JPS5950102A - Operating method of blast furnace - Google Patents

Operating method of blast furnace

Info

Publication number
JPS5950102A
JPS5950102A JP16055882A JP16055882A JPS5950102A JP S5950102 A JPS5950102 A JP S5950102A JP 16055882 A JP16055882 A JP 16055882A JP 16055882 A JP16055882 A JP 16055882A JP S5950102 A JPS5950102 A JP S5950102A
Authority
JP
Japan
Prior art keywords
furnace
charge
coke
ore
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16055882A
Other languages
Japanese (ja)
Other versions
JPS6041122B2 (en
Inventor
Toshiro Sawada
沢田 寿郎
Kazuo Okumura
奥村 和男
Akira Kato
明 加藤
Koichi Hayase
早瀬 鉱一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16055882A priority Critical patent/JPS6041122B2/en
Publication of JPS5950102A publication Critical patent/JPS5950102A/en
Publication of JPS6041122B2 publication Critical patent/JPS6041122B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To perform stable operation of blast furnace for a long period of time by determining the control values which indicate quantitatively the deposited state of charge in the furnace and controlling various charging conditions, etc. so as to maintain the deposited layer of the charge in the furnace within the range of said control values. CONSTITUTION:The distance from the inside wall 1 of a furnace up to the position 3 in the crest part of the charge deposited layer is designated as L, in the deposited layer of the charge in the radial direction of the charge in the furnace. The deposition angle of the slope 5 of the layer on the central part side of the furnace is designated as theta1 and the deposition angle of the slope 4 of the layer on the wall 1 side as theta2. The values L, theta1, theta2 are so controlled so as to maintain 0.5-1.5m for L for both ore and coke, and 23-35 deg. theta1 and within + or -10 deg. for 2 for coke and 20-30 deg. theta1 and within + or -10 deg. theta2 for ore. The deposited state in the furnace is thus maintained to provide a target distribution of gaseous flow.

Description

【発明の詳細な説明】 本発明は、高炉操業法に関するものであり、とくに炉頂
における炉半径方向の装入物分布の形についての管理値
を決め、これが所定の範囲内のものとなるような装入物
分布制御をすることGこより、長期に安定した高炉操業
を行うのに好適な方法について提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blast furnace operating method, and in particular, determines control values for the shape of the charge distribution in the radial direction of the furnace at the top of the furnace, and ensures that this is within a predetermined range. We propose a method suitable for stable blast furnace operation over a long period of time by controlling the burden distribution.

一般に、高炉操業を行うにあたっては、炉内の装入物が
どのように分布しているか、あるいは装入物層表面が炉
高方向のどの位曖にあるかを常に把握しておく必要があ
る。最近では、第11Nに示すような、斜式のプロフィ
ル測定器、第2図に示すようなμ波式のプロフィル測定
器が開発され、炉内Gこおける装入物堆積状態がある程
度明瞭に把握できるようになった。ところが、実操業に
おける装入物堆積状態は、原料の粒度構成や炉内ガス流
れ等の違いによって変化するだけでなく、炉頂分布制御
装置であるベルレスシュートヤムーパブルアーマを調整
することによっても大きく8I4なる。
Generally, when operating a blast furnace, it is necessary to always know how the charge is distributed in the furnace, or how far the surface of the charge layer is in the direction of the furnace height. . Recently, an oblique profile measuring device as shown in No. 11N and a μ wave type profile measuring device as shown in Fig. 2 have been developed, and the state of charge accumulation in the furnace G can be grasped to some extent clearly. Now you can. However, the state of charge deposition in actual operation not only changes due to differences in the particle size composition of the raw material and the gas flow in the furnace, but also changes significantly by adjusting the bellless chute Yamu Pable Armor, which is a furnace top distribution control device. 8I4 becomes.

しかし、現状では単に装入物表面形状を測定するだはで
、どのようなプロフィルにすべく分布調整を行ってよい
かGこついては未だ定量化されておらず、操禁者の勘に
頼って試行錯誤を繰返しながら行っていた。そのため、
ひとたび炉の操業状態が不安定になると、その復帰に長
時間を要するばかりか、長期にわたって安定した高炉操
業を行うこと等は不可能な状況下にあった。
However, at present, it is not enough to simply measure the surface shape of the charge, but the question of what kind of profile should be adjusted for distribution has not yet been quantified, and the method relies on the intuition of the operator. It was a process of trial and error. Therefore,
Once the operating condition of the furnace became unstable, it not only took a long time to recover, but it was also impossible to operate the blast furnace stably over a long period of time.

本発明は、上記従来技術の欠点を解決するために発明し
たもので、炉内において時々刻々と変化する炉内ガス流
のjfjhきを正確に反映してともに変動する装入物の
炉内堆積状態を定量的に示す管理値を定め、炉内装入物
堆積層がかかる管理値の範囲内に収まるように各種の装
入条件等を調節することにより、安定した操業を行うこ
とを特徴とする高炉操業法についての提案を目的とする
ものである。要するに、本発明は装入物堆積層の状態:
すなわち、頃ましい炉内ガス流分布となるように制御対
象となる座入物分布状態−を示す管理値を定めてフィー
ドバック制御していくことで、操業目標に対してあまり
変動のない高炉操業ができるようにした方法である。そ
の構成の要旨とするところは、高炉内装入物の堆積状頭
分変化させることにより、炉内ガス流分布を!fil 
lll1l L、なから高炉操業P行う方法において、 炉内における装入物の炉半径方向Gこお目る゛み入物堆
積層を、 炉内壁から山部までの距離をLとし、炉中心部側の装入
物層堆積斜面のもつ堆4葭面をθ]、と才る一方、炉壁
側の脇入物層堆積角を02とするとき、それらの値L、
θl、θ2が、鉱石・コークスともL:0.5〜1.5
mであり、かつ装入物層がコークスの場合にあっては、
θ1:25°〜35°で02:±100以内−そして鉱
石の場合にあっては、θ1:2F+’〜80° θ2:
±lO°以内のψα囲になるように青、即することによ
り、 目(瑣ガス流分布となる炉内1止績状懐に維持していく
ことを特徴とする高炉操業法である。以下にその構成の
詳細を説明する。
The present invention was invented in order to solve the above-mentioned drawbacks of the prior art, and it is possible to accurately reflect the fluctuation of the gas flow in the furnace which changes from time to time in the furnace, and to deposit the charge in the furnace that changes together with the flow of gas in the furnace. It is characterized by stable operation by setting control values that quantitatively indicate the state and adjusting various charging conditions etc. so that the deposited layer of the in-furnace contents falls within the range of the control values. The purpose of this report is to propose methods for operating blast furnaces. In short, the present invention deals with the state of the charge deposit layer:
In other words, by setting a control value that indicates the distribution of debris to be controlled so as to achieve a reasonable gas flow distribution in the furnace, and performing feedback control, blast furnace operation can be achieved without much fluctuation relative to the operational target. This is the method that made it possible to do this. The gist of its configuration is that the gas flow distribution inside the blast furnace can be changed by changing the piled head of the contents inside the blast furnace! fil
lll1l L, in the method of performing blast furnace operation P, the charge accumulation layer in the furnace radial direction G is defined as the distance from the inner wall of the furnace to the peak, and L is the distance from the inner wall of the furnace to the peak, and The side charge layer deposition angle on the side charge layer deposition slope is θ], and when the side charge layer deposition angle on the furnace wall side is 02, their values L,
θl and θ2 are L: 0.5 to 1.5 for both ore and coke.
m, and when the charge layer is coke,
θ1: 25° to 35° 02: Within ±100 - and in the case of ore, θ1: 2F+' to 80° θ2:
This is a blast furnace operating method that is characterized by maintaining the inside of the furnace in a constant state, which results in a normal gas flow distribution, by adjusting the ψα range within ±lO°. The details of its configuration are explained below.

一般に、高炉操業は、炉内装入物の堆濱状態に支配され
る。とくに、炉内装入物、准漬Jφ7の堆積角や形状を
所定の状態に管理すれは、常に炉頂において回−の装入
物堆積層プロフィルを得ることができるから、ひいては
これが長門にわたる安定した高炉操業の確保に対し有効
となるという基本的な知見をもとに、以下のような構成
としたものであるO すなわち、高炉操業の安定化は、炉内のガス流れによっ
て支配される。そして、それを支配するのは、1Eに炉
中心部くと炉f笥部とに見られるガス流れである。それ
らのガスの流れは、第3図に示すように、炉中心部のガ
ス流れはその中心部における装入物堆積状態によI)、
また炉壁部のガス流れはその炉壁部近傍の装入物堆積状
態により決まり、さらにはそれらのガスの流れはさらに
M形装入物分布の例で償うと炉内壁と山部までの距離1
1によっても規制されることが判った。そこでこれらθ
1゜θ2 、 LGこつき研究し、以下のように決めた
Generally, blast furnace operation is controlled by the sedimentation state of the contents in the furnace. In particular, if the deposition angle and shape of the furnace charge, semi-soaked Jφ7, are controlled to a predetermined state, it is possible to always obtain a single charge deposition layer profile at the top of the furnace, which in turn is stable over Nagato. Based on the basic knowledge that it is effective for ensuring blast furnace operation, the following configuration was adopted.In other words, stabilization of blast furnace operation is controlled by the gas flow within the furnace. What governs this is the gas flow seen in the furnace center and the furnace f section in 1E. As shown in Figure 3, the gas flow at the center of the furnace depends on the state of charge deposition at the center.I)
In addition, the gas flow in the furnace wall is determined by the charge deposition state near the furnace wall, and furthermore, the flow of these gases is determined by the distance between the furnace inner wall and the peak, if we take an example of M-shaped charge distribution. 1
It turns out that it is also regulated by 1. So these θ
1°θ2, I researched LG and decided as follows.

第8図において、1は炉壁、2は装入物の堆、積層表面
、8け山部の位置(炉内壁面からの距離L)4は炉壁側
の装入物層Q積斜面を示しその堆71■陶をθ2とし、
5は炉中心部側の装入物堆積斜面を示しその堆積角を0
1とする。上記記号L、θ2、θ1の求め方は種々の方
法かあるが、本発明では以下のようにして定めた。その
方法は、ζ54図に示すように、炉半径方向の6ケ所で
第1・2図に示すようなプロフィル測定器(ルill深
d)を使って装入物堆積層表1frr 2までの距離を
測定し、そのうち堆積斜面のもようを最もよく示す(リ
ボインドと■ポイント間の斜面の角度を作図により求め
て、炉中心部側の斜面堆積角θ1とし、またP壁側斜面
の堆積角θ2は■ポイントと■ポイント間の角度を同様
な作図によl’l求めたものである。
In Fig. 8, 1 is the furnace wall, 2 is the charge pile, the laminated surface, and the position of the 8-crest part (distance L from the furnace wall surface) 4 is the charge layer Q pile slope on the furnace wall side. As shown, the pottery is θ2,
5 indicates the charge deposition slope on the furnace center side, and its deposition angle is set to 0.
Set to 1. There are various methods for determining the above symbols L, θ2, and θ1, but in the present invention, they are determined as follows. The method is as shown in Fig. (The angle of the slope between the rebond and point ■ is determined by drawing, and the slope deposition angle θ1 on the furnace center side is determined, and the deposition angle θ2 on the slope on the P wall side is determined. is the angle between point ■ and point ■ determined by a similar drawing.

一方、上記のような装入物層堆積斜面4,5を規制する
直線atbの父点近傍を山部3とし、炉内壁面からの距
離をLとして測定した。なお・この山部3までの距離り
は、上記堆積角θlと02から得られる直線a、l b
のみでは設定できない。第5図に示すように同じθ1.
θ2でも櫨々のLの大きさを有し、その違いによって炉
半径方向面で示されるプロフィルも全く異なる。そこで
不発1111Jの場合、これらのル情を考慮して山部8
の位置を上記のようにa、b線の父点で特定した。なお
、測定方式がゲ4なる3g1合は、測定点の数をふやし
て計曽、磯による統計処理を行う。例えは、測深装置と
して採用したものが、μ波やレーザ式では測定値を最小
二乗法で求め、θ1.02を計算するのが望ましい。
On the other hand, the vicinity of the father point of the straight line atb regulating the charge layer deposition slopes 4 and 5 as described above was defined as the mountain part 3, and the distance from the furnace inner wall surface was defined as L.・The distance to this mountain part 3 is the straight line a, l b obtained from the above-mentioned pile angle θl and 02.
It cannot be set only by As shown in FIG. 5, the same θ1.
Even θ2 has the same size as L, and the profile shown in the furnace radial direction is also completely different depending on the difference. Therefore, in the case of unexploded 1111J, considering these circumstances, Yamabe 8
The position was specified by the father point of the a and b lines as described above. In addition, for 3g1 cases where the measurement method is Ge4, the number of measurement points is increased and statistical processing by Keiso and Iso is performed. For example, if the depth sounding device employed is a μ-wave or laser type, it is desirable to obtain the measured value using the least squares method and calculate θ1.02.

次に、装入物層、f>’t j・〆7の状態を示すと同
時に、高炉操業の目標となる゛筺理値設定の方法につい
て説明する。
Next, the state of the charge layer f>'t j・〆7 will be shown, and at the same time, the method of setting the "chamber value" which is the target of blast furnace operation will be explained.

一般に高炉操業は、炉頂から−)今人された原料の装入
物堆積層のプロフィルの違いによって炉内ガス流れが変
化し、これを調整することにより装入物降下の安定を1
図ることができる。そこで、かかる装入物降下の安定度
、すなわち、79771111度あるいは風圧変動指数
と、前記計f(u値り、θ」。
In general, during blast furnace operation, the gas flow in the furnace changes depending on the profile of the charge deposit layer of the raw material that has been removed from the top of the furnace, and by adjusting this, the stability of the charge descent can be stabilized.
can be achieved. Therefore, the stability of the burden descent, that is, 79771111 degrees or the wind pressure fluctuation index, and the above-mentioned total f (u value, θ').

θ2の1直どの化1児(周1系をn4査し、力)fJ)
るθ〃且]直を求めた。第6図にスリップ頻度と炉中心
部側の装入物層の堆積角01の関係を、第7図には減風
回数と上記堆積角01との関係を示す。図中の○印は鉱
石の堆積角θ1.X印はコークスの堆積角θ1を示すが
、この図から装入物中鉱石の堆積角θ1は、80°以下
においてスリップが少すく、シかもこの堆積角θ1は2
0°〜80°以下であれば、風圧変pL1Bを抑制する
ための減風回数も少ない。このθ1が20’未満という
ことは、鉱石が炉中心部に多く堆積していることになり
、通気性態化に伴って、風圧変動が多くなり、減風回数
も多く t、rることを意味している。また、鉱石の0
1が30°以上になると、装入物層の傾斜面4.5を鉱
石が転動して中心に堆積する流れこみを発生し、荷降り
の不安定をもたらしてスリップが増加する。従って、ス
リップがなくかつ風圧変動の少ない安定操業の好適範囲
は上記堆積角θ1が20°〜aO°の範囲となる。
Calculation of θ2's 1st direction (by examining the circumference 1 system by n4, force) fJ)
We calculated the θ〃and]direction. FIG. 6 shows the relationship between the slip frequency and the stacking angle 01 of the charge layer on the furnace center side, and FIG. 7 shows the relationship between the number of wind reductions and the stacking angle 01. The circle mark in the figure indicates the ore deposition angle θ1. The X mark indicates the coke deposition angle θ1, and from this figure, the slippage is small when the deposition angle θ1 of the ore in the charge is 80° or less, and this deposition angle θ1 may be 2.
If it is 0° to 80° or less, the number of wind reductions to suppress the wind pressure change pL1B is also small. If θ1 is less than 20', this means that a large amount of ore is deposited in the center of the furnace, and as the furnace becomes more aerated, the wind pressure fluctuates more and the number of wind reductions increases. It means. Also, 0 of ore
1 is greater than 30°, ore rolls on the inclined surface 4.5 of the charge layer and deposits in the center, causing instability in unloading and increasing slip. Therefore, a suitable range for stable operation with no slip and less wind pressure fluctuation is a range where the above-mentioned deposition angle θ1 is 20° to aO°.

一方、装入物中コークスの堆積角θ1は25°以下では
スリップ頻度が多く、35°以上では減風回数が多くな
る。要するに、コークスの堆、噴角θ1が大きくなれば
、次Gこその上192に寝入される鉱石の炉中心部への
流れこみが多くなり、通気性悪化に伴って炉況が不安定
となる。コークスの堆積角θ1が小さいということは、
中心にコークスが多く堆積していることを意味し、それ
だけ鉱石が炉壁側にシフトされ、中心流指向の操業とな
り、風圧は安定するが、炉壁不活性帯の成長が促進され
、スリップを発生しやすい。以上説明したところがらコ
ークスの堆積角θlは25°〜35°と設定される。
On the other hand, when the deposition angle θ1 of coke in the charge is less than 25°, the slip frequency increases, and when it is 35° or more, the number of air reductions increases. In short, the larger the coke pile and the injection angle θ1, the more ore will flow into the center of the furnace during the next G, and the furnace condition will become unstable due to deterioration of air permeability. Become. The fact that the coke deposition angle θ1 is small means that
This means that a large amount of coke is deposited in the center, and the ore is shifted toward the furnace wall, resulting in center flow-oriented operation, which stabilizes the wind pressure, but promotes the growth of the inert zone on the furnace wall, causing slippage. Likely to happen. As explained above, the coke deposition angle θl is set to 25° to 35°.

さて、炉壁側の装入物層斜面の堆積角θ2は、装入物の
堆積状態が第8図に示すような、M型(a)、M型(b
)分布で異なる様相を示す。そこで、該堆積角θ2の符
号がプラスのときはM型、マイナスのときはM型として
以下に説明する。
Now, the deposition angle θ2 of the slope of the charge layer on the furnace wall side is determined by the M type (a), M type (b
) showing different aspects in the distribution. Therefore, when the sign of the deposition angle θ2 is positive, it is assumed to be M type, and when it is negative, it is assumed to be M type.

M型分布において、コークスの堆積角θ2が大きい場合
、鉱石が炉壁側に多く装入され、付着物生成の原因とな
る。また、M型分布において、コークスの堆積角θ2が
大きい場合、鉱石の炉中心部への流れこみを助長する結
果となり、前述の風圧が不安定となる。鉱石の場合M型
分布で堆積角θ2が大きい場合、炉壁部にコークスが多
く装入され、周辺流指向過剰となI)、M型分布で堆積
角θ2が大きい場合、炉中心部へのコークスの流れこみ
を助長し、分布制御上好ましくない。
In the M-type distribution, when the coke deposition angle θ2 is large, a large amount of ore is charged toward the furnace wall, which causes deposits to form. Furthermore, in the M-type distribution, if the coke deposition angle θ2 is large, the flow of ore into the center of the furnace is promoted, and the above-mentioned wind pressure becomes unstable. In the case of ore, if the deposition angle θ2 is large in the M-type distribution, a large amount of coke will be charged to the furnace wall, resulting in excessive peripheral flow direction. This promotes coke flow and is unfavorable in terms of distribution control.

第9図に堆積角θ2と風圧変動の回数(減風回数)との
関係を示す。この図から明らかなように、コークスGま
±10°をこえると風圧変動が多くなり、鉱石も±lθ
°をこえれば風圧変動が多くなる。そこで適正な堆積角
θ2の管理は±10°、すなわち、炉内装入物堆積状態
がM型、M型分布のいずれの場合も10°以内である。
FIG. 9 shows the relationship between the accumulation angle θ2 and the number of wind pressure fluctuations (wind reduction number). As is clear from this figure, when the coke G exceeds ±10°, wind pressure fluctuations increase, and the ore also changes ±lθ.
If the temperature exceeds °, wind pressure fluctuations will increase. Therefore, the proper control of the deposition angle θ2 is ±10°, that is, within 10° whether the in-furnace contents are deposited in the M type or in the M type distribution.

次に、山部3の位置:すなわち炉内壁面からの距離りに
ついては、例えば鉱石に、ついての山部3までの距離り
が長いということは鉱石が炉中心側へ装入されて風圧レ
ベルが上昇し、・炉中心部のlll1気性が悪化するこ
とを意味している。一方・コークスの例では、該山部8
までの距1唯りが大きくなれば、それだけ炉中心部側に
コークスが入りやすくなり、中心流指向過多となって炉
壁の不活性帯の成長を促進する。図面の第1()1ズは
山部までの距離りとスリップ数(回/日)との関係分示
す。
Next, regarding the position of the peak 3, that is, the distance from the furnace inner wall, for example, if the distance to the peak 3 is long, it means that the ore is charged toward the center of the furnace and the wind pressure is leveled. This means that the temperature at the center of the furnace is getting worse. On the other hand, in the case of coke, the peak 8
The larger the distance 1, the easier it is for coke to enter the furnace center, resulting in excessive central flow direction and promoting the growth of an inert zone on the furnace wall. The first ()1 in the drawing shows the relationship between the distance to the mountain and the number of slips (times/day).

この図から判るように、炉壁内面から山部3までの距離
りが0.5〜1.6mの間で番まスリップの発生の1槙
度が少qいことから、これを適iE管理値とした。
As can be seen from this figure, when the distance from the inner surface of the furnace wall to the peak 3 is between 0.5 and 1.6 m, the number of occurrences of block slip is small. value.

このようGこしてMiJ記堆績JQθl、θ2および距
離りをに配設定値になるように肺入物分布を制?1ll
lすれば、常DJ一定の堆イ8状態が得られ、滴旧なガ
ス流分布σ)イー・とで、長期Gこわたって安定した高
炉の操業をイ1することかできる。
In this way, how can we control the lung intake distribution so that the MiJ results JQθl, θ2, and distance are set to the set values? 1ll
By doing so, a constant DJ state can be obtained, and stable blast furnace operation can be achieved over a long period of time with a constant gas flow distribution σ).

なお、上+71S した高炉操業目標となる各管理値り
In addition, each control value that is the target for blast furnace operation has increased by +71S.

θノ、θ2がfj!I n己のような設定した範囲内に
なるように、炉内博入物の堆fPt分イDを制御する方
法としては、ペルクイブの高炉であれば、ムーバブルア
ーマ−の110重11角、またGゴスドックラインの調
整など適宜の手段を採用1−る○とができる。一方、ベ
ルレス高炉であれは、施回シュートの1頃動角度、また
はストックライン等の調整手段をJ間室Gこ採用するこ
とにより行う。
θノ, θ2 is fj! In order to control the amount of Pt in the furnace so that it falls within a set range such as Appropriate measures such as adjusting the G Goss dock line can be adopted. On the other hand, in the case of a bellless blast furnace, adjusting means such as the first movement angle of the turning chute or the stock line is performed by employing a chamber G.

なお、ここで言うストックラインとけ、ベル々イブであ
れは、ベルの下’jJから1m下を零とし、その零点か
らり入物層表面までの距離を指し、またベルレスタイプ
であれば、節回シュート下1!?jから1m下を零とし
、その零点から装入物jφブ表面までの予め設定された
装入線を旨う。
In addition, the stock line and bell-to-be mentioned here refer to the distance from the zero point to the surface of the containing layer, with the zero point being 1m below the bottom of the bell, and if it is a bellless type, the node Lower 1 shot! ? The point 1 m below j is defined as zero, and a preset charging line from that zero point to the surface of the charging material jφ is used.

次に、上述した3つの高炉操省に当っての′t!理目標
とrjる管理値を便って高炉1・作業全行った実施例に
ついて以下説明する。
Next, let's talk about the three blast furnace operations mentioned above! An example in which all blast furnace 1 operations were carried out based on management targets and rj control values will be described below.

内容fi4500 m3のベルタイプ高炉で装入条件が
コークスベース84.3 t/ah 、鉱石] 18 
t/ch。
Contents FI 4500 m3 bell type blast furnace with charging conditions of coke base 84.3 t/ah, ore] 18
t/ch.

ストックライン1.2 mで、ムーバブルアーマの設定
をO]、03で操業した。(0103は、第]】IAに
示すようGこムーバブルアーマのノツチの設定が(Φ〜
■の5ポイントあるとき、コークスを炉内へ装入する時
にはA(Dノツチ、鉱石斧座人才る時Gこは16■ノツ
チに設定し、装入原料をムーバブルアーマ7にあてて装
入物の分布制御を行なう方法である。)以下、その具体
的な操業実1商例を第12図にもとづき説明する。
It was operated with a stock line of 1.2 m and a movable armor setting of O], 03. (0103 is No.]) As shown in IA, the setting of the notch of the G removable armor is (Φ~
When charging coke into the furnace when there are five points of (This is a method for controlling the distribution of

第121ffiには、高炉操業時に目標とするJZ記管
理値についての経時変化を示す。日付の4/2 には、
コークスの炉壁部側堆績亀θ2が大きくなった。そこで
ストックラインを1.2 mから1.3mへ下げること
により、コークスを炉壁側へ装入しM型分布からM型分
布へ変化させた。その結果、θ2は小さくなり管理値内
に入った。
The 121st ffi shows changes over time in the JZ control values targeted during blast furnace operation. On 4/2 of the date,
The coke deposition angle θ2 on the furnace wall side became larger. Therefore, by lowering the stock line from 1.2 m to 1.3 m, coke was charged toward the furnace wall side and changed from M-type distribution to M-type distribution. As a result, θ2 became smaller and fell within the control value.

その後、日イ」4/6&こけ、コークス、鉱石とも炉中
心部側の堆積角θlが低下した。そこで鉱石のアーマ−
ノツチを、■→■にコークスのアーマノツチを■→@に
変化させ、鉱石とコークスとを炉壁側へ装入することに
より、堆積θ1の回復1図った。
After that, the deposition angle θl on the furnace center side decreased for moss, coke, and ore. So the ore armor
By changing the notch from ■→■ and the armature notch of coke from ■→@, and charging ore and coke to the furnace wall side, the accumulation θ1 was recovered.

その後、4/10には、鉱石の山部までの距離りの大き
さが小さくなった。そこで鉱石のアーマ−ノツチを■→
■へ戻すことで、鉱石を炉内へ装入したところ、fif
l記距離の大きさは大きくなった。
After that, on April 10th, the distance to the ore mountain became smaller. So I found the ore Armor Notch■→
When the ore was charged into the furnace by returning to
The magnitude of the distance has increased.

その後−+/lSには、コークスの炉中心部堆+11?
Jθlが大きくμりすぎたので、ストックラインを上げ
て、コークスを炉内へ多く装入することにより堆積角θ
]は小さくなった。
After that, -+/lS contains +11?
Jθl was too large, so by raising the stock line and charging more coke into the furnace, the deposition angle θ
] has become smaller.

−1−述のようなJ」、θ1.θ2の各管理値を目標に
高炉の操業を行なったところ、長期にわたって安定した
高炉の操業が可能になった〇 なお、本実施例では、ストックラインとムーバブルアー
マの設定値を組み合わせて、それらを変更し、所定の管
理値になるように調整したところ。
-1- J'' as described above, θ1. When the blast furnace was operated with each control value of θ2 as the target, it became possible to operate the blast furnace stably over a long period of time. In this example, the stock line and movable armor settings were combined and After changing and adjusting to the specified control value.

適正なガス流分布に保つことができ、長期に安定した高
炉の操業が可能になったものである。これに対し、装入
物分布制御の操業アクションのいくつかを、適宜に組み
合わせても炉内半径方向の装入物層プロフィルを適正に
保つことができる。例えば、上記実施例のような、ムー
バルアーマとストックラインとの組合以外の他の待人条
件等を適宜に選択し組み合わせて1本発明の管理値にな
るように高炉の操業を行ってもよい。
It is possible to maintain an appropriate gas flow distribution, making stable operation of the blast furnace possible over a long period of time. On the other hand, it is possible to appropriately maintain the charge layer profile in the radial direction within the furnace by appropriately combining some of the operational actions for controlling the charge distribution. For example, the blast furnace may be operated to achieve the control value of the present invention by appropriately selecting and combining waiting conditions other than the combination of the mobile armor and the stock line as in the above embodiment.

以上説明したように、本発明によれば、炉内における装
入物の堆積状態を炉況変動の少ない適正状態に維持する
ことができるので、長期にわたり安定した高炉操業を確
保することが可能と7jつた。
As explained above, according to the present invention, it is possible to maintain the deposition state of the charge in the furnace in an appropriate state with little fluctuation in furnace conditions, so it is possible to ensure stable blast furnace operation over a long period of time. 7j ivy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は斜式プロフィル測定器の路線図、第2図はμ液
式プロフィル1ljl+¥器の路線図、第8図は炉内停
入物堆積状態を示すプロフィルの路線図 第4図は管理値計測基(いを示す説明図、第5図はjす
即値θ1.θ2.Lの関係を示す路線M。 第6図はスリップ細度と堆積角θlとの関係を示すグラ
フ、 第7図は減!@、同数と堆積角θ1との関係を示すグラ
フ、 第s 1ffi (a) 、 (b)は浸入物分布形式
を示す1路線[ゾ、第9図は減風回数と堆積角θ2との
関係を示すグラフ、 第10図はスリップ数と山+flXまでの距1唯りとの
関係?示すグラフ、 第111Jはアーマ−ノツチ作動のもようを示す路線図
、 ?A 12 Inは実施例操業における各管理値経時変
化のグラフである。 1・・・炉壁、2・・・座人物堆撰層の表面、3・・・
炉壁内面からの距離(J」)を示す山部の位置、4・・
・炉壁側の装入物j+):、+I!を斜面(堆積角θ2
)、5・・・炉中心γ迅を則の 寝入11勿ltb 、
+責多[而 (推1責川 θ] )、 611.ペル、
7・・・アーマ−ノツチ。 特許出願人 川崎’!l!!鉄株式会社第1図 第91
:(1 第31’4 第(1図 第7図 15   20  25  30   :35  40
・に戸中曵゛吉呵従りΩ]〆j)X@R’lq 角 (
θf)第8図 <:1)cljt、> /。 第ri i’=−r 惟f責角(θ2) 第10tχ1 第] ] 1¥1
Figure 1 is the route map of the oblique profile measuring device, Figure 2 is the route map of the μ liquid type profile 1ljl+¥ device, Figure 8 is the route map of the profile showing the state of accumulation of debris in the furnace, and Figure 4 is the route map of the control system. Figure 5 is a line M showing the relationship between the immediate values θ1, θ2, and L. Figure 6 is a graph showing the relationship between the slip fineness and the accumulation angle θl. is reduced!@, a graph showing the relationship between the same number and the deposition angle θ1, s 1ffi (a) and (b) are one line showing the infiltrate distribution form [zo, Figure 9 shows the number of wind reductions and the deposition angle θ2 Figure 10 is a graph showing the relationship between the number of slips and the distance to the mountain + flX. Figure 111J is a route map showing how the armor notch operates. It is a graph of changes in each control value over time in an example operation. 1... Furnace wall, 2... Surface of the pedestal sediment layer, 3...
The position of the peak indicating the distance (J”) from the inner surface of the furnace wall, 4...
・Charge j+) on the furnace wall side:, +I! is the slope (accumulation angle θ2
), 5... Furnace center γ speed rule's sleep 11 butltb,
+Zenta [ji (estimate 1 responsibility river θ]), 611. Pell,
7... Armor Notch. Patent applicant Kawasaki'! l! ! Tetsu Co., Ltd. Figure 1 Figure 91
:(1 31'4 1st fig. 7 15 20 25 30 :35 40
・Nito Naka 曵゛Lucky 呵 Ω] 〆j)X@R'lq corner (
θf) Fig. 8 <:1) cljt, > /. 1st ri i'=-r 10th tχ1 th ] ] 1 ¥1

Claims (1)

【特許請求の範囲】 1、 高炉内装入物の堆積状態を変化させることにより
、炉内ガス流分布を制御しながら高炉操業を行う方法に
おいて、 炉内における装入物の炉半径方向における装入物堆積層
を、 炉内壁から山部までの距離をLとし、炉中心部側の装入
物層堆積斜面のもつ堆積角をθlとする一方、炉壁側の
装入物層堆積面のもつ堆積角を02とするとき、それら
の値り、θ1゜θ2が、鉱石・コークスともL : 0
.5〜1.5mであり、かつ装入物層がコークスの場合
にあっては、θ] : 25°〜 35°で02=±1
0゜以内、そして鉱石の場合にあっては、θ1:20゜
〜30°、θ2:±1()0以内の範囲内になるように
管1里す2)こと(こより、 目標ガス流分布となる炉内堆積状態に維持していくこと
を特徴とする高炉操業法。
[Claims] 1. A method for operating a blast furnace while controlling the gas flow distribution in the furnace by changing the deposition state of the charge in the blast furnace, comprising: charging the charge in the furnace radial direction; The distance from the furnace inner wall to the peak is L, the deposition angle of the charge layer deposition slope on the furnace center side is θl, and the distance of the charge layer deposition surface on the furnace wall side is When the deposition angle is 02, the values θ1 and θ2 are L: 0 for both ore and coke.
.. 5 to 1.5 m and when the charge layer is coke, θ]: 02 = ±1 at 25° to 35°
(Target gas flow distribution) (Target gas flow distribution) A blast furnace operating method characterized by maintaining a deposited state in the furnace.
JP16055882A 1982-09-14 1982-09-14 Blast furnace operation method Expired JPS6041122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16055882A JPS6041122B2 (en) 1982-09-14 1982-09-14 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16055882A JPS6041122B2 (en) 1982-09-14 1982-09-14 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPS5950102A true JPS5950102A (en) 1984-03-23
JPS6041122B2 JPS6041122B2 (en) 1985-09-14

Family

ID=15717582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16055882A Expired JPS6041122B2 (en) 1982-09-14 1982-09-14 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPS6041122B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073716A (en) * 2001-09-05 2003-03-12 Nisshin Steel Co Ltd Method for calculating terrace length of raw material deposition layer at blast furnace top
JP2010138486A (en) * 2008-11-14 2010-06-24 Kobe Steel Ltd Method of and device for measuring terrace length in blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073716A (en) * 2001-09-05 2003-03-12 Nisshin Steel Co Ltd Method for calculating terrace length of raw material deposition layer at blast furnace top
JP4675523B2 (en) * 2001-09-05 2011-04-27 日新製鋼株式会社 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace
JP2010138486A (en) * 2008-11-14 2010-06-24 Kobe Steel Ltd Method of and device for measuring terrace length in blast furnace

Also Published As

Publication number Publication date
JPS6041122B2 (en) 1985-09-14

Similar Documents

Publication Publication Date Title
JPS5950102A (en) Operating method of blast furnace
CA1154966A (en) Process for blast furnace operation
JP6943339B2 (en) Raw material charging method and blast furnace operation method for bellless blast furnace
JP7502610B2 (en) Blast furnace operation method, charging method control device, charging method control program
JPH0510402B2 (en)
JPS62290809A (en) Raw material charging method for blast furnace
JPS62235404A (en) Detection of behavior of charge in vertical type furnace
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JP2001323306A (en) Method for estimating distribution of charged material in blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JPS61227108A (en) Method for charging raw material to blast furnace
JP3846451B2 (en) Raw material charging method for bell-less blast furnace
JPH07113108A (en) Operation of blast furnace
JPH06256829A (en) Operation of blast furnace
JPS63140008A (en) Method for charging raw material into blast furnace
JP3322102B2 (en) Central coke charging method for bell blast furnace
JP2617850B2 (en) Blast furnace operation method
JP2005060797A (en) Method for charging material to blast furnace
JPH05272872A (en) Control device for feed amount of sintering material
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JPS62218507A (en) Raw material charging method for bell-less blast furnace
JPH08246011A (en) Method for charging raw material of blast furnace and device therefor
JPS6238404B2 (en)
JPH09241711A (en) Method for estimating crumbling quantity of coke and preventing method thereof