WO2010146910A1 - Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device - Google Patents

Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2010146910A1
WO2010146910A1 PCT/JP2010/055675 JP2010055675W WO2010146910A1 WO 2010146910 A1 WO2010146910 A1 WO 2010146910A1 JP 2010055675 W JP2010055675 W JP 2010055675W WO 2010146910 A1 WO2010146910 A1 WO 2010146910A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation
phase difference
temperature
long
Prior art date
Application number
PCT/JP2010/055675
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 梅田
勝己 前島
真治 稲垣
賢治 三島
健司 岡田
秀人 木村
里誌 森井
翠 木暮
範江 谷原
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010146910A1 publication Critical patent/WO2010146910A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface

Definitions

  • the present invention relates to a retardation film used for liquid crystal display and the like.
  • Patent Document 1 the polycarbonate film is sheared by a metal roll or a metal belt, and the upper and lower visual fields are obtained by using a retardation film that develops an inclined retardation by tilting the optical axis in the film thickness direction. It is shown that the corners widen.
  • Patent Documents 2, 3, and 4 For cellulose ester films, polyimide films and the like, production of retardation films having an optical axis inclined in the same manner has been attempted (Patent Documents 2, 3, and 4), and it has been shown that the viewing angle is similarly improved.
  • Patent Document 5 a technique using a thermoplastic norbornene resin (a type of polycycloolefin film) instead of a polycarbonate, polyester, or cellulose ester film in which the uniformity of retardation is unstable due to a large intrinsic birefringence. It is disclosed.
  • TN LCDs using retardation films produced by these manufacturing methods have the effect of improving the upper and lower viewing angles that are lacking when biaxial retardation films are used. Is a problem.
  • the cause of non-uniformity is considered to be due to the non-uniformity of how the metal roller or metal belt hits the film itself in the shearing process.
  • the contact time between the film and the metal roller is very short, but the tilt orientation processing must be performed within that time, and the processing method itself is uneven. It is an easy method.
  • Patent Document 6 there is known an optical compensation film in which liquid crystal molecules are applied on the surface of a base material and tilted or hybrid-oriented. Although there is some improvement in black display unevenness by using this optical compensation film, there are problems such as complicated manufacturing processes, coating failures and orientation defects, and poor yield. It cannot be called a certain manufacturing method.
  • Patent Documents 3 and 7 disclose an optical compensation film in which a heat-shrinkable film is provided on the front and back of a light-transmitting film, and the contraction force is transmitted using the difference in shrinkage rate to control the phase difference. Since these contract in one direction when the base material is contracted, the base material is stretched in a state where one end of the base material is fixed (fixed end stretching method).
  • the uniformity of the tilt angle and the orientation angle was improved to some extent as compared to the metal roller method, but the contraction control in the width direction was not performed to make the tilt angle and tilt direction constant. As a result, the inclination angle and the orientation angle in the width direction, in particular, the uniformity of the orientation angle was insufficient.
  • retardation films used in TN type LCDs have been strongly required to have uniform orientation angles in the width direction.
  • JP 2003-25414 A JP 2003-315557 A JP-A-9-33908 JP 2005-17328 A JP 2007-38646 A JP 2009-98662 A JP-A-9-318815
  • An object of the present invention is to provide a long-graded retardation film having high uniformity and a versatile production method for the long-graded retardation film.
  • the object of the present invention was achieved by the following means.
  • the rising angle ⁇ of the refractive index ellipsoid from the film surface in the plane including the longitudinal direction of the film and the thickness direction of the film is 7 to 85 °
  • the in-plane retardation (Ro ′) of the refractive index ellipsoid is 10 90 nm, thickness retardation (Rt ′) 70 to 300 nm, Rt ′> Ro ′, in-plane retardation Ro of film, retardation R40, ⁇ from film tilt angle 40 °, and in-plane retardation of film
  • a long-graded retardation film characterized in that the standard deviation in the longitudinal direction of the angle ⁇ formed by the phase axis and the longitudinal direction is within 2 nm, within 2 nm, within 2 ° and within 2 °, respectively.
  • a temperature gradient is provided in the longitudinal direction in the inclined orientation zone for imparting the oblique retardation, and the temperature gradient is 20 in the case of a temperature rise.
  • a polarizing plate comprising the long inclined retardation film as described in 1 or 2 above.
  • a liquid crystal display device comprising the long inclined retardation film as described in 1 or 2 above.
  • the long inclined retardation film of the present invention has a rising angle ⁇ of the refractive index ellipsoid from the film surface in a plane including the long direction of the film and the thickness direction of the film of 7 to 85 °, and the refractive index ellipsoid
  • the in-plane retardation (Ro ′) of the film is 10 to 90 nm
  • the thickness retardation (Rt ′) is 70 to 300 nm
  • the standard deviations in the longitudinal direction of the phase difference R40, ⁇ and the angle ⁇ between the in-plane slow axis of the film and the longitudinal direction are within 2 nm, within 2 nm, within 2 ° and within 2 °, respectively.
  • the tilt orientation treatment (hereinafter also referred to as the tilt orientation treatment) is performed in a state where the hardness of one surface of the film is different from that of the other surface. ) And manufactured. Hardness can be represented by an elastic modulus at the time of processing.
  • the absolute value of the phase difference needs to be a desired value.
  • the gradient orientation treatment of the present invention is characterized by changing the hardness of the film in the longitudinal direction, and the means is a temperature gradient in the longitudinal direction of the film. It is effective to have an area for attaching.
  • the width is preferable to keep the width by suppressing the dimensional change in the width direction of the film in the tilt orientation treatment of the film.
  • the present invention adjusts the hardness of the front and back of the film, applies tension in the longitudinal direction, imparts a high temperature gradient in the longitudinal direction, and maintains the width in the lateral direction, thereby exhibiting birefringence. This makes it possible to tilt the film axis stably and efficiently.
  • is 7 ° to 85 °, preferably 15 ° to 45 °.
  • in-plane slow axis and the longitudinal direction of the film may or may not be orthogonal.
  • orthogonal here means that it is substantially orthogonal which is true orthogonal +/- 5 degree.
  • the standard deviations of ⁇ and ⁇ are within 2 ° and 2 °, respectively.
  • the standard deviations of ⁇ and ⁇ were calculated as follows. ⁇ Calculation method of standard deviation of ⁇ > ⁇ Calculation method of ⁇ > Measurement wavelength: 632 nm, measurement spot diameter: 100 ⁇ m or less, measurement pitch: 0.5 mm, phase difference in increments of 5 ° is measured at a tilt angle of ⁇ 40 to 40 °. At that time, take the data measured with the tilt angle of -40 ⁇ 40 ° around the film's longitudinal direction and the data measured with the width direction as the center of rotation, and the tilt angle (horizontal axis) Draw a graph plotting the phase difference (vertical axis) against.
  • the tilt angle value at which the phase difference takes the extreme value is read, and the angle is ⁇ To do.
  • a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Industry Co., Ltd., KOBRA-21ADH manufactured by Oji Scientific Instruments
  • a commercially available retardation (birefringence) measuring device such as AxoScan manufactured by Axometrics may be used.
  • the standard deviation ⁇ [°] of ⁇ calculated as described above at 500 points in the longitudinal direction (MD direction) at the same position as the width direction (TD direction) is defined as the standard deviation of ⁇ .
  • phase difference measuring apparatus that can be used for calculating the standard deviation ⁇ [°] of ⁇ as described above, for example, a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Co., Ltd. can be cited.
  • the in-plane retardation value (Ro ′) and thickness direction retardation value (Rt ′) of the refractive index ellipsoid of the present invention are Rt ′> Ro ′, 10 ⁇ Ro ′ ⁇ 90 nm and 70 ⁇ Rt ′ ⁇ 300 nm. More preferably, 20 ⁇ Ro ′ ⁇ 80 nm and 100 ⁇ Rt ′ ⁇ 200 nm.
  • phase difference values Ro ′ and Rt ′ can be obtained by the following formula.
  • Ro ′ (nx′ ⁇ ny ′) ⁇ d
  • X ′ is a direction axis with the maximum refractive index in a plane perpendicular to z ′ of the refractive index ellipsoid, and nx ′ is a refractive index in the x ′ direction.
  • Y ′ is a directional axis having a minimum refractive index in a plane perpendicular to z ′ of the refractive index ellipsoid, and ny ′ is a refractive index in the y ′ direction.
  • Z ′ is the thickness direction axis of the refractive index ellipsoid, and nz ′ is the refractive index in the z direction.
  • phase difference value at the inclination angle ⁇ taking the extreme value is read, and the phase difference value is defined as Ro ′ of the refractive index ellipsoid.
  • the thickness direction retardation value Rt ′ of the refractive index ellipsoid was calculated according to the above formula.
  • the in-plane retardation value (Ro) and thickness direction retardation value (Rt) of the inclined retardation film of the present invention are 10 ⁇ Ro ⁇ 180 nm and 70 ⁇ Rt ⁇ 300 nm.
  • phase difference values Ro and Rt can be obtained by the following equations.
  • Ro (nx ⁇ ny) ⁇ d
  • X is a direction axis (in-plane slow axis) where the refractive index is maximum in the film plane, and nx is a refractive index in the x direction.
  • Y is a direction axis (in-plane fast axis) in which the refractive index is minimum in the film plane, and ny is a refractive index in the y direction.
  • Z is the thickness direction axis of the film, and nz is the refractive index in the z direction.
  • indicates how many times the in-plane slow axis of the film is deviated from this reference line with respect to the transport direction of the long film. The angle was defined clockwise from the reference line.
  • R40 is a graph symmetric about 0 ° (of the longitudinal direction as the center of rotation) of the two graphs of the center of rotation and the width direction drawn in the calculation of ⁇ . In the measured tilt angle vs. phase difference value graph), the phase difference value at a tilt angle of 40 ° is shown.
  • the standard deviation ⁇ [°] was calculated by measuring Ro, R40, and ⁇ of the film as described above. This is defined as the standard deviation of Ro of the film, the standard deviation of R40, and the standard deviation of ⁇ .
  • the above-mentioned retardation value can be measured using a commercially available automatic birefringence meter.
  • automatic birefringence meter examples thereof include a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Industry Co., Ltd., KOBRA-21ADH manufactured by Oji Scientific Instruments, and AxoScan manufactured by Axometrics.
  • the standard deviation can be measured using an automatic birefringence meter at a measurement wavelength of 632 nm and a measurement spot diameter of 100 ⁇ m or less in an environment of 23 ° C. and 55% RH.
  • a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Co., Ltd. can be used.
  • the standard deviations of Ro and R40 in the long direction are both within 2 nm.
  • the retardation film of the present invention is characterized in that it has a difference in hardness between the front and back surfaces, specifically, a modulus of elasticity during the tilt alignment treatment.
  • a method of laminating films having different elastic moduli a method of creating a temperature difference between the front and back of the film during the tilt orientation treatment, and a method of adjusting the residual solvent amount when the film is cast by solution casting Etc.
  • the elastic modulus ⁇ A of one surface of the long inclined retardation film and the elastic modulus ⁇ B of the other surface have a relationship of ⁇ A ⁇ B and 0.001 ⁇ A / ⁇ B ⁇ 0.9. It is preferable that there is. Furthermore, 0.001 ⁇ A / ⁇ B ⁇ 0.7 is preferable.
  • Lamination methods include co-casting, co-extrusion, double casting, bonding, etc. This method can be used.
  • a good solvent can be applied to dissolve the film surface and bonded, or the remaining solvent state at the time of film formation of the optical film can be bonded.
  • the coating liquid containing resin and an additive can also be coated on the single side
  • the adhesive layer at the interface between the films is preferably as thin as possible.
  • any of the adhesive layers formed by the above means is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the difference in elastic modulus between the front and back surfaces necessary for the tilt orientation treatment when provided by lamination, the difference in elastic modulus can be substantially provided by utilizing the difference in glass transition temperature. In that case, it is preferable to laminate two or more layers having a glass transition temperature difference of 5 ° C. or more, preferably 20 ° C. or more and 150 ° C. or less.
  • one layer may or may not be peeled after the inclined alignment treatment of the present invention.
  • the DSC method JIS C 6481 was used to raise the temperature of the test piece from room temperature at a rate of 20 ° C./minute, the calorific value was measured with a differential scanning calorimeter, and the endothermic curve obtained as a result. Two extension lines are drawn on the (exothermic curve), and Tg is obtained from the intersection of the 1/2 straight line between the extension lines and the endothermic curve.
  • a temperature difference can be made by applying winds with different temperatures on the front and back of the film or bringing rolls with different temperatures into contact with each other.
  • the temperature difference between the front and back of the film is preferably in the range of 20 to 150 ° C.
  • the residual solvent amount difference between the front and back of the film is preferably in the range of 1 to 150% by mass.
  • means for controlling the difference in residual solvent amount there are means for changing the temperature and air volume of the drying air on the front and back, or laminating components having different solvent amounts.
  • a coating solution containing a resin and an additive can be coated on one side or both sides of a film that has already been formed, or a plurality of solutions containing resins and additives with different amounts of solvent can be used for double casting or co-casting.
  • the amount of residual solvent on the front and back sides is the same as the amount of residual solvent in each single layer in the case of a laminate, and the drying conditions for each condition in the front and back sides are fixed to the respective conditions. And measure the amount of residual solvent.
  • Residual solvent amount is defined as follows.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass at the time of starting the inclined alignment treatment of the web
  • N is the mass when the mass M is dried at 110 ° C. for 3 hours.
  • the elastic modulus adjusted by the above method can be measured by the following method.
  • the elasticity modulus in this invention means a tensile elasticity modulus.
  • Each sample is set at a king pressure of 0.25 MPa and a distance between marked lines of 50 ⁇ 10 mm, and pulled at a set temperature T2 ° C. of the tilted orientation zone at a pulling speed of 50 ⁇ 10 mm / min.
  • the tangent line of the obtained SS curve with strain of 1% to 1.5% is extrapolated, and the slope is defined as the elastic modulus.
  • 2) Method of providing temperature difference between film front and back The elastic modulus of the raw film at the temperature applied to the front surface and the temperature applied to the back surface is measured by the same method as in 1). 3) Method of changing the amount of residual solvent by changing the drying speed of the front and back of the film Sample 1 is prepared by drying both surfaces of the film under the drying conditions from the film surface side. Next, a sample 2 is produced by drying both surfaces of the film under the drying conditions from the film back side.
  • the Tg1 and Tg2 of each of the samples 1 and 2 (Tg1> Tg2) are measured by DSC.
  • the elastic modulus of each film is calculated in the same manner as in 1) at the temperature T2 ° C. of the tilted orientation zone. ⁇ Phase difference of the raw film>
  • the film immediately before the tilt alignment treatment is called a raw film.
  • the retardation of the original film of the present invention is, for example, an optical film satisfying 0 ⁇ Ro ⁇ 100 nm and 0 ⁇ Rt ⁇ 180 nm, and the refractive index ellipsoid of the retardation plate is obtained by applying the tilt alignment treatment of the present invention.
  • a retardation film inclined with respect to the film surface of the retardation plate can be obtained.
  • all transparent films that can be used for optical applications can be used, and cellulose ester films, polycarbonate films, polysulfone films, polyethersulfone films, and polyacrylate films can be used.
  • a film selected from a polycycloolefin film, a polyimide film, an acrylic film, and a polyethylene film is preferable. Furthermore, you may improve retardation development with an additive.
  • the retardation development property can be improved. Can do. Or it is also possible to give high phase difference expression property by making process temperature low within a predetermined range. Furthermore, the phase difference can be controlled by the post-stretching temperature. In this case, the phase difference can be increased by lowering the temperature.
  • the retardation expression of the present invention refers to the degree of retardation that can be expressed with a thickness per 1 ⁇ m of the retardation film, and is in the range of 0.3 to 20 nm / ⁇ m, and 0.5 to 5 nm / ⁇ m is preferable.
  • the expression of the retardation can be achieved by applying a force (for example, simple film formation, stretching treatment, conveyance tension, etc.) to the material forming the raw film to form an inclined retardation film.
  • a force for example, simple film formation, stretching treatment, conveyance tension, etc.
  • the retardation development can be measured by the following method.
  • each single-layer film is prepared.
  • each of the above samples was set at a chucking pressure of 0.25 MPa and a distance between marked lines: 50 ⁇ 10 mm. Then, the film is stretched at a stretching speed of 50 ⁇ 10 mm / min in the longitudinal direction at a stretching ratio of 1.4, and the film thicknesses d (2) and Ro (2) are measured for the sample.
  • TG-2KN tensile tester
  • phase difference expression Ro (2) / d (2) ⁇ Ro (1) / d (1).
  • the tilted retardation film of the present invention can be produced by subjecting the original film to a tilt orientation treatment.
  • the inclined orientation processing apparatus has a preheating zone, an inclined orientation zone, and a cooling zone as basic zones (processes), and is provided with at least two pairs of nip rolls sandwiching these three zones. Applying tension in the direction.
  • the long inclined retardation film of the present invention simply by passing the preheating zone, the inclined orientation zone, and the cooling zone while applying tension in the long direction and maintaining the width direction dimension. It is possible to do.
  • the preheating zone of the present invention is a zone for preheating the raw film, and is a zone for heating the temperature of the film to a set temperature T2 ° C. or less of the inclined alignment zone.
  • T2 ° C. or less of the inclined alignment zone In the preheating zone, the maximum temperature in the preheating zone is adjusted near the exit of the zone.
  • the maximum temperature varies depending on the material of the original film that is inclined and oriented, but is preferably (Tg2 + 30) ° C. or lower of the original film.
  • the preheating zone preferably passes in 0.5 to 10 seconds.
  • the inclined orientation zone of the present invention is a zone for actually orienting the original film. By providing the temperature gradient of the present invention in this zone, the refractive index ellipsoid of the raw film can be inclined.
  • the inclined alignment zone is preferably passed for 0.01 to 10 seconds, more preferably 0.5 to 10 seconds.
  • the cooling zone of the present invention is for fixing the tilted orientation state in the tilted orientation zone and controlling the tension of the film.
  • the temperature in the cooling zone is T2-5 ° C. or lower, more preferably Tg2 ° C. or lower, when the set temperature of the tilted alignment treatment zone is T2 ° C.
  • the temperature gradient in the tilted alignment zone is as defined below. 1) In the case of temperature increase: non-contact type radiation at a position 50 cm from the end point of the preheating zone, every 50 cm from the start point to the end point of the inclined alignment treatment zone, and every 50 cm from the start point to the end point of the cooling zone Install a thermometer and measure the surface temperature on both sides of the film.
  • T1 and T2 are temperatures set appropriately from Tg1 and Tg2.
  • the film set temperature refers to a film surface temperature set in advance so as to be the temperature.
  • the film surface temperature is the surface temperature of the lower elastic modulus.
  • the film set temperature at the end point of the inclined orientation treatment zone is the same as T2.
  • the film set temperature in the cooling zone is T3 ° C., and the time from T2 to T3 ° C. is t2 seconds.
  • (T3 ⁇ T2) / t2 [° C./second] is a temperature gradient in the case of a temperature drop.
  • T3-T1 ° C is defined as the temperature difference between the entry side and the exit side.
  • the temperature gradient of the present invention is characterized by being 20 ° C./second to 500 ° C./second in the case of a temperature rise, and ⁇ 20 ° C./second to ⁇ 500 ° C./second in the case of a fall.
  • the temperature is 20 ° C./second to 250 ° C./second in the case of temperature rise. More preferably, it is 20 ° C./second to 100 ° C./second. In the case of a temperature drop, it is ⁇ 20 ° C./second to ⁇ 250 ° C./second. More preferably, it is ⁇ 20 ° C./second to ⁇ 100 ° C./second.
  • a preferred form is a form of partitioning with a wind shield plate, but it is possible to partition using both a wind shield plate and a roll, or partition with a roll alone.
  • the temperature can be controlled by installing a thermometer (for example, a non-contact thermometer) that can display and measure online in each partitioned zone.
  • a thermometer for example, a non-contact thermometer
  • the heating / cooling method for each zone includes a method for changing the temperature and volume of the wind, and a method using a heat roll and a cooling roll.
  • a known method can be used.
  • the method using the wind can produce an optically uniform film because the film surface is not deteriorated compared to the case of using a roll, and the black display unevenness when the panel is formed can be further reduced. .
  • two or more pairs of nip rolls are provided near the inlet of the preheating zone and the outlet of the cooling zone so as to sandwich the preheating zone, the inclined orientation zone, and the cooling zone (see FIGS. 4 and 7). There is. It is also preferable to provide a spare nip roll in the preheating zone (see FIG. 5).
  • Tension can be applied while transporting with a tenter.
  • the tension can be controlled by compressing with a pair of nip rolls.
  • the roll is preferably made of rubber.
  • tension in the longitudinal direction may be applied by a tenter.
  • the tilted orientation zone of the present invention it is necessary to regulate the width of the film in the width direction, and the degree of change is preferably within 5% (0.95 to 1.05 times the dimensional change). .
  • the uniformity of the tilt angle can be improved, and the uniformity can be improved in the tilt direction as well as in the in-plane axial direction. It is presumed that by causing shrinkage in the width direction, there is a place where the contraction stress applied in the width direction is released, so that the uniformity is impaired.
  • tenters and rolls as the width dimension regulating method of the film in the present invention.
  • regulating the width with a tenter there is a method of performing desired processing while holding both ends of the obtained raw film with clips and transporting it with a tenter while maintaining the width.
  • the width is restricted by a roll
  • a desired treatment is performed while one or both sides of the film are in contact with the roll.
  • the material of the roll metal, rubber, or the like can be used, but it is preferable that the frictional force in the width direction is as large as possible.
  • a stretching step may be provided either before or after the tilt alignment treatment. This stretching step is exclusively for stretching in the TD direction, and is provided to finally adjust the retardation (Ro, Rt) as a retardation film.
  • the draw ratio is 1.06 to 1.30 times, preferably 1.06 to 1.15 times.
  • the stretching treatment is preferably performed within a range that does not affect the tilt alignment treatment.
  • the haze value of the retardation film of the present invention is not particularly limited, but is preferably 0.1% or less, more preferably 0.05% or less.
  • the Ro [480] / Ro [590] of the tilted retardation film of the present invention is preferably 0.8 to 1.2, more preferably 0.8 to 1.1, and particularly preferably. Is 0.8 to 1.03.
  • the curl is measured by placing a polarizing plate having a size of 230 mm ⁇ 305 mm on a flat table with the surface where the end is lifted down and leaving it in an environment of 25 ° C. and 55% RH for 2 hours or more. The height of the farthest position at the end of the polarizing plate is measured with respect to the surface as the curl amount.
  • Examples of the cellulose ester film of the present invention include an optical film described in Japanese Patent Application No. 2009-67724, a commercially available cellulose ester film (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12U KC8UY-HA, KC8UX-RHA, KC8UXW-RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC (manufactured by Konica Minolta Opto Co., Ltd.).
  • Examples of commercially available polycarbonate films include Pure Ace, Panlite (manufactured by Teijin Chemicals Ltd.), Elmec (Kaneka Corp.), and the like.
  • a mixture of a substituted phenyl group or a thermoplastic resin having an unsubstituted phenyl group and a nitrile group can be used.
  • Specific examples include a resin composition having an alternating copolymer of isobutene and N-methylenemaleimide and an acrylonitrile / styrene copolymer.
  • thermoplastic resin having a substituted imide group or an unsubstituted imide group in the side chain a thermoplastic resin having a substituted phenyl group or an unsubstituted phenyl group and a nitrile group in the side chain.
  • thermoplastic resin having a substituted phenyl group or an unsubstituted phenyl group and a nitrile group in the side chain Is preferred.
  • the thickness of the long inclined retardation film of the present invention is not particularly limited, but is, for example, in the range of 5 to 500 ⁇ m, preferably in the range of 10 to 200 ⁇ m, and particularly preferably in the range of 15 to 150 ⁇ m.
  • retardation and chromatic dispersion adjusting agent include the above-mentioned ascending agents, compounds described in JP-A-2005-99191, JP-A-2008-64941, for example, benzotriazole compounds Benzophenone compounds, triazine compounds, cyanoacrylate compounds, salicylic acid ester compounds, nickel complex compounds, and the compounds described in JP-A No. 2000-11914 and JP-A No. 2002-62430. It is not limited only to the compound.
  • the long inclined retardation film of the present invention contains general additives as described in Table 1 of JP-A-2008-64941, for example, an ultraviolet absorber, an antioxidant, and fine particles. be able to.
  • the raw film of the present invention can also be prepared by a melt film forming method.
  • the cellulose ester melts at a high temperature at the same time as the thermal decomposition causes a decrease in the molecular weight of the cellulose ester, which may adversely affect the mechanical properties of the resulting optical film. It is necessary to let
  • the melting temperature of the optical film constituting material it can be achieved by adding a plasticizer having a melting point or glass transition temperature lower than the glass transition temperature of the cellulose ester.
  • the plasticizer that can be used in the present invention is not particularly limited, but a polyhydric alcohol ester plasticizer is preferable.
  • the polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • the polyhydric alcohol used in the polyhydric alcohol ester is represented by the following general formula (1).
  • R 1 represents a monovalent organic group
  • l represents a positive integer of 2 or more
  • the OH group represents an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • An example of a preferable polyhydric alcohol is trimethylolpropane.
  • a known aromatic monocarboxylic acid can be used, and a preferable aromatic monocarboxylic acid is used.
  • benzoic acid is particularly preferable, but the present invention is not limited thereto.
  • antioxidants and thermal degradation inhibitors As antioxidants and thermal degradation inhibitors, degradation inhibitors generally known (antioxidants, peroxide decomposition agents, radical inhibitors, metal deactivators, acid scavengers, amines, etc.) Can be used. In particular, lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
  • the deterioration preventing agents are described in JP-A-3-199201, JP-A-5-194789, JP-A-5-271471, and JP-A-6-107854.
  • antioxidant those having a 2,6-dialkylphenol structure are preferred as the antioxidant, and those commercially available under the trade names Irganox 1076 and Irganox 1010 from Ciba Japan, for example, are preferred.
  • Examples of the phosphorus compound include those commercially available from Sumitomo Chemical Co., Ltd. under the trade name Sumilizer-GP.
  • the cellulose ester film of the present invention is prepared by dissolving a cellulose ester and an additive in a solvent to prepare a dope, casting a dope onto an endless metal support that moves infinitely, and casting the dope. It is carried out by a step of drying as a web, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the cellulose ester.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the cellulose ester acetate ester acetyl group substitution degree 2.4
  • cellulose Acetate propionate is a good solvent
  • cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving the cellulose ester is used by collecting the solvent removed from the film by drying in the film-forming process and reusing it.
  • the recovery solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, monomer components, etc., but these are preferably reused even if they are included. Can be purified and reused if necessary.
  • a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
  • a method in which a cellulose ester is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • the preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C.
  • the pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
  • the cellulose ester solution is filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is still more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable.
  • Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
  • it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • the preferred temperature is 45 to 120 ° C, more preferably 45 to 70 ° C, and still more preferably 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the metal support in the casting step is ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
  • the preferred support temperature is 0 to 55 ° C, more preferably 25 to 50 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 114 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • a cellulose ester film as a raw material of the present invention, it is particularly preferable to stretch in the width direction (lateral direction) by a tenter method in which both ends of the web are held with clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
  • drying temperature in the web drying process is increased stepwise from 40 to 200 ° C.
  • the film thickness of the cellulose ester film is not particularly limited, but 10 to 500 ⁇ m is used.
  • the film thickness is particularly preferably 10 to 200 ⁇ m. More preferably, it is 15 to 150 ⁇ m.
  • the cellulose ester film used as the raw material of the present invention has a width of 1 to 4 m.
  • those having a width of 1.4 to 4 m are preferably used. If it exceeds 4 m, conveyance becomes difficult.
  • the raw film for producing the retardation film of the present invention may be a laminate of a plurality of films, and the laminate may be bonded using a substrate-less adhesive film.
  • the raw film for producing the retardation film of the present invention may be a laminate of a plurality of optical layers, and there is a method of applying a coating solution for the optical layer to a support film.
  • a coating solution spin coating method, roll coating method, printing method, dip pulling method, die coating method, casting method, bar coating method, blade coating method, spray coating method, gravure coating method, reverse coating method Ink jet method or extrusion coating method.
  • the film may be saponified and then bonded using polyvinyl alcohol.
  • a good solvent may be apply
  • the adhesive layer at the interface between the films is preferably as thin as possible.
  • any of the adhesive layers formed by the above means is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the adhesive layer can be applied without saponification treatment by atmospheric pressure plasma treatment.
  • the dimensional change rate in the longitudinal direction and the dimensional change rate in the width direction are preferably in the range of 95 to 105%, respectively.
  • the long inclined retardation film of the present invention can be provided with a back coat layer, a hard coat layer and an antireflection layer as described in JP-A Nos. 10-319536 and 2007-159330, if necessary. .
  • ⁇ Polarizing plate> The retardation film of the present invention can be used for a polarizing plate having a polarizing plate protective film, and a liquid crystal display device of the present invention using the same.
  • the polarizing plate of the present invention is characterized by being a polarizing plate bonded to at least one surface of a polarizer using the transparent film of the present invention as a polarizing plate protective film.
  • the liquid crystal display device of the present invention is characterized in that the polarizing plate according to the present invention is bonded to at least one liquid crystal cell surface via an adhesive layer.
  • the polarizing plate of the present invention can be produced by a general method.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • the film thickness of the polarizer is preferably 5 to 30 ⁇ m, particularly preferably 10 to 20 ⁇ m.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • a PVA adhesive is preferable from the viewpoint of the stability of the adhesive treatment.
  • These adhesives and pressure-sensitive adhesives may be applied to the surface of the polarizer or the transparent protective layer as they are, for example, or a layer such as a tape or sheet composed of the adhesive or pressure-sensitive adhesive is disposed on the surface. May be.
  • other additives and catalysts such as acids may be blended as necessary.
  • other additives and a catalyst such as an acid can be blended as necessary.
  • a PVA adhesive is preferable from the viewpoint of excellent adhesiveness with a PVA film.
  • the polarizer side is preferably bonded to at least one surface of a polarizer produced by alkali saponification treatment and immersed in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the polarizing plate of the present invention is characterized in that it is a polarizing plate bonded to at least one surface of a polarizer using the long inclined retardation film of the present invention as a polarizing plate protective film.
  • the cellulose ester film may be used on the other surface, or another polarizing plate protective film may be bonded.
  • commercially available cellulose ester films for example, Konica Minoltac KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC8UX-RHA-KC8UX-RHA-KC8UX-RHA-KC8UX KC4UXW-RHA-NC, manufactured by Konica Minolta Opto Co., Ltd.) is also preferably used.
  • the retardation axis of the retardation film is in the TD direction, the retardation axis of the retardation film and the transmission axis of the polarizer are overlapped within ⁇ 3 °. It is preferable to arrange them within a range of ⁇ 2 °.
  • the polarizing plate protective film used on the surface side of the display device preferably has an antireflection layer, an antistatic layer, an antifouling layer, and a backcoat layer.
  • the TN liquid crystal display device With the TN liquid crystal display device according to the present invention, it is possible to reduce coloration during black display due to light leakage and to obtain a liquid crystal display device with excellent visibility such as front contrast.
  • the rubbing axes of the two substrates sandwiching the liquid crystal cell and the absorption axes of the first polarizing plate and the second polarizing plate are arranged orthogonally, and the liquid crystal
  • the absorption axis of the first polarizing plate is 45 + 0.1 to 3 degrees as the counterclockwise angle with respect to the horizontal direction of the liquid crystal cell.
  • the second polarizing plate is disposed at an angle in the range, and the absorption axis of the second polarizing plate is disposed at an angle in the range of 135-0.1 to 3 degrees.
  • the TN liquid crystal display device having such an arrangement is referred to as an E mode.
  • the rubbing axis of the liquid crystal cell and the absorption axes of the first polarizing plate and the second polarizing plate may be arranged in parallel, which is referred to as an O mode in the present invention. .
  • an O-mode TN liquid crystal display device is preferable because excellent results are obtained in viewing angle, gradation inversion, color shift, and blur.
  • Units such as electrodes, color filters, and backlights are not shown because the figure becomes complicated and optically important parts in the present invention are difficult to see.
  • the TN type liquid crystal display device of the present invention preferably has the configuration shown in FIG. 1, and includes a first protective film 1, a first polarizer 2, and a first retardation film 3 in this order from the viewing side.
  • a backlight unit 10 10.
  • FIGS. 2 and 3 are schematic views showing an example of a TN type liquid crystal display device.
  • FIG. 2A is a schematic diagram showing a liquid crystal monitor, and the horizontal direction of the liquid crystal cell means the long side direction (x) of the monitor in the figure.
  • the absorption axis (y direction) of the first polarizing plate is arranged at an angle in the range of (45 ° + 0.1-3 °) with respect to the x-axis direction (0 °), and the absorption axis (z direction) of the second polarizing plate Is preferably arranged at an angle in the range of (135 ° -0.1 to 3 °) with respect to the x-axis direction (0 °).
  • FIG. 2B shows the rubbing axes 25 and 26 of the liquid crystal cell of the TN liquid crystal display device in the E mode, the polarizer absorption axis 23 orthogonal to the rubbing axis, and the position orthogonal to the polarizer absorption axis 23. It is a schematic diagram which shows the relationship of the slow axis 24 of a phase difference film.
  • FIG. 3B shows the rubbing axes 25 and 26 of the liquid crystal cell of the TN type liquid crystal display device in the O mode, the polarizer absorption axis 23 parallel to the rubbing axis, and the position orthogonal to the polarizer absorption axis 23. It is a schematic diagram which shows the relationship of the slow axis 24 of a phase difference film.
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester A was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The dope 1 was prepared by filtering using 244.
  • the temperature of the stainless steel belt was set to 35 ° C. so that the belt surface side had a dope 1 layer and the air side surface had a dope liquid 2 layer.
  • the solvent was evaporated on the stainless steel belt, and the web was peeled off from the stainless steel belt.
  • the peeled web was cut to 1.5 m width with a slitter, the web was introduced into a tenter dryer, both ends were gripped with clips and dried at 135 ° C. while stretching 1.3 times in the width direction, Drying was completed while alternately transporting a number of rolls arranged vertically in a roll dryer having each drying zone of 125 ° C., and the total film with Dope 1 layer of 80 ⁇ m and Dope 2 layer of 40 ⁇ m
  • a laminated original film 101 having a thickness of 120 ⁇ m and a width of 1500 mm was produced.
  • the retardation development property of the raw film at this temperature (170 ° C.) was 1.5 (180 nm / 120 ⁇ m) nm / ⁇ m.
  • the raw film 101 is applied with a transport tension of 0.75 N / cm in the longitudinal (MD) direction by a pair of nip rolls arranged and arranged before the preheating zone and after the cooling zone. Each zone was passed through.
  • a rubber roll having a diameter of 100 mm was installed so that the distance between the centers of the rolls was 250 mm, and the shrinkage in the TD direction (width regulation roll) was regulated.
  • thermometer installed on the lower elastic modulus side surface (dope 1 layer) of the raw film, and the film surface temperature change of the lower elastic modulus side surface of the film being transported was observed.
  • Processing time refers to the total time it takes for a point on the film to leave the preheating zone, the inclined orientation zone, and the cooling zone.
  • the temperature control of each zone was performed by the following method.
  • Preheating zone Hot air was blown onto the front and back of the film being transported to preheat. Two rolls and wind shields were installed between the preheating zone and the inclined orientation zone so that the temperature of each zone could be controlled independently.
  • Inclined orientation zone The film was passed between two heated rolls in contact. Thereafter, hot air was blown onto the front and back of the film being conveyed.
  • Cooling zone Immediately after passing through the two rolls, cooling was performed by blowing cold air on the front and back of the film.
  • the film width when leaving the cooling zone was 2% smaller than the film width just before entering the preheating zone.
  • the film subjected to the tilt alignment treatment was stretched by 10% (1.10 times) in the TD direction at 160 ° C. using a tenter to obtain the long tilt retardation film 101 of the present invention.
  • the dope 1 was cast on a metal belt, peeled off and dried to prepare an 80 ⁇ m film. Subsequently, it extended
  • a comparative retardation film 2 was produced as follows according to paragraph (0090) of JP-A-2007-38646, Example 1.
  • the cycloolefin polymer was extruded into a film. Subsequently, the extruded film was sandwiched between a 300 mm ⁇ mirror roll having a surface roughness of 0.1S and a metal belt having a thickness of 0.3 mm, and the surface of the film was transferred to a glossy surface.
  • the metal belt width 700 mm
  • the metal belt is held by a rubber-covered roll (the diameter of the roll to be held is 150 mm ⁇ ) and a cooling roll (roll diameter 150 mm), and a commercially available sleeve type transfer roll (manufactured by Chiba Machine Industry) is used. And transcribed.
  • the roll interval at the time of transfer was 0.35 mm, and the transfer pressure was a linear pressure of 25 kgf / cm.
  • the peripheral speed of the outer periphery of the mirror roll was set to 8.8 m / min.
  • the peripheral speed of the rubber coating roll was controlled at 8.5 m / min.
  • the temperature of the mirror surface roll was set to 125 ° C. using an oil temperature controller, and the temperature of the rubber coating roll was set to 115 ° C. Then, it peeled from the mirror surface roll and formed the resin film of thickness 100 micrometers.
  • the film was heated to 125 ° C. in a tenter and stretched 1.04 times in the width direction in the film in-plane direction. Then, it cooled, hold
  • the comparative phase difference film 2 was obtained by taking out from the inside of a tenter.
  • ⁇ Evaluation> Ro, R40, ⁇ , and ⁇ were measured in an atmosphere of 23 ° C. and 55% RH using a micro-area birefringence measuring apparatus manufactured by Mizoji Optical Co., Ltd.
  • Each standard deviation of the long inclined retardation film 101 was 1.5 nm, 1.8 nm, 1.4 °, and 2 °, respectively.
  • polarizing plate 101 was produced according to the following steps 1 to 5. Step 1: It was immersed in a 2 mol% sodium hydroxide solution at 50 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to the polarizer.
  • Step 2 A polarizer was prepared by adsorbing iodine to a stretched polyvinyl alcohol film, and the polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped, and this was placed on the long inclined retardation film 101 treated in Step 1 and a commercially available cellulose ester film.
  • Step 4 The long inclined retardation film 101 laminated in Step 3, the polarizer, and a commercially available cellulose ester film on the back side were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample in which the polarizer prepared in Step 4, the long inclined retardation film and the commercially available cellulose ester film were bonded together was dried in an oven at 80 ° C. for 5 minutes to prepare the polarizing plate 101.
  • polarizing plates 102, 103 and 104 and comparative polarizing plates 1 and 2 were produced.
  • an epoxy adhesive was used for bonding with the polarizer.
  • a liquid crystal panel was produced as follows, and the characteristics as a polarizing plate and a liquid crystal display device were evaluated.
  • the polarizing plates on both sides that had been bonded in advance were peeled off on a 17-inch display SyncMaster 743BM manufactured by Samsunung Co., Ltd., and the prepared polarizing plates 101 to 104 were each bonded to the glass surface of the liquid crystal cell.
  • the polarizing plate is bonded so that the long inclined retardation film of the present invention is on the liquid crystal cell side and the absorption axis is directed in the same direction as the previously bonded polarizing plate.
  • the liquid crystal display devices 101 to 104 and the comparative liquid crystal display devices 1 and 2 were manufactured as shown in Table 2, respectively.
  • Example 2 The original film 101 is passed through MD tension-adding rolls R1 to R4 (between nip rolls), which are rubber rolls having a diameter of 300 mm provided in the preheating zone (FIG. 5).
  • Example 2 the same tilt orientation treatment as 101 of Example 1 was performed to obtain a long tilt retardation film 201.
  • a rubber roll having a diameter of 100 mm was installed so that the distance between the centers of the rolls was 250 mm, and the shrinkage in the TD direction was regulated.
  • the film width when leaving the cooling zone was 2% smaller than the film width just before entering the preheating zone.
  • the MD direction contracted by 1%.
  • the long gradient retardation films 202 and 203 having the MD direction shrinkage of 2% and 3% after the tilt orientation treatment by making the MD direction stretch rate 2% and 3% are produced in the same manner as 201. did.
  • Example 3 The original film 101 was passed through the tilted orientation zone in a state where a pair of nip rolls were provided at the inlet and outlet of the tilted orientation zone and a transport tension of 0.75 N / cm was applied in the MD direction (FIG. 6).
  • the film was stretched to 1% MD while passing between the pair of rolls.
  • a rubber roll having a diameter of 300 mm was used, and a rubber roll having a diameter of 100 mm was installed so that the distance between the centers of the rolls was 250 mm, thereby restricting shrinkage in the TD direction.
  • Example 2 The other conditions were the same as 101 in Example 1, and a long inclined retardation film 301 was produced.
  • the MD stretch ratio was adjusted to 2% and 3% to produce long inclined retardation films 302 and 303.
  • the film width when exiting the cooling zone was 2% smaller than the film width immediately before entering the preheating zone.
  • Example 4 In the dope 1 for producing the raw film, the dope 3 in which the cellulose ester is changed to F, the dope 4 in which the cellulose ester is changed to G, the dope 5 in which the amount of the polyester-based compound 1 is changed to 9.5 parts by mass, A dope 6 in which the amount of the polyester-based compound 1 was changed to 3.5 parts by mass was prepared, and co-cast with the dope 2 to prepare original films 401 to 404.
  • Example 5 shows the film set temperatures T1 to T3 in the preheating zone, the inclined orientation zone, and the cooling zone. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • Example 5 Only the dope 2 was cast on a metal belt in the same manner as 101 in Example 1, peeled and dried to obtain a raw film 501 having a film thickness of 120 ⁇ m.
  • This raw fabric film 501 is subjected to an inclined orientation treatment in the same manner as 101 in Example 1 except that the temperature of a rubber roll having a diameter of 100 mm for TD regulation in FIG. A phase difference film 501 was produced.
  • long inclined retardation films 502 and 503 having been subjected to an inclined alignment treatment with the temperature of the rubber roll being 100 ° C. and 150 ° C. were produced.
  • This sample was evaluated in the same manner as in Example 1. The results are shown in Table 6.
  • Example 6 Only dope 2 was cast and peeled onto the metal belt in the same manner as 101 in Example 1, and then the drying temperature was adjusted to 120 ° C on one side and 20 ° C on the other side in the preheating zone. As a result, the amount of residual solvent on one surface is 1% or less (surface with high elastic modulus) and the amount of residual solvent on the other surface (surface with low elastic modulus) is 10%. Under the same conditions, the tilted alignment treatment zone was passed through to produce a long tilted retardation film 601.
  • the remaining solvent amount on the other surface was 5% (drying temperature 50 ° C.) and 3% (drying temperature 80 ° C.), and long inclined retardation films 602 and 603 were similarly produced.
  • Example 7 A dope 7 in which 1.4 parts by mass of Compound A (retardation adjusting agent) was added to the composition of dope 1 was prepared, cast on a metal belt, peeled off, and dried to prepare an 80 ⁇ m film 7.
  • Compound A retardation adjusting agent
  • PC polycarbonate
  • Tg 150 ° C.
  • CO polycycloolefin
  • the dope 2 was cast on a metal belt, peeled off and dried to produce a film 2 having a thickness of 40 ⁇ m.
  • Each of the two films is saponified, and water paste is applied onto the saponified film, bonded to each other, and dried to be a raw film 701 (bonded film of film 7 and film 2), 702 ( Film 8 and film 2 bonding film) and 703 (film 9 and film 2 bonding film) were produced.
  • the original fabric films 701 to 703 were subjected to a tilt orientation treatment in the same manner as the original fabric film 101 of Example 1 to produce long inclined retardation films 701 to 703.
  • Example 8 The production conditions of Example 1 in which the long inclined retardation film 101 was produced were the conditions described in Table 11, and long inclined retardation films 801 to 808 were produced. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 9. The original film 101 is used, and the retardation development property is 1.5 nm / ⁇ m.
  • Example 9 In the manufacturing conditions of Example 1 in which the long inclined retardation film 101 was produced, the partition of each zone was changed to a partition plate as shown in FIG. 7, the manufacturing conditions were as shown in Table 10, and the long inclined phase difference was obtained. Films 901 to 907 were produced. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 10. The original film 101 is used, and the retardation development property is 1.5 nm / ⁇ m.
  • Example 10 An optical film was produced by the melt casting method using the following composition.
  • Composition 1 Cellulose ester A 85.5 parts by mass Compound 1 * 12 parts by mass IRGANOX-1010 (manufactured by Ciba Japan Co., Ltd.) 0.5 parts by mass PEP-36 (manufactured by ADEKA Co., Ltd.) 0.1 parts by mass Sumizer-GS ( Sumitomo Chemical Co., Ltd.) 0.3 parts by mass TINUVIN 928 (manufactured by Ciba Japan Co., Ltd.) 1.5 parts by mass Seahoster KEP-30 (manufactured by Nippon Shokubai Co., Ltd.) 0.1 parts by mass (Composition 2) Cellulose Ester C 85.5 parts by mass Compound 1 * 12 parts by mass IRGANOX-1010 (manufactured by Ciba Japan) 0.5 parts by mass PEP-36 (manufactured by ADEKA) 0.1 parts by mass Sumizer-GS ( Sumitomo Chemical Co., Ltd.) 0.3 parts by mass TINUVIN 928 (manufact
  • Each of the above compositions was dried at 80 ° C. for 6 hours to a moisture content of 200 ppm or less, and further dried with mixing in a vacuum nauter mixer at 80 ° C. and 1 Torr for 3 hours to a moisture content of 50 ppm.
  • the obtained mixture was melt-mixed at 235 ° C. using a twin-screw extruder and pelletized. At this time, an all screw type screw was used instead of a kneading disk in order to suppress heat generation due to shear during kneading.
  • evacuation was performed from the vent hole, and volatile components generated during kneading were removed by suction.
  • a dry nitrogen gas atmosphere was used to prevent moisture from being absorbed into the resin and to remove oxygen.
  • the first cooling roll and the second cooling roll were made of stainless steel having a diameter of 40 cm, and the surface was hard chrome plated. Further, oil for temperature adjustment (cooling fluid) was circulated inside to control the roll surface temperature to 130 ° C.
  • the elastic touch roll had a diameter of 20 cm, the inner cylinder and the outer cylinder were made of stainless steel, and the outer cylinder surface was hard chrome plated.
  • the wall thickness of the outer cylinder was 2 mm, and the surface temperature of the elastic touch roll was controlled at 130 ° C. by circulating temperature adjusting oil (cooling fluid) in the space between the inner cylinder and the outer cylinder.
  • a T die having a lip clearance of 1.5 mm and an average surface roughness Ra of 0.01 ⁇ m was used. Further, an elastic touch roll having a 2 mm thick metal surface was pressed on the first cooling roll at a linear pressure of 10 kg / cm.
  • the obtained raw film 1001 was subjected to the same inclination treatment as the inclination treatment 101 in Example 1.
  • the obtained film was stretched 1.5 times in the longitudinal direction at 155 ° C. by a stretching machine utilizing a difference in peripheral speed of the roll.
  • a tenter having a preheating zone, a stretching zone, a holding zone, and a cooling zone (there is also a neutral zone for ensuring thermal insulation between the zones), and is 1.
  • the film was cooled to 30 ° C. while relaxing 2% in the width direction, then released from the clip, and the clip gripping part was cut off to obtain a long inclined retardation film 1001.
  • the cellulose ester of composition 1 was changed as shown in Table 11 to prepare long inclined retardation films 1002, 1003. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 11.
  • a hard coat layer coating solution is prepared by filtration through a polypropylene filter, applied using an extrusion coater, dried at 80 ° C. for 1 minute, and then irradiated using an ultraviolet lamp with an illuminance of 100 mW / cm 2 and an irradiation dose of 0. The film was cured under the condition of 2 J / cm 2 to form a hard coat layer having a dry film thickness of 20 ⁇ m to produce a raw film 1101.
  • the Tg of the hard coat layer of IG2 is 220 ° C.
  • IG3 is 250 ° C.
  • IG5 is 260 ° C.
  • the Tg of the opposite surface is 200 ° C. (cellulose ester C), so the opposite surface Tg becomes Tg2.
  • the original fabric films 1101 to 1103 were subjected to the same tilt alignment treatment as in Example 1 and evaluated. The results are shown in Table 12.
  • the long inclined retardation film of the present invention the occurrence of unevenness in black display is suppressed.

Abstract

Disclosed are a long gradient phase difference film having a high degree of uniformity and a versatile method for manufacturing such a long gradient phase difference film. The long gradient phase difference film is characterized in that the angle (β) formed by the surface of a refractive index ellipsoid and the film surface is 7 to 85°, the in-plane phase difference (Ro') of the refractive index ellipsoid is 10 to 90 nm, the thickness phase difference (Rt') is 70 to 300 nm, Rt'>Ro', the standard deviation of the in-plane phase difference Ro of the film, the phase difference R40 from the slant angle 40° of the film, β, and the angle θ formed by the in-plane slow axis of the film and the length direction thereof are 2 nm or less, 2 nm or less, 2° or less, and 2° or less, respectively.

Description

長尺傾斜位相差フィルム、長尺傾斜位相差フィルムの製造方法、偏光板および液晶表示装置Long inclined retardation film, method for producing long inclined retardation film, polarizing plate and liquid crystal display device
 本発明は、液晶表示等に使用される位相差フィルムに関する。 The present invention relates to a retardation film used for liquid crystal display and the like.
 TN型液晶表示装置(LCD)は汎用の二軸位相差フィルムを用いると上下の視野角が十分には広がらず、パソコンなどのモニターとしては改善が必要であった。 When a general-purpose biaxial retardation film is used for a TN type liquid crystal display device (LCD), the vertical viewing angle is not sufficiently widened, and it has been necessary to improve it as a monitor for a personal computer or the like.
 それに対して特許文献1ではポリカーボネートフィルムに金属ロールや金属ベルトによるせん断をかけ、フィルム厚み方向の光軸を傾斜されることによる傾斜位相差を発現させた位相差フィルムを用いることで、上下の視野角が広がることが示されている。 On the other hand, in Patent Document 1, the polycarbonate film is sheared by a metal roll or a metal belt, and the upper and lower visual fields are obtained by using a retardation film that develops an inclined retardation by tilting the optical axis in the film thickness direction. It is shown that the corners widen.
 セルロースエステルフィルム、ポリイミドフィルム等でも同様に光軸を傾斜させた位相差フィルムの製造が試みられ(特許文献2、3、4)ており、同様に視野角が改善することが示されている。 For cellulose ester films, polyimide films and the like, production of retardation films having an optical axis inclined in the same manner has been attempted ( Patent Documents 2, 3, and 4), and it has been shown that the viewing angle is similarly improved.
 特許文献5では、固有複屈折が大きいことによる位相差の均一性が不安定なポリカーボネート、ポリエステル、セルロースエステルフィルムの代わりに、熱可塑性ノルボルネン系樹脂(ポリシクロオレフィンフィルムの一種)を使用した技術が開示されている。 In Patent Document 5, a technique using a thermoplastic norbornene resin (a type of polycycloolefin film) instead of a polycarbonate, polyester, or cellulose ester film in which the uniformity of retardation is unstable due to a large intrinsic birefringence. It is disclosed.
 これらの製造方法による位相差フィルムを用いたTN型LCDでは、二軸位相差フィルムを用いた場合に不足している上下の視野角を改善する効果があるものの、黒表示にすると不均一にムラが発生することが問題となっている。 TN LCDs using retardation films produced by these manufacturing methods have the effect of improving the upper and lower viewing angles that are lacking when biaxial retardation films are used. Is a problem.
 不均一の原因は、せん断加工においてフィルムに対して金属ローラや金属ベルトの当たり方自体が不均一であることによるものであると考えられている。 The cause of non-uniformity is considered to be due to the non-uniformity of how the metal roller or metal belt hits the film itself in the shearing process.
 短時間でせん断加工処理を行う金属ローラ方式では、フィルムと金属ローラの接触時間が非常に短いにもかかわらず、その時間内で傾斜配向処理を行わねばならず、処理方法自体が不均一を生み易い方法となっている。 In the metal roller method that performs shearing processing in a short time, the contact time between the film and the metal roller is very short, but the tilt orientation processing must be performed within that time, and the processing method itself is uneven. It is an easy method.
 また、広幅化や生産速度を上げるためには、処理の際の圧力を非常に高くする必要があり、設備の負担が非常に大きくなる方法でもあった。金属ベルトを使用する場合でも生産速度を上げる場合には処理の際の圧力を非常に高くする必要があり、同様の問題が発生する。 Also, in order to increase the width and increase the production speed, it is necessary to increase the pressure during the treatment, which is a method of increasing the burden on the equipment. Even when a metal belt is used, if the production speed is increased, it is necessary to increase the pressure at the time of processing, and the same problem occurs.
 それに対し、基材表面に液晶分子を塗布し、傾斜もしくはハイブリッド配向させた光学補償フィルムが知られている(特許文献6)。この光学補償フィルムを用いることで黒表示のムラはある程度の改善があるものの、製造工程が複雑であることや、塗布故障や配向欠陥が発生し歩留まりが悪いなどの問題があり、必ずしも汎用性のある製造方法とはいうことはできない。 On the other hand, there is known an optical compensation film in which liquid crystal molecules are applied on the surface of a base material and tilted or hybrid-oriented (Patent Document 6). Although there is some improvement in black display unevenness by using this optical compensation film, there are problems such as complicated manufacturing processes, coating failures and orientation defects, and poor yield. It cannot be called a certain manufacturing method.
 一方、特許文献3、7では、透光性フィルムの表裏に熱収縮性フィルムを設け、その収縮率差を利用して収縮力を伝達させ位相差を制御する光学補償フィルムが開示されている。これらは基材の収縮をさせる際に一方向への収縮するため、基材の一端を固定した状態で延伸(固定端延伸法)するとされている。 On the other hand, Patent Documents 3 and 7 disclose an optical compensation film in which a heat-shrinkable film is provided on the front and back of a light-transmitting film, and the contraction force is transmitted using the difference in shrinkage rate to control the phase difference. Since these contract in one direction when the base material is contracted, the base material is stretched in a state where one end of the base material is fixed (fixed end stretching method).
 この方法では、上記金属ローラ方式と比較して傾斜角度や配向角の均一性はある程度改善されたが、傾斜角度・傾斜方向を一定方向にするための幅手方向の収縮制御がなされていなかったため、結果的に幅手方向の傾斜角度や配向角、特に配向角の均一性が不十分であった。 In this method, the uniformity of the tilt angle and the orientation angle was improved to some extent as compared to the metal roller method, but the contraction control in the width direction was not performed to make the tilt angle and tilt direction constant. As a result, the inclination angle and the orientation angle in the width direction, in particular, the uniformity of the orientation angle was insufficient.
 近年液晶表示装置の高輝度化、高コントラスト化により、TN型LCDに用いる位相差フィルムも幅手方向における配向角の均一性が強く求められていた。 In recent years, with the increase in brightness and contrast of liquid crystal display devices, retardation films used in TN type LCDs have been strongly required to have uniform orientation angles in the width direction.
特開2003-25414号公報JP 2003-25414 A 特開2003-315557号公報JP 2003-315557 A 特開平9-33908号公報JP-A-9-33908 特開2005-17328号公報JP 2005-17328 A 特開2007-38646号公報JP 2007-38646 A 特開2009-98662号公報JP 2009-98662 A 特開平9-318815号公報JP-A-9-318815
 本発明は、均一性の高い長尺傾斜位相差フィルム、および該長尺傾斜位相差フィルムの汎用性ある製造方法を提供することを目的とする。 An object of the present invention is to provide a long-graded retardation film having high uniformity and a versatile production method for the long-graded retardation film.
 本発明の目的は、下記手段によって達成された。 The object of the present invention was achieved by the following means.
 1.フィルムの長尺方向とフィルムの厚み方向を含む平面における、フィルム面からの屈折率楕円体の立ち上がり角度βが7~85°であり、屈折率楕円体の面内位相差(Ro’)が10~90nm、厚み位相差(Rt’)が70~300nm、Rt’>Ro’であり、フィルムの面内位相差Ro、フィルムの倒れ角40度からの位相差R40、βおよびフィルムの面内遅相軸と長尺方向とのなす角度θの長尺方向での標準偏差がそれぞれ2nm以内、2nm以内、2°以内および2°以内であることを特徴とする長尺傾斜位相差フィルム。 1. The rising angle β of the refractive index ellipsoid from the film surface in the plane including the longitudinal direction of the film and the thickness direction of the film is 7 to 85 °, and the in-plane retardation (Ro ′) of the refractive index ellipsoid is 10 90 nm, thickness retardation (Rt ′) 70 to 300 nm, Rt ′> Ro ′, in-plane retardation Ro of film, retardation R40, β from film tilt angle 40 °, and in-plane retardation of film A long-graded retardation film characterized in that the standard deviation in the longitudinal direction of the angle θ formed by the phase axis and the longitudinal direction is within 2 nm, within 2 nm, within 2 ° and within 2 °, respectively.
 2.フィルムの面内遅相軸と長尺方向とが直交していることを特徴とする前記1に記載の長尺傾斜位相差フィルム。 2. 2. The long inclined retardation film as described in 1 above, wherein the in-plane slow axis of the film and the longitudinal direction are perpendicular to each other.
 3.斜め位相差を有する長尺傾斜位相差フィルムの製造方法において、斜め位相差を付与するための傾斜配向ゾーンでは長尺方向に温度勾配を持たせ、該温度勾配は、温度上昇の場合には20℃/秒~500℃/秒、下降の場合には-20℃/秒~-500℃/秒であることを特徴とする長尺傾斜位相差フィルムの製造方法。 3. In the method for producing a long inclined retardation film having an oblique retardation, a temperature gradient is provided in the longitudinal direction in the inclined orientation zone for imparting the oblique retardation, and the temperature gradient is 20 in the case of a temperature rise. A method for producing a long inclined retardation film, wherein the temperature is from -20 ° C / second to 500 ° C / second, and in the case of descending, from -20 ° C / second to -500 ° C / second.
 4.前記斜め位相差を付与する前のフィルムの一方の面の弾性率(εA)ともう一方の面の弾性率(εB)が、εA<εBの場合には、0.001<εA/εB<0.9であることを特徴とする前記3に記載の長尺傾斜位相差フィルムの製造方法。 4. When the elastic modulus (εA) of one surface of the film and the elastic modulus (εB) of the other surface before applying the oblique phase difference are εA <εB, 0.001 <εA / εB <0. 9. The method for producing a long inclined retardation film as described in 3 above, which is .9.
 5.前記斜め位相差を付与する前のフィルムの位相差発現性が、0.3nm/μm~20nm/μmであることを特徴とする前記3または4に記載の長尺傾斜位相差フィルムの製造方法。 5. 5. The method for producing a long inclined retardation film as described in 3 or 4 above, wherein the retardation development property of the film before applying the oblique retardation is 0.3 nm / μm to 20 nm / μm.
 6.前記傾斜配向ゾーンにおいて、フィルムの長尺方向およびそれに直交する方向の寸法変化率が、いずれも傾斜配向処理前と傾斜配向処理後で5%以内であることを特徴とする前記3~5に記載の長尺傾斜位相差フィルムの製造方法。 6. The above 3 to 5, wherein in the tilted orientation zone, the rate of dimensional change in the longitudinal direction of the film and the direction perpendicular thereto is within 5% before and after the tilted orientation treatment. Manufacturing method of long slanted phase difference film.
 7.前記1または2に記載の長尺傾斜位相差フィルムを有することを特徴とする偏光板。 7. A polarizing plate comprising the long inclined retardation film as described in 1 or 2 above.
 8.前記1または2に記載の長尺傾斜位相差フィルムを有することを特徴とする液晶表示装置。 8. 3. A liquid crystal display device comprising the long inclined retardation film as described in 1 or 2 above.
 本発明によれば、均一性の高い長尺傾斜位相差フィルム、および該長尺傾斜位相差フィルムの汎用性ある製造方法を得ることができた。 According to the present invention, it was possible to obtain a highly uniform long inclined retardation film and a versatile production method for the long inclined retardation film.
本発明のTN型液晶表示装置の模式図である。It is a schematic diagram of a TN type liquid crystal display device of the present invention. 本発明のEモードのTN型液晶表示装置の一例を示す概略図である。It is the schematic which shows an example of the TN type | mold liquid crystal display device of E mode of this invention. 本発明のOモードのTN型液晶表示装置の一例を示す概略図である。It is the schematic which shows an example of the TN type | mold liquid crystal display device of O mode of this invention. 本発明の傾斜配向処理装置全体の概略図である。It is the schematic of the whole inclination orientation processing apparatus of this invention. 本発明の傾斜配向ゾーンの好ましい例の一つである。It is one of the preferable examples of the inclined orientation zone of this invention. 本発明の傾斜配向ゾーンの好ましい例の一つである。It is one of the preferable examples of the inclined orientation zone of this invention. 本発明の傾斜配向ゾーンの好ましい例の一つである。It is one of the preferable examples of the inclined orientation zone of this invention. 本発明のフィルムの光学軸と製造方向との関係図である。It is a related figure of the optical axis and production direction of the film of this invention. 本発明の傾斜位相差フィルムと屈折率楕円体の斜視図である。It is a perspective view of the inclination retardation film and refractive index ellipsoid of this invention. 本発明の屈折率楕円体の断面図である。It is sectional drawing of the refractive index ellipsoid of this invention.
<本発明の長尺傾斜位相差フィルム>
 本発明の長尺傾斜位相差フィルムは、フィルムの長尺方向とフィルムの厚み方向を含む平面における、フィルム面からの屈折率楕円体の立ち上がり角度βが7~85°であり、屈折率楕円体の面内位相差(Ro’)が10~90nm、厚み位相差(Rt’)が70~300nm、Rt’>Ro’であり、フィルムの面内位相差Ro、フィルムの倒れ角40度からの位相差R40、βおよびフィルムの面内遅相軸と長尺方向とのなす角度θの長尺方向での標準偏差がそれぞれ2nm以内、2nm以内、2°以内および2°以内であることを特徴とする。
<Long inclined retardation film of the present invention>
The long inclined retardation film of the present invention has a rising angle β of the refractive index ellipsoid from the film surface in a plane including the long direction of the film and the thickness direction of the film of 7 to 85 °, and the refractive index ellipsoid The in-plane retardation (Ro ′) of the film is 10 to 90 nm, the thickness retardation (Rt ′) is 70 to 300 nm, and Rt ′> Ro ′. From the in-plane retardation Ro of the film, the tilt angle of the film is 40 degrees. The standard deviations in the longitudinal direction of the phase difference R40, β and the angle θ between the in-plane slow axis of the film and the longitudinal direction are within 2 nm, within 2 nm, within 2 ° and within 2 °, respectively. And
 そしてこの特徴的な本発明の長尺傾斜位相差フィルムは、傾斜配向処理するにあたって、フィルムの一方の面ともう一方の面の硬さが異なる状態で傾斜配向処理(以下、傾斜配向処理ともいう)して製造することを特徴とする。硬さは、処理を行う際の弾性率で表すことができる。 And when this characteristic long elongate phase difference film of the present invention is subjected to the tilt orientation treatment, the tilt orientation treatment (hereinafter also referred to as the tilt orientation treatment) is performed in a state where the hardness of one surface of the film is different from that of the other surface. ) And manufactured. Hardness can be represented by an elastic modulus at the time of processing.
 本発明の傾斜配向処理を満足するものとするためには、複屈折の発現性が必要であり、これは傾斜配向処理を行う温度領域でフィルムに与える応力に対する位相差発現性が効率よく発揮され、また位相差の絶対値が所望の値となる必要がある。 In order to satisfy the tilt alignment treatment of the present invention, it is necessary to develop birefringence, which effectively exhibits the phase difference developability with respect to the stress applied to the film in the temperature range where the tilt alignment treatment is performed. In addition, the absolute value of the phase difference needs to be a desired value.
 本発明の傾斜配向処理のためにはフィルム長尺方向への張力に加え、長尺方向でフィルムの硬さに変化をつけることを特徴とし、その手段としてはフィルムに長尺方向での温度勾配をつける領域を持たせることが有効である。 In addition to the tension in the longitudinal direction of the film, the gradient orientation treatment of the present invention is characterized by changing the hardness of the film in the longitudinal direction, and the means is a temperature gradient in the longitudinal direction of the film. It is effective to have an area for attaching.
 さらに、フィルムの傾斜配向処理においては、フィルムの幅手方向の寸法変化を抑え、幅保持することが好ましい。 Furthermore, it is preferable to keep the width by suppressing the dimensional change in the width direction of the film in the tilt orientation treatment of the film.
 本発明は、フィルム表裏の硬さを調整し、長尺方向への張力をかけ、長尺方向で高い温度勾配を付与し、幅手方向の幅保持を行うことで、複屈折発現性を有するフィルムの軸を安定的に、効率よく傾斜させることを可能にしたものである。 The present invention adjusts the hardness of the front and back of the film, applies tension in the longitudinal direction, imparts a high temperature gradient in the longitudinal direction, and maintains the width in the lateral direction, thereby exhibiting birefringence. This makes it possible to tilt the film axis stably and efficiently.
 以下、本発明の詳細を説明する。
<傾斜位相差フィルムの長尺方向とフィルムの厚み方向を含む平面における、フィルム面からの屈折率楕円体の立ち上がり角度β、配向角θ>
 本発明においてはβが7°~85°であり、好ましくは、15°~45°である。
Details of the present invention will be described below.
<Rising angle β and orientation angle θ of the refractive index ellipsoid from the film surface in the plane including the long direction of the tilted retardation film and the thickness direction of the film>
In the present invention, β is 7 ° to 85 °, preferably 15 ° to 45 °.
 またフィルムの面内遅相軸と長尺方向は直交していてもいなくてもよい。なお、ここでいう直交とは、真実の直交±5°である実質的に直交であることをいう。 Also, the in-plane slow axis and the longitudinal direction of the film may or may not be orthogonal. In addition, orthogonal here means that it is substantially orthogonal which is true orthogonal +/- 5 degree.
 βおよびθの標準偏差はそれぞれ2°以内および2°以内である。βおよびθの標準偏差は下記のようにして算出した。
<βの標準偏差の算出方法>
 〈βの算出方法〉
 測定波長;632nm、測定スポット径;100μm以下、測定ピッチ;0.5mm、-40~40°の倒れ角で5°刻みの位相差を測定する。その際、フィルムの長手方向を回転中心として-40~40°の倒れ角で位相差を測定したデータと、幅手方向を測定の回転中心にして測定したデータをとり、倒れ角(横軸)に対して位相差(縦軸)をプロットしたグラフをそれぞれ描く。
The standard deviations of β and θ are within 2 ° and 2 °, respectively. The standard deviations of β and θ were calculated as follows.
<Calculation method of standard deviation of β>
<Calculation method of β>
Measurement wavelength: 632 nm, measurement spot diameter: 100 μm or less, measurement pitch: 0.5 mm, phase difference in increments of 5 ° is measured at a tilt angle of −40 to 40 °. At that time, take the data measured with the tilt angle of -40 ~ 40 ° around the film's longitudinal direction and the data measured with the width direction as the center of rotation, and the tilt angle (horizontal axis) Draw a graph plotting the phase difference (vertical axis) against.
 そのうち、0°を中心に対称となっていない方のグラフ(幅手方向を回転中心として測定したグラフ)において、位相差が極値をとっている倒れ角の値を読み取り、その角度をβとする。 Among them, in the graph that is not symmetrical about 0 ° (the graph measured with the width direction as the center of rotation), the tilt angle value at which the phase difference takes the extreme value is read, and the angle is β To do.
 このように-40~40°の倒れ角で位相差を測定する装置としては、例えば溝尻光学工業所(株)製の微小領域複屈折測定装置、王子計測機器(株)製のKOBRA-21ADH、Axometrics社製のAxoScanなど、一般的に市販されている位相差(複屈折)測定装置が挙げられる。 As an apparatus for measuring the phase difference at a tilt angle of −40 to 40 ° in this way, for example, a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Industry Co., Ltd., KOBRA-21ADH manufactured by Oji Scientific Instruments, A commercially available retardation (birefringence) measuring device such as AxoScan manufactured by Axometrics may be used.
 幅手方向(TD方向)としては同じ位置で長尺方向(MD方向)に500点において上記のように算出したβの標準偏差σ[°]をβの標準偏差と定義する。 The standard deviation σ [°] of β calculated as described above at 500 points in the longitudinal direction (MD direction) at the same position as the width direction (TD direction) is defined as the standard deviation of β.
 このようにβの標準偏差σ[°]の算出に用いることのできる位相差測定装置としては、例えば溝尻光学工業所(株)製の微小領域複屈折測定装置をあげることができる。 As a phase difference measuring apparatus that can be used for calculating the standard deviation σ [°] of β as described above, for example, a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Co., Ltd. can be cited.
 〈屈折率楕円体のRo’、Rt’〉
 本発明の屈折率楕円体の面内位相差値(Ro’)および厚み方向の位相差値(Rt’)は、Rt’>Ro’、10≦Ro’≦90nmかつ70≦Rt’≦300nmであリ、より好ましくは20≦Ro’≦80nmかつ100≦Rt’≦200nmである。
<Ro 'and Rt' of refractive index ellipsoid>
The in-plane retardation value (Ro ′) and thickness direction retardation value (Rt ′) of the refractive index ellipsoid of the present invention are Rt ′> Ro ′, 10 ≦ Ro ′ ≦ 90 nm and 70 ≦ Rt ′ ≦ 300 nm. More preferably, 20 ≦ Ro ′ ≦ 80 nm and 100 ≦ Rt ′ ≦ 200 nm.
 なお位相差値Ro’、Rt’は以下の式によって求めることができる。 The phase difference values Ro ′ and Rt ′ can be obtained by the following formula.
 Ro’=(nx’-ny’)×d
 Rt’=((nx’+ny’)/2-nz’)×d
 dはフィルムの厚さ(nm)である。
Ro ′ = (nx′−ny ′) × d
Rt ′ = ((nx ′ + ny ′) / 2−nz ′) × d
d is the thickness (nm) of the film.
 x’は、屈折率楕円体のz’と直交する平面のうち屈折率が最大となる方向軸でありnx’は、x’方向の屈折率である。 X ′ is a direction axis with the maximum refractive index in a plane perpendicular to z ′ of the refractive index ellipsoid, and nx ′ is a refractive index in the x ′ direction.
 y’は、屈折率楕円体のz’と直交する平面のうち屈折率が最小となる方向軸でありny’は、y’方向の屈折率である。 Y ′ is a directional axis having a minimum refractive index in a plane perpendicular to z ′ of the refractive index ellipsoid, and ny ′ is a refractive index in the y ′ direction.
 z’は、屈折率楕円体の厚み方向軸でありnz’は、z方向の屈折率である。 Z ′ is the thickness direction axis of the refractive index ellipsoid, and nz ′ is the refractive index in the z direction.
 〈屈折率楕円体のRo’の算出方法〉
 測定点において-40~40°の倒れ角で位相差を測定する。その際、幅手方向を測定の回転中心にして測定したデータをとり、倒れ角(横軸)に対して位相差(縦軸)をプロットしたグラフを描く。
<Calculation method of Ro 'of refractive index ellipsoid>
The phase difference is measured at an inclination angle of −40 to 40 ° at the measurement point. At that time, data obtained by measuring the width direction as the rotation center of measurement is taken, and a graph in which the phase difference (vertical axis) is plotted against the tilt angle (horizontal axis) is drawn.
 そのグラフにおいて、極値をとっている倒れ角βでの位相差値を読み取り、その位相差値を屈折率楕円体のRo’と定義する。 In the graph, the phase difference value at the inclination angle β taking the extreme value is read, and the phase difference value is defined as Ro ′ of the refractive index ellipsoid.
 〈屈折率楕円体のRt’の算出方法〉
 上記βおよびRo’の算出時に使用した0°中心に対称となっていないグラフ(幅手方向を回転中心として測定したグラフ)において、β+40°あるいはβ-40°の位相差値を、屈折率楕円体のR40’と定義する。
<Calculation method of Rt ′ of refractive index ellipsoid>
In the graph that is not symmetric about the 0 ° center (measured with the width direction as the rotation center) used for the calculation of β and Ro ′, the phase difference value of β + 40 ° or β−40 ° is expressed as a refractive index ellipse. It is defined as R40 ′ of the body.
 Ro’の値、R40’の値、フィルム膜厚d(nm)、フィルムの平均屈折率値、市販の計算ソフト「N-Calc」により屈折率楕円体のz’方向と直交する平面のうち、屈折率が最大となる方向(x’)、屈折率楕円体のz’方向と直交する平面のうち、屈折率が最小となる方向(y’)、厚み方向(z’)における屈折率(nx’、ny’、nz’)を求める。得られたnx’、ny’、nz’の値から、上記式に従って屈折率楕円体の厚み方向位相差値Rt’を算出した。
<傾斜位相差フィルムのRo、Rt、θ、R40>
 本発明の傾斜位相差フィルムの面内位相差値(Ro)および厚み方向の位相差値(Rt)は、10≦Ro≦180nm、70≦Rt≦300nmである。
Among the values of Ro ′, R40 ′, film thickness d (nm), average refractive index of film, and plane perpendicular to the z ′ direction of the refractive index ellipsoid by commercially available calculation software “N-Calc”, The refractive index (nx) in the direction (x ′) in which the refractive index is maximum, the direction (y ′) in which the refractive index is minimum among the planes orthogonal to the z ′ direction of the refractive index ellipsoid, and the thickness direction (z ′) ', Ny', nz '). From the obtained values of nx ′, ny ′, and nz ′, the thickness direction retardation value Rt ′ of the refractive index ellipsoid was calculated according to the above formula.
<Ro, Rt, θ, R40 of tilted retardation film>
The in-plane retardation value (Ro) and thickness direction retardation value (Rt) of the inclined retardation film of the present invention are 10 ≦ Ro ≦ 180 nm and 70 ≦ Rt ≦ 300 nm.
 なお位相差値Ro、Rtは以下の式によって求めることができる。 The phase difference values Ro and Rt can be obtained by the following equations.
 Ro=(nx-ny)×d
 Rt=((nx+ny)/2-nz)×d
 dはフィルムの厚さ(nm)である。
Ro = (nx−ny) × d
Rt = ((nx + ny) / 2−nz) × d
d is the thickness (nm) of the film.
 xは、フィルム面内で屈折率が最大となる方向軸(面内遅相軸)であり、nxはx方向の屈折率である。 X is a direction axis (in-plane slow axis) where the refractive index is maximum in the film plane, and nx is a refractive index in the x direction.
 yは、フィルム面内で屈折率が最小となる方向軸(面内進相軸)であり、nyはy方向の屈折率である。 Y is a direction axis (in-plane fast axis) in which the refractive index is minimum in the film plane, and ny is a refractive index in the y direction.
 zは、フィルムの厚み方向軸であり、nzはz方向の屈折率である。 Z is the thickness direction axis of the film, and nz is the refractive index in the z direction.
 θは、長尺フィルムの搬送方向を基準とし、この基準ラインから、フィルムの面内遅相軸が何度ずれているかを示す。基準ラインから時計周りに角度を定義した。 Θ indicates how many times the in-plane slow axis of the film is deviated from this reference line with respect to the transport direction of the long film. The angle was defined clockwise from the reference line.
 R40は、上記βの算出の際に描いた、回転中心が長手方向のものと幅手方向のものの2つのグラフのうち、0°を中心に対称になっているグラフ(長手方向を回転中心として測定した倒れ角vs位相差値のグラフ)において、倒れ角40°での位相差値を示す。 R40 is a graph symmetric about 0 ° (of the longitudinal direction as the center of rotation) of the two graphs of the center of rotation and the width direction drawn in the calculation of β. In the measured tilt angle vs. phase difference value graph), the phase difference value at a tilt angle of 40 ° is shown.
 これらの標準偏差は、フィルム面に対し、測定波長632nmで測定スポット径100μm以下、測定ピッチ0.5mmで、幅手方向(TD方向)としては同じ位置で長尺方向(MD方向)に500点において、上記の通りにフィルムのRo、R40、θを測定して標準偏差σ[°]を算出した。これをフィルムのRoの標準偏差、R40の標準偏差、θの標準偏差と定義する。 These standard deviations were measured at a measurement wavelength of 632 nm, a measurement spot diameter of 100 μm or less, a measurement pitch of 0.5 mm, and 500 points in the longitudinal direction (MD direction) at the same position as the width direction (TD direction). The standard deviation σ [°] was calculated by measuring Ro, R40, and θ of the film as described above. This is defined as the standard deviation of Ro of the film, the standard deviation of R40, and the standard deviation of θ.
 上述の位相差値は、市販の自動複屈折計を用いて測定することができる。例えば、溝尻光学工業所(株)製の微小領域複屈折測定装置、王子計測機器(株)製のKOBRA-21ADH、Axometrics社製のAxoScanが挙げられる。標準偏差は、自動複屈折率計を用いて、23℃、55%RHの環境下、測定波長632nm、測定スポット径100μm以下で測定することができる。例えば、溝尻光学工業所(株)製の微小領域複屈折測定装置などが挙げられる。 The above-mentioned retardation value can be measured using a commercially available automatic birefringence meter. Examples thereof include a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Industry Co., Ltd., KOBRA-21ADH manufactured by Oji Scientific Instruments, and AxoScan manufactured by Axometrics. The standard deviation can be measured using an automatic birefringence meter at a measurement wavelength of 632 nm and a measurement spot diameter of 100 μm or less in an environment of 23 ° C. and 55% RH. For example, a micro-region birefringence measuring apparatus manufactured by Mizoji Optical Co., Ltd. can be used.
 本発明の長尺傾斜位相差フィルムにおいては、長尺方向のRo、R40の標準偏差がいずれも2nm以内である。Ro、R40、β、θの標準偏差を上記の範囲にすることで、液晶表示装置の黒表示時に起こる光漏れの不均一さ(あるいは、画面ムラ、コントラストムラともいう)を改善させることができる。また、θの不均一性は正面コントラスト低下に直接繋がる。
<位相差フィルム表裏面の弾性率の調整>
 本発明の位相差フィルムは、傾斜配向処理時に表裏の硬さ、具体的には弾性率の差を持たせることを特徴とする。その具体的な手段としては、弾性率の異なるフィルムを積層する方法、傾斜配向処理する際のフィルム表裏の温度差をつける方法、フィルムを溶液流延製膜する際の残留溶媒量を調整する方法などが挙げられる。
In the long inclined retardation film of the present invention, the standard deviations of Ro and R40 in the long direction are both within 2 nm. By setting the standard deviations of Ro, R40, β, and θ within the above ranges, it is possible to improve non-uniformity of light leakage (also referred to as screen unevenness or contrast unevenness) that occurs during black display of a liquid crystal display device. . Further, the non-uniformity of θ directly leads to a decrease in front contrast.
<Adjustment of elastic modulus of front and back of retardation film>
The retardation film of the present invention is characterized in that it has a difference in hardness between the front and back surfaces, specifically, a modulus of elasticity during the tilt alignment treatment. As specific means, a method of laminating films having different elastic moduli, a method of creating a temperature difference between the front and back of the film during the tilt orientation treatment, and a method of adjusting the residual solvent amount when the film is cast by solution casting Etc.
 本発明においては、長尺傾斜位相差フィルムの一方の面の弾性率εA、もう一方の面の弾性率εBとには、εA<εBかつ、0.001<εA/εB<0.9の関係があることが好ましい。さらには、0.001<εA/εB<0.7が好ましい。 In the present invention, the elastic modulus εA of one surface of the long inclined retardation film and the elastic modulus εB of the other surface have a relationship of εA <εB and 0.001 <εA / εB <0.9. It is preferable that there is. Furthermore, 0.001 <εA / εB <0.7 is preferable.
 弾性率の異なるフィルムを積層する方法としては、樹脂、添加剤などを変えた層を積層する方法を選択することができ、積層方法としては、共流延、共押出し、ダブルキャスト、貼合などの方法を用いることができる。 As a method of laminating films having different elastic moduli, a method of laminating layers with different resins, additives, etc. can be selected. Lamination methods include co-casting, co-extrusion, double casting, bonding, etc. This method can be used.
 また、良溶媒を塗布してフィルム表面を溶解させ、貼合させることもでき、光学フィルムの製膜時の残溶媒状態で貼合することもできる。また、既に製膜したフィルムの片面、または両面に樹脂、添加剤を含む塗布液をコーティングすることもできる。 Also, a good solvent can be applied to dissolve the film surface and bonded, or the remaining solvent state at the time of film formation of the optical film can be bonded. Moreover, the coating liquid containing resin and an additive can also be coated on the single side | surface or both surfaces of the already formed film.
 これらの手段を用いる際に、フィルムとフィルムの界面の接着層は、できるだけ薄い方が好ましい。例えば、上記の手段で形成される接着層のいずれも20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。 When using these means, the adhesive layer at the interface between the films is preferably as thin as possible. For example, any of the adhesive layers formed by the above means is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less.
 本発明における、傾斜配向処理に必要な表裏の弾性率の差を積層により持たせる場合、ガラス転移温度の差を利用して実質的に弾性率の差を持たせることもできる。その場合ガラス転移温度の差が5℃以上、好ましくは20℃以上150℃以下である層を二層以上積層させることが好ましい。 In the present invention, when the difference in elastic modulus between the front and back surfaces necessary for the tilt orientation treatment is provided by lamination, the difference in elastic modulus can be substantially provided by utilizing the difference in glass transition temperature. In that case, it is preferable to laminate two or more layers having a glass transition temperature difference of 5 ° C. or more, preferably 20 ° C. or more and 150 ° C. or less.
 積層によって表裏の弾性率差を持たせた場合、本発明の傾斜配向処理後に一方の層を剥離しても良いし、剥離しなくてもよい。剥離しない場合には、無色透明で光学値調整されたものを積層することが好ましい。 When the elastic modulus difference between the front and back surfaces is given by lamination, one layer may or may not be peeled after the inclined alignment treatment of the present invention. In the case of not peeling, it is preferable to laminate a colorless and transparent one whose optical value is adjusted.
 ガラス転移点は、DSC法(JIS C 6481)を用いて、試験片を室温から20℃/分の割合で昇温させ、示差走査熱量計にて発熱量を測定し、その結果得られる吸熱曲線(発熱曲線)に2本の延長線を引き、延長線間の1/2直線と吸熱曲線の交点からTgが求められる。 For the glass transition point, the DSC method (JIS C 6481) was used to raise the temperature of the test piece from room temperature at a rate of 20 ° C./minute, the calorific value was measured with a differential scanning calorimeter, and the endothermic curve obtained as a result. Two extension lines are drawn on the (exothermic curve), and Tg is obtained from the intersection of the 1/2 straight line between the extension lines and the endothermic curve.
 単一のフィルムで実施する場合には、傾斜配向処理する際のフィルム表裏の温度差による方法、フィルムを溶液流延する際の残留溶媒量を調整する方法を採用することができる。フィルム表裏に温度の異なる風を当てたり、温度の異なるロールを接触させたりすることで、温度差をつけることができる。フィルムの表裏の温度差は20~150℃の範囲内であることが好ましい。 In the case of carrying out with a single film, it is possible to employ a method based on a temperature difference between the front and back of the film during the tilted orientation treatment, and a method of adjusting the amount of residual solvent when the film is cast. A temperature difference can be made by applying winds with different temperatures on the front and back of the film or bringing rolls with different temperatures into contact with each other. The temperature difference between the front and back of the film is preferably in the range of 20 to 150 ° C.
 溶液流延製膜法の場合、フィルム表裏の乾燥速度を変化させて残留溶媒量を変化させる方法以外にも、乾燥速度を制御して厚み方向で可塑剤の含有量を変化させる方法を用いこともできる。 In the case of the solution casting film forming method, in addition to the method of changing the residual solvent amount by changing the drying speed of the front and back of the film, use the method of changing the plasticizer content in the thickness direction by controlling the drying speed You can also.
 フィルム表裏の残留溶媒量差は、1~150質量%の範囲内であることが好ましい。残留溶媒量差を制御する手段としては、表裏での乾燥風の温度や風量を変えるか、溶媒量の異なる成分を積層する手段がある。 The residual solvent amount difference between the front and back of the film is preferably in the range of 1 to 150% by mass. As means for controlling the difference in residual solvent amount, there are means for changing the temperature and air volume of the drying air on the front and back, or laminating components having different solvent amounts.
 また、既に製膜したフィルムの片面、または両面に樹脂、添加剤を含む塗布液をコーティングすることもできるし、溶媒量の異なる樹脂、添加剤を含む複数の液を用いて、ダブルキャストまたは共流延製膜方法にて積層する手段もある。 In addition, a coating solution containing a resin and an additive can be coated on one side or both sides of a film that has already been formed, or a plurality of solutions containing resins and additives with different amounts of solvent can be used for double casting or co-casting. There is also means for laminating by a casting film forming method.
 表裏での残留溶媒量は、積層体の場合は夫々の単一層での残留溶媒量を、単一層の場合は、表裏各条件での乾燥条件を、それぞれの条件に固定して両面に対して行い、残留溶媒量を測定する。 The amount of residual solvent on the front and back sides is the same as the amount of residual solvent in each single layer in the case of a laminate, and the drying conditions for each condition in the front and back sides are fixed to the respective conditions. And measure the amount of residual solvent.
 残留溶媒量は、以下の定義とする。 Residual solvent amount is defined as follows.
 残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mはウェブの傾斜配向処理開始時点での質量、Nは質量Mのものを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass at the time of starting the inclined alignment treatment of the web, and N is the mass when the mass M is dried at 110 ° C. for 3 hours.
 上記方法によって調整した弾性率は、下記方法によって測定することができる。なお、本発明における弾性率とは、引張弾性率をいう。
1)弾性率の異なるフィルムを積層する方法
 1層目、2層目それぞれについての単層フィルムのガラス転移温度を測定し、Tg1、Tg2(Tg1>Tg2)とする。23℃、50±5%RHの条件で、24時間以上試料を放置し、その後フィルムの長尺方向(走行方向=縦方向)が長手となるように幅10mm×長さ200mmにカットし、チャッキング圧:0.25MPa、標線間距離:50±10mmで、上記各試料をセットし、傾斜配向ゾーンの設定温度T2℃にて、引っ張り速度:50±10mm/分の速度で引っ張る。
The elastic modulus adjusted by the above method can be measured by the following method. In addition, the elasticity modulus in this invention means a tensile elasticity modulus.
1) Method of laminating films having different elastic moduli The glass transition temperatures of the single-layer film for each of the first and second layers are measured to obtain Tg1 and Tg2 (Tg1> Tg2). The sample is allowed to stand for 24 hours or more under the conditions of 23 ° C. and 50 ± 5% RH, and then cut into 10 mm width × 200 mm length so that the longitudinal direction of the film (running direction = longitudinal direction) becomes the longitudinal direction. Each sample is set at a king pressure of 0.25 MPa and a distance between marked lines of 50 ± 10 mm, and pulled at a set temperature T2 ° C. of the tilted orientation zone at a pulling speed of 50 ± 10 mm / min.
 得られたS-Sカーブの歪み1%~1.5%における曲線の接線を外挿し、その傾きを弾性率とする。
2)フィルム表裏の温度差をつける方法
 表面に付与する温度と、裏面に付与する温度における原反フィルムの弾性率を1)と同様の方法で測定する。
3)フィルム表裏の乾燥速度を変化させて残留溶媒量を変化させる方法
 フィルム表面側からの乾燥条件でフィルム両面を乾燥した試料1を作製する。ついでフィルム裏面側からの乾燥条件でフィルム両面を乾燥した試料2を作製する。DSCにより試料1、2のそれぞれのTg1およびTg2(Tg1>Tg2)を測定する。それぞれのフィルムを傾斜配向ゾーンの設定温度T2℃の温度で1)と同様の方法で、弾性率を算出する。
<原反フィルムの位相差>
 本発明において、傾斜配向処理する直前のフィルムを原反フィルムと呼ぶ。
The tangent line of the obtained SS curve with strain of 1% to 1.5% is extrapolated, and the slope is defined as the elastic modulus.
2) Method of providing temperature difference between film front and back The elastic modulus of the raw film at the temperature applied to the front surface and the temperature applied to the back surface is measured by the same method as in 1).
3) Method of changing the amount of residual solvent by changing the drying speed of the front and back of the film Sample 1 is prepared by drying both surfaces of the film under the drying conditions from the film surface side. Next, a sample 2 is produced by drying both surfaces of the film under the drying conditions from the film back side. The Tg1 and Tg2 of each of the samples 1 and 2 (Tg1> Tg2) are measured by DSC. The elastic modulus of each film is calculated in the same manner as in 1) at the temperature T2 ° C. of the tilted orientation zone.
<Phase difference of the raw film>
In the present invention, the film immediately before the tilt alignment treatment is called a raw film.
 本発明の原反フィルムの位相差は、例えば0≦Ro≦100nm、0≦Rt≦180nmを満たす光学フィルムで、本発明の傾斜配向処理を施すことで、その位相差板の屈折率楕円体が位相差板の膜面に対して傾斜した位相差フィルムを得ることができる。 The retardation of the original film of the present invention is, for example, an optical film satisfying 0 ≦ Ro ≦ 100 nm and 0 ≦ Rt ≦ 180 nm, and the refractive index ellipsoid of the retardation plate is obtained by applying the tilt alignment treatment of the present invention. A retardation film inclined with respect to the film surface of the retardation plate can be obtained.
 本発明の位相差フィルムを実現できる材料として、光学用途として使用することができる全ての透明フィルムを使用することができるが、セルロースエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルスルホンフィルムおよびポリアクリレートフィルム、ポリシクロオレフィン系フィルム、ポリイミドフィルム、アクリル系フィルム、ポリエチレン系フィルムから選ばれるものが好ましい。さらには、添加剤により位相差発現性を向上させてもよい。 As a material capable of realizing the retardation film of the present invention, all transparent films that can be used for optical applications can be used, and cellulose ester films, polycarbonate films, polysulfone films, polyethersulfone films, and polyacrylate films can be used. A film selected from a polycycloolefin film, a polyimide film, an acrylic film, and a polyethylene film is preferable. Furthermore, you may improve retardation development with an additive.
 例えば、特開2000-111914号、特開2002-62430号、特開2005-99191号、特開2008-64941号に記載のリターデーション上昇剤を添加することで、位相差発現性を向上させることができる。あるいは、処理温度を所定の範囲内で低くすることで高い位相差発現性を持たせることも可能である。さらには後延伸温度によっても位相差制御を行うことができ、この場合低温化することで位相差発現性を高くすることができる。
<位相差発現性>
 本発明の位相差発現性とは、位相差フィルム1μm当たりの厚みで発現することができる位相差の程度をいい、0.3~20nm/μmの範囲であり、0.5~5nm/μmが好ましい。
For example, by adding the retardation increasing agent described in JP-A No. 2000-1111914, JP-A No. 2002-62430, JP-A No. 2005-99191, JP-A No. 2008-64941, the retardation development property can be improved. Can do. Or it is also possible to give high phase difference expression property by making process temperature low within a predetermined range. Furthermore, the phase difference can be controlled by the post-stretching temperature. In this case, the phase difference can be increased by lowering the temperature.
<Phase difference expression>
The retardation expression of the present invention refers to the degree of retardation that can be expressed with a thickness per 1 μm of the retardation film, and is in the range of 0.3 to 20 nm / μm, and 0.5 to 5 nm / μm is preferable.
 位相差の発現は、原反フィルムを形成する材料に力(例えば、単なる製膜、延伸処理、搬送張力等)を付加し傾斜位相差フィルムとすることによって可能となる。 The expression of the retardation can be achieved by applying a force (for example, simple film formation, stretching treatment, conveyance tension, etc.) to the material forming the raw film to form an inclined retardation film.
 位相差発現性は以下の方法で測定することができる。 The retardation development can be measured by the following method.
 原反フィルムが積層型フィルムの場合、その単層フィルムをそれぞれ作製する。 When the raw film is a laminated film, each single-layer film is prepared.
 DSCにより、それぞれのTgを測定し、Tgの低い方のフィルムを決め、フィルムAとする。23℃、55%RHの環境下で、フィルムAを24時間放置し、測定波長590nmでのRoを測定しRo(1)とする。また膜厚を測定し、d(1)とする。 Measure each Tg by DSC, determine the film with the lower Tg, and call it Film A. In an environment of 23 ° C. and 55% RH, the film A is allowed to stand for 24 hours, and Ro at a measurement wavelength of 590 nm is measured as Ro (1). Further, the film thickness is measured and set to d (1).
 引っ張り試験器(ミネベア(株)製、TG-2KN)を用い、チャッキング圧:0.25MPa、標線間距離:50±10mmで、上記各試料をセットし、傾斜配向ゾーンの設定温度T2℃で、引っ張り速度:50±10mm/分の速度で、長手方向に延伸倍率1.4倍で延伸し、その試料について膜厚d(2)、Ro(2)を測定する。 Using a tensile tester (TG-2KN, manufactured by Minebea Co., Ltd.), each of the above samples was set at a chucking pressure of 0.25 MPa and a distance between marked lines: 50 ± 10 mm. Then, the film is stretched at a stretching speed of 50 ± 10 mm / min in the longitudinal direction at a stretching ratio of 1.4, and the film thicknesses d (2) and Ro (2) are measured for the sample.
 なお、延伸方向の寸法変化率とフィルム中央部の延伸する方向と直交する方向の寸法変化率の絶対値を足したものを、実延伸倍率と定義し、実延伸倍率が1.4倍となるように調整する。 In addition, what added the absolute value of the dimensional change rate of the direction orthogonal to the direction of extending | stretching the dimensional change rate of a film direction and a film center part is defined as an actual draw ratio, and an actual draw ratio will be 1.4 times. Adjust as follows.
 そして、位相差発現性=Ro(2)/d(2)-Ro(1)/d(1)と定義する。 Then, phase difference expression = Ro (2) / d (2) −Ro (1) / d (1).
 また原反フィルムが積層体の場合には、単層各々の位相差発現性を足し合わせたものを、原反フィルムの位相差発現性とする。
<傾斜配向処理>
 本発明の傾斜位相差フィルムは、原反フィルムを傾斜配向処理することにより製造することができる。
Moreover, when an original film is a laminated body, what added together the retardation expression of each single layer is made into the retardation expression of an original film.
<Inclined orientation treatment>
The tilted retardation film of the present invention can be produced by subjecting the original film to a tilt orientation treatment.
 傾斜配向処理装置は、基本ゾーン(工程)として予熱ゾーン、傾斜配向ゾーン、冷却ゾーンを有し、この3つのゾーンを挟む形で少なくとも2対のニップロールを備えており、これにより長尺(MD)方向への張力を付与している。 The inclined orientation processing apparatus has a preheating zone, an inclined orientation zone, and a cooling zone as basic zones (processes), and is provided with at least two pairs of nip rolls sandwiching these three zones. Applying tension in the direction.
 本発明においては、予熱ゾーン、傾斜配向ゾーン、冷却ゾーンを長尺方向に張力をかけ、幅手方向の寸法を維持しながら通過させるだけで、本発明の長尺傾斜位相差フィルムを得ることができることを特徴とする。 In the present invention, it is possible to obtain the long inclined retardation film of the present invention simply by passing the preheating zone, the inclined orientation zone, and the cooling zone while applying tension in the long direction and maintaining the width direction dimension. It is possible to do.
 本発明の予熱ゾーンとは、原反フィルムを予熱するためのゾーンであって、フィルムの温度を、傾斜配向ゾーンの設定温度T2℃以下に加熱するゾーンである。予熱ゾーンではゾーンの出口付近で予熱ゾーンでの最高温度となるように調整される。この最高温度は、傾斜配向する原反フィルムの材料によっても異なるが、原反フィルムの(Tg2+30)℃以下であることが好ましい。予熱ゾーンは0.5から10秒で通過することが好ましい。 The preheating zone of the present invention is a zone for preheating the raw film, and is a zone for heating the temperature of the film to a set temperature T2 ° C. or less of the inclined alignment zone. In the preheating zone, the maximum temperature in the preheating zone is adjusted near the exit of the zone. The maximum temperature varies depending on the material of the original film that is inclined and oriented, but is preferably (Tg2 + 30) ° C. or lower of the original film. The preheating zone preferably passes in 0.5 to 10 seconds.
 本発明の傾斜配向ゾーンは、原反フィルムを実際に傾斜配向するためのゾーンである。このゾーンにおいて本発明の温度勾配を持たせることにより、原反フィルムの屈折率楕円体を傾斜させることができる。 The inclined orientation zone of the present invention is a zone for actually orienting the original film. By providing the temperature gradient of the present invention in this zone, the refractive index ellipsoid of the raw film can be inclined.
 傾斜配向ゾーンは、0.01から10秒間通過させることが好ましく、さらには0.5から10秒通過させることが好ましい。 The inclined alignment zone is preferably passed for 0.01 to 10 seconds, more preferably 0.5 to 10 seconds.
 本発明の冷却ゾーンは、傾斜配向ゾーンでの傾斜配向状態の固定と、フィルムの張力を制御するためのものである。冷却ゾーンでの温度は、傾斜配向処理ゾーンの設定温度をT2℃としたときに、T2-5℃以下、より好ましくはTg2℃以下である。 The cooling zone of the present invention is for fixing the tilted orientation state in the tilted orientation zone and controlling the tension of the film. The temperature in the cooling zone is T2-5 ° C. or lower, more preferably Tg2 ° C. or lower, when the set temperature of the tilted alignment treatment zone is T2 ° C.
 本発明において傾斜配向ゾーンにおける温度勾配とは以下で定義する通りである。
1)温度上昇の場合:予熱ゾーンの終点から50cmの位置、傾斜配向処理ゾーンの開始点から終点まで50cm毎、および冷却ゾーンの開始点から終点まで50cm毎の位置それぞれについて、非接触式の放射温度計を設置し、フィルム両面の表面温度を測定する。
In the present invention, the temperature gradient in the tilted alignment zone is as defined below.
1) In the case of temperature increase: non-contact type radiation at a position 50 cm from the end point of the preheating zone, every 50 cm from the start point to the end point of the inclined alignment treatment zone, and every 50 cm from the start point to the end point of the cooling zone Install a thermometer and measure the surface temperature on both sides of the film.
 予熱ゾーンの終点のフィルム設定温度をT1℃とする。また、傾斜配向処理ゾーンのフィルム設定温度をT2℃とし、T1℃からT2℃に至るまでの時間を、t1秒とする。そして(T2-T1)/t1[℃/秒]を、温度上昇の場合の温度勾配とする。T1およびT2は、Tg1およびTg2から、適宜設定する温度である。 ∙ Set the film setting temperature at the end of the preheating zone to T1 ° C. Further, the film setting temperature in the inclined alignment treatment zone is T2 ° C., and the time from T1 ° C. to T2 ° C. is t1 seconds. Then, (T2−T1) / t1 [° C./second] is a temperature gradient in the case of a temperature rise. T1 and T2 are temperatures set appropriately from Tg1 and Tg2.
 ここで、フィルム設定温度とは、予めその温度となるように設定したフィルム表面温度をいう。フィルム表面温度は、弾性率の低い方の表面温度である。
2)温度下降の場合:傾斜配向処理ゾーンの終点のフィルム設定温度はT2と同じである。また、冷却ゾーンのフィルム設定温度をT3℃とし、T2からT3℃に至るまでの時間を、t2秒とする。そして(T3-T2)/t2[℃/秒]を、温度下降の場合の温度勾配とする。
Here, the film set temperature refers to a film surface temperature set in advance so as to be the temperature. The film surface temperature is the surface temperature of the lower elastic modulus.
2) In the case of temperature drop: The film set temperature at the end point of the inclined orientation treatment zone is the same as T2. The film set temperature in the cooling zone is T3 ° C., and the time from T2 to T3 ° C. is t2 seconds. Then, (T3−T2) / t2 [° C./second] is a temperature gradient in the case of a temperature drop.
 また(T3-T1)℃を進入側と退出側の温度差と定義する。 (T3-T1) ° C is defined as the temperature difference between the entry side and the exit side.
 本発明の温度勾配は、温度上昇の場合には、20℃/秒~500℃/秒、下降の場合には-20℃/秒~-500℃/秒であることを特徴とする。好ましくは温度上昇の場合には20℃/秒~250℃/秒である。さらに好ましくは、20℃/秒~100℃/秒である。温度下降の場合には-20℃/秒~-250℃/秒である。さらに好ましくは、-20℃/秒~-100℃/秒である。 The temperature gradient of the present invention is characterized by being 20 ° C./second to 500 ° C./second in the case of a temperature rise, and −20 ° C./second to −500 ° C./second in the case of a fall. Preferably, the temperature is 20 ° C./second to 250 ° C./second in the case of temperature rise. More preferably, it is 20 ° C./second to 100 ° C./second. In the case of a temperature drop, it is −20 ° C./second to −250 ° C./second. More preferably, it is −20 ° C./second to −100 ° C./second.
 本発明の傾斜配向処理装置では、長尺方向(MD方向)に張力をかけ、幅手方向(TD方向)は、幅規制することが好ましい。 In the inclined orientation processing apparatus of the present invention, it is preferable to apply tension in the longitudinal direction (MD direction) and regulate the width in the lateral direction (TD direction).
 本発明の製造装置において、隣り合うゾーンとは遮風板を用いて仕切する手段があり、その際遮風板は隙間を残して仕切しても良い。また、ロールでニップさせて仕切することも好ましい。隣り合うゾーンの仕切の手段として、好ましい形態は遮風板で仕切する形態であるが、遮風板とロールの双方を用いて仕切することもできるし、ロールのみで仕切することもできる。 In the manufacturing apparatus of the present invention, there is means for partitioning between adjacent zones using a wind shield, and the wind shield may be partitioned leaving a gap. Moreover, it is also preferable to nip and partition with a roll. As a means for partitioning adjacent zones, a preferred form is a form of partitioning with a wind shield plate, but it is possible to partition using both a wind shield plate and a roll, or partition with a roll alone.
 それぞれ仕切をしたゾーン内にオンライン計測表示できる温度計(例えば、非接触温度計)を設置することで温度を制御することができる。 The temperature can be controlled by installing a thermometer (for example, a non-contact thermometer) that can display and measure online in each partitioned zone.
 それぞれのゾーンの加熱・冷却方法としては、風の温度と風量を変化させる方法や、熱ロール、冷却ロールを利用する方法がある。本発明では公知の方法を利用することができる。 The heating / cooling method for each zone includes a method for changing the temperature and volume of the wind, and a method using a heat roll and a cooling roll. In the present invention, a known method can be used.
 風を利用する方法は、ロールを利用した場合に比べて、フィルム面が悪くならないので光学的に均一なフィルムを作成することができ、パネルにしたときの黒表示ムラをより低減させることができる。 The method using the wind can produce an optically uniform film because the film surface is not deteriorated compared to the case of using a roll, and the black display unevenness when the panel is formed can be further reduced. .
 (長尺方向の張力)
 本発明の傾斜配向処理を行うためにはMD方向に張力をかけることが必要であるが、張力を大きくしすぎると長尺方向に延伸され、傾斜角度が小さくなってしまう。そのため、傾斜配向処理装置に進入する前と退出後において、長尺方向の寸法変化が、5%以内(0.95~1.05倍)の範囲にあるように搬送張力を調整することが好ましい。
(Longitudinal tension)
In order to perform the tilt alignment treatment of the present invention, it is necessary to apply a tension in the MD direction. However, if the tension is excessively increased, the film is stretched in the long direction and the tilt angle becomes small. Therefore, it is preferable to adjust the transport tension so that the dimensional change in the longitudinal direction is within 5% (0.95 to 1.05 times) before entering the inclined orientation processing apparatus and after leaving. .
 張力の制御手段として、予熱ゾーン、傾斜配向ゾーン、冷却ゾーンを挟む形で、予熱ゾーンの入口と冷却ゾーンの出口付近に2対以上のニップロールを備え張力をコントロールする手段(図4、7参照)がある。また、予熱ゾーンに予備のニップロールを備えることも好ましい(図5参照)。テンターで搬送させながら張力を与えることもできる。または1対のニップロールで圧縮することで、張力を制御することもできる。その場合、ロールの材質はゴム製のものが好ましい。 As means for controlling tension, two or more pairs of nip rolls are provided near the inlet of the preheating zone and the outlet of the cooling zone so as to sandwich the preheating zone, the inclined orientation zone, and the cooling zone (see FIGS. 4 and 7). There is. It is also preferable to provide a spare nip roll in the preheating zone (see FIG. 5). Tension can be applied while transporting with a tenter. Alternatively, the tension can be controlled by compressing with a pair of nip rolls. In that case, the roll is preferably made of rubber.
 本発明で使用するフィルムの収縮、膨張を利用してフィルムに張力を与える手段もある。その場合、長尺方向での変位を容易に行う手段であれば、テンターにより長尺方向の張力を与えても良い。 There is also means for applying tension to the film by utilizing the shrinkage and expansion of the film used in the present invention. In that case, as long as it is a means for easily performing displacement in the longitudinal direction, tension in the longitudinal direction may be applied by a tenter.
 (幅方向規制)
 本発明の傾斜配向ゾーンでは、フィルムの幅手方向の寸法規制を行うことが必要であり、その変化の度合いは5%以内(0.95~1.05倍の寸法変化)にすることが好ましい。
(Width direction regulation)
In the tilted orientation zone of the present invention, it is necessary to regulate the width of the film in the width direction, and the degree of change is preferably within 5% (0.95 to 1.05 times the dimensional change). .
 この範囲とすることで傾斜角度の均一を向上させることができ、傾斜方向ならびに面内の軸方向まで均一性を向上させることができる。幅手方向の収縮を起こすことで、幅手方向にかかっていた収縮応力が開放されてしまう場所ができるため、均一性が損なわれてしまうもの、と推定している。 In this range, the uniformity of the tilt angle can be improved, and the uniformity can be improved in the tilt direction as well as in the in-plane axial direction. It is presumed that by causing shrinkage in the width direction, there is a place where the contraction stress applied in the width direction is released, so that the uniformity is impaired.
 本発明におけるフィルムの幅手寸法規制方法としては、テンターやロールがある。テンターで幅手規制する場合は、得られる原反フィルムの両端をクリップで挟み、幅保持しながらテンターで搬送しつつ、所望の処理を行う方法がある。 There are tenters and rolls as the width dimension regulating method of the film in the present invention. In the case of regulating the width with a tenter, there is a method of performing desired processing while holding both ends of the obtained raw film with clips and transporting it with a tenter while maintaining the width.
 ロールで幅手規制する場合は、フィルムの片方の面、または両面をロールに接触させながら、所望の処理を行う方法である。ロールの材質は、金属、ゴムなどを用いることができるが、可能な限り幅手方向での摩擦力が大きくなるものが好ましい。 When the width is restricted by a roll, a desired treatment is performed while one or both sides of the film are in contact with the roll. As the material of the roll, metal, rubber, or the like can be used, but it is preferable that the frictional force in the width direction is as large as possible.
 (延伸工程)
 本発明においては、傾斜配向処理の前後いずれかに延伸工程を設けても良い。この延伸工程は、もっぱらTD方向に延伸するためのものであって、位相差フィルムとしての位相差(Ro、Rt)を最終的に調整するために設けるものである。
(Stretching process)
In the present invention, a stretching step may be provided either before or after the tilt alignment treatment. This stretching step is exclusively for stretching in the TD direction, and is provided to finally adjust the retardation (Ro, Rt) as a retardation film.
 延伸倍率としては、1.06~1.30倍であり、好ましくは1.06~1.15倍である。傾斜配向処理に影響の無い範囲で、延伸処理することが好ましい。
<その他の光学特性>
1)ヘイズ
 ヘイズは、日本電色株式会社製ヘイズメーターNDH2000を用いて、JIS-K7136に準じてヘイズを測定する。ヘイズは小さいほど、液晶表示装置の表示品質、特に正面CRを向上させることができる。本発明の位相差フィルムのヘイズ値は特に限定はしないが、0.1%以下が好ましく、0.05%以下がより好ましい。
2)波長分散
 本発明の傾斜位相差フィルムのRo[480]/Ro[590]は、好ましくは0.8~1.2であり、さらに好ましくは0.8~1.1であり、特に好ましくは0.8~1.03である。
The draw ratio is 1.06 to 1.30 times, preferably 1.06 to 1.15 times. The stretching treatment is preferably performed within a range that does not affect the tilt alignment treatment.
<Other optical properties>
1) Haze Haze measures haze according to JIS-K7136 using Nippon Denshoku Co., Ltd. haze meter NDH2000. The smaller the haze, the better the display quality of the liquid crystal display device, particularly the front CR. The haze value of the retardation film of the present invention is not particularly limited, but is preferably 0.1% or less, more preferably 0.05% or less.
2) Wavelength dispersion The Ro [480] / Ro [590] of the tilted retardation film of the present invention is preferably 0.8 to 1.2, more preferably 0.8 to 1.1, and particularly preferably. Is 0.8 to 1.03.
 上記の範囲内で値が小さいほど、可視光の広い領域で位相差値が一定になるため、液晶表示装置に用いた場合に、特定波長の光漏れが生じ難く、液晶表示装置の黒表示における斜め方向のカラーシフトをより一層改善することができる。
3)その他のフィルム物性
 (Ra:表面凹凸)
 上記実施例で得られたフィルムの1mをサンプリングして、フィルム両面の算術平均粗さ(Ra)の平均値を、JISK7125の方法に従って測定した。すなわち、ヴィーコ(Veeco)社製のフィルム表面粗さ測定機(WYKO-NT1100)を用いて倍率20倍にて、フィルムの両面をそれぞれ測定3点ずつ測定し、その平均値をRa(表面凹凸)とした。
The smaller the value in the above range, the more constant the phase difference value in a wide visible light region. Therefore, when used in a liquid crystal display device, light leakage at a specific wavelength is less likely to occur. The color shift in the oblique direction can be further improved.
3) Other film properties (Ra: surface irregularities)
1 m 2 of the film obtained in the above Example was sampled, and the average value of arithmetic average roughness (Ra) on both sides of the film was measured according to the method of JISK7125. That is, using a film surface roughness measuring machine (WYKO-NT1100) manufactured by Veeco, the measurement was performed at a magnification of 20 times on each side of the film at three points, and the average value was determined as Ra (surface roughness). It was.
 (カール)
 カールの測定は、230mm×305mmの大きさの偏光板を、平らな台の上で端部が持ち上がる面を下にして置き、25℃55%RHの環境に2時間以上放置した後に、台の面を基準とし偏光板端部の最も離れた位置の高さを測定し、カール量とする。
(curl)
The curl is measured by placing a polarizing plate having a size of 230 mm × 305 mm on a flat table with the surface where the end is lifted down and leaving it in an environment of 25 ° C. and 55% RH for 2 hours or more. The height of the farthest position at the end of the polarizing plate is measured with respect to the surface as the curl amount.
 液晶セルに貼り付ける面側に凹となる場合を+(プラス)カール、凸となる場合を-(マイナス)カールとする。セパレートフィルム、プロテクトフィルムがついている場合は、それらのフィルムはつけたままで測定した。
<長尺傾斜位相差フィルムを形成する材料>
 本発明の長尺傾斜位相差フィルムとしては、前述の光学用途として使用することができる全ての透明フィルムを使用することができる。
A case where the surface is affixed to the liquid crystal cell is concave (+) curl, and a case where the surface is convex is-(minus) curl. When a separate film and a protective film were attached, the measurement was performed with these films attached.
<Material for forming long inclined retardation film>
As the long inclined retardation film of the present invention, all the transparent films that can be used for the above-mentioned optical applications can be used.
 本発明のセルロースエステルフィルムとしては、特願2009-67724号明細書記載の光学フィルム、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC(以上コニカミノルタオプト(株)製)を挙げることができる。 Examples of the cellulose ester film of the present invention include an optical film described in Japanese Patent Application No. 2009-67724, a commercially available cellulose ester film (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12U KC8UY-HA, KC8UX-RHA, KC8UXW-RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC (manufactured by Konica Minolta Opto Co., Ltd.).
 市販のポリシクロオレフィンフィルムとしては、特開2007-38646号明細書に記載のものを使用することができ、日本ゼオン(株)製の商品名「ゼオネックス」、「ゼオノア」、JSR(株)製の商品名「アートン」、TICONA(株)製の商品名「トーパス」、三井化学(株)製の商品名「APEL」が挙げられる。 As the commercially available polycycloolefin film, those described in Japanese Patent Application Laid-Open No. 2007-38646 can be used, and trade names “ZEONEX”, “ZEONOR”, manufactured by Nippon Zeon Co., Ltd., manufactured by JSR Corporation. Product name “ARTON”, a product name “TOPAS” manufactured by TICONA Corporation, and a product name “APEL” manufactured by Mitsui Chemicals, Inc.
 市販のポリカーボネートフィルムとしては、ピュアエース、パンライト(帝人化成(株)製)、エルメック(カネカ(株))等が挙げられる。 Examples of commercially available polycarbonate films include Pure Ace, Panlite (manufactured by Teijin Chemicals Ltd.), Elmec (Kaneka Corp.), and the like.
 特開2001-343529号公報(WO01/37007号)、特開2003-315559号明細書に記載されているような、側鎖に置換イミド基または非置換イミド基を有する熱可塑性樹脂と、側鎖に置換フェニル基または非置換フェニル基とニトリル基とを有する熱可塑性樹脂との混合物等も使用できる。具体例としては、例えば、イソブテンとN-メチレンマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物等である。 A thermoplastic resin having a substituted imide group or an unsubstituted imide group in the side chain as described in JP-A No. 2001-343529 (WO 01/37007) and JP-A No. 2003-315559, and a side chain Also, a mixture of a substituted phenyl group or a thermoplastic resin having an unsubstituted phenyl group and a nitrile group can be used. Specific examples include a resin composition having an alternating copolymer of isobutene and N-methylenemaleimide and an acrylonitrile / styrene copolymer.
 これらの形成材料の中でも、前述の側鎖に置換イミド基または非置換イミド基を有する熱可塑性樹脂と、側鎖に置換フェニル基または非置換フェニル基とニトリル基とを有する熱可塑性樹脂との混合物が好ましい。 Among these forming materials, a mixture of the above-mentioned thermoplastic resin having a substituted imide group or an unsubstituted imide group in the side chain and a thermoplastic resin having a substituted phenyl group or an unsubstituted phenyl group and a nitrile group in the side chain. Is preferred.
 本発明の長尺傾斜位相差フィルムの厚みは、特に制限されないが、例えば、5~500μmの範囲であり、好ましくは10~200μmの範囲であり、特に好ましくは15~150μmの範囲である。 The thickness of the long inclined retardation film of the present invention is not particularly limited, but is, for example, in the range of 5 to 500 μm, preferably in the range of 10 to 200 μm, and particularly preferably in the range of 15 to 150 μm.
 (位相差、波長分散調整剤)
 本発明に好ましく用いられる位相差、波長分散調整剤の具体例としては、前述の上昇剤、特開2005-99191号明細書、特開2008-64941号明細書記載の化合物、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、シアノアクリレート系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などや特開2000-111914号、特開2002-62430号記載の化合物が挙げられるが、本発明はこれらの化合物だけに限定されるものではない。
(Phase difference, wavelength dispersion adjusting agent)
Specific examples of the retardation and chromatic dispersion adjusting agent preferably used in the present invention include the above-mentioned ascending agents, compounds described in JP-A-2005-99191, JP-A-2008-64941, for example, benzotriazole compounds Benzophenone compounds, triazine compounds, cyanoacrylate compounds, salicylic acid ester compounds, nickel complex compounds, and the compounds described in JP-A No. 2000-11914 and JP-A No. 2002-62430. It is not limited only to the compound.
 (その他の添加剤)
 本発明の長尺傾斜位相差フィルムには、特開2008-64941号明細書の表1に記載されているような一般的な添加剤、例えば、紫外線吸収剤、酸化防止剤、微粒子を含有させることができる。
(Other additives)
The long inclined retardation film of the present invention contains general additives as described in Table 1 of JP-A-2008-64941, for example, an ultraviolet absorber, an antioxidant, and fine particles. be able to.
 本発明の原反フィルムは溶融製膜法で作成することも出来る。その場合、セルロースエステルは高温下では溶融と同時に熱分解によってセルロースエステルの分子量の低下が発生し、得られる光学フィルムの力学特性等に悪影響を及ぼすことがあるため、なるべく低い温度でセルロースエステルを溶融させる必要がある。 The raw film of the present invention can also be prepared by a melt film forming method. In that case, the cellulose ester melts at a high temperature at the same time as the thermal decomposition causes a decrease in the molecular weight of the cellulose ester, which may adversely affect the mechanical properties of the resulting optical film. It is necessary to let
 光学フィルム構成材料の溶融温度を低下させるためには、セルロースエステルのガラス転移温度よりも低い融点またはガラス転移温度をもつ可塑剤を添加することで達成することができる。 In order to lower the melting temperature of the optical film constituting material, it can be achieved by adding a plasticizer having a melting point or glass transition temperature lower than the glass transition temperature of the cellulose ester.
 本発明に用いることのできる可塑剤としては、特に限定されないが、多価アルコールエステル系可塑剤が好ましい。多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなり、分子内に芳香環またはシクロアルキル環を有することが好ましい。 The plasticizer that can be used in the present invention is not particularly limited, but a polyhydric alcohol ester plasticizer is preferable. The polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
 多価アルコールエステルに用いられる多価アルコールは、次の一般式(1)で表される。 The polyhydric alcohol used in the polyhydric alcohol ester is represented by the following general formula (1).
 一般式(1):R-(OH)
 式中、Rはl価の有機基、lは2以上の正の整数、OH基はアルコール性水酸基またはフェノール性水酸基を表す。
Formula (1): R 1- (OH) l
In the formula, R 1 represents a monovalent organic group, l represents a positive integer of 2 or more, and the OH group represents an alcoholic hydroxyl group or a phenolic hydroxyl group.
 好ましい多価アルコールの例としては、トリメチロールプロパンが挙げることができ、多価アルコールエステルに用いられるモノカルボン酸としては、公知の芳香族モノカルボン酸などを用いることができ、好ましい芳香族モノカルボン酸の例としては、安息香酸が特に好ましいが、本発明はこれに限定されるものではない。 An example of a preferable polyhydric alcohol is trimethylolpropane. As the monocarboxylic acid used in the polyhydric alcohol ester, a known aromatic monocarboxylic acid can be used, and a preferable aromatic monocarboxylic acid is used. As an example of the acid, benzoic acid is particularly preferable, but the present invention is not limited thereto.
 (酸化防止剤、熱劣化防止剤)
 本発明では、酸化防止剤、熱劣化防止剤として、通常知られている劣化防止剤(酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミンなど)を使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系化合物のものを好ましく用いることができる。劣化防止剤については、特開平3-199201号公報、特開平5-194789号公報、特開平5-271471号公報、特開平6-107854号公報に記載がある。
(Antioxidants, thermal degradation inhibitors)
In the present invention, as antioxidants and thermal degradation inhibitors, degradation inhibitors generally known (antioxidants, peroxide decomposition agents, radical inhibitors, metal deactivators, acid scavengers, amines, etc.) Can be used. In particular, lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used. The deterioration preventing agents are described in JP-A-3-199201, JP-A-5-194789, JP-A-5-271471, and JP-A-6-107854.
 上記酸化防止剤としてフェノール系化合物としては、2,6-ジアルキルフェノールの構造を有するものが好ましく、例えば、チバ・ジャパン(株)から、Irganox1076、Irganox1010という商品名で市販されているものが好ましい。 As the antioxidant, those having a 2,6-dialkylphenol structure are preferred as the antioxidant, and those commercially available under the trade names Irganox 1076 and Irganox 1010 from Ciba Japan, for example, are preferred.
 上記リン系化合物は、例えば、住友化学(株)から、Sumilizer-GPという商品名で市販されているものが挙げられる。 Examples of the phosphorus compound include those commercially available from Sumitomo Chemical Co., Ltd. under the trade name Sumilizer-GP.
 これらの酸化防止剤、熱劣化防止剤は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。
<本発明の長尺傾斜位相差フィルムの原反となるフィルムの製造>
 次に、本発明で用いる位相差フィルムの製膜方法の一例として、セルロースエステルフィルムを原反フィルムとするそのフィルムの製膜方法について説明する。
<本発明のセルロースエステルフィルムの製造方法-原反フィルム化工程>
〈セルロースエステルフィルムの製造方法〉
 本発明に係るセルロースエステルフィルムは溶液流延法で製造されたフィルムであっても溶融流延法で製造されたフィルムであっても好ましく用いることができる。
These antioxidants and thermal deterioration inhibitors can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind.
<Manufacture of the film used as the raw material of the long inclination retardation film of this invention>
Next, as an example of a method for producing a retardation film used in the present invention, a method for producing a film using a cellulose ester film as a raw film will be described.
<Manufacturing method of cellulose ester film of the present invention-raw film forming step>
<Method for producing cellulose ester film>
The cellulose ester film according to the present invention can be preferably used regardless of whether it is a film produced by a solution casting method or a film produced by a melt casting method.
 本発明のセルロースエステルフィルムの製造は、セルロースエステルおよび添加剤を溶剤に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。 The cellulose ester film of the present invention is prepared by dissolving a cellulose ester and an additive in a solvent to prepare a dope, casting a dope onto an endless metal support that moves infinitely, and casting the dope. It is carried out by a step of drying as a web, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
 ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。 The process for preparing the dope will be described. The concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
 ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。 The solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the cellulose ester.
 良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。 A preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent. With a good solvent and a poor solvent, what dissolve | melts the cellulose ester to be used independently is defined as a good solvent, and what poorly swells or does not melt | dissolve is defined as a poor solvent.
 そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。 Therefore, depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester, the good solvent and the poor solvent change. For example, when acetone is used as the solvent, the cellulose ester acetate ester (acetyl group substitution degree 2.4), cellulose Acetate propionate is a good solvent, and cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.
 本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。 The good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
 また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。 The poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. The dope preferably contains 0.01 to 2% by mass of water.
 また、セルロースエステルの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。 Also, the solvent used for dissolving the cellulose ester is used by collecting the solvent removed from the film by drying in the film-forming process and reusing it.
 回収溶剤中に、セルロースエステルに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。 The recovery solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, monomer components, etc., but these are preferably reused even if they are included. Can be purified and reused if necessary.
 上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。 As a method for dissolving the cellulose ester when preparing the dope described above, a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
 溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。 It is preferable to stir and dissolve while heating at a temperature that is higher than the boiling point of the solvent at normal pressure and does not boil under pressure, in order to prevent the formation of massive undissolved material called gel or mamako.
 また、セルロースエステルを貧溶剤と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。 In addition, a method in which a cellulose ester is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。 The heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
 好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。 The preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
 もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることができる。 Alternatively, a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
 次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。 Next, the cellulose ester solution is filtered using an appropriate filter medium such as filter paper. As the filter medium, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
 このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。 For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is still more preferable.
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。 There are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable.
 濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。 It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。 Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
 より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。 More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。 The dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration. The increase in the difference (referred to as differential pressure) is small and preferable.
 好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。 The preferred temperature is 45 to 120 ° C, more preferably 45 to 70 ° C, and still more preferably 45 to 55 ° C.
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることがさらに好ましい。 A smaller filtration pressure is preferable. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
 ここで、ドープの流延について説明する。 Here, the dope casting will be described.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。 The cast width can be 1 ~ 4m. The surface temperature of the metal support in the casting step is −50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
 好ましい支持体温度は0~55℃であり、25~50℃が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。 The preferred support temperature is 0 to 55 ° C, more preferably 25 to 50 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
 金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。 The method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
 セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。 In order for the cellulose ester film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
 本発明においては、残留溶媒量は下記式で定義される。 In the present invention, the amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを114℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 114 ° C. for 1 hour.
 また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 Further, in the drying step of the cellulose ester film, the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 本発明の原反となるセルロースエステルフィルムを作製するためには、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが特に好ましい。剥離張力は300N/m以下で剥離することが好ましい。 In order to produce a cellulose ester film as a raw material of the present invention, it is particularly preferable to stretch in the width direction (lateral direction) by a tenter method in which both ends of the web are held with clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で熱風で行うことが好ましい。 The means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
 ウェブの乾燥工程における乾燥温度は40~200℃で段階的に高くしていくことが好ましい。 It is preferable that the drying temperature in the web drying process is increased stepwise from 40 to 200 ° C.
 セルロースエステルフィルムの膜厚は、特に限定はされないが10~500μmが用いられる。特に膜厚は10~200μmであることが特に好ましい。さらに好ましくは15~150μmである。 The film thickness of the cellulose ester film is not particularly limited, but 10 to 500 μm is used. The film thickness is particularly preferably 10 to 200 μm. More preferably, it is 15 to 150 μm.
 本発明の原反となるセルロースエステルフィルムは、幅1~4mのものが用いられる。特に幅1.4~4mのものが好ましく用いられる。4mを超えると搬送が困難となる。 The cellulose ester film used as the raw material of the present invention has a width of 1 to 4 m. In particular, those having a width of 1.4 to 4 m are preferably used. If it exceeds 4 m, conveyance becomes difficult.
 ここでは一例として、セルロースエステルフィルムの製造方法について記述したが、その他のポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルスルホンフィルムおよびポリアクリレートフィルム、ポリシクロオレフィンフィルム、ポリイミドフィルムについてもそれぞれ最適な製膜方法を選択して、製膜することができる。 Here, as an example, the method for producing a cellulose ester film has been described. However, for each of the other polycarbonate film, polysulfone film, polyethersulfone film, polyacrylate film, polycycloolefin film, and polyimide film, an optimum film forming method is selected. Thus, a film can be formed.
 (複数のフィルムの貼合方法)
 本発明の位相差フィルムを作製するための原反フィルムは、複数のフィルムの積層体であってもよく、その積層体は、基材レス粘着フィルムを用いて貼合しても良い。
(Multiple film bonding method)
The raw film for producing the retardation film of the present invention may be a laminate of a plurality of films, and the laminate may be bonded using a substrate-less adhesive film.
 (複数の光学層の塗布、積層)
 本発明の位相差フィルムを作製するための原反フィルムは、複数の光学層による積層体であってもよく、支持体フィルムに光学層の塗布液を塗布する方法がある。塗布液を塗工する方法としては、スピンコート法、ロールコート法、プリント法、浸漬引き上げ法、ダイコート法、キャスティング法、バーコート法、ブレードコート法、スプレーコート法、グラビアコート法、リバースコート法、インクジェット法、もしくは押し出しコート法等が挙げられる。
(Application and lamination of multiple optical layers)
The raw film for producing the retardation film of the present invention may be a laminate of a plurality of optical layers, and there is a method of applying a coating solution for the optical layer to a support film. As a method of coating the coating solution, spin coating method, roll coating method, printing method, dip pulling method, die coating method, casting method, bar coating method, blade coating method, spray coating method, gravure coating method, reverse coating method Ink jet method or extrusion coating method.
 あるいは、フィルムを鹸化した後にポリビニルアルコールを用いて貼合しても良い。また、良溶媒を塗布してフィルム表面を溶解させ、貼合させても良いし、位相差フィルムの製膜時の残溶媒状態で貼合してもよい。 Alternatively, the film may be saponified and then bonded using polyvinyl alcohol. Moreover, a good solvent may be apply | coated and the film surface may be dissolved and bonded, and you may bond in the residual solvent state at the time of film forming of retardation film.
 これらの貼合手段を用いる際に、フィルムとフィルムの界面の接着層は、できるだけ薄い方が好ましい。例えば、上記の手段で形成される接着層のいずれも20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。また、特開2009-25604号明細書段落(0246)のように、大気圧プラズマ処理によってケン化処理せずに接着層を塗工することもできる。 When using these bonding means, the adhesive layer at the interface between the films is preferably as thin as possible. For example, any of the adhesive layers formed by the above means is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less. Further, as described in paragraph (0246) of JP2009-25604A, the adhesive layer can be applied without saponification treatment by atmospheric pressure plasma treatment.
 (長尺方向の寸法変化方法)
 製膜した原反フィルムの、長尺方向の寸法は、ロールやテンターによる張力によって変化させてもいい。また位相差フィルム自身の収縮、膨張によって変化させても良い。
(Dimension change method in the long direction)
You may change the dimension of the elongate direction of the formed raw film by the tension | tensile_strength by a roll or a tenter. Further, it may be changed by contraction and expansion of the retardation film itself.
 その際に、長尺方向の寸法変化率、幅手方向の寸法変化率はそれぞれ95~105%の範囲であることが好ましい。
<その他の機能性層>
 本発明の長尺傾斜位相差フィルムは必要に応じて、特開平10-319536号、特開2007-159330号明細書記載のようなバックコート層、ハードコート層、反射防止層を設けることができる。
<偏光板>
 本発明の位相差フィルムを、偏光板保護フィルムとした偏光板、それを用いた本発明の液晶表示装置に使用することができる。
At that time, the dimensional change rate in the longitudinal direction and the dimensional change rate in the width direction are preferably in the range of 95 to 105%, respectively.
<Other functional layers>
The long inclined retardation film of the present invention can be provided with a back coat layer, a hard coat layer and an antireflection layer as described in JP-A Nos. 10-319536 and 2007-159330, if necessary. .
<Polarizing plate>
The retardation film of the present invention can be used for a polarizing plate having a polarizing plate protective film, and a liquid crystal display device of the present invention using the same.
 本発明の偏光板は、前記本発明の透明フィルムを偏光板保護フィルムとして用いて、偏光子の少なくとも一方の面に貼合した偏光板であることが特徴である。本発明の液晶表示装置は、少なくとも一方の液晶セル面に、本発明に係る偏光板が、粘着層を介して貼り合わされたものであることが特徴である。 The polarizing plate of the present invention is characterized by being a polarizing plate bonded to at least one surface of a polarizer using the transparent film of the present invention as a polarizing plate protective film. The liquid crystal display device of the present invention is characterized in that the polarizing plate according to the present invention is bonded to at least one liquid crystal cell surface via an adhesive layer.
 本発明の偏光板は一般的な方法で作製することができる。 The polarizing plate of the present invention can be produced by a general method.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass. A typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光子の膜厚は5~30μmが好ましく、特に10~20μmであることが好ましい。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound. The film thickness of the polarizer is preferably 5 to 30 μm, particularly preferably 10 to 20 μm.
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。 Further, the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%, the degree of polymerization is 2000 to 4000, and the degree of saponification is 99.0 to 99.99 mol%. Ethylene-modified polyvinyl alcohol is also preferably used.
 中でも熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。 Among them, an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
 具体的には、例えば、接着処理の安定性等の点から、PVA系接着剤が好ましい。これらの接着剤や粘着剤は、例えば、そのまま偏光子や透明保護層の表面に塗布してもよいし、前記接着剤や粘着剤から構成されたテープやシートのような層を前記表面に配置してもよい。また、例えば、水溶液として調製した場合、必要に応じて、他の添加剤や、酸等の触媒を配合してもよい。前記水溶液には、例えば、必要に応じて、他の添加剤や、酸等の触媒も配合できる。これらの中でも、前記接着剤としては、PVAフィルムとの接着性に優れる点から、PVA系接着剤が好ましい。 Specifically, for example, a PVA adhesive is preferable from the viewpoint of the stability of the adhesive treatment. These adhesives and pressure-sensitive adhesives may be applied to the surface of the polarizer or the transparent protective layer as they are, for example, or a layer such as a tape or sheet composed of the adhesive or pressure-sensitive adhesive is disposed on the surface. May be. For example, when prepared as an aqueous solution, other additives and catalysts such as acids may be blended as necessary. In the aqueous solution, for example, other additives and a catalyst such as an acid can be blended as necessary. Among these, as the adhesive, a PVA adhesive is preferable from the viewpoint of excellent adhesiveness with a PVA film.
 セルロースエステルフィルムでは、偏光子側をアルカリ鹸化処理し、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。 In the cellulose ester film, the polarizer side is preferably bonded to at least one surface of a polarizer produced by alkali saponification treatment and immersed in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
 本発明の偏光板は、本発明の長尺傾斜位相差フィルムを偏光板保護フィルムとして用いて、偏光子の少なくとも一方の面に貼合した偏光板であることが特徴とする。 The polarizing plate of the present invention is characterized in that it is a polarizing plate bonded to at least one surface of a polarizer using the long inclined retardation film of the present invention as a polarizing plate protective film.
 もう一方の面には該セルロースエステルフィルムを用いても、また他の偏光板保護フィルムを貼合してもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタオプト(株)製)も好ましく用いられる。 The cellulose ester film may be used on the other surface, or another polarizing plate protective film may be bonded. For example, commercially available cellulose ester films (for example, Konica Minoltac KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC8UX-RHA-KC8UX-RHA-KC8UX-RHA-KC8UX KC4UXW-RHA-NC, manufactured by Konica Minolta Opto Co., Ltd.) is also preferably used.
 本発明の位相差フィルムと偏光子を積層させるときに、位相差フィルムの遅相軸がTD方向にあるときは、位相差フィルムの遅相軸と偏光子の透過軸を±3°以内に重ねて配置することが好ましく、±2°以内に重ねて配置することがより好ましい。 When laminating the retardation film of the present invention and a polarizer, if the retardation axis of the retardation film is in the TD direction, the retardation axis of the retardation film and the transmission axis of the polarizer are overlapped within ± 3 °. It is preferable to arrange them within a range of ± 2 °.
 表示装置の表面側に用いられる偏光板保護フィルムには、防眩層あるいはクリアハードコート層のほか、反射防止層、帯電防止層、防汚層、バックコート層を有することが好ましい。
<液晶表示装置の構成>
 本発明長尺傾斜位相差フィルムをTN型液晶表示装置に用いることによって、種々の視認性に優れた本発明のTN型液晶表示装置を作製することができる。
In addition to the antiglare layer or the clear hard coat layer, the polarizing plate protective film used on the surface side of the display device preferably has an antireflection layer, an antistatic layer, an antifouling layer, and a backcoat layer.
<Configuration of liquid crystal display device>
By using the long inclined retardation film of the present invention for a TN liquid crystal display device, various TN liquid crystal display devices of the present invention having excellent visibility can be produced.
 本発明に係るTN型液晶表示装置により、光漏れによる黒表示時の着色を低減し、正面コントラストなど視認性に優れた液晶表示装置を得ることができる。 With the TN liquid crystal display device according to the present invention, it is possible to reduce coloration during black display due to light leakage and to obtain a liquid crystal display device with excellent visibility such as front contrast.
 本発明に係るTN型液晶表示装置は、液晶セルを挟む2枚の基板のラビング軸と、前記第1の偏光板、及び第2の偏光板の吸収軸を各々直交して配置させ、且つ液晶表示装置とした時の液晶セルの水平方向を0°とおいたときに、該液晶セルの水平方向に対して反時計回りの角度として、第1偏光板の吸収軸を45+0.1~3度の範囲の角度で配置し、第2偏光板の吸収軸を135-0.1~3度の範囲の角度で配置させることが好ましい。このような配置のTN型液晶表示装置を本発明ではEモードと呼称する。 In the TN liquid crystal display device according to the present invention, the rubbing axes of the two substrates sandwiching the liquid crystal cell and the absorption axes of the first polarizing plate and the second polarizing plate are arranged orthogonally, and the liquid crystal When the horizontal direction of the liquid crystal cell in the case of the display device is set to 0 °, the absorption axis of the first polarizing plate is 45 + 0.1 to 3 degrees as the counterclockwise angle with respect to the horizontal direction of the liquid crystal cell. Preferably, the second polarizing plate is disposed at an angle in the range, and the absorption axis of the second polarizing plate is disposed at an angle in the range of 135-0.1 to 3 degrees. In the present invention, the TN liquid crystal display device having such an arrangement is referred to as an E mode.
 TN型液晶表示装置には、液晶セルのラビング軸と、前記第1の偏光板、及び第2の偏光板の吸収軸を平行に配置させる場合もあり、これを本発明ではOモードと呼称する。 In the TN liquid crystal display device, the rubbing axis of the liquid crystal cell and the absorption axes of the first polarizing plate and the second polarizing plate may be arranged in parallel, which is referred to as an O mode in the present invention. .
 本発明ではOモードのTN型液晶表示装置の方が視野角、階調反転、カラーシフト、にじみにおいて優れる結果が得られるため好ましい。 In the present invention, an O-mode TN liquid crystal display device is preferable because excellent results are obtained in viewing angle, gradation inversion, color shift, and blur.
 以下、図を用いて本発明のTN型液晶表示装置の説明をする。 Hereinafter, the TN type liquid crystal display device of the present invention will be described with reference to the drawings.
 電極やカラーフィルター、バックライトなどのユニットは図が煩雑になり、本発明における光学的に重要な部分が見にくくなるため表示していない。 Units such as electrodes, color filters, and backlights are not shown because the figure becomes complicated and optically important parts in the present invention are difficult to see.
 本発明のTN型液晶表示装置は図1の構成をとることが好ましく、視認側から第1の保護フィルム1、第1の偏光子2、第1の位相差フィルム3の順で構成された第1の偏光板4、ツイストネマチック型液晶セル5、液晶セル側から第2の位相差フィルム6、第2の偏光子7、第2の保護フィルム8の順で構成された第2の偏光板9と、バックライトユニット10を有する。 The TN type liquid crystal display device of the present invention preferably has the configuration shown in FIG. 1, and includes a first protective film 1, a first polarizer 2, and a first retardation film 3 in this order from the viewing side. 1 polarizing plate 4, twisted nematic liquid crystal cell 5, second retardation film 9 configured in the order of the second retardation film 6, the second polarizer 7, and the second protective film 8 from the liquid crystal cell side. And a backlight unit 10.
 図2、3はTN型液晶表示装置の一例を示す概略図である。 2 and 3 are schematic views showing an example of a TN type liquid crystal display device.
 図2(a)は液晶モニターを表す模式図であり、液晶セルの水平方向とは、図のモニターの長辺方向(x)をいう。第1偏光板の吸収軸(y方向)をx軸方向(0°)に対し(45°+0.1~3°)の範囲の角度で配置し、第2偏光板の吸収軸(z方向)をx軸方向(0°)に対し(135°-0.1~3°)の範囲の角度で配置することが好ましい。 FIG. 2A is a schematic diagram showing a liquid crystal monitor, and the horizontal direction of the liquid crystal cell means the long side direction (x) of the monitor in the figure. The absorption axis (y direction) of the first polarizing plate is arranged at an angle in the range of (45 ° + 0.1-3 °) with respect to the x-axis direction (0 °), and the absorption axis (z direction) of the second polarizing plate Is preferably arranged at an angle in the range of (135 ° -0.1 to 3 °) with respect to the x-axis direction (0 °).
 図2(b)は、EモードのTN型液晶表示装置の液晶セルのラビング軸25、26、該ラビング軸に直交させた偏光子の吸収軸23、偏光子の吸収軸23に直交させた位相差フィルムの遅相軸24の関係を示す模式図である。 FIG. 2B shows the rubbing axes 25 and 26 of the liquid crystal cell of the TN liquid crystal display device in the E mode, the polarizer absorption axis 23 orthogonal to the rubbing axis, and the position orthogonal to the polarizer absorption axis 23. It is a schematic diagram which shows the relationship of the slow axis 24 of a phase difference film.
 図3(b)は、OモードのTN型液晶表示装置の液晶セルのラビング軸25、26、該ラビング軸に平行にした偏光子の吸収軸23、偏光子の吸収軸23に直交させた位相差フィルムの遅相軸24の関係を示す模式図である。 FIG. 3B shows the rubbing axes 25 and 26 of the liquid crystal cell of the TN type liquid crystal display device in the O mode, the polarizer absorption axis 23 parallel to the rubbing axis, and the position orthogonal to the polarizer absorption axis 23. It is a schematic diagram which shows the relationship of the slow axis 24 of a phase difference film.
<原反フィルム(セルロースエステルフィルム)101の作製>
 〈微粒子分散液1〉
 微粒子(アエロジル R972V 日本アエロジル(株)製)
                            11質量部
 エタノール                      89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
<Preparation of raw film (cellulose ester film) 101>
<Fine particle dispersion 1>
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.)
11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
<Fine particle addition liquid 1>
The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
 メチレンクロライド                  99質量部
 微粒子分散液1                     5質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースエステルAを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープ1を調製した。
Methylene chloride 99 parts by mass Fine particle dispersion 1 5 parts by mass A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester A was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The dope 1 was prepared by filtering using 244.
 〈ドープ1の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースエステルA(アセチル基置換度1.56、プロピオニル基置換度0.90、総アシル基置換度2.46)         100質量部
 ポリエステル系化合物1※               6.5質量部
 スクロースオクタベンゾエート
(モノペットSB(第一工業製薬(株)製))       6.0質量部
 微粒子添加液1                      1質量部
 〈ドープ2の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースエステルC(ジアセチルセルロース、アセチル基置換度2.41)
                            100質量部
 ポリエステル系化合物1※               6.5質量部
 スクロースオクタベンゾエート
(モノペットSB(第一工業製薬(株)製))       6.0質量部
 微粒子添加液1                      1質量部
 以上を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。調整したドープを、2m幅の無限走行する無端のステンレススティールベルト上に特開2007-86254号図1記載の装置を使用し共流延を行った。
<Composition of dope 1>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose ester A (acetyl group substitution degree 1.56, propionyl group substitution degree 0.90, total acyl group substitution degree 2.46) 100 parts by mass Polyester compound 1 * 6.5 parts by mass Part Sucrose octabenzoate (Monopet SB (Daiichi Kogyo Seiyaku Co., Ltd.)) 6.0 parts by weight Fine particle additive 1 1 part by weight <Composition of dope 2>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose ester C (diacetyl cellulose, acetyl group substitution degree 2.41)
100 parts by mass Polyester compound 1 * 6.5 parts by mass Sucrose octabenzoate (Monopet SB (Daiichi Kogyo Seiyaku Co., Ltd.)) 6.0 parts by mass Fine particle additive 1 1 part by mass The dope solution was prepared by dissolving with stirring. The prepared dope was co-cast using an apparatus described in FIG. 1 of JP-A-2007-86254 on an endless stainless steel belt having an infinite traveling length of 2 m.
 ステンレススティールベルトの温度を35℃とし、ベルト面側にドープ1の層、空気側の面にドープ液2の層となるようにした。 The temperature of the stainless steel belt was set to 35 ° C. so that the belt surface side had a dope 1 layer and the air side surface had a dope liquid 2 layer.
 ステンレススティールベルト上で溶媒を蒸発させ、ステンレススティールベルト上からウェブを剥離した。剥離したウェブを1.5m幅に両端をスリッターで裁ち落とし、このウェブをテンター乾燥機に導入し、両端をクリップで把持して幅方向に1.3倍延伸しながら135℃で乾燥させ、ついで125℃の各乾燥ゾーンを有するロール乾燥機内に上下に配置された多数のロールを交互に通して搬送させながら乾燥を終了させ、ドープ1の層が80μm、ドープ2の層が40μmで合計の膜厚が120μm、幅1500mmの積層した原反フィルム101を作製した。 The solvent was evaporated on the stainless steel belt, and the web was peeled off from the stainless steel belt. The peeled web was cut to 1.5 m width with a slitter, the web was introduced into a tenter dryer, both ends were gripped with clips and dried at 135 ° C. while stretching 1.3 times in the width direction, Drying was completed while alternately transporting a number of rolls arranged vertically in a roll dryer having each drying zone of 125 ° C., and the total film with Dope 1 layer of 80 μm and Dope 2 layer of 40 μm A laminated original film 101 having a thickness of 120 μm and a width of 1500 mm was produced.
 原反フィルム101は、Ro=0、Rt=180nm、β=0°であった。また、ドープ1の層のTgは、163℃、ドープ2の層のTgは、200℃であり、この場合ドープ1の層のTgがTg2となる。傾斜配向処理ゾーンの温度(T2=170℃)での、ドープ1の層の弾性率は、70MPa、ドープ2の層の弾性率は500MPaであった。弾性率比率εA/εB=70/500=0.14であった。また、この温度(170℃)での原反フィルムの位相差発現性は1.5(180nm/120μm)nm/μmであった。 The original film 101 had Ro = 0, Rt = 180 nm, and β = 0 °. Further, the Tg of the dope 1 layer is 163 ° C., and the Tg of the dope 2 layer is 200 ° C. In this case, the Tg of the dope 1 layer is Tg 2. The elastic modulus of the layer of dope 1 was 70 MPa and the elastic modulus of the layer of dope 2 was 500 MPa at the temperature of the inclined alignment treatment zone (T2 = 170 ° C.). The elastic modulus ratio εA / εB = 70/500 = 0.14. Moreover, the retardation development property of the raw film at this temperature (170 ° C.) was 1.5 (180 nm / 120 μm) nm / μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
ポリエステル系化合物1※ Polyester compound 1 *
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
<傾斜配向処理>
 原反フィルム101を、予熱ゾーンの前と冷却ゾーンの後に配置し配置した1組のニップロールで長尺(MD)方向に0.75N/cmの搬送張力をかけた状態で、図4に示すような各ゾーンを通過させた。
<Inclined orientation treatment>
As shown in FIG. 4, the raw film 101 is applied with a transport tension of 0.75 N / cm in the longitudinal (MD) direction by a pair of nip rolls arranged and arranged before the preheating zone and after the cooling zone. Each zone was passed through.
 その際、直径100mmのゴムロールをロールの中心同士の間隔が250mmになるように設置し、TD方向の収縮(幅手規制ロール)を規制した。 At that time, a rubber roll having a diameter of 100 mm was installed so that the distance between the centers of the rolls was 250 mm, and the shrinkage in the TD direction (width regulation roll) was regulated.
 また、原反フィルムの弾性率の低い側の面(ドープ1の層)に非接触の赤外線温度計を設置し、搬送中のフィルムの弾性率の低い側の面のフィルム表面温度変化を観測した。 In addition, a non-contact infrared thermometer was installed on the lower elastic modulus side surface (dope 1 layer) of the raw film, and the film surface temperature change of the lower elastic modulus side surface of the film being transported was observed. .
 各ゾーンの雰囲気温度は、前記温度が下記の設定温度になるように設定し、原反フィルムを通過させた。処理時間とは、フィルムのある点が予熱ゾーンから傾斜配向ゾーンを経て冷却ゾーンを出るまでにかかる総時間をいう。 The atmospheric temperature of each zone was set so that the temperature was as follows, and the raw film was passed. Processing time refers to the total time it takes for a point on the film to leave the preheating zone, the inclined orientation zone, and the cooling zone.
 この時、各ゾーンのフィルム設定温度は、以下の通りだった。
T1=124℃、T2=170℃、T3=83℃、t1=0.19秒、t2=0.35秒
 したがって昇温時の温度勾配は、242℃/秒(=(170-124)/0.19)、降温時の温度勾配は-247℃/秒(=(83-170)/0.35)であった。
At this time, the film set temperatures in each zone were as follows.
T1 = 124 ° C., T2 = 170 ° C., T3 = 83 ° C., t1 = 0.19 sec, t2 = 0.35 sec Therefore, the temperature gradient at the time of temperature rise is 242 ° C./sec (= (170-124) / 0 19), and the temperature gradient during the temperature drop was −247 ° C./second (= (83−170) /0.35).
 各ゾーンの温度制御は、次のような方法で行った。 The temperature control of each zone was performed by the following method.
 予熱ゾーン:搬送中のフィルムの表裏に、熱風を吹き付けて、予熱した。予熱ゾーンと傾斜配向ゾーンの間には、2本のロールおよび遮風板を設置し、各ゾーンが独立に温度制御できるようにした。 Preheating zone: Hot air was blown onto the front and back of the film being transported to preheat. Two rolls and wind shields were installed between the preheating zone and the inclined orientation zone so that the temperature of each zone could be controlled independently.
 傾斜配向ゾーン:2本の加熱したロールの間にフィルムを接触させながら通過させた。その後、搬送中のフィルムの表裏に、熱風を吹き付けた。 Inclined orientation zone: The film was passed between two heated rolls in contact. Thereafter, hot air was blown onto the front and back of the film being conveyed.
 傾斜配向ゾーンと冷却ゾーンの間にも、2本のロールおよび遮風板を設置し、各ゾーンが独立に温度制御できるようにした。 Two rolls and wind shields were also installed between the inclined orientation zone and the cooling zone so that the temperature of each zone could be controlled independently.
 冷却ゾーン:2本のロールを通過した直後に、フィルムの表裏に冷風を吹き付けて、冷却した。 Cooling zone: Immediately after passing through the two rolls, cooling was performed by blowing cold air on the front and back of the film.
 冷却ゾーンを出る際のフィルム幅は予熱ゾーンに入る直前のフィルム幅に比べ2%収縮していた。 The film width when leaving the cooling zone was 2% smaller than the film width just before entering the preheating zone.
 ついで、傾斜配向処理をしたフィルムをテンターを用い、160℃でTD方向に10%(1.10倍)延伸し、本発明の長尺傾斜位相差フィルム101を得た。 Subsequently, the film subjected to the tilt alignment treatment was stretched by 10% (1.10 times) in the TD direction at 160 ° C. using a tenter to obtain the long tilt retardation film 101 of the present invention.
 MD張力だけを変更し、その他の条件は長尺傾斜位相差フィルム101の作製と同様にして、長尺傾斜位相差フィルム102、103、104を作製した。 Only the MD tension was changed, and the other conditions were the same as the production of the long inclined retardation film 101, and the long inclined retardation films 102, 103, and 104 were produced.
 比較例1として特開2005-17328号実施例1に記載の位相差フィルムを下記のように作製した。 As Comparative Example 1, a retardation film described in Example 1 of JP-A-2005-17328 was produced as follows.
 ドープ1を金属ベルト上に流延し、剥離し、乾燥させ、80μmのフィルムを作製した。次いで、ニップロールを用いてMD方向に延伸倍率1.5倍に延伸を行った。延伸時、フィルム上面は100℃、フィルム下面は30℃となるようにフィルム上、下面の風の吹き付け温度を調整した。このようにして比較位相差フィルム1を作製し。 The dope 1 was cast on a metal belt, peeled off and dried to prepare an 80 μm film. Subsequently, it extended | stretched by 1.5 times the draw ratio in MD direction using the nip roll. At the time of stretching, the wind blowing temperature on the upper and lower surfaces of the film was adjusted so that the upper surface of the film was 100 ° C. and the lower surface of the film was 30 ° C. In this way, a comparative retardation film 1 was produced.
 比較例2として特開2007-38646号明細書段落(0090)、実施例1に準じて比較位相差フィルム2を下記のように作製した。 As Comparative Example 2, a comparative retardation film 2 was produced as follows according to paragraph (0090) of JP-A-2007-38646, Example 1.
 まず、シクロオレフィンポリマーをフィルム状に押出した。ついで、押出したフィルムを、表面粗さが0.1Sの300mmΦの鏡面ロールと、0.3mm厚の金属ベルトの間に挟んで、フィルムの表面を光沢面に転写した。金属ベルト(幅700mm)は、ゴム被覆のロール(保持するロールの径は150mmΦ)と、冷却ロール(ロール径150mm)により保持したもので、市販のスリーブ式転写ロール(千葉機械工業製)を用いて、転写した。転写するときのロール間隔は、0.35mmであり、転写圧力は、25kgf/cmの線圧とした。 First, the cycloolefin polymer was extruded into a film. Subsequently, the extruded film was sandwiched between a 300 mmφ mirror roll having a surface roughness of 0.1S and a metal belt having a thickness of 0.3 mm, and the surface of the film was transferred to a glossy surface. The metal belt (width 700 mm) is held by a rubber-covered roll (the diameter of the roll to be held is 150 mmΦ) and a cooling roll (roll diameter 150 mm), and a commercially available sleeve type transfer roll (manufactured by Chiba Machine Industry) is used. And transcribed. The roll interval at the time of transfer was 0.35 mm, and the transfer pressure was a linear pressure of 25 kgf / cm.
 このときの、鏡面ロールの外周の周速度を8.8m/minとした。また、ゴム被覆ロールの周速度は、8.5m/minで制御を実施した。このときの鏡面ロールの温度は、オイル温調機を用いて125℃、ゴム被覆ロールの温度は、115℃に設定した。その後、鏡面ロールから剥離し厚さ100μmの樹脂フィルムを形成した。 At this time, the peripheral speed of the outer periphery of the mirror roll was set to 8.8 m / min. Moreover, the peripheral speed of the rubber coating roll was controlled at 8.5 m / min. At this time, the temperature of the mirror surface roll was set to 125 ° C. using an oil temperature controller, and the temperature of the rubber coating roll was set to 115 ° C. Then, it peeled from the mirror surface roll and formed the resin film of thickness 100 micrometers.
 テンター内で125℃に加熱して、フィルム面内方向の幅手方向に1.04倍に延伸した。その後、110℃の雰囲気下で1分間この状態を保持しながら冷却し、さらに室温で冷却し、テンター内から取り出すことにより、比較位相差フィルム2を得た。
<評価>
 Ro、R40、β、θを、溝尻光学工業所(株)製微小面積複屈折測定装置にて23℃55%RHの雰囲気下測定した。長尺傾斜位相差フィルム101の各標準偏差は、それぞれ1.5nm、1.8nm、1.4°、2°であった。
The film was heated to 125 ° C. in a tenter and stretched 1.04 times in the width direction in the film in-plane direction. Then, it cooled, hold | maintaining this state for 1 minute in 110 degreeC atmosphere, Furthermore, it cooled at room temperature, The comparative phase difference film 2 was obtained by taking out from the inside of a tenter.
<Evaluation>
Ro, R40, β, and θ were measured in an atmosphere of 23 ° C. and 55% RH using a micro-area birefringence measuring apparatus manufactured by Mizoji Optical Co., Ltd. Each standard deviation of the long inclined retardation film 101 was 1.5 nm, 1.8 nm, 1.4 °, and 2 °, respectively.
 《偏光板の作製》
〈偏光板1の作製〉
 上記作製した長尺傾斜位相差フィルム101および市販のセルロースエステルフィルム(コニカミノルタタックKC-8UYコニカミノルタオプト(株)製)を使用して、下記工程1~5に従って偏光板101を作製した。
工程1:50℃、2mol%の水酸化ナトリウム溶液に90秒間浸漬し、ついで水洗し乾燥して、偏光子と貼合する側を鹸化した。
工程2:延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製し、該偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した長尺傾斜位相差フィルム101および市販のセルロースエステルフィルムの上にのせて配置した。
工程4:工程3で積層した長尺傾斜位相差フィルム101と偏光子と裏面側市販のセルロースエステルフィルムを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。工程5:工程4で作製した偏光子と長尺傾斜位相差フィルムおよび市販のセルロースエステルフィルムとを貼り合わせた試料を80℃の乾燥機中にて5分間乾燥し、偏光板101を作製した。
<Production of polarizing plate>
<Preparation of Polarizing Plate 1>
Using the produced long inclined retardation film 101 and a commercially available cellulose ester film (manufactured by Konica Minolta Tac KC-8UY Konica Minolta Opto Co., Ltd.), a polarizing plate 101 was produced according to the following steps 1 to 5.
Step 1: It was immersed in a 2 mol% sodium hydroxide solution at 50 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to the polarizer.
Step 2: A polarizer was prepared by adsorbing iodine to a stretched polyvinyl alcohol film, and the polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
Step 3: Excess adhesive adhered to the polarizer in Step 2 was gently wiped, and this was placed on the long inclined retardation film 101 treated in Step 1 and a commercially available cellulose ester film.
Step 4: The long inclined retardation film 101 laminated in Step 3, the polarizer, and a commercially available cellulose ester film on the back side were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min. Step 5: A sample in which the polarizer prepared in Step 4, the long inclined retardation film and the commercially available cellulose ester film were bonded together was dried in an oven at 80 ° C. for 5 minutes to prepare the polarizing plate 101.
 同様にして偏光板102、103、104、比較偏光板1、2を作製した。なお、比較偏光板では偏光子との貼合にエポキシ系の接着剤を使用した。 In the same manner, polarizing plates 102, 103 and 104 and comparative polarizing plates 1 and 2 were produced. In the comparative polarizing plate, an epoxy adhesive was used for bonding with the polarizer.
 《液晶表示装置の作製》
 液晶パネルを以下のようにして作製し、偏光板および液晶表示装置としての特性を評価した。
<Production of liquid crystal display device>
A liquid crystal panel was produced as follows, and the characteristics as a polarizing plate and a liquid crystal display device were evaluated.
 SAMSUNG(株)製17型ディスプレイSyncMaster743BMに、予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板101~104をそれぞれ液晶セルのガラス面に貼合した。 The polarizing plates on both sides that had been bonded in advance were peeled off on a 17-inch display SyncMaster 743BM manufactured by Samsunung Co., Ltd., and the prepared polarizing plates 101 to 104 were each bonded to the glass surface of the liquid crystal cell.
 その際、偏光板の貼合の向きは、本発明の長尺傾斜位相差フィルムが液晶セル側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように図3の構成となるように行い、表2に示すように液晶表示装置101~104、比較液晶表示装置1、2を各々作製した。 At that time, the polarizing plate is bonded so that the long inclined retardation film of the present invention is on the liquid crystal cell side and the absorption axis is directed in the same direction as the previously bonded polarizing plate. The liquid crystal display devices 101 to 104 and the comparative liquid crystal display devices 1 and 2 were manufactured as shown in Table 2, respectively.
 (ムラ評価)
 上記作製した液晶表示装置のバックライトを点灯して黒表示にし、24時間後表示面の法線方向に対して40°斜め上から目視でムラの発生強度を官能評価した。
(Evaluation of unevenness)
The backlight of the liquid crystal display device produced above was turned on to display black, and after 24 hours, the intensity of occurrence of unevenness was visually evaluated from 40 ° obliquely above the normal direction of the display surface.
      状況                 評価
  画面全体強いムラが発生            ×
  画面全体に弱いムラが発生           △
  画面部分的に弱いムラが発生          ○
  ムラの発生ナシ                ◎
 長尺傾斜位相差フィルムの傾斜配向条件および特性は、表2に示す。
Situation evaluation Strong unevenness occurs on the entire screen ×
Weak unevenness occurs on the entire screen △
Weak unevenness occurs on the screen.
No unevenness ◎
Table 2 shows the tilt orientation conditions and characteristics of the long tilt retardation film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例2
 原反フィルム101を、予熱ゾーンに設けた1組の直径300mmのゴムロールであるMD張力付加ロールR1~R4(ニップロール間)を通過させる(図5)。ロール速度はR1=R2<R3=R4であって、R3はR1に対して1%速く設定した。この1組のロール間を通過する間に1%MD方向に延伸されていた。
According to the tilt retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 2
The original film 101 is passed through MD tension-adding rolls R1 to R4 (between nip rolls), which are rubber rolls having a diameter of 300 mm provided in the preheating zone (FIG. 5). The roll speed was R1 = R2 <R3 = R4, and R3 was set 1% faster than R1. While passing between the pair of rolls, it was stretched in the 1% MD direction.
 その後実施例1の101と同じ傾斜配向処理を施し、長尺傾斜位相差フィルム201を得た。その際、直径100mmのゴムロールをロールの中心同士の間隔が250mmになるように設置し、TD方向の収縮を規制した。 Then, the same tilt orientation treatment as 101 of Example 1 was performed to obtain a long tilt retardation film 201. At that time, a rubber roll having a diameter of 100 mm was installed so that the distance between the centers of the rolls was 250 mm, and the shrinkage in the TD direction was regulated.
 冷却ゾーンを出る際のフィルム幅は予熱ゾーンに入る直前のフィルム幅に比べ2%収縮していた。またMD方向は1%収縮していた。 The film width when leaving the cooling zone was 2% smaller than the film width just before entering the preheating zone. The MD direction contracted by 1%.
 上記MD方向の延伸率を2%、3%とすることにより傾斜配向処理後のMD方向収縮率を2%、3%とした長尺傾斜位相差フィルム202、203を、201と同様にして作製した。 The long gradient retardation films 202 and 203 having the MD direction shrinkage of 2% and 3% after the tilt orientation treatment by making the MD direction stretch rate 2% and 3% are produced in the same manner as 201. did.
 この試料について、実施例1と同様にして評価した。結果を表3に示す。 This sample was evaluated in the same manner as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例3
 原反フィルム101を、傾斜配向ゾーンの入口および出口に1組のニップロールを設け、MD方向に0.75N/cmの搬送張力をかけた状態で、傾斜配向ゾーンを通過させた(図6)。ロール速度はR1=R2<R3=R4とし、R3はR1に対して1%速く設定している。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 3
The original film 101 was passed through the tilted orientation zone in a state where a pair of nip rolls were provided at the inlet and outlet of the tilted orientation zone and a transport tension of 0.75 N / cm was applied in the MD direction (FIG. 6). The roll speed is R1 = R2 <R3 = R4, and R3 is set 1% faster than R1.
 この1組のロール間を通過する間に1%MDに延伸されていた。ニップロールは直径300mmのゴムロールを使用し、直径100mmのゴムロールをロールの中心同士の間隔が250mmになるように設置し、TD方向の収縮を規制した。 The film was stretched to 1% MD while passing between the pair of rolls. As the nip roll, a rubber roll having a diameter of 300 mm was used, and a rubber roll having a diameter of 100 mm was installed so that the distance between the centers of the rolls was 250 mm, thereby restricting shrinkage in the TD direction.
 その他の条件は、実施例1の101と同じとして長尺傾斜位相差フィルム301を製造した。MD延伸倍率を2%、3%と調整し長尺傾斜位相差フィルム302、303を製造した。 The other conditions were the same as 101 in Example 1, and a long inclined retardation film 301 was produced. The MD stretch ratio was adjusted to 2% and 3% to produce long inclined retardation films 302 and 303.
 冷却ゾーンを出る際のフィルム幅は、予熱ゾーンに入る直前のフィルム幅に比べ2%収縮していた。 The film width when exiting the cooling zone was 2% smaller than the film width immediately before entering the preheating zone.
 この試料について、実施例1と同様にして評価した。結果を表4に示す。 This sample was evaluated in the same manner as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例4
 原反フィルムを作製するためのドープ1において、セルロースエステルをFに変えたドープ3、セルロースエステルをGに変えたドープ4、ポリエステル系化合物1の量を9.5質量部に変えたドープ5、ポリエステル系化合物1の量を3.5質量部に変えたドープ6を作製し、ドープ2と共流延して原反フィルム401~404を作製した。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 4
In the dope 1 for producing the raw film, the dope 3 in which the cellulose ester is changed to F, the dope 4 in which the cellulose ester is changed to G, the dope 5 in which the amount of the polyester-based compound 1 is changed to 9.5 parts by mass, A dope 6 in which the amount of the polyester-based compound 1 was changed to 3.5 parts by mass was prepared, and co-cast with the dope 2 to prepare original films 401 to 404.
 その原反フィルムを実施例1の101と同様の傾斜配向処理を行い、長尺傾斜位相差フィルム401~404を作製した。なお、予熱ゾーン、傾斜配向ゾーン、冷却ゾーンのフィルム設定温度T1~T3は、表5に示した。この試料について、実施例1と同様にして評価した。結果を表5に示す。 The original film was subjected to the same tilt orientation treatment as 101 in Example 1 to produce long tilted retardation films 401 to 404. Table 5 shows the film set temperatures T1 to T3 in the preheating zone, the inclined orientation zone, and the cooling zone. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例5
 ドープ2のみを実施例1の101と同様にして金属ベルト上に流延し、剥離し、乾燥させ膜厚が120μmの原反フィルム501を得た。原反フィルム501は、Ro=0、Rt=180、β=0°であった。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 5
Only the dope 2 was cast on a metal belt in the same manner as 101 in Example 1, peeled and dried to obtain a raw film 501 having a film thickness of 120 μm. The raw film 501 had Ro = 0, Rt = 180, and β = 0 °.
 この原反フィルム501を、図4に記載においてTD規制のための直径100mmのゴムロールの温度を50℃に設定した以外は、実施例1の101と同様に傾斜配向処理をおこない、長尺傾斜位相差フィルム501を作製した。また、ゴムロールの温度を100℃、150℃として傾斜配向処理をした長尺傾斜位相差フィルム502、503を作製した。この試料について、実施例1と同様にして評価した。結果を表6に示す。 This raw fabric film 501 is subjected to an inclined orientation treatment in the same manner as 101 in Example 1 except that the temperature of a rubber roll having a diameter of 100 mm for TD regulation in FIG. A phase difference film 501 was produced. In addition, long inclined retardation films 502 and 503 having been subjected to an inclined alignment treatment with the temperature of the rubber roll being 100 ° C. and 150 ° C. were produced. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例6
 ドープ2のみを実施例1の101と同様にして金属ベルト上に流延、剥離し、その後予熱ゾーンにて、一方の面は120℃、他方の面は20℃と乾燥温度を面毎に調整することにより、一方の面の残留溶媒量を1%以下(弾性率の高い面)とし他方の面(弾性率の低い面)の残留溶媒量を10%含む状態で、実施例1の101と同様の条件で傾斜配向処理ゾーンを通過させ、長尺傾斜位相差フィルム601を作製した。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 6
Only dope 2 was cast and peeled onto the metal belt in the same manner as 101 in Example 1, and then the drying temperature was adjusted to 120 ° C on one side and 20 ° C on the other side in the preheating zone. As a result, the amount of residual solvent on one surface is 1% or less (surface with high elastic modulus) and the amount of residual solvent on the other surface (surface with low elastic modulus) is 10%. Under the same conditions, the tilted alignment treatment zone was passed through to produce a long tilted retardation film 601.
 他方の面の残留溶媒量を5%(乾燥温度50℃)、3%(乾燥温度80℃)とし長尺傾斜位相差フィルム602、603を同様に作製した。 The remaining solvent amount on the other surface was 5% (drying temperature 50 ° C.) and 3% (drying temperature 80 ° C.), and long inclined retardation films 602 and 603 were similarly produced.
 この試料について、実施例1と同様にして評価した。結果を表7に示す。 This sample was evaluated in the same manner as in Example 1. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例7
 ドープ1の組成に化合物A(位相差調整剤)1.4質量部添加したドープ7作製し、金属ベルト上に流延し、剥離し、乾燥させ、80μmのフィルム7を作製した。
Example 7
A dope 7 in which 1.4 parts by mass of Compound A (retardation adjusting agent) was added to the composition of dope 1 was prepared, cast on a metal belt, peeled off, and dried to prepare an 80 μm film 7.
 化合物A Compound A
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 またドープ1のセルロースエステルをポリカーボネート(帝人化成(株)製ピュアエースWR、以下PCと略す。Tg=150℃)に変更してエタノールを除いたドープ8、およびポリシクロオレフィン(JSR(株)製アートン、以下COと略す。Tg=167℃)に変更してエタノールを除いたドープ9を作製し、フィルム7と同様にして、フィルム8およびフィルム9を作製した。 In addition, the cellulose ester of dope 1 was changed to polycarbonate (Pure Ace WR manufactured by Teijin Chemicals Ltd., hereinafter abbreviated as PC. Tg = 150 ° C.), ethanol was removed, and polycycloolefin (manufactured by JSR Corp.). Arton, hereinafter abbreviated as CO. Tg = 167 ° C.) was used to prepare dope 9 excluding ethanol, and film 8 and film 9 were prepared in the same manner as film 7.
 同様にドープ2を金属ベルト上に流延し、剥離し、乾燥させ、40μmのフィルム2を作製した。 Similarly, the dope 2 was cast on a metal belt, peeled off and dried to produce a film 2 having a thickness of 40 μm.
 2枚のフィルムをそれぞれケン化処理し、ケン化処理したフィルム上に水糊を塗布し、互いに貼合し、乾燥させ、原反フィルム701(フィルム7とフィルム2の貼合フィルム)、702(フィルム8とフィルム2の貼合フィルム)、703(フィルム9とフィルム2の貼合フィルム)を作製した。 Each of the two films is saponified, and water paste is applied onto the saponified film, bonded to each other, and dried to be a raw film 701 (bonded film of film 7 and film 2), 702 ( Film 8 and film 2 bonding film) and 703 (film 9 and film 2 bonding film) were produced.
 この原反フィルム701~703を、実施例1の原反フィルム101と同様に傾斜配向処理を行い、長尺傾斜位相差フィルム701~703を作製した。 The original fabric films 701 to 703 were subjected to a tilt orientation treatment in the same manner as the original fabric film 101 of Example 1 to produce long inclined retardation films 701 to 703.
 この試料について、実施例1と同様にして評価した。結果を表8に示す。 This sample was evaluated in the same manner as in Example 1. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例8
 長尺傾斜位相差フィルム101を作製した実施例1の製造条件を表11に記載の条件とし、長尺傾斜位相差フィルム801~808を作製した。この試料について実施例1と同様に評価した。結果を表9に示す。原反フィルム101を使用しており、位相差発現性は1.5nm/μmである。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 8
The production conditions of Example 1 in which the long inclined retardation film 101 was produced were the conditions described in Table 11, and long inclined retardation films 801 to 808 were produced. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 9. The original film 101 is used, and the retardation development property is 1.5 nm / μm.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例9
 長尺傾斜位相差フィルム101を作製した実施例1の製造条件において、各ゾーンの仕切りを図7のような仕切り板に変更し、製造条件を表10に記載の条件とし、長尺傾斜位相差フィルム901~907を作製した。この試料について実施例1と同様に評価した。結果を表10に示す。原反フィルム101を使用しており、位相差発現性は1.5nm/μmである。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 9
In the manufacturing conditions of Example 1 in which the long inclined retardation film 101 was produced, the partition of each zone was changed to a partition plate as shown in FIG. 7, the manufacturing conditions were as shown in Table 10, and the long inclined phase difference was obtained. Films 901 to 907 were produced. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 10. The original film 101 is used, and the retardation development property is 1.5 nm / μm.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例10
 下記の組成物を用いて、溶融流延法により光学フィルムを作製した。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 10
An optical film was produced by the melt casting method using the following composition.
 (組成物1)
 セルロースエステルA                85.5質量部
 化合物1※                       12質量部
 IRGANOX-1010(チバ・ジャパン(株)製)  0.5質量部 PEP-36(ADEKA(株)製)          0.1質量部
 Sumilizer-GS(住友化学(株)製)     0.3質量部
 TINUVIN928(チバ・ジャパン(株)製)    1.5質量部
 シーホスターKEP-30((株)日本触媒製)     0.1質量部
 (組成物2)
 セルロースエステルC                85.5質量部
 化合物1※                       12質量部
 IRGANOX-1010(チバ・ジャパン(株)製)  0.5質量部
 PEP-36(ADEKA(株)製)          0.1質量部
 Sumilizer-GS(住友化学(株)製)     0.3質量部
 TINUVIN928(チバ・ジャパン(株)製)    1.5質量部
 シーホスターKEP-30((株)日本触媒製)     0.1質量部
 化合物1※
(Composition 1)
Cellulose ester A 85.5 parts by mass Compound 1 * 12 parts by mass IRGANOX-1010 (manufactured by Ciba Japan Co., Ltd.) 0.5 parts by mass PEP-36 (manufactured by ADEKA Co., Ltd.) 0.1 parts by mass Sumizer-GS ( Sumitomo Chemical Co., Ltd.) 0.3 parts by mass TINUVIN 928 (manufactured by Ciba Japan Co., Ltd.) 1.5 parts by mass Seahoster KEP-30 (manufactured by Nippon Shokubai Co., Ltd.) 0.1 parts by mass (Composition 2)
Cellulose Ester C 85.5 parts by mass Compound 1 * 12 parts by mass IRGANOX-1010 (manufactured by Ciba Japan) 0.5 parts by mass PEP-36 (manufactured by ADEKA) 0.1 parts by mass Sumizer-GS ( Sumitomo Chemical Co., Ltd.) 0.3 parts by mass TINUVIN 928 (manufactured by Ciba Japan Co., Ltd.) 1.5 parts by mass Seahoster KEP-30 (manufactured by Nippon Shokubai Co., Ltd.) 0.1 parts by mass Compound 1 *
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記組成物をそれぞれ80℃で6時間乾燥して水分率200ppm以下にし、真空ナウターミキサーで80℃、1Torrで3時間混合しながらさらに乾燥して水分率50ppmにした。 Each of the above compositions was dried at 80 ° C. for 6 hours to a moisture content of 200 ppm or less, and further dried with mixing in a vacuum nauter mixer at 80 ° C. and 1 Torr for 3 hours to a moisture content of 50 ppm.
 得られた混合物を、二軸式押出機を用いて235℃で溶融混合しペレット化した。この際、混錬時のせん断による発熱を抑えるためニーディングディスクは用いずオールスクリュータイプのスクリューを用いた。 The obtained mixture was melt-mixed at 235 ° C. using a twin-screw extruder and pelletized. At this time, an all screw type screw was used instead of a kneading disk in order to suppress heat generation due to shear during kneading.
 また、ベント孔から真空引きを行い、混錬中に発生する揮発成分を吸引除去した。なお、押出機に供給するフィーダーやホッパー、押出機ダイから冷却槽間は、乾燥窒素ガス雰囲気として、樹脂への水分の吸湿の防止や酸素の除去を行った。 Also, evacuation was performed from the vent hole, and volatile components generated during kneading were removed by suction. In addition, between the feeder, hopper, and extruder die supplied to the extruder and the cooling tank, a dry nitrogen gas atmosphere was used to prevent moisture from being absorbed into the resin and to remove oxygen.
 その後、特開2009-96955号図1に記載の装置を使用し、原反フィルムを作製した。第1冷却ロールおよび第2冷却ロールは直径40cmのステンレス製とし、表面にハードクロムメッキを施した。又、内部には温度調整用のオイル(冷却用流体)を循環させて、ロール表面温度を130℃に制御した。 Thereafter, using the apparatus described in FIG. 1 of JP-A-2009-96955, a raw film was produced. The first cooling roll and the second cooling roll were made of stainless steel having a diameter of 40 cm, and the surface was hard chrome plated. Further, oil for temperature adjustment (cooling fluid) was circulated inside to control the roll surface temperature to 130 ° C.
 弾性タッチロールは、直径20cmとし、内筒と外筒はステンレス製とし、外筒の表面にはハードクロムメッキを施した。外筒の肉厚は2mmとし、内筒と外筒との間の空間に温度調整用のオイル(冷却用流体)を循環させて弾性タッチロールの表面温度を130℃に制御した。 The elastic touch roll had a diameter of 20 cm, the inner cylinder and the outer cylinder were made of stainless steel, and the outer cylinder surface was hard chrome plated. The wall thickness of the outer cylinder was 2 mm, and the surface temperature of the elastic touch roll was controlled at 130 ° C. by circulating temperature adjusting oil (cooling fluid) in the space between the inner cylinder and the outer cylinder.
 上記ペレットを用いて窒素雰囲気下、250℃にて溶融してコートハンガータイプ2層共押出しマルチマニフォールドダイから組成物1と組成物2の割合が2:1になるように第1冷却ロール上に押し出し、第1冷却ロールと弾性タッチロールとの間に押出した溶融物を挟圧して成形し、膜厚240μmの積層した原反フィルム1001を得た。膜厚は押出量と引取り速度を調整することによって制御した。この時の流延幅は1.5mであった。 Using the above pellets, melted at 250 ° C. in a nitrogen atmosphere and co-extruded with a coat hanger type two-layer, on the first cooling roll so that the ratio of composition 1 and composition 2 is 2: 1. Extrusion was performed by pressing the melt extruded between the first cooling roll and the elastic touch roll to obtain a laminated original film 1001 having a film thickness of 240 μm. The film thickness was controlled by adjusting the extrusion amount and the take-up speed. The casting width at this time was 1.5 m.
 この際、Tダイのリップクリアランス1.5mm、リップ部平均表面粗さRa0.01μmのTダイを用いた。また、第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールを線圧10kg/cmで押圧した。 At this time, a T die having a lip clearance of 1.5 mm and an average surface roughness Ra of 0.01 μm was used. Further, an elastic touch roll having a 2 mm thick metal surface was pressed on the first cooling roll at a linear pressure of 10 kg / cm.
 得られた原反フィルム1001を実施例1の101の傾斜処理と同様の傾斜処理を実施した。 The obtained raw film 1001 was subjected to the same inclination treatment as the inclination treatment 101 in Example 1.
 その後得られたフィルムを、ロール周速差を利用した延伸機によって155℃で長尺方向に1.5倍に延伸した。次に予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、巾方向に155℃で1.6倍延伸した後、巾方向に2%緩和しながら30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、長尺傾斜位相差フィルム1001を得た。 Thereafter, the obtained film was stretched 1.5 times in the longitudinal direction at 155 ° C. by a stretching machine utilizing a difference in peripheral speed of the roll. Next, it is introduced into a tenter having a preheating zone, a stretching zone, a holding zone, and a cooling zone (there is also a neutral zone for ensuring thermal insulation between the zones), and is 1. After stretching 6 times, the film was cooled to 30 ° C. while relaxing 2% in the width direction, then released from the clip, and the clip gripping part was cut off to obtain a long inclined retardation film 1001.
 組成物1のセルロースエステルを表11に記載のように変更し、長尺傾斜位相差フィルム1002、1003を作製した。この試料について実施例1と同様に評価した。結果を表11に示す。 The cellulose ester of composition 1 was changed as shown in Table 11 to prepare long inclined retardation films 1002, 1003. This sample was evaluated in the same manner as in Example 1. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。
実施例11
 原反フィルム501の上に、下記のハードコート層形成用樹脂組成物1の50質量部をメチルエチルケトン/メチルイソブチルケトン=30/70(質量比)の混合溶媒で希釈した溶液を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、押出しコータを用いて塗布し、80℃で1分間乾燥後、紫外線ランプを用い照射部の照度が100mW/cm、照射量を0.2J/cmの条件で硬化させ、ドライ膜厚20μmのハードコート層を形成し原反フィルム1101を作製した。
According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
Example 11
A solution obtained by diluting 50 parts by mass of the following hard coat layer-forming resin composition 1 on a raw film 501 with a mixed solvent of methyl ethyl ketone / methyl isobutyl ketone = 30/70 (mass ratio) has a pore diameter of 0.4 μm. A hard coat layer coating solution is prepared by filtration through a polypropylene filter, applied using an extrusion coater, dried at 80 ° C. for 1 minute, and then irradiated using an ultraviolet lamp with an illuminance of 100 mW / cm 2 and an irradiation dose of 0. The film was cured under the condition of 2 J / cm 2 to form a hard coat layer having a dry film thickness of 20 μm to produce a raw film 1101.
 (ハードコート層形成用樹脂組成物1)
 ペンタエリスリトールトリアクリレート        20.0質量部
 ペンタエリスリトールテトラアクリレート       50.0質量部
 ジペンタエリスリトールヘキサアクリレート      30.0質量部
 ジペンタエリスリトールペンタアクリレート      30.0質量部
 イルガキュア184(チバ・ジャパン(株)製)     2.0質量部
 また、イルガキュア184(重合開始剤)2質量部(IG2)を3質量部(IG3)、5質量部(IG5)とした原反フィルム1102、1103を同様に作製した。IG2のハードコート層のTgは220℃で、IG3が250℃、IG5が260℃あり、反対面のTgは200℃(セルロースエステルC)であったことから、反対面TgがTg2となる。
(Resin composition for forming a hard coat layer 1)
Pentaerythritol triacrylate 20.0 parts by mass Pentaerythritol tetraacrylate 50.0 parts by mass Dipentaerythritol hexaacrylate 30.0 parts by mass Dipentaerythritol pentaacrylate 30.0 parts by mass Irgacure 184 (manufactured by Ciba Japan Co., Ltd.) 2 0.0 parts by mass In addition, raw films 1102 and 1103 in which 2 parts by mass (IG2) of Irgacure 184 (polymerization initiator) (IG3) and 5 parts by mass (IG5) were produced in the same manner. The Tg of the hard coat layer of IG2 is 220 ° C., IG3 is 250 ° C., IG5 is 260 ° C., and the Tg of the opposite surface is 200 ° C. (cellulose ester C), so the opposite surface Tg becomes Tg2.
 原反フィルム1101~1103について実施例1と同様の傾斜配向処理を施し、評価した。結果を表12に示す。 The original fabric films 1101 to 1103 were subjected to the same tilt alignment treatment as in Example 1 and evaluated. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 本発明の長尺傾斜位相差フィルムによれば、黒表示でのムラの発生が抑制される。 According to the long inclined retardation film of the present invention, the occurrence of unevenness in black display is suppressed.
 1 第1の保護フィルム
 2 第1の偏光子
 3 第1の位相差フィルム
 4 第1の偏光板4
 5 ツイストネマチック型液晶セル
 6 第2の位相差フィルム
 7 第2の偏光子
 8 第2の保護フィルム
 9 第2の偏光板
 10 バックライトユニット
 TN TN型液晶表示装置
 a 液晶モニター
 11 第1の偏光板
 12 ツイストネマチック型液晶セル
 13 第2の偏光板
 14 第1の保護フィルム
 15 第1の偏光子
 16 第1の位相差フィルム
 17 基板
 18 液晶
 19 基板
 20 第2の位相差フィルム
 21 第2の偏光子
 22 第2の保護フィルム
 23 吸収軸
 24 遅相軸
 25、26 ラビング軸
 A 予熱ゾーン
 B 傾斜配向ゾーン
 C 冷却ゾーン
 100 MD張力付加ロール(R1、R2、R3、R4 ニップロール)
 101 幅手規制用ロール
 102 非接触温度計
 103、104 TD延伸装置
 105 フィルム巻だし装置
 106 フィルム巻き取り装置
 107 仕切板
 108 仕切りロール
 a 傾斜位相差フィルムの幅手方向軸(TD方向)
 b 傾斜位相差フィルムの長尺方向軸(MD方向)
 c 傾斜位相差フィルムの厚み方向軸
 x フィルム面内で屈折率が最大となる方向軸(面内遅相軸)
 y フィルム面内で屈折率が最小となる方向軸
 z フィルムの厚み方向軸
 β 平均傾斜角度
 θ フィルムの面内遅相軸と長尺方向とのなす角度
 x’ 屈折率楕円体のz’と直交する平面のうち屈折率が最大となる方向軸
 y’ 屈折率楕円体のz’と直交する平面のうち屈折率が最小となる方向軸
 z’ 屈折率楕円体の厚み方向軸
 nx’ x’方向の屈折率
 ny’ y’方向の屈折率
 nz’ z’方向の屈折率
DESCRIPTION OF SYMBOLS 1 1st protective film 2 1st polarizer 3 1st phase difference film 4 1st polarizing plate 4
DESCRIPTION OF SYMBOLS 5 Twist nematic type liquid crystal cell 6 2nd phase difference film 7 2nd polarizer 8 2nd protective film 9 2nd polarizing plate 10 Backlight unit TN TN type | mold liquid crystal display device a Liquid crystal monitor 11 1st polarizing plate 12 twisted nematic liquid crystal cell 13 second polarizing plate 14 first protective film 15 first polarizer 16 first retardation film 17 substrate 18 liquid crystal 19 substrate 20 second retardation film 21 second polarizer 22 Second protective film 23 Absorption axis 24 Slow axis 25, 26 Rubbing axis A Preheating zone B Inclined orientation zone C Cooling zone 100 MD tension applying roll (R1, R2, R3, R4 nip roll)
DESCRIPTION OF SYMBOLS 101 Width control roll 102 Non-contact thermometer 103,104 TD stretching apparatus 105 Film unwinding apparatus 106 Film winding apparatus 107 Partition plate 108 Partition roll a Width direction axis (TD direction) of inclined retardation film
b Longitudinal axis of tilted retardation film (MD direction)
c Thickness direction axis of tilted retardation film x Direction axis with maximum refractive index in the film plane (in-plane slow axis)
y Direction axis that minimizes the refractive index in the film plane z Film thickness direction axis β Average tilt angle θ Angle formed by the in-plane slow axis of the film and the longitudinal direction x ′ perpendicular to z ′ of the refractive index ellipsoid Direction axis where the refractive index is the largest among the planes to be produced y ′ direction axis where the refractive index is the smallest among the planes orthogonal to z ′ of the refractive index ellipsoid z ′ the thickness direction axis of the refractive index ellipsoid nx ′ x ′ direction Refractive index of ny 'y' direction refractive index nz 'z' direction refractive index

Claims (8)

  1.  フィルムの長尺方向とフィルムの厚み方向を含む平面における、フィルム面からの屈折率楕円体の立ち上がり角度βが7~85°であり、屈折率楕円体の面内位相差(Ro’)が10~90nm、厚み位相差(Rt’)が70~300nm、Rt’>Ro’であり、フィルムの面内位相差Ro、フィルムの倒れ角40度からの位相差R40、βおよびフィルムの面内遅相軸と長尺方向とのなす角度θの、長尺方向での標準偏差がそれぞれ2nm以内、2nm以内、2°以内および2°以内であることを特徴とする長尺傾斜位相差フィルム。 The rising angle β of the refractive index ellipsoid from the film surface in the plane including the longitudinal direction of the film and the thickness direction of the film is 7 to 85 °, and the in-plane retardation (Ro ′) of the refractive index ellipsoid is 10 90 nm, thickness retardation (Rt ′) 70 to 300 nm, Rt ′> Ro ′, in-plane retardation Ro of film, retardation R40, β from film tilt angle 40 °, and in-plane retardation of film A long inclined retardation film, characterized in that the standard deviation in the longitudinal direction of the angle θ formed by the phase axis and the longitudinal direction is within 2 nm, within 2 nm, within 2 ° and within 2 °, respectively.
  2.  フィルムの面内遅相軸と長尺方向とが直交していることを特徴とする請求項1に記載の長尺傾斜位相差フィルム。 The long inclined retardation film according to claim 1, wherein the in-plane slow axis of the film is perpendicular to the longitudinal direction.
  3.  斜め位相差を有する傾斜位相差フィルムの製造方法において、斜め位相差を付与するための傾斜配向ゾーンでは長尺方向に温度勾配を持たせ、該温度勾配は、温度上昇の場合には20℃/秒~500℃/秒、下降の場合には-20℃/秒~-500℃/秒であることを特徴とする長尺傾斜位相差フィルムの製造方法。 In the method for producing a tilted retardation film having a tilted phase difference, the tilted orientation zone for imparting the tilted phase difference has a temperature gradient in the longitudinal direction, and the temperature gradient is 20 ° C. / A method for producing a long inclined retardation film, characterized in that it is from second to 500 ° C./second, and in the case of descending from −20 ° C./second to −500 ° C./second.
  4.  前記斜め位相差を付与する前のフィルムの一方の面の弾性率(εA)ともう一方の面の弾性率(εB)が、εA<εBの場合には、0.001<εA/εB<0.9であることを特徴とする請求項3に記載の長尺傾斜位相差フィルムの製造方法。 When the elastic modulus (εA) of one surface of the film and the elastic modulus (εB) of the other surface before applying the oblique phase difference are εA <εB, 0.001 <εA / εB <0. The manufacturing method of the long inclination retardation film of Claim 3 characterized by the above-mentioned.
  5.  前記斜め位相差を付与する前のフィルムの位相差発現性が、0.3nm/μm~20nm/μmであることを特徴とする請求項3または4に記載の長尺傾斜位相差フィルムの製造方法。 5. The method for producing a long inclined retardation film according to claim 3, wherein a retardation development property of the film before applying the oblique retardation is 0.3 nm / μm to 20 nm / μm. .
  6.  前記傾斜配向ゾーンにおいて、フィルムの長尺方向およびそれに直交する方向の寸法変化率が、いずれも傾斜配向処理前と傾斜配向処理後で5%以内であることを特徴とする請求項5に記載の長尺傾斜位相差フィルムの製造方法。 6. The dimensional change rate in the longitudinal direction of the film and in a direction perpendicular to the film in the inclined orientation zone is within 5% before the inclined alignment treatment and after the inclined alignment treatment, respectively. Manufacturing method of long inclination retardation film.
  7.  請求項1または2に記載の長尺傾斜位相差フィルムを有することを特徴とする偏光板。 A polarizing plate comprising the long inclined retardation film according to claim 1.
  8.  請求項1または2に記載の長尺傾斜位相差フィルムを有することを特徴とする液晶表示装置。 A liquid crystal display device comprising the long inclined retardation film according to claim 1.
PCT/JP2010/055675 2009-06-19 2010-03-30 Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device WO2010146910A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009146252 2009-06-19
JP2009-146252 2009-06-19
JP2009-202397 2009-09-02
JP2009202397 2009-09-02

Publications (1)

Publication Number Publication Date
WO2010146910A1 true WO2010146910A1 (en) 2010-12-23

Family

ID=43356239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055675 WO2010146910A1 (en) 2009-06-19 2010-03-30 Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2010146910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215706A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Cellulose acylate film, polarizing plate and liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933908A (en) * 1995-07-21 1997-02-07 Fuji Photo Film Co Ltd Liquid crystal display device
JP2003075640A (en) * 2001-09-07 2003-03-12 Hayashi Telempu Co Ltd Method for manufacturing optical retardation film and optical retardation film
JP2003315557A (en) * 2002-02-19 2003-11-06 Nitto Denko Corp Graded optical compensation film, method for manufacturing the same and liquid crystal display device using the same
JP2005017328A (en) * 2003-06-23 2005-01-20 Konica Minolta Opto Inc Manufacturing method of optical compensation film, optical compensation film, optical compensation polarizing plate and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933908A (en) * 1995-07-21 1997-02-07 Fuji Photo Film Co Ltd Liquid crystal display device
JP2003075640A (en) * 2001-09-07 2003-03-12 Hayashi Telempu Co Ltd Method for manufacturing optical retardation film and optical retardation film
JP2003315557A (en) * 2002-02-19 2003-11-06 Nitto Denko Corp Graded optical compensation film, method for manufacturing the same and liquid crystal display device using the same
JP2005017328A (en) * 2003-06-23 2005-01-20 Konica Minolta Opto Inc Manufacturing method of optical compensation film, optical compensation film, optical compensation polarizing plate and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215706A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Cellulose acylate film, polarizing plate and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP2005031577A (en) Polarizing film, polarizing plate and liquid crystal display
EP1876491A1 (en) Liquid crystal panel and liquid crystal display
WO2007116683A1 (en) Liquid crystal panel and liquid crystal display
JP2006251224A (en) Method for manufacturing polarizing plate
JP5838835B2 (en) Liquid crystal display
JP2011034069A (en) Film and method for producing the same, polarizing plate and liquid crystal display device
JP5668593B2 (en) Polarizing plate, manufacturing method thereof, and vertical alignment type liquid crystal display device
KR20160134749A (en) Polarizing plate, image display and liquid crystal display
JP2022051789A (en) Liquid crystal panel manufacturing method, polarizing plate, and liquid crystal display device
JP2009151048A (en) Liquid crystal display device and polarizing plate
JP2007078809A (en) Polarizer and liquid crystal display device using same
JP2005105140A (en) Transparent polymer film, and polarizing plate and liquid crystal display device obtained by using the same
JP2007121352A (en) Retardation film, method for producing the same and optical compensation polarizing plate
JP2007121351A (en) Retardation film, method for producing the same and optical compensation polarizing plate
WO2011114764A1 (en) Retardation film and polarizing plate equipped with same
JP2005105139A (en) Cellulose acylate film, and polarizing plate and liquid crystal display device obtained by using the same
JP2004133171A (en) Optical compensation sheet and liquid crystal display device
WO2010146910A1 (en) Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device
JP5463020B2 (en) Liquid crystal panel and liquid crystal display device
JP2010128270A (en) Method for manufacturing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
JP2009258217A (en) Brightness enhancing film, polarizing plate, and liquid crystal display device
JP2011232428A (en) Inclined retardation film and liquid crystal display device
JP2005049779A (en) Polarizing plate and liquid crystal display device
JP2012073510A (en) Optical film, method for producing the same, polarizer, and liquid crystal display device
WO2008050525A1 (en) Retardation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP