P and S are the transmitted light intensities of the P component and the S component, respectively, and the intensity of the completely polarized component is P−. It is indicated by S, and P + S is the total transmitted light intensity that combines the completely polarized component and the non-polarized component.) Is 7.9 (%). Each of the above was irradiated with 500 mJ / cm 2 and heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . The birefringence of the substrate thus obtained is such that the ratios of the three main refractive indices are nx = 1.58, ny = 1.5 and nz = 1.5,
It was the same as in the case of a refractive index ellipse in which the nx axis was bend-aligned with 0 to 30 ° with respect to the substrate surface normal direction.

【0019】(実施例9)3.75重量%のポリ(4−
メタクリロイルオキシヘキシルオキシ−4’−シンナモ
イルオキシエチルオキシビフェニル)および1.25重
量%の4−ペンチル−4’−シアノビフェニルをジクロ
ロエタンに溶解し、ガラス基板上に約1.5μmの厚さ
で塗布した。該基板を水平面に対して45度傾くように
配置し、偏光度:P−S/P+S(PとSは、それぞれ
P成分とS成分の透過光強度であり、完全偏光成分の強
度はP−Sで示され、P+Sは完全偏光成分と非偏光成
分を合わせた全透過光強度である。)が−7.9(%)
である、紫外線を、水平面に対し垂直方向から室温で基
板の裏表両面からそれぞれ500mJ/cm2ずつ照射
し後、100℃まで加熱し室温まで冷却した。続いて、
未反応の感光性基の反応を促進し配向を強固にするため
に非偏光性の紫外線を1J/cm2照射した。このよう
にして得られた基板の複屈折性は、3つの主屈折率の比
がnx=1.58、ny=1.56、nz=1.5であ
り、nx軸が基板面法線方向に対し0〜90°ベンド配
向した屈折率楕円と3つの主屈折率の比がnx=1.5
5、ny=1.5、nz=1.5であり、nx軸が基板
面法線方向に対し0°である一軸配向したフィルムを組
み合わせたものと同等であった。
Example 9 3.75% by weight of poly (4-
Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25% by weight of 4-pentyl-4'-cyanobiphenyl are dissolved in dichloroethane and coated on a glass substrate to a thickness of about 1.5 μm. did. The substrate is arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and the polarization degree: P−S / P + S (P and S are the transmitted light intensities of the P component and the S component, respectively, and the intensity of the completely polarized component is P−. It is represented by S, and P + S is the total transmitted light intensity obtained by combining the completely polarized component and the non-polarized component.) Is -7.9 (%).
After irradiating the front and back surfaces of the substrate with 500 mJ / cm 2 each at room temperature from the direction perpendicular to the horizontal plane at room temperature, it was heated to 100 ° C. and cooled to room temperature. continue,
Irradiation with 1 J / cm 2 of non-polarizing ultraviolet rays was carried out in order to accelerate the reaction of unreacted photosensitive groups and strengthen the orientation. The birefringence of the substrate thus obtained is such that the ratios of the three main refractive indices are nx = 1.58, ny = 1.56, nz = 1.5, and the nx axis is the direction normal to the substrate surface. In contrast, the ratio of the 0-90 ° bend-aligned refractive index ellipse and the three main refractive indices is nx = 1.5.
5, ny = 1.5, and nz = 1.5, which was equivalent to a combination of uniaxially oriented films in which the nx axis was 0 ° with respect to the substrate surface normal direction.

【0020】(実施例10)3.75重量%のポリ(4
−メタクリロイルオキシヘキシルオキシ−4’−シンナ
モイルオキシエチルオキシビフェニル)および1.25
重量%の4−ペンチル−4’−シアノビフェニルをジク
ロロエタンに溶解し、ガラス基板上に約1.5μmの厚
さで塗布した。該基板を水平面に対して45度傾くよう
に配置し、非偏光性の紫外線〔偏光度=0(%)〕を、
水平面に対し垂直方向から室温で基板の裏表両面からそ
れぞれ500mJ/cm2ずつ照射し後、100℃まで
加熱し室温まで冷却した。続いて、未反応の感光性基の
反応を促進し配向を強固にするために非偏光性の紫外線
を1J/cm2照射した。このようにして得られた基板
の複屈折性は、3つの主屈折率の比がnx=1.6、n
y=1.53、nz=1.5であり、nx軸が基板面法
線方向に対し30°傾斜した屈折率楕円と3つの主屈折
率の比がnx=1.6、ny=1.5、nz=1.5で
あり、nx軸が基板面法線方向に対し0°である一軸配
向したフィルムを組み合わせたものと同等であった。
Example 10 3.75% by weight of poly (4
-Methacryloyloxyhexyloxy-4'-cinnamoyloxyethyloxybiphenyl) and 1.25
Weight percent 4-pentyl-4′-cyanobiphenyl was dissolved in dichloroethane and coated on a glass substrate to a thickness of about 1.5 μm. The substrate is arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and non-polarizing ultraviolet light [polarization degree = 0 (%)]
After irradiating 500 mJ / cm 2 each from the front and back surfaces of the substrate at room temperature in the direction perpendicular to the horizontal plane, the substrate was heated to 100 ° C. and cooled to room temperature. Subsequently, in order to accelerate the reaction of unreacted photosensitive groups and strengthen the alignment, non-polarizing ultraviolet rays were irradiated at 1 J / cm 2 . The birefringence of the substrate thus obtained is such that the ratio of the three main refractive indices is nx = 1.6, n
y = 1.53, nz = 1.5, and the ratio of the refractive index ellipse in which the nx axis is inclined 30 ° with respect to the substrate surface normal direction and the three main refractive indices is nx = 1.6, ny = 1. 5, nz = 1.5, which was equivalent to a combination of uniaxially oriented films in which the nx axis was 0 ° with respect to the substrate surface normal direction.

【0021】(評価方法)実施例5と同様の塗布膜を、
フィルム面法線方向に対し40°傾いた方向おける位相
差が40nmであるTACフィルム上に約1.5μmの
厚さで形成し、該TACフィルムと2軸性の屈折率楕円
体が傾斜した層を積層した位相差フィルムを、カシオ製
液晶カラーテレビEV−510の偏光シートを剥がし、
液晶セルの上面もしくは下面に1枚貼り合わせ、次い
で、偏光シート(日東電工製 HEG1425DU)を
上下1枚ずつ貼り合わせた。各光学素子の軸配置は、図
5のようにした。図5において、61は本発明の位相差
フィルムであり、aはフィルム中の屈折率楕円体のnx
軸の傾斜方向を示し、52は液晶セルであり、b、b’
がプレチルト方向を示し、53、53’は偏光シートで
あり、c、c’がそれぞれの光吸収軸方向を示してい
る。このような構成で液晶カラーテレビを駆動し、白表
示および黒表示した場合のコントラスト比が5になると
ころを視野角と定義し、上下左右方向の視野角を測定し
た。コントラスト比の測定には、トプコン製BM−5A
を用いた。表1のとおり、本発明の実施例で作製した位
相差フィルムを液晶表示装置に装着した場合、一枚で視
野角が拡大されることも確認された。
(Evaluation method) A coating film similar to that in Example 5 was used.
A layer formed on a TAC film having a phase difference of 40 nm in a direction inclined by 40 ° with respect to the normal direction of the film surface to a thickness of about 1.5 μm, and inclining the TAC film and a biaxial refractive index ellipsoid. Remove the polarizing sheet of Casio LCD color TV EV-510 from the retardation film
One sheet was attached to the upper surface or the lower surface of the liquid crystal cell, and then, one polarizing sheet (HEG1425DU manufactured by Nitto Denko) was attached to each of the upper and lower sides. The axial arrangement of each optical element was as shown in FIG. In FIG. 5, 61 is the retardation film of the present invention, and a is nx of the refractive index ellipsoid in the film.
The reference numeral 52 indicates a liquid crystal cell, and b, b '.
Indicates the pretilt direction, 53 and 53 ′ indicate polarizing sheets, and c and c ′ indicate the respective light absorption axis directions. When the liquid crystal color television was driven with such a configuration and the contrast ratio when white display and black display was 5 was defined as the viewing angle, the viewing angle in the vertical and horizontal directions was measured. To measure the contrast ratio, BM-5A made by Topcon
Was used. As shown in Table 1, it was also confirmed that when the retardation film produced in the example of the present invention was mounted on a liquid crystal display device, the viewing angle was enlarged by one sheet.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】正の屈折率楕円体構造を含有する感光性
の重合体ないしは該重合体と低分子化合物の混合体から
なるフィルムに非偏光性の光または完全偏光成分と非偏
光成分が混在する光を照射する操作により、フィルム中
の屈折率楕円体の3つの主屈折率nx、ny、nzとn
x軸のフィルム面法線方向に対する傾きを制御した位相
差フィルムの製造が実現できた。このような位相差フィ
ルムは、旋光モード、複屈折モードを利用したねじれネ
マチック液晶を使った液晶表示装置において視野角拡大
用の光学補償フィルムとして活用できる。従来このよう
な、大面積の位相差フィルムを低コストで作製できなか
ったが、本発明によって、非偏光性の光または完全偏光
成分と非偏光成分が混在する光を照射するという簡便な
操作で大面積化が可能となった。
EFFECTS OF THE INVENTION A film made of a photosensitive polymer having a positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular weight compound contains non-polarizing light or a completely polarized component and a non-polarized component. The three main refractive indices nx, ny, nz and n of the refractive index ellipsoid in the film are controlled by irradiating the
It was possible to manufacture a retardation film in which the inclination of the x-axis with respect to the normal to the film surface was controlled. Such a retardation film can be used as an optical compensation film for enlarging a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal using an optical rotation mode and a birefringence mode. Conventionally, such a large area retardation film could not be produced at low cost, but according to the present invention, a simple operation of irradiating non-polarizing light or light in which a non-polarizing component and a non-polarizing component are mixed. Larger area is possible.

【0024】[0024]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の位相差フィルムの製造方法を示す概念
FIG. 1 is a conceptual diagram showing a method for producing a retardation film of the present invention.

【図2】完全偏光成分と非偏光成分が混在する紫外線の
照射により感光した側鎖を示す模式図
FIG. 2 is a schematic diagram showing a side chain exposed by irradiation with ultraviolet rays in which a completely polarized component and a non-polarized component are mixed.

【図3】完全偏光成分と非偏光成分が混在する紫外線を
照射した後の分子運動により配向したフィルムを示す模
式図
FIG. 3 is a schematic diagram showing a film oriented by molecular motion after irradiation with ultraviolet rays in which a completely polarized component and a non-polarized component are mixed.

【図4】実施例の位相差フィルムの製造方法を示す概念
FIG. 4 is a conceptual diagram showing a method for producing a retardation film of Example.

【図5】視野角特性評価時の光学系FIG. 5: Optical system when evaluating viewing angle characteristics

【符号の説明】 11・・膜(位相差フィルム) 12・・・屈折率楕円体 nx(1a)、ny(1b)、nz(1c)・・・主屈折率(方向
軸) L・・・完全偏光成分と非偏光成分が混在する光 Lp・・・P成分 Ls・・・S成分
[Explanation of Codes] 11 ... Film (retardation film) 12 ... Refractive index ellipsoid nx (1a), ny (1b), nz (1c) ... Main refractive index (direction axis) L ... Light in which completely polarized components and non-polarized components are mixed Lp ... P component Ls ... S component

フロントページの続き Fターム(参考) 2H049 BA06 BA42 BB42 BC02 BC05 BC22 2H091 FA11X FA11Z FC02 FC22 FC23 GA06 LA19 Continued front page    F term (reference) 2H049 BA06 BA42 BB42 BC02 BC05                       BC22                 2H091 FA11X FA11Z FC02 FC22                       FC23 GA06 LA19

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】正の屈折率楕円体構造を含有する感光性の
重合体ないしは該重合体と低分子化合物の混合体からな
るフィルムに、非偏光性の光または完全偏光成分と非偏
光成分が混在する光を照射する操作により、複屈折性を
制御したことを特徴とする位相差フィルムの製造方法。
1. A film made of a photosensitive polymer having a positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular weight compound has a non-polarizing light or a completely polarizing component and a non-polarizing component. A method for producing a retardation film, wherein birefringence is controlled by an operation of irradiating mixed light.
【請求項2】正の屈折率楕円体構造を含有する感光性の
重合体ないしは該重合体と低分子化合物の混合体からな
るフィルムに非偏光性の光または完全偏光成分と非偏光
成分が混在する光を照射する操作により、フィルム中の
屈折率楕円体の3つの主屈折率nx、ny、nzの比と
nx軸のフィルム面法線方向に対する傾きを制御したこ
とを特徴とする位相差フィルムの製造方法。
2. A non-polarizing light or a completely polarized component and a non-polarized component are mixed in a film made of a photosensitive polymer having a positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular weight compound. The retardation film is characterized in that the ratio of the three main refractive indices nx, ny, nz of the refractive index ellipsoid in the film and the inclination of the nx axis with respect to the normal direction to the film surface are controlled by the operation of irradiating the light. Manufacturing method.
【請求項3】前記制御とはすなわち、傾斜配向した屈折
率楕円体またはベンド配向した屈折率楕円体ないしは傾
斜していない一軸性の屈折率楕円体とを組み合わせた場
合と同等の複屈折性を発現させることであることを特徴
とする請求項1または請求項2に記載の位相差フィルム
の製造方法。
3. The control has the same birefringence as a combination of a tilt-aligned index ellipsoid, a bend-aligned index ellipsoid, or a non-tilted uniaxial index ellipsoid. The method for producing a retardation film according to claim 1, wherein the retardation film is expressed.
【請求項4】請求項1〜請求項3に記載の位相差フィル
ムの製造方法において、前記正の屈折率楕円体構造を含
有する感光性の重合体または該重合体と低分子化合物の
混合体からなるフィルムに、非偏光性の光または完全偏
光成分と非偏光成分が混在する光を照射する操作、およ
びフィルムを加熱冷却する操作を含むことを特徴とする
位相差フィルムの製造方法。
4. The method for producing a retardation film according to claim 1, wherein the photosensitive polymer containing the positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular weight compound. The method for producing a retardation film, comprising the steps of irradiating the film made of (1) with non-polarizing light or light in which a completely polarized component and a non-polarized component are mixed, and an operation of heating and cooling the film.
【請求項5】請求項1〜請求項3に記載の位相差フィル
ムの製造方法において、前記正の屈折率楕円体構造を含
有する感光性の重合体または該重合体と低分子化合物の
混合体からなるフィルムに、表裏面両方向から非偏光性
の光または完全偏光成分と非偏光成分が混在する光を照
射する操作を含むことを特徴とする位相差フィルムの製
造方法。
5. The method for producing a retardation film according to claim 1, wherein the photosensitive polymer containing the positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular compound is used. The method for producing a retardation film, comprising the step of irradiating the film made of with non-polarizing light or light with a mixture of a completely polarized component and a non-polarized component from both front and back directions.
【請求項6】請求項1〜請求項3に記載の位相差フィル
ムの製造方法において、前記正の屈折率楕円体構造を含
有する感光性の重合体または該重合体と低分子化合物の
混合体からなるフィルムへの、非偏光性の光または完全
偏光成分と非偏光成分が混在する光の照射が、フィルム
面の法線方向に対して傾斜した方向からなされることを
特徴とする位相差フィルムの製造方法。
6. The method for producing a retardation film according to claim 1, wherein the photosensitive polymer containing the positive refractive index ellipsoidal structure or a mixture of the polymer and a low molecular weight compound. The film made of is irradiated with non-polarizing light or light in which a completely polarized component and a non-polarized component are mixed, is made from a direction inclined with respect to the normal direction of the film surface. Manufacturing method.
【請求項7】請求項1〜請求項3に記載の位相差フィル
ムの製造方法において、前記感光性の重合体が液晶性を
有することを特徴とする位相差フィルムの製造方法。
7. The method for producing a retardation film according to claim 1, wherein the photosensitive polymer has liquid crystallinity.
【請求項8】請求項1〜請求項3に記載の位相差フィル
ムの製造方法において、前記低分子化合物が結晶性また
は液晶性を有することを特徴とする位相差フィルムの製
造方法。
8. The method for producing a retardation film according to claim 1, wherein the low molecular weight compound has crystallinity or liquid crystallinity.
【請求項9】請求項1〜請求項3に記載の位相差フィル
ムの製造方法において、低分子化合物が光・熱により架
橋または重合する反応性基を有することを特徴とする位
相差フィルムの製造方法。
9. The method for producing a retardation film according to claim 1, wherein the low molecular weight compound has a reactive group that is crosslinked or polymerized by light or heat. Method.
【請求項10】請求項1〜請求項3に記載の位相差フィ
ルムの製造方法において、感光性の重合体または/およ
び低分子化合物を架橋する工程を含むことを特徴とする
位相差フィルムの製造方法。
10. The method for producing a retardation film according to any one of claims 1 to 3, which comprises a step of crosslinking a photosensitive polymer or / and a low molecular weight compound. Method.
【請求項11】請求項1〜請求項10に記載の位相差フ
ィルムの製造方法によって、製造されたことを特徴とす
る位相差フィルム。
11. A retardation film produced by the method for producing a retardation film according to any one of claims 1 to 10.
JP2001271879A 2000-12-28 2001-09-07 Method for producing retardation film Expired - Fee Related JP4947532B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001271879A JP4947532B2 (en) 2001-09-07 2001-09-07 Method for producing retardation film
KR1020010084975A KR100852224B1 (en) 2000-12-28 2001-12-26 Retardation film and process for producing the same
TW090132305A TW591249B (en) 2000-12-28 2001-12-26 Retardation film and process for producing the same
US10/026,432 US6743487B2 (en) 2000-12-28 2001-12-27 Retardation film and process for producing the same
US10/782,958 US7300687B2 (en) 2000-12-28 2004-02-23 Retardation film and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271879A JP4947532B2 (en) 2001-09-07 2001-09-07 Method for producing retardation film

Publications (2)

Publication Number Publication Date
JP2003075640A true JP2003075640A (en) 2003-03-12
JP4947532B2 JP4947532B2 (en) 2012-06-06

Family

ID=19097326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271879A Expired - Fee Related JP4947532B2 (en) 2000-12-28 2001-09-07 Method for producing retardation film

Country Status (1)

Country Link
JP (1) JP4947532B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209553A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Liquid crystal device and electronic device
JP2009186633A (en) * 2008-02-05 2009-08-20 Hayashi Telempu Co Ltd Latent image printing film and method of processing latent image to the same film
WO2010146910A1 (en) * 2009-06-19 2010-12-23 コニカミノルタオプト株式会社 Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170704A (en) * 1985-01-24 1986-08-01 Matsushita Electric Ind Co Ltd Production of optical filter
JPH093454A (en) * 1995-06-20 1997-01-07 Fuji Photo Film Co Ltd Polymer composition and production and liquid crystal display element using the same
WO2000046635A1 (en) * 1999-02-03 2000-08-10 Rolic Ag Method of making an element of liquid crystal polymer
JP2000319527A (en) * 1999-05-10 2000-11-21 Nitto Denko Corp Unsaturated alicyclic compound, addition-based liquid crystal polymer and production of oriented film of liquid crystal polymer
JP2001066605A (en) * 1999-08-30 2001-03-16 Hayashi Telempu Co Ltd Liquid crystal alignment layer, its manufacture and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170704A (en) * 1985-01-24 1986-08-01 Matsushita Electric Ind Co Ltd Production of optical filter
JPH093454A (en) * 1995-06-20 1997-01-07 Fuji Photo Film Co Ltd Polymer composition and production and liquid crystal display element using the same
WO2000046635A1 (en) * 1999-02-03 2000-08-10 Rolic Ag Method of making an element of liquid crystal polymer
JP2000319527A (en) * 1999-05-10 2000-11-21 Nitto Denko Corp Unsaturated alicyclic compound, addition-based liquid crystal polymer and production of oriented film of liquid crystal polymer
JP2001066605A (en) * 1999-08-30 2001-03-16 Hayashi Telempu Co Ltd Liquid crystal alignment layer, its manufacture and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209553A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Liquid crystal device and electronic device
JP4529984B2 (en) * 2007-02-26 2010-08-25 エプソンイメージングデバイス株式会社 Liquid crystal device and electronic device
JP2009186633A (en) * 2008-02-05 2009-08-20 Hayashi Telempu Co Ltd Latent image printing film and method of processing latent image to the same film
WO2010146910A1 (en) * 2009-06-19 2010-12-23 コニカミノルタオプト株式会社 Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device

Also Published As

Publication number Publication date
JP4947532B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
KR100852224B1 (en) Retardation film and process for producing the same
KR101436795B1 (en) Volume photo-aligned retarder
TWI257508B (en) Methods of making polarization rotators and articles containing the polarization rotators
TW201827499A (en) Method for generating alignment on top of a liquid crystal polymer material
JP2003207642A (en) Optical element
JP2011076120A (en) Method of imparting preferred alignment in liquid crystal cell
JP2022541609A (en) Photo-orientable positive c-plate retarder
JPH11326638A (en) Liquid crystal alignment layer, production of the liquid crystal alignment layer and optical element using the same
JP2003508820A (en) Fabrication of aligned liquid crystal cells / films by simultaneous alignment and phase separation
JP2005049866A (en) Phase difference layer and liquid crystal display device using the same
CN1207615C (en) Method of making an element of liquid crystal polymer
JP4636353B2 (en) Retardation film
JP2002202406A (en) Retardation film and method for manufacturing the same
JP4947532B2 (en) Method for producing retardation film
JP6824941B2 (en) Optical film laminate, manufacturing method thereof, and liquid crystal display panel including the laminate
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2002202407A (en) Retardation film and method for manufacturing the same
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JP4907007B2 (en) Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same
JP2003014927A (en) Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element
JP2002082224A (en) Birefringent film and method for manufacturing the same
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP3163357B2 (en) Liquid crystal tilt alignment film, liquid crystal alignment processing method, and liquid crystal cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4947532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees