JP2003073716A - Method for calculating terrace length of raw material deposition layer at blast furnace top - Google Patents

Method for calculating terrace length of raw material deposition layer at blast furnace top

Info

Publication number
JP2003073716A
JP2003073716A JP2001268153A JP2001268153A JP2003073716A JP 2003073716 A JP2003073716 A JP 2003073716A JP 2001268153 A JP2001268153 A JP 2001268153A JP 2001268153 A JP2001268153 A JP 2001268153A JP 2003073716 A JP2003073716 A JP 2003073716A
Authority
JP
Japan
Prior art keywords
furnace
measurement point
points
threshold value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001268153A
Other languages
Japanese (ja)
Other versions
JP4675523B2 (en
Inventor
Hiroshi Ookusu
洋 大楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001268153A priority Critical patent/JP4675523B2/en
Publication of JP2003073716A publication Critical patent/JP2003073716A/en
Application granted granted Critical
Publication of JP4675523B2 publication Critical patent/JP4675523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an accuracy of a computed value by eliminating influence of noise, in a method for computing a length of a terrace. SOLUTION: This method comprises a process (1) of measuring the depth to the surface of a raw material deposition layer at constant pitches in a radial direction of a furnace, and a process (2) of smoothing several depth data with the use of a quadric curve, and a process (3) of calculating a gradient (an angle of slope) at a measuring point i by performing a primary differentiation approximation with the use of the smoothed depth data on the measuring points which are n points distant ahead and behind from the measuring point i, and a process (4) of detecting measuring points having the angle of the slope less than a threshold value by scanning, and a process (5) of determining the linear equation from the data of the angle of the slope between the detected measurement point and the measured points around it with a method of least squares, and obtaining a position which matches with the threshold value, and a process (6) of obtaining a horizontal distance between the obtained position and the furnace wall.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、高炉炉頂部の原料
堆積層の表面形状をもとに炉壁近傍のテラス長さをコン
ピュータを用いて演算する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of calculating a terrace length near a furnace wall by using a computer based on a surface shape of a raw material deposit layer at the top of a blast furnace.

【0002】[0002]

【従来技術】高炉の操業を安定維持させるためには、原
料堆積層のプロフィルを最適形状に維持することが重要
である。換言すれば、炉内のガス流が原料堆積層のプロ
フィルによって変化することから、プロフィルを最適形
状に維持することによりガス流の分布が最適化し、もっ
て高炉操業の安定化を図ることができる。
2. Description of the Related Art In order to maintain stable operation of a blast furnace, it is important to maintain the profile of a raw material deposit layer in an optimum shape. In other words, since the gas flow in the furnace changes depending on the profile of the raw material deposition layer, maintaining the profile in the optimum shape optimizes the distribution of the gas flow, thereby stabilizing the blast furnace operation.

【0003】原料堆積層のプロフィルデータ情報を高炉
操業の管理に活用する事例として、具体的には、特開2
000−212612号に示されるように、出銑口間で
出銑、出滓量がアンバランス化する原因となる生鉱石下
りの発生を未然に防止するために活用した事例、特開平
2−225608号に示されるように、指尺乱れや炉頂
圧力変動回数の低減に活用した事例がある。こうした事
例では、原料堆積層のプロフィルを定量的に示す管理値
としてテラス長さ、すなわち炉中心から炉壁に向かって
堆積形状の傾斜角度が特定の角度、例えば15°未満に
なる位置の肩部から炉壁までの水平距離が求められてい
る。
As an example of utilizing the profile data information of the raw material deposit layer for management of blast furnace operation, specifically, Japanese Patent Laid-Open No.
000-212612, a case utilized to prevent the occurrence of downfall of raw ore, which causes imbalance between the amount of pig iron and the amount of slag, between the tap holes, JP-A-2-225608 As shown in No. 6, there are cases where it was used to reduce finger scale disorder and the number of fluctuations in furnace top pressure. In such cases, the terrace length is a control value that quantitatively indicates the profile of the raw material deposition layer, that is, the shoulder portion at a position where the inclination angle of the deposition shape from the center of the furnace toward the furnace wall is less than a specific angle, for example, 15 °. The horizontal distance from to the furnace wall is required.

【0004】上記のテラス長さは、マイクロ波式プロフ
ィール計等の測深装置を用い、炉の半径方向に沿って任
意の間隔ごとに鉱石及びコークスの装入前後における、
特定の基準レベルから堆積層表面までの深度を測定して
得た表面形状データから得られる。具体的にはこのデー
タから人為的に図1に示すように傾斜部の直線bと、炉
壁側への直線aを描き、その交点cから炉壁wまでの水
平距離dを物指しを当てゝ読み取ったり、或いは上記基
準レベルからの深度データ(以下、単に「深度データ」
という)をコンピュータに入力して図2に示すように隣
り合う2点間の深度データYn、Yn+1からその区間ΔX内
での勾配θ=tan−1(ΔY/ΔX)を各測定点ごとにそれぞ
れ求める。図3は、こうして求めた各測定点での勾配
(傾斜角)を示す。次に図3に示すように炉壁wから最
初に+15°を越えるポイントeを見付けて、このポイ
ントeから炉壁wまでの水平距離d’を演算処理してテ
ラス長さを求めていた。
The above-mentioned terrace length is measured by a sounding device such as a microwave profiler before and after ore and coke charging at arbitrary intervals along the radial direction of the furnace.
It is obtained from surface shape data obtained by measuring the depth from a specific reference level to the surface of the deposited layer. Specifically, from this data, a straight line b of the inclined portion and a straight line a to the furnace wall side are artificially drawn as shown in FIG. 1, and the horizontal distance d from the intersection point c to the furnace wall w is designated as an object. Read or depth data from the above reference level (hereinafter, simply “depth data”)
2) is input to the computer and the gradient θ = tan −1 (ΔY / ΔX) within the section ΔX from the depth data Yn, Yn + 1 between two adjacent points is measured at each measurement point as shown in FIG. Ask each. FIG. 3 shows the gradient (tilt angle) at each measurement point thus obtained. Next, as shown in FIG. 3, a point e that first exceeds + 15 ° was found from the furnace wall w, and a horizontal distance d ′ from this point e to the furnace wall w was arithmetically processed to obtain the terrace length.

【0005】[0005]

【発明が解決しようとする課題】テラス長さを人為的に
求める前者の方法は、テラス長さを比較的精度よく求め
ることができる反面、手間と時間がかゝる難点がある。
これに対し後者のコンピュータにより演算処理して求め
る方法は、テラス長さが自動的に算出されるが、ノイズ
によって精度が悪く、テラス長さの演算値と人為的に読
み取られた値とが乖離してばらつきが大きくなる、とい
う問題があった。本発明は、テラス長さをコンピュータ
により演算処理して求める方法において、ノイズの影響
を除去して演算値の精度を向上させることができるよう
にしたものである。
The former method for artificially determining the terrace length can relatively accurately determine the terrace length, but has the drawback of requiring labor and time.
On the other hand, in the latter method, the terrace length is automatically calculated, but the accuracy is poor due to noise, and the calculated value of the terrace length and the artificially read value are different. Then, there was a problem that the variation became large. According to the present invention, in the method of calculating the terrace length by a computer, the influence of noise can be removed and the accuracy of the calculated value can be improved.

【0006】[0006]

【課題の解決手段】請求項1に係わる発明は、高炉炉頂
部の原料堆積層の表面形状をもとに炉壁近傍のテラス長
さをコンピュータを用いて演算する方法であって、
(1)測深装置、例えばマイクロ波式或いはレーザ式の
プロフィール計を用いて原料堆積層表面までの深度を炉
半径方向に沿って任意の間隔ごとに測定するプロセス
と、(2)上記(1)の工程で測定した各測定点のう
ち、炉壁側と炉中心側の測定点を除く各測定点におい
て、その前後の複数の測定点の深度データを用いて多項
式適用による平滑化データ処理を行うプロセスと、
(3)測定点iから前後にn点離れた測定点i−nとi
+nにおける、上記(2)の工程で平滑化処理された深
度データから中心差分による一次微分近似処理を行い、
測定点iにおける堆積層表面の傾斜角を算出するプロセ
スと、(4)上記(3)の工程で算出された各測定点の
傾斜角に関するデータを炉半径方向にスキャニングし、
傾斜角がしきい値未満となる測定点を検出するプロセス
と、(5)上記(4)の工程でしきい値未満として検出
された測定点と、その近傍の測定点の上記傾斜角に関す
るデータより最小二乗法を用いて一次式を求め、この一
次式としきい値が一致する位置を検出するプロセスと、
(6)上記(5)の工程で検出した、しきい値と一致す
る位置より炉壁までの水平距離を求めるプロセスよりな
ることを特徴とする。
According to a first aspect of the present invention, there is provided a method of calculating a terrace length near a furnace wall by using a computer based on a surface shape of a raw material deposition layer at a top of a blast furnace.
(1) A process of measuring the depth to the surface of the raw material deposition layer at arbitrary intervals along the furnace radial direction using a depth sounding device, for example, a microwave type or laser type profiler, and (2) above (1) Among the measurement points measured in the process of step 1, at each measurement point except the measurement points on the furnace wall side and the furnace center side, smoothing data processing by polynomial application is performed using depth data of multiple measurement points before and after the measurement point. Process and
(3) Measurement points i-n and i that are n points away from the measurement point i before and after
At + n, the first-order differential approximation processing by the central difference is performed from the depth data smoothed in the step (2) above,
A process of calculating the inclination angle of the surface of the deposited layer at the measurement point i, and (4) scanning the data regarding the inclination angle of each measurement point calculated in the step (3) in the furnace radial direction,
A process of detecting a measurement point whose inclination angle is less than a threshold value, (5) Measurement point detected as less than the threshold value in the step (4) above, and data about the inclination angle of a measurement point in the vicinity thereof. A process of obtaining a linear expression by using the least squares method and detecting a position where the linear expression and the threshold value match,
(6) It is characterized in that it comprises a process of obtaining the horizontal distance to the furnace wall from the position that matches the threshold value detected in the step (5).

【0007】以下、上記各プロセスの態様について詳述
する。(1)のプロセスにおいては、炉頂部に鉱石また
はコークス原料を装入したのち、測深装置、例えばマイ
クロ波式プロフィール計を用い、炉壁から炉中心まで炉
半径方向に移動させて一定間隔ごと、例えば10cm間隔
で原料堆積層までの深度を測定し、得られたデータをプ
ロセスコンピュータに入力する。
The aspects of each of the above processes will be described in detail below. In the process of (1), after charging ore or coke raw material into the furnace top, using a sounding device, for example, a microwave type profile meter, it is moved from the furnace wall to the center of the furnace in the furnace radial direction at regular intervals. For example, the depth to the raw material deposition layer is measured at intervals of 10 cm, and the obtained data is input to the process computer.

【0008】図4は、各測定点における深度の一例を示
すグラフである。(2)のプロセスにおいてプロセスコ
ンピュータは、図5に示すように任意の測定点iと、そ
の前後各2点のi−2、i−1及びi+1、i+2を加
えた計5点の深度データを用い、Sevitzky-Golay法によ
り二次曲線y=ax2+bx+cで平滑化処理して、測
定点iにおける上記二次曲線上の深度y(i)を算出す
る。図5の白抜き丸は、上記二次曲線により平滑化処理
された測定点iの深度y(i)を示す。続いて計測点i
+1について、その前後各2点のi−1、i及びi+
2、i+3を加えた計5点の深度データを用いて同様に
して平滑化処理を行い、測定点i+1における深度y
(i+1)を算出する。この算出が、炉壁側の2点と、
炉中心側の2点を除く各測定点について順次行われる。
ここで炉壁側と炉中心側の2点の測定点を除いたのは、
前後に二点ずつの測定点を確保できないからである。平
滑化処理に用いるデータ数kを変更して、例えば前後の
各一点を加えた計3点の深度データを用いて平滑化処理
を行う場合には、二番目の測定点から二次曲線上の平滑
化処理された深度が求められる。
FIG. 4 is a graph showing an example of the depth at each measurement point. In the process of (2), the process computer, as shown in FIG. 5, adds depth data of a total of 5 points by adding an arbitrary measurement point i and two points i-2, i-1 and i + 1, i + 2 before and after the arbitrary measurement point i. By using the Sevitzky-Golay method, the quadratic curve y = ax 2 + bx + c is smoothed to calculate the depth y (i) on the quadratic curve at the measurement point i. The white circle in FIG. 5 indicates the depth y (i) of the measurement point i smoothed by the quadratic curve. Then measurement point i
For +1, i−1, i, and i + of two points each before and after it
Smoothing processing is similarly performed using the depth data of 5 points including 2 and i + 3, and the depth y at the measurement point i + 1
Calculate (i + 1). This calculation is the two points on the furnace wall side,
The measurement is performed sequentially for each measurement point except the two points on the center side of the furnace.
Here, the two measurement points on the furnace wall side and the furnace center side are excluded:
This is because it is not possible to secure two measurement points at the front and back. When the number of data k used for the smoothing process is changed and the smoothing process is performed using the depth data of a total of three points including the front and back one points, for example, when the second measurement point is used, The smoothed depth is determined.

【0009】(3)のプロセスにおいてプロセスコンピ
ュータは、図6に示すように任意の測定点iについて、
その前後n点、図示する例においては2点離れた測定点
における(2)のプロセスにより平滑化処理された深度
データy(i−2)とy(i+2)からその間の傾斜角
θを以下の数1式と数2式により算出する。
In the process of (3), the process computer, as shown in FIG.
From the depth data y (i-2) and y (i + 2) smoothed by the process (2) at n points before and after that, or two measurement points in the illustrated example, the inclination angle θ between them is as follows. It is calculated by the formula 1 and the formula 2.

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【数2】 ここで、Δxは測定点のピッチを示す。[Equation 2] Here, Δx represents the pitch of the measurement points.

【0012】コンピュータを用いた数値計算法に関して
広く一般的に知られている“一次微分近似”の方法の一
つに以下の数3式に示す“中心差分”と呼ばれる手法が
ある。この手法は、測定データ内の注目点iでの傾斜角
を求めるに当たって、その注目点iの両隣りの点(i+
1とi−1)の区間内の平均的な勾配を中央に位置する
注目点iの勾配として近似するものである。
One of the widely known "first-order differential approximation" methods for numerical calculation using a computer is a method called "central difference" expressed by the following equation (3). This method is used to obtain the tilt angle at the point of interest i in the measurement data when the points (i +
1 and i-1) is approximated as the gradient of the target point i located in the center.

【0013】[0013]

【数3】 一方、本発明では、数1式に示すように、測定データ内
の注目点iから前後にそれぞれn点(nは1以上の整数
値)離れた点(i+nとi−n)区間内の平均的な勾配
を、その中央に位置する注目点iの勾配であるとする。
つまり、ランダムノイズを平滑化処理して除去する働き
を持たせ、その加減を調整できるように従来の中心差分
法に改良を加えたものである。なお、数1式においてn
=1の場合は、数3式と同一となる。
[Equation 3] On the other hand, in the present invention, as shown in the equation 1, the average in the point (i + n and i−n) sections separated from the point of interest i in the measurement data by n points (n is an integer value of 1 or more) before and after The gradient of interest is the gradient of the attention point i located at the center.
In other words, the conventional central difference method is improved so that the random noise is smoothed and removed, and its addition and subtraction can be adjusted. Note that n
When = 1, it is the same as the expression (3).

【0014】図7は、上記数1式及び数2式により算出
された各測定点における傾斜角θを示す。(4)のプロ
セスにおいてプロセスコンピュータは、各測定点での傾
斜角θを炉中心から炉壁に向かってデータスキャニング
する。そして傾斜角がしきい値、例えば15°未満とな
る測定点gを検出する。この場合、図8に示すように傾
斜角が15°未満となる測定点g2 を検出したのち、更
なるスキャニングによってしきい値、例えば25°を越
える場合には更に炉壁側にしきい値15°未満の測定点
が存在すると認識させ、再びしきい値を15°未満の測
定点を探索する。g1 はこれによって検出された測定点
を示す。
FIG. 7 shows the tilt angle θ at each measurement point calculated by the above equations 1 and 2. In the process (4), the process computer scans the inclination angle θ at each measurement point from the furnace center toward the furnace wall. Then, the measurement point g at which the inclination angle becomes a threshold value, for example, less than 15 ° is detected. In this case, as shown in FIG. 8, after the measurement point g 2 at which the inclination angle is less than 15 ° is detected, the threshold value is further increased by scanning, for example, when it exceeds 25 °, the threshold value 15 is further increased to the furnace wall side. It is recognized that there is a measurement point less than °, and the threshold value is searched again for a measurement point less than 15 °. g 1 indicates the measuring point detected by this.

【0015】(5)のプロセスにおいてプロセスコンピ
ュータは、図7でいえば、測定点gと、その前後のしき
い値15°を挟む測定点のデータを基に最小二乗法を用
いて一次式Y=AX+Bを求め、しきい値15°と一致
する位置、すなわちX=G、Y=15となるGを検出す
る。
In the process of (5), the process computer in FIG. 7 uses the least squares method based on the data of the measurement point g and the measurement points sandwiching the threshold value of 15 ° before and after the measurement point g to obtain the linear expression Y. = AX + B is obtained, and a position that coincides with the threshold value of 15 °, that is, G where X = G and Y = 15 is detected.

【0016】(6)のプロセスにおいてプロセスコンピ
ュータは、上記(5)のプロセスで求めたGより炉壁w
までの水平距離lを算出する。以上のようなプロセスよ
りなる方法によると、平滑化処理によりランダムノイズ
が除去され、一次微分近似処理を行うことにより、デー
タが更に平滑化され、ノイズをより一層除去することが
できる。
In the process of (6), the process computer uses the G obtained in the process of (5) to obtain the furnace wall w.
To calculate the horizontal distance l. According to the method including the above process, the random noise is removed by the smoothing process, and the data is further smoothed by performing the first derivative approximation process, so that the noise can be further removed.

【0017】請求項2に係わる発明は、請求項1に係わ
る発明における(2)のプロセスが省かれ、(3)のプ
ロセスにおいて用いられる平滑化処理された深度データ
の代わりに(1)のプロセスで測定した深度データが用
いられることを特徴とする。本発明者らの計算結果によ
ると、上記(1)のプロセスで測定したデータを平滑化
処理しないで直接、中心差分による一次近似処理を行っ
ても、請求項1に係わる発明とほゞ同様の精度でテラス
長さを求めることができた。
In the invention according to claim 2, the process (2) in the invention according to claim 1 is omitted, and the process (1) is used instead of the smoothed depth data used in the process (3). It is characterized in that the depth data measured in 1. is used. According to the calculation result of the present inventors, even if the first-order approximation processing by the central difference is directly performed without smoothing the data measured in the above process (1), it is almost the same as the invention according to claim 1. We were able to obtain the terrace length with accuracy.

【0018】請求項3に係わる発明は、請求項1又は2
に係わる発明において、上記(5)のプロセスを省き、
上記(4)のプロセスにおいて検出された、しきい値未
満となる測定点より炉壁までの水平距離を求めることを
特徴とする。測定点のピッチを小さくする程、上記
(4)のプロセスで検出した測定点の傾斜角がしきい値
に近くなり、(5)の工程で検出された位置と近似され
る。図6を例にとっていえば、測定点のピッチが小さく
なる程、しきい値(15°)に近く、しきい値に近似し
た測定点が検出できるようになる。
The invention according to claim 3 is the invention according to claim 1 or 2.
In the invention according to, the process of (5) above is omitted,
The method is characterized in that the horizontal distance to the furnace wall is obtained from the measurement point that is less than the threshold value detected in the process (4). As the pitch of the measurement points is made smaller, the inclination angle of the measurement points detected in the process of (4) becomes closer to the threshold value, and is approximated to the position detected in the process of (5). Taking FIG. 6 as an example, as the pitch of the measurement points becomes smaller, the measurement points closer to the threshold value (15 °) and closer to the threshold value can be detected.

【0019】[0019]

【実施例】実施例1 高炉炉頂部にコークス装入後、マイクロ波式プロフィー
ル計を用いて炉壁から炉中心まで半径方向に移動させ、
10cm間隔で42か所、コークス層までの深度を測定
し、プロセスコンピュータにデータ入力した。
Example 1 After charging coke into the top of the blast furnace, the coulomb was moved in the radial direction from the furnace wall to the center of the furnace using a microwave profiler.
The depth to the coke layer was measured at 42 points at 10 cm intervals, and data was input to the process computer.

【0020】プロセスコンピュータには、初期条件とし
て上述するプロセス(2)における深度データを平滑化
処理する際に用いる測定点の数kを5、プロセス(3)
の数1式と数2式に用いられるnを2、プロセス(4)
のしきい値を15°に設定し、上述の測定データ入力か
らコークスのテラス長さである上記プロセス(6)の水
平距離lを算出した。これとは別にコークス層表面まで
の42か所の深度データを用いて図1に示すような方法
で物差しを当てゝ水平距離dのテラス長さを読取り、こ
れをプロセスコンピュータに入力してその差を求めた。
In the process computer, the number k of measurement points used in smoothing the depth data in the above-mentioned process (2) is 5, and the process (3) is used as an initial condition.
N used in the equations (1) and (2) is 2, the process (4)
Was set to 15 °, and the horizontal distance 1 of the process (6), which is the terrace length of the coke, was calculated from the above-mentioned measurement data input. Separately from this, using the depth data at 42 points to the surface of the coke layer, a ruler is applied by the method as shown in FIG. 1 to read the terrace length of the horizontal distance d, and input this to the process computer to calculate the difference. I asked.

【0021】以上のテラス長さの計算及び読み取りを、
毎日1回、コークスを装入したのちに深度測定を行って
得た73日分の深度データを用い、1日分を1回とカウ
ントして、計73回行った。このうちコンピュータで計
算でき、テラス長さが求められたのは69回であった。
この69回について、演算値と読取値の差sの平均値と
標準偏差をプロセスコンピュータで算出した。その結
果、平均値は計算値が読取値より0.08m小さな値と
して得られた。また標準偏差は0.10mであった。次
にテラス長さの読取値と計算値の相関を調べたところ、
読取値と計算値をプロットした図9において、一次式の
傾きは0.906、相関係数Rの二乗R2は0.501
であった。
Calculation and reading of the above terrace length
Using the depth data for 73 days obtained by performing depth measurement after charging coke once a day, one day was counted as once, and a total of 73 times was performed. Of these, it was possible to calculate with a computer, and the terrace length was calculated 69 times.
The average value and standard deviation of the difference s between the calculated value and the read value were calculated by the process computer for the 69 times. As a result, the average value was obtained as a calculated value 0.08 m smaller than the read value. The standard deviation was 0.10 m. Next, when we examined the correlation between the terrace length reading and the calculated value,
In FIG. 9 in which the read value and the calculated value are plotted, the slope of the linear expression is 0.906, and the square R 2 of the correlation coefficient R is 0.501.
Met.

【0022】実施例2 プロセスコンピュータに入力された初期条件をn=3と
する以外は実施例1と同じにし、実施例1で得られた測
定データを基にして計算値と読取値より、その差の平均
値と標準偏差を求めたところ、平均値は計算値が読取値
より0.09m少なく、標準偏差は0.11mであっ
た。また、読取値と計算値との相関を実施例1と同様に
して求めたところ、一次式の傾きは0.883、R2
0.229で、テラス長さをコンピュータで求められた
のは73回中、62回であった。
Example 2 The same as Example 1 except that the initial condition input to the process computer was n = 3. Based on the measured data obtained in Example 1, the calculated value and the read value When the average value of the differences and the standard deviation were determined, the calculated value was 0.09 m less than the read value, and the standard deviation was 0.11 m. Further, when the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, the slope of the linear equation was 0.883, R 2 was 0.229, and the terrace length was obtained by the computer. It was 62 times out of 73 times.

【0023】実施例3 プロセスコンピュータに入力される初期条件を、平滑化
処理する際に用いる深度データの測定点の数kを0、す
なわち平滑化処理を行わないで、n=3とする以外は実
施例1と同じにし、実施例1で得られた測定データを基
にして計算値と読取値より、その差の平均値と標準偏差
を求めたところ、平均値は計算値が読取値より0.10
m少なく、また標準偏差は0.12mであった。また、
読取値と計算値との相関を実施例1と同様にして求めた
ところ、一次式の傾きは0.872、R2 は0.449
で、テラス長さをコンピュータで求めることができたの
は73回中、72回であった。
Embodiment 3 As an initial condition input to the process computer, except that the number k of measurement points of depth data used for smoothing processing is 0, that is, n = 3 without smoothing processing. In the same manner as in Example 1, the average value and the standard deviation of the difference were calculated from the calculated value and the read value based on the measurement data obtained in Example 1. The average value was 0 than the read value. .10
m less and the standard deviation was 0.12 m. Also,
When the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, the slope of the linear expression was 0.872 and R 2 was 0.449.
Then, the terrace length could be calculated by the computer 72 times out of 73 times.

【0024】実施例4 プロセスコンピュータに入力される初期条件を平滑化処
理するための測定点の数kを5、n=2、しきい値を1
7.5°に設定し、実施例1で得られた測定データを基
にして計算値と読取値より、その差の平均値と標準偏差
を求めたところ、平均値は計算値が読取値より0.02
m少なく、標準偏差は0.967mであった。また読取
値と計算値の相関を実施例1と同様にして求めたとこ
ろ、図10に示すように一次式の傾きは0.967、R
2 は0.666でテラス長さは73回共全てコンピュー
タで求めることができた。
Embodiment 4 The number k of measurement points for smoothing the initial condition input to the process computer is 5, n = 2, and the threshold value is 1.
When the average value and the standard deviation of the difference between the calculated value and the read value were set on the basis of the measured data obtained in Example 1 based on the measured data obtained in Example 1, the average value was calculated from the read value. 0.02
m less and the standard deviation was 0.967 m. Further, when the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, the slope of the linear equation was 0.967, R as shown in FIG.
2 was 0.666 and the terrace length was 73 times and all could be calculated by computer.

【0025】実施例5 プロセスコンピュータに入力される初期条件をn=3と
する以外は、実施例4と同じにし、実施例1で得られた
測定データを基にして計算値と読取値より、その差の平
均値と標準偏差を求めたところ、平均値は計算値が読取
値より0.03m少なく、標準偏差は0.11mであっ
た。また読取値と計算値の相関を実施例1と同様にして
求めたところ、一次式の傾きは0.990、R2 は0.
179で、テラス長さをコンピュータで求めることがで
きたのは73回中、68回であった。
Example 5 The same as Example 4 except that the initial condition input to the process computer was n = 3, and based on the measured data obtained in Example 1, the calculated value and the read value When the average value and standard deviation of the difference were determined, the calculated average value was 0.03 m less than the read value, and the standard deviation was 0.11 m. Further, when the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, the slope of the linear equation was 0.990 and R 2 was 0.
In 179, the length of the terrace could be calculated by the computer in 68 times out of 73 times.

【0026】実施例6 プロセスコンピュータに入力される初期条件を平滑化処
理するための測定点の数kを0とし、n=3とする以外
は実施例4と同じにし、実施例1で得られた測定データ
を基にして計算値と読取値より、その差の平均値と標準
偏差を求めたところ、平均値は計算値が読取値より0.
03m少なく、標準偏差は0.12mであった。また読
取値と計算値の相関を実施例1と同様にして求めたとこ
ろ、一次式の傾きは0.952、R2 は0.422で、
テラス長さは73回共、全てコンピュータで求めること
ができた。
Example 6 The same as Example 4 except that the number k of measurement points for smoothing the initial condition input to the process computer is set to 0 and n = 3, and obtained in Example 1. Based on the measured data, the average value and the standard deviation of the difference were calculated from the calculated value and the read value, and the average value was 0.
It was less than 03 m and the standard deviation was 0.12 m. Further, when the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, the slope of the linear equation was 0.952, R 2 was 0.422, and
The terrace length was 73 times and all could be calculated by computer.

【0027】実施例7 プロセスコンピュータに入力される初期条件を、平滑化
処理するための測定点の数kを5、n=2、しきい値を
18.5°に設定し、実施例1で得られた測定データを
基にして計算値と読取値より、その差の平均値と標準偏
差を求めたところ、平均値は計算値と読取値が一致し、
標準偏差は0.09mであった。図11に示すように、
一次式の傾きは0.990、R2 は0.620で、テラ
ス長さは73回共、全てコンピュータで求めることがで
きた。
Example 7 In the first example, the initial conditions input to the process computer were set such that the number k of measurement points for smoothing processing was 5, n = 2, and the threshold value was 18.5 °. From the calculated value and the read value based on the obtained measurement data, when the average value and the standard deviation of the difference were obtained, the average value was the same as the calculated value and the read value,
The standard deviation was 0.09 m. As shown in FIG.
The slope of the linear equation was 0.990, R 2 was 0.620, and the terrace length was 73 times, all of which could be calculated by a computer.

【0028】実施例8 プロセスコンピュータに入力される初期条件を、n=3
とする以外は実施例7と同じにし、実施例1で得られた
測定データを基にして計算値と読取値より、その差の平
均値と標準偏差を求めたところ、平均値は計算値が読取
値より0.01m少なく、標準偏差は0.11mであっ
た。また読取値と計算値の相関を実施例1と同様にして
求めたところ、図12に示すように、一次式の傾きは
0.982、R2 は0.243で、テラス長さをコンピ
ュータで求めることができたのは、73回中、70回で
あった。
Example 8 The initial condition input to the process computer is n = 3.
The same as in Example 7 except that the difference between the calculated value and the read value was calculated based on the measured data obtained in Example 1, and the average value and standard deviation of the differences were calculated. It was 0.01 m less than the reading and the standard deviation was 0.11 m. Further, when the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, as shown in FIG. 12, the slope of the linear equation was 0.982, R 2 was 0.243, and the terrace length was calculated by a computer. It was possible to obtain 70 times out of 73 times.

【0029】実施例9 プロセスコンピュータに入力される初期条件を平滑化処
理するための測定点の数kを0とし、n=3とする以外
は実施例7と同じにし、実施例1で得られた測定データ
を基にして計算値と読取値より、その差の平均値と標準
偏差を求めたところ、平均値は計算値と読取値が一致
し、標準偏差は0.12であった。また読取値と計算値
の相関を実施例1と同様にして求めたところ、図13に
示すように、一次式の傾きは0.987、R2 は0.4
06で、テラス長さは73回共、全てコンピュータで求
めることができた。以上の結果を以下の表1に示す。
Example 9 The same as Example 7 except that the number k of measurement points for smoothing the initial condition input to the process computer was set to 0 and n = 3, and obtained in Example 1. Based on the measured data, the average value and the standard deviation of the difference were determined from the calculated value and the read value. The average value was the same as the calculated value and the read value, and the standard deviation was 0.12. Further, when the correlation between the read value and the calculated value was obtained in the same manner as in Example 1, as shown in FIG. 13, the slope of the linear equation was 0.987 and R 2 was 0.4.
In 06, the terrace length was 73 times and all could be calculated by computer. The above results are shown in Table 1 below.

【0030】[0030]

【表1】 なお、表中、計算値−読取値の平均値を記載した欄の数
値に付した−(マイナス)符号は、計測値が読取値より少
ないことを示す。
[Table 1] In the table, a minus sign attached to the numerical value in the column in which the calculated value-the average value of the read values is described indicates that the measured value is less than the read value.

【0031】表1に見られるように、プロセスコンピュ
ータに入力される初期条件k=5、n=2としたものが
計算値と読取値の差が最も少なく、ばらつきが少なくな
り、しきい値を15°→17.5°→18.5°と上げ
る程改善され、実施例7で最善の結果が得られること、
k=5、n=3と平滑化する程、計算不能となるケース
が増える傾向があること、実施例3、6、9のように、
k=0の平滑化処理を行わない場合でも、計算値と読取
値の差が少なく、ばらつきを少なくできること等が分か
った。
As shown in Table 1, when the initial conditions k = 5 and n = 2 input to the process computer are set, the difference between the calculated value and the read value is the smallest, the variation is small, and the threshold value is set. It is improved by increasing from 15 ° → 17.5 ° → 18.5 °, and the best result is obtained in Example 7.
As the smoothing of k = 5 and n = 3 tends to increase the number of cases in which calculation becomes impossible, as in Examples 3, 6, and 9,
It was found that even when the smoothing process of k = 0 is not performed, the difference between the calculated value and the read value is small and the variation can be reduced.

【0032】なお、上述するしきい値の設定は、図1に
示す傾斜部における直線b領域の傾斜角から、炉壁近傍
のフラット部における直線a領域の傾斜角(ゼロ)に変
曲する点、即ち交点cの傾斜角を採用すると良い。つま
り、鉱石の場合は、傾斜部bの傾斜角は30°前後であ
るから、しきい値としてはその半分の15°を採用し、
傾斜部bの傾斜角が37°程度であるコークスの場合
は、しきい値に18.5°を採用すると良く、堆積原料
によってしきい値の値を使い分けると、テラス長さの演
算精度はより向上する。
The setting of the above-mentioned threshold value is a point at which the inclination angle of the straight line region b in the inclined portion shown in FIG. 1 is changed to the inclination angle (zero) of the straight line region a in the flat portion near the furnace wall. That is, the inclination angle of the intersection point c may be adopted. That is, in the case of ore, the inclination angle of the inclined portion b is around 30 °, so half of that is used as the threshold value, 15 °,
In the case of coke in which the inclination angle of the inclined portion b is about 37 °, it is advisable to adopt 18.5 ° as the threshold value. If the threshold value is used properly, the calculation accuracy of the terrace length will be higher. improves.

【0033】[0033]

【発明の効果】請求項1に係わる発明によると、測深装
置により測定して得た深度データを平滑化処理し、かつ
中心差分による一次近似処理を行うことにより、ノイズ
が除去され、テラス長さを精度よく求めることができ
る。
According to the first aspect of the present invention, noise is removed and the terrace length is reduced by smoothing the depth data measured by the sounding device and performing the first-order approximation process based on the central difference. Can be obtained accurately.

【0034】請求項2に係わる発明によると、請求項1
に係わる発明に比べ、平滑化処理するためのプロセス2
がない分、プロセスが簡素化され、計算不能となるケー
スも少なくなり、テラス長さも請求項1に係わる発明と
ほゞ同様の精度で求めることができる。
According to the invention of claim 2, claim 1
Process 2 for smoothing compared with the invention according to 1.
As a result, the process is simplified, the number of cases where calculation becomes impossible is reduced, and the terrace length can be obtained with almost the same accuracy as the invention according to claim 1.

【0035】請求項3に係わる発明によると、請求項1
に係わる発明に比べ、平滑化処理するためのプロセス
(5)がない分、プロセスが簡素化され、測定点のピッ
チを小さくすることにより、テラス長さを請求項1に係
わる発明と同様の精度で求めることができる。
According to the invention of claim 3, claim 1
Compared with the invention of claim 1, the process (5) for smoothing is not provided, so that the process is simplified and the pitch of the measurement points is made smaller, so that the terrace length has the same accuracy as that of the invention of claim 1. Can be found at.

【図面の簡単な説明】[Brief description of drawings]

【図1】テラス長さを人為的に求める場合について示す
図。
FIG. 1 is a diagram showing a case where a terrace length is artificially obtained.

【図2】勾配を計算するための説明図。FIG. 2 is an explanatory diagram for calculating a gradient.

【図3】テラス長さをコンピュータを用いて計算して求
める場合の従来法について示す図。
FIG. 3 is a diagram showing a conventional method when calculating the terrace length by using a computer.

【図4】深度データのグラフ。FIG. 4 is a graph of depth data.

【図5】平滑化処理方法を示す図。FIG. 5 is a diagram showing a smoothing processing method.

【図6】中心差分による傾斜角を求める方法について示
す図。
FIG. 6 is a diagram showing a method of obtaining a tilt angle based on a center difference.

【図7】テラス長さを求める方法について示す図。FIG. 7 is a diagram showing a method for obtaining a terrace length.

【図8】しきい値未満の傾斜角が二か所ある場合のグラ
フ。
FIG. 8 is a graph when there are two tilt angles less than a threshold value.

【図9】実施例1の読取値と計算値の相関を示すグラ
フ。
9 is a graph showing the correlation between the read value and the calculated value in Example 1. FIG.

【図10】実施例4の読取値と計算値の相関を示すグラ
フ。
FIG. 10 is a graph showing the correlation between the read value and the calculated value in Example 4.

【図11】実施例7の読取値と計算値の相関を示すグラ
フ。
FIG. 11 is a graph showing the correlation between the read value and the calculated value in Example 7.

【図12】実施例8の読取値と計算値の相関を示すグラ
フ。
FIG. 12 is a graph showing the correlation between the read value and the calculated value in Example 8.

【図13】実施例9の読取値と計算値の相関を示すグラ
フ。
FIG. 13 is a graph showing the correlation between the read value and the calculated value in Example 9.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高炉炉頂部の原料堆積層の表面形状をもと
に炉壁近傍のテラス長さをコンピュータを用いて演算す
る方法であって、 (1)測深装置を用いて原料堆積層表面までの深度を炉
半径方向に沿って任意の間隔ごとに測定するプロセス
と、 (2)上記(1)の工程で測定した各測定点のうち、炉
壁側と炉中心側の測定点を除く各測定点において、その
前後の複数の測定点の深度データを用いて多項式適用に
よる平滑化データ処理を行うプロセスと、 (3)測定点iから前後にn点離れた測定点i−nとi
+nにおける、上記(2)の工程で平滑化処理された深
度データから中心差分による一次微分近似処理を行い、
測定点iにおける堆積層表面の傾斜角を算出するプロセ
スと、 (4)上記(3)の工程で算出された各測定点の傾斜角
に関するデータを炉半径方向にスキャニングし、傾斜角
がしきい値未満となる測定点を検出するプロセスと、 (5)上記(4)の工程でしきい値未満として検出され
た測定点と、その近傍の測定点の上記傾斜角に関するデ
ータより最小二乗法を用いて一次式を求め、この一次式
としきい値が一致する位置を検出するプロセスと、 (6)上記(5)の工程で検出した、しきい値と一致す
る位置より炉壁までの水平距離を求めるプロセスよりな
ることを特徴とするテラス長さ演算方法。
1. A method of calculating the terrace length near the furnace wall using a computer based on the surface shape of the raw material deposited layer at the top of the blast furnace, comprising: (1) the surface of the raw material deposited layer using a sounding device. Of the depths up to the point along the radial direction of the furnace at any interval, (2) Of the measurement points measured in the step (1) above, excluding the measurement points on the furnace wall side and the furnace center side At each measurement point, a process of performing smoothed data processing by applying a polynomial using depth data of a plurality of measurement points before and after the measurement point, and (3) measurement points i-n and i that are n points away from the measurement point i before and after.
At + n, the first-order differential approximation processing by the central difference is performed from the depth data smoothed in the step (2) above,
The process of calculating the inclination angle of the surface of the deposited layer at the measurement point i, and (4) the data regarding the inclination angle of each measurement point calculated in the process of (3) above is scanned in the furnace radial direction to obtain the inclination angle. The process of detecting a measurement point that is less than the value, and (5) the least squares method from the measurement points detected as less than the threshold value in the step (4) above and the data of the inclination angle of the measurement points in the vicinity thereof The process of finding a linear expression using the linear expression and detecting the position where the threshold value matches the linear expression, and (6) the horizontal distance from the position where the threshold value matches the furnace wall detected in the step (5) above A method of calculating the terrace length, which comprises a process for obtaining.
【請求項2】上記(2)のプロセスが省かれ、(3)の
プロセスにおいて用いられる平滑化処理された深度デー
タの代わりに(1)のプロセスで測定した深度データが
用いられることを特徴とする請求項1記載のテラス長さ
演算方法。
2. The process (2) is omitted, and the depth data measured in the process (1) is used instead of the smoothed depth data used in the process (3). The method for calculating the terrace length according to claim 1.
【請求項3】上記(5)のプロセスを省き、上記(4)
のプロセスにおいて検出された、しきい値未満とよりな
る測定点より炉壁までの水平距離を求めることを特徴と
する請求項1又は2記載のテラス長さ演算方法。
3. The process of (5) above is omitted and the process of (4) above is omitted.
The terrace length calculation method according to claim 1 or 2, wherein the horizontal distance to the furnace wall is obtained from a measurement point that is less than the threshold value and that is detected in the process.
JP2001268153A 2001-09-05 2001-09-05 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace Expired - Fee Related JP4675523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268153A JP4675523B2 (en) 2001-09-05 2001-09-05 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268153A JP4675523B2 (en) 2001-09-05 2001-09-05 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace

Publications (2)

Publication Number Publication Date
JP2003073716A true JP2003073716A (en) 2003-03-12
JP4675523B2 JP4675523B2 (en) 2011-04-27

Family

ID=19094181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268153A Expired - Fee Related JP4675523B2 (en) 2001-09-05 2001-09-05 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace

Country Status (1)

Country Link
JP (1) JP4675523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185322A (en) * 2008-02-05 2009-08-20 Kobe Steel Ltd Method for monitoring abnormal charge into blast furnace, and monitoring device using the method
JP2010138486A (en) * 2008-11-14 2010-06-24 Kobe Steel Ltd Method of and device for measuring terrace length in blast furnace
CN108801117A (en) * 2018-07-31 2018-11-13 广西出入境检验检疫局危险品检测技术中心 A kind of scale of depth for explosive single parcel post experiment and stacking experiment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950102A (en) * 1982-09-14 1984-03-23 Kawasaki Steel Corp Operating method of blast furnace
JPH0694367A (en) * 1991-05-28 1994-04-05 Nippon Steel Corp Estimating method for depositing shape of material to be chaged in vertical furnace
JPH0860212A (en) * 1994-08-12 1996-03-05 Nkk Corp Method for supporting distribution control of charged material in bell-less blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950102A (en) * 1982-09-14 1984-03-23 Kawasaki Steel Corp Operating method of blast furnace
JPH0694367A (en) * 1991-05-28 1994-04-05 Nippon Steel Corp Estimating method for depositing shape of material to be chaged in vertical furnace
JPH0860212A (en) * 1994-08-12 1996-03-05 Nkk Corp Method for supporting distribution control of charged material in bell-less blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185322A (en) * 2008-02-05 2009-08-20 Kobe Steel Ltd Method for monitoring abnormal charge into blast furnace, and monitoring device using the method
JP2010138486A (en) * 2008-11-14 2010-06-24 Kobe Steel Ltd Method of and device for measuring terrace length in blast furnace
CN108801117A (en) * 2018-07-31 2018-11-13 广西出入境检验检疫局危险品检测技术中心 A kind of scale of depth for explosive single parcel post experiment and stacking experiment
CN108801117B (en) * 2018-07-31 2024-02-23 南宁海关技术中心 Depth scale for single explosive package test and stacking test

Also Published As

Publication number Publication date
JP4675523B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CN109901153B (en) Target track optimization method based on information entropy weight and nearest neighbor data association
CN110906875B (en) Visual processing method for aperture measurement
KR101932227B1 (en) Method for detecting position of rebar in reinforced precast concrete and detecting apparatus the same
JPH0555802B2 (en)
CN112381781B (en) Glue road defect detection method based on 3D point cloud
CN113761705A (en) Multi-sensor fusion method and system based on multi-dimensional attribute correlation analysis
CN106813570B (en) The identification of elongated cylindrical object dimensional and localization method based on line-structured light scanning
CN108921170A (en) A kind of effective picture noise detection and denoising method and system
JP2003073716A (en) Method for calculating terrace length of raw material deposition layer at blast furnace top
CN113566739B (en) Library matching method, system, server and storage medium for optical scattering
JP3126288B2 (en) Method of measuring rail rail shape
CN112378377A (en) Non-contact tunnel monitoring and measuring method based on image acquisition sensor
US7256896B2 (en) Method for verifying scan precision of a laser measurement machine
CN105631231A (en) Method for correcting temperature measured value for hot rolling process
CN114065120B (en) Method for determining cycle threshold of linear-sigmoidal growth curve for PCR
CN109507730B (en) Improved method for determining normal depth of refraction surface
CN112113517B (en) Method for detecting flatness of sliding plate brick
WO2019053773A1 (en) State determining device, state determining method, and computer readable recording medium
CN109856681B (en) Process analysis method for describing morphological change of water channel along direction of material source
Ivanova Identification of convection heat transfer coefficient of secondary cooling zone of CCM based on least squares method and stochastic approximation method
JP2021006826A (en) Surface wave survey analysis method and surface wave survey analyzer
WO2024043062A1 (en) Material discharge control device and material charging device
JP2010065308A (en) Method and device for measuring terrace length in blast furnace
CN114511678B (en) Tunnel super-under excavation numerical value calculation method based on laser point cloud measurement
JPH06264153A (en) Method for predicting slab temperature in continuous type heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees