JPH08246011A - Method for charging raw material of blast furnace and device therefor - Google Patents

Method for charging raw material of blast furnace and device therefor

Info

Publication number
JPH08246011A
JPH08246011A JP4710495A JP4710495A JPH08246011A JP H08246011 A JPH08246011 A JP H08246011A JP 4710495 A JP4710495 A JP 4710495A JP 4710495 A JP4710495 A JP 4710495A JP H08246011 A JPH08246011 A JP H08246011A
Authority
JP
Japan
Prior art keywords
raw material
furnace
blast furnace
chute
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4710495A
Other languages
Japanese (ja)
Other versions
JP3750148B2 (en
Inventor
Yasuhei Nouchi
泰平 野内
Kanji Takeda
幹治 武田
Hiroshi Itaya
宏 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP04710495A priority Critical patent/JP3750148B2/en
Publication of JPH08246011A publication Critical patent/JPH08246011A/en
Application granted granted Critical
Publication of JP3750148B2 publication Critical patent/JP3750148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE: To reduce molten iron cost by eccentrically forming the supplying position of a raw material stored correspondingly to falling of the contents into a swing chute in regard to the center of a blast furnace. CONSTITUTION: The raw material is discharged from a furnace top hopper 1 and temporarily stored in a raw material storing chamber 2. A discharging gate 3 adjustable in the opening position and the opening degree is arranged at the lower part of the raw material storing chamber 2 and the falling of the contents in the blast furnace is observed, and the opening position and the opening area of the discharging gate are adjusted so that the falling in the furnace uniformizes. Then, the raw material is stored just above the swing chute 4 and the supplying position of the stored raw material stored correspondingly to the falling of the contents into the swing chute 4 is formed eccentrically in regard to the center of the blast furnace. The supplying position onto the swing chute 4 is determined based on the data obtained by pursuing a position, where the falling of the contents in the furnace uniformizes, and by storing the pursued data. The pursued data are also corrected by learning. By this method, furnace condition is stabilized and the frequency to reduce blast can also be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉における原料装入
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material charging method in a blast furnace.

【0002】[0002]

【従来の技術】高炉は軸対称形をなしており、操業の安
定には炉内における還元・溶解反応を軸対称にする必要
がある。近年作られた高炉では、上記の条件を満たす装
入装置としてベルレス式装入装置が採用され、例えば実
公昭59−5725号公報では炉中心軸上に排出口を有
するホッパを2個垂直に配置した装入装置を開示してい
る。また特公昭61−30993号公報ではカットゲー
トを設けて鉛直シュート内の流れを絞って炉中心軸上に
原料が落下するようにしている。また、特開平2−16
6209号公報のように旋回シュート内に補助シュート
を取付け、旋回シュート上の原料落下位置を一定に保つ
ようにした装入装置も知られている。
2. Description of the Related Art A blast furnace has an axially symmetrical shape, and it is necessary to make the reduction / melting reaction in the furnace axially symmetrical in order to stabilize the operation. In a blast furnace made in recent years, a bell-less type charging device is adopted as a charging device satisfying the above conditions. For example, in Japanese Utility Model Publication No. 59-5725, two hoppers having a discharge port on the central axis of the furnace are arranged vertically. The charging device is disclosed. In Japanese Patent Publication No. 61-30993, a cut gate is provided to throttle the flow in the vertical chute so that the raw material falls on the central axis of the furnace. Also, Japanese Patent Laid-Open No. 2-16
There is also known a charging device in which an auxiliary chute is attached in the turning chute to keep the material dropping position on the turning chute constant as in Japanese Patent No. 6209.

【0003】これらのいずれの技術においても、その流
量調整ゲートは図4(a)、(b)に示すように、スラ
イドゲート51,52が形成する開口53の中心が高炉
中心軸(X,Y軸54,55の交点のZ方向軸)に一致
するようになっている。
In any of these techniques, as shown in FIGS. 4 (a) and 4 (b), the flow rate adjusting gate is such that the center of the opening 53 formed by the slide gates 51 and 52 is at the blast furnace central axis (X, Y). It coincides with the Z direction axis of the intersection of the axes 54 and 55.

【0004】[0004]

【発明が解決しようとする課題】高炉の炉内の原料消費
は円周方向偏差がないこと、すなわち完全軸対称である
ことが望ましく、そのため原料の装入も円周方向偏差を
なくす必要があるとの考えから、先に示したようなベル
レス装入装置が開発された。しかし現実の高炉において
原料が円周方向で均一に消費されることはまれであり、
原料の降下速度には円周方向に偏差が生じている。落下
速度の円周方向偏差の要因はいくつか挙げられるが、 a.炉壁に生成される付着物 b.炉壁損耗 c.送風量の不均一 等が主な原因であると考えられている。
It is desirable that the consumption of raw materials in the furnace of the blast furnace should not have a circumferential deviation, that is, it should be perfectly axisymmetric, so that it is necessary to eliminate the circumferential deviation in the charging of raw materials. Therefore, the bellless charging device as shown above was developed. However, in the actual blast furnace, it is rare that the raw materials are consumed uniformly in the circumferential direction,
There is a deviation in the circumferential direction of the descending speed of the raw material. There are several factors that cause the deviation of the falling velocity in the circumferential direction. Deposits generated on the furnace wall b. Furnace wall wear c. It is thought that the main cause is uneven air flow.

【0005】高炉の原料装入は円周方向のある位置の原
料表面高さが一定値まで下がった時点で行われる。この
とき、図5に示すように炉内容物9の炉内降下が不均一
であると、旋回シュートから落下する原料7,8の落下
位置の半径方向の距離101、102は炉内容物9の降
下速度の速い方向では炉壁側になり、降下速度の遅い方
向では炉中心側になる。
The charging of the raw material of the blast furnace is carried out when the height of the raw material surface at a certain position in the circumferential direction drops to a certain value. At this time, if the descent of the furnace contents 9 in the furnace is uneven as shown in FIG. 5, the radial distances 101 and 102 of the dropping positions of the raw materials 7 and 8 falling from the swirling chute are the contents of the furnace contents 9. It is on the furnace wall side in the fast descending direction, and on the furnace center side in the slow descending direction.

【0006】このため、装入原料の軸対称性が益々不良
となり炉内の還元・溶解反応の円周方向偏差はさらに助
長され、最終的には高炉の安定操業を害するという重大
な問題が発生する。
For this reason, the axial symmetry of the charged raw materials is further deteriorated, the circumferential deviation of the reduction / melting reaction in the furnace is further promoted, and finally a serious problem occurs that the stable operation of the blast furnace is impaired. To do.

【0007】[0007]

【課題を解決するための手段】本発明の技術手段は、旋
回シュートを備えたベルレス高炉の原料装入方法におい
て、旋回シュート直上に原料を貯留し、高炉内の内容物
の炉内降下に対応して貯留した原料の旋回シュートへの
供給位置を高炉中心に対して偏心させることを特徴とす
る高炉の原料装入方法である。この場合、前記旋回シュ
ートへの供給位置は、炉内容物の炉内降下が均等になる
位置を追跡し、追跡したデータを記憶させ、このデータ
により位置決めするとともに、前記記憶データを学習に
より修正することとすれば好適である。
According to the technical means of the present invention, in a raw material charging method for a bellless blast furnace having a swirling chute, the raw material is stored immediately above the swirling chute and the contents of the blast furnace are lowered into the furnace. The raw material charging method of the blast furnace is characterized in that the feed position of the stored raw material to the swirling chute is eccentric with respect to the center of the blast furnace. In this case, the supply position to the swirling chute is tracked at a position where the furnace contents are evenly lowered in the furnace, the traced data is stored, the tracking data is positioned, and the stored data is corrected by learning. This is preferable.

【0008】上記本発明方法を好適に実施するための本
発明の高炉の原料装入装置は、旋回シュートを備えたベ
ルレス高炉の炉頂装入装置において、旋回シュート上方
に原料一時貯留室を設け、この貯留室底に任意方向、任
意位置に偏心可能な排出口を設け、この排出口の位置を
炉内観測に基づいて変更制御する制御装置を設けたこと
を特徴とする高炉の原料装入装置である。前記排出口は
X、Y方向にそれぞれ独立に移動可能な4枚のカットゲ
ートにより周囲を形成した開口とすればよく、前記X方
向又はY方向の何れか一方の一対のカットゲートが円弧
に沿って摺動する円弧状板カットゲートで他方の一対の
カットゲートが円弧状板カットゲートに内接して円弧軸
方向に摺動するカットゲートとすると好ましい。
A raw material charging apparatus for a blast furnace according to the present invention for carrying out the method of the present invention is a bell-less blast furnace top charging apparatus equipped with a swirling chute, and a raw material temporary storage chamber is provided above the swirling chute. The blast furnace raw material charging is characterized in that the bottom of the storage chamber is provided with an eccentric outlet in an arbitrary direction and at an arbitrary position, and a control device is provided for changing and controlling the position of the outlet based on observation in the furnace. It is a device. The discharge port may be an opening whose periphery is formed by four cut gates that are independently movable in the X and Y directions, and one pair of the cut gates in either the X direction or the Y direction is along an arc. It is preferable to use an arc-shaped plate cut gate that slides along the arc-shaped plate cut gate so that the other pair of cut gates are inscribed in the arc-shaped plate cut gate and slide in the arc axis direction.

【0009】[0009]

【作用】原料の落下を炉中心部から偏心させる機構の一
例を図3に示す。原料貯留室2の下端に円弧板状の一対
のカットゲート31,32を設け、円弧状に摺動方向3
5,36方向に移動可能となっている。この一対のカッ
トゲート31,32の内側の円弧に沿って一対の平板状
カットゲート33,34がそれぞれシュートを形成する
ように設けられており、それぞれ円弧の軸方向37,3
8方向に摺動可能である。これらのカットゲート31,
32,33,34がそれぞれ独立に移動することによっ
て、これらのカットゲート31,32,33,34の中
央に形成される開口39は任意の方向に任意の量だけ中
心が移動し、また開口の大きさ形状を自由に変更するこ
とができる。すなわち本発明の流量調整ゲートは図3の
ように東西南北のゲートを独立に制御することにより、
原料流を炉中心から偏心させることと流量(開口面積)
を調整することが同時に可能である。このゲートを用い
て図1(a)、図1(b)に示すように原料落下位置を
炉中心軸に合致させたり偏心させたりする。すなわち、
旋回シュートが右向きのときは原料は旋回シュート先端
側に落ち、旋回シュートが左向きのときは根本側に落下
するようにする。結果として、シュートを滑る距離5,
6が長い左方向の方が原料のシュート先端での速度が速
くなる。
FIG. 3 shows an example of a mechanism for eccentricly dropping the raw material from the center of the furnace. A pair of arc-shaped plate-shaped cut gates 31 and 32 are provided at the lower end of the raw material storage chamber 2, and the sliding direction 3 is formed in an arc shape.
It is movable in 5, 36 directions. A pair of flat plate-shaped cut gates 33 and 34 are provided so as to form chutes along the arcs inside the pair of cut gates 31 and 32, respectively.
It can slide in 8 directions. These cut gates 31,
By independently moving 32, 33, and 34, the opening 39 formed at the center of these cut gates 31, 32, 33, and 34 moves its center in an arbitrary direction and by an arbitrary amount, and The size and shape can be changed freely. That is, the flow rate control gate of the present invention independently controls the north, south, east, and west gates as shown in FIG.
Eccentricity of raw material flow from the furnace center and flow rate (opening area)
Can be adjusted at the same time. Using this gate, the raw material dropping position is made to coincide with or eccentric to the furnace central axis as shown in FIGS. 1 (a) and 1 (b). That is,
When the swivel chute points to the right, the raw material falls to the tip side of the swivel chute, and when the swivel chute points to the left, it falls to the root side. As a result, the distance to slide the shoot 5,
When 6 is longer in the left direction, the speed at the tip of the raw material chute is higher.

【0010】図2は本発明方法の実施例を示すフローチ
ャートである。原料装入前の高炉内の内容物の炉内降下
を観測し、次の原料の供給位置を決定する。このとき、
シミュレーションデータ、過去の実績データの記憶から
決定し、この決定に従ってゲート位置を変更する。そし
て原料を装入し、装入後の炉内堆積物を観測し、均等降
下が得られているか否かを観測する。もし不均等であれ
ばデータ修正信号を出して記憶データを修正する。高炉
はいつまでも同じ状態にある訳ではないので、本発明で
は上記データ修正による学習によって試行錯誤的な学習
制御を行うことにより、常に実情に合致した制御を行う
ことができる。
FIG. 2 is a flow chart showing an embodiment of the method of the present invention. Observe the contents of the blast furnace before charging the raw materials and determine the next raw material supply position. At this time,
It is determined from the storage of simulation data and past performance data, and the gate position is changed according to this determination. Then, the raw materials are charged, the deposits in the furnace after the charging are observed, and it is observed whether or not a uniform descent is obtained. If they are not equal, a data correction signal is issued to correct the stored data. Since the blast furnace is not always in the same state, in the present invention, by performing trial-and-error learning control by learning by the above-described data correction, it is possible to always perform control that matches actual conditions.

【0011】高炉の1/10の冷間模型による装入実験
を行った。図6はその説明図であってホッパ1から原料
貯留室2、旋回シュート4を経て原料8を流下させ、そ
の下方に配設したサンプリングボックス91内に堆積さ
せた。模型に使用した炉中心部の流量調整ゲートはX方
向とY方向の2組が2段重ねになっており、原料落下位
置を垂直シュートの開口の範囲内で自由に移動させるこ
とができ、高炉中心から偏心させることができるように
してある。この実験装置の垂直シュートの下部開口は直
径120mmである。
A charging experiment was carried out using a cold model of 1/10 of the blast furnace. FIG. 6 is an explanatory view thereof, in which the raw material 8 is made to flow down from the hopper 1 through the raw material storage chamber 2 and the swirling chute 4 and deposited in the sampling box 91 arranged below the raw material 8. The flow rate control gate in the center of the furnace used in the model has two sets of two layers in the X and Y directions, and the raw material drop position can be freely moved within the range of the vertical chute opening. It is designed so that it can be eccentric from the center. The lower opening of the vertical chute of this experimental device has a diameter of 120 mm.

【0012】図7に示すように原料の落下位置93、9
4それぞれ垂直シュート2の中心及び中心から50mm
偏った位置に変化させ、サンプリングボックス91で落
下位置を計測した。垂直シュートの中心から旋回シュー
トに供給したとき、及び垂直シュートの中心から50m
m偏位させて旋回シュートに供給したとき、旋回シュー
トの傾斜角がそれぞれ39°、43°、52°の場合の
各方位での落下位置を図8及び図9に示す。垂直シュー
ト内から旋回シュートへの供給位置の変更により炉内で
の落下位置に強く影響を与えることが分かる。
As shown in FIG. 7, raw material drop positions 93, 9
4 Center of vertical chute 2 and 50mm from the center
The position was changed to a biased position, and the drop position was measured by the sampling box 91. 50m from the center of the vertical chute when fed to the turning chute from the center of the vertical chute
FIGS. 8 and 9 show the falling positions in each azimuth when the tilt angles of the turning chute are 39 °, 43 °, and 52 °, respectively, when they are offset by m and supplied to the turning chute. It can be seen that changing the feed position from the vertical chute to the swirling chute has a strong effect on the drop position in the furnace.

【0013】実験ではコークスを均一に充填した後に原
料を不均一に抜き出して降下させ、その後鉱石を垂直シ
ュートの内のいろいろな位置に落下させて炉内に装入し
た。図10、図11はその状況を示すもので高炉内溶物
9の左右の高さの差は100mm、旋回シュートの傾動
角θ(図7参照)は40°、旋回速度は32rpm(実
機における8rpmに相当する)とした。鉱石装入前後
の堆積形状を計測し、その計測値の差が鉱石層厚である
とした。
In the experiment, after the coke was uniformly filled, the raw material was nonuniformly extracted and lowered, and then the ore was dropped into various positions in the vertical chute and charged into the furnace. FIGS. 10 and 11 show the situation. The difference between the left and right heights of the melt 9 in the blast furnace is 100 mm, the tilt angle θ (see FIG. 7) of the turning chute is 40 °, and the turning speed is 32 rpm (8 rpm in the actual machine). Equivalent to). The deposit shape before and after the ore charging was measured, and the difference between the measured values was the ore layer thickness.

【0014】垂直シュート内の高炉中心軸位置に原料を
落下させた場合は、高炉内容物の降下速度が大きい側で
の装入物表面位置が低く、原料が炉壁側に落下するた
め、図10(a)に示すように鉱石層厚分布は炉断面の
左右で大きな差が生じた。図10(b)はこれを示すも
ので高炉内容物の左右の高さの差が100mmのとき、
装入物の頂面のプロフィール103は左右の高さの差1
04が40mmであった。一方、図11に示すように、
高炉炉内容物の降下速度の速い右側の落下位置が炉中心
側になるように、垂直シュートから旋回シュートへの原
料落下位置を調整すると鉱石層厚の堆積プロフィール1
03は図11(b)に示すように、左右の差104が1
7mmと大幅に改善されたことが観察された。最適な垂
直シュート内の落下位置は傾動角や旋回速度により変化
するが、本実験では高炉内容物の左右の偏差が最も大き
い方向から中心角で30°旋回上流側にずらした位置に
垂直シュート下の開口を位置させたときに最適であっ
た。この場合、鉱石層厚の偏差は上記のように半分以下
に縮小した。
When the raw material is dropped to the central axis position of the blast furnace in the vertical chute, the charge surface position is low on the side where the descending speed of the blast furnace contents is high, and the raw material falls to the furnace wall side. As shown in Fig. 10 (a), the ore layer thickness distribution showed a large difference between the left and right sides of the furnace cross section. FIG. 10 (b) shows this, and when the difference between the left and right heights of the blast furnace contents is 100 mm,
Profile 103 on the top surface of the charge is 1
04 was 40 mm. On the other hand, as shown in FIG.
When the raw material drop position from the vertical chute to the swirling chute is adjusted so that the right-hand drop position where the descent rate of the blast furnace contents is high is the furnace center side, the ore layer thickness deposition profile 1
03, the difference 104 on the left and right is 1 as shown in FIG.
It was observed that it was significantly improved to 7 mm. The optimum falling position in the vertical chute changes depending on the tilt angle and turning speed. It was optimal when the opening was positioned. In this case, the deviation of the ore layer thickness was reduced to less than half as described above.

【0015】[0015]

【実施例】図1に本発明の実施例の説明図を示した。炉
頂ホッパ1から原料を排出し、原料貯留室2に一時滞留
させる。原料貯留室2の下部に開口位置、大きさ調整可
能な排出ゲート3を設け、高炉内内容物の炉内降下を観
測し、炉内降下が均一になるように排出ゲートの開口位
置及び開口面積を調整する。この調整シミュレーション
及び過去の実績データを蓄積し学習制御を行う。図2は
そのフローチャートを示している。
FIG. 1 shows an explanatory view of an embodiment of the present invention. The raw material is discharged from the furnace top hopper 1 and temporarily retained in the raw material storage chamber 2. An opening position and a size-adjustable discharge gate 3 are provided in the lower part of the raw material storage chamber 2 to observe the descent of the contents in the blast furnace into the furnace, and the opening position and the opening area of the discharge gate so that the descent into the furnace is uniform. Adjust. This adjustment simulation and past performance data are accumulated and learning control is performed. FIG. 2 shows the flowchart.

【0016】実施例として、内容責4500Nm3 のベ
ルレス式炉頂装入装置を持つ高炉における改善効果を示
す。垂直シュート下端に設置したカットゲートの開口中
心位置を制御し、模型実験と同じように高炉内容物の降
下速度の速い方位の原料落下位置が炉中心側になるよう
に原料を垂直シュートから偏流させて旋回シュートに供
給した。
As an example, an improvement effect in a blast furnace having a bellless type furnace top charging device with a content responsibility of 4500 Nm 3 will be shown. By controlling the center position of the opening of the cut gate installed at the lower end of the vertical chute, the raw material is diverted from the vertical chute so that the raw material dropping position in the direction in which the descending speed of the blast furnace contents is fast is the central side of the furnace, as in the model experiment. Supplied to the turning chute.

【0017】図8に溶銑Si濃度偏差、高炉上部の円周
方向の均一性を表す8個のスキンフロー温度計8点の偏
差、溶銑温度偏差、溶銑温度、溶銑中Si濃度、ΔP/
V(風量当りの圧力損失)、減風頻度の推移を示した。
装入物の円周方向バランスが均一になったことにより、
溶銑中のSi濃度の偏差、スキンフロー温度計偏差、溶
銑温度偏差がいずれも小さくなり、溶銑温度を低下させ
ることができ、溶銑中Si濃を小さくすることができ
た。これにより、下流工程における精錬コストを大幅に
低減することができ、大きなメリットが得られた。ま
た、炉況が安定し減風頻度も低下し、溶銑コスト低減に
結びついた。
FIG. 8 shows the deviation of the hot metal Si concentration, the deviation of eight skin flow thermometers indicating the uniformity in the circumferential direction of the upper part of the blast furnace, the hot metal temperature deviation, the hot metal temperature, the Si concentration in the hot metal, and ΔP /
Changes in V (pressure loss per air volume) and frequency of wind reduction are shown.
Due to the uniform balance in the circumferential direction of the charge,
The deviation of the Si concentration in the hot metal, the deviation of the skin flow thermometer, and the deviation of the hot metal temperature were all small, the hot metal temperature could be lowered, and the Si concentration in the hot metal could be made small. As a result, the refining cost in the downstream process can be significantly reduced, and a great advantage is obtained. In addition, the furnace conditions became stable and the frequency of wind reduction decreased, leading to a reduction in hot metal cost.

【0018】[0018]

【発明の効果】本発明により、溶銑温度を低下させるこ
とができ、溶銑中Si濃度を小さくすることができ、炉
況が安定し減風頻度も低下し、溶銑コストが低減すると
いう効果を奏する。
According to the present invention, the hot metal temperature can be lowered, the Si concentration in the hot metal can be reduced, the furnace conditions can be stabilized, the frequency of wind reduction can be reduced, and the hot metal cost can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the device of the present invention.

【図2】実施例のフローチャートである。FIG. 2 is a flowchart of an example.

【図3】実施例の原料流量調整ゲートの説明図である。FIG. 3 is an explanatory diagram of a raw material flow rate adjusting gate according to the embodiment.

【図4】従来の原料流量調整ゲート例を示す平面図であ
る。
FIG. 4 is a plan view showing an example of a conventional raw material flow rate adjusting gate.

【図5】炉内降下速度偏差と原料落下位置の関係を示す
説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the in-furnace descent rate deviation and the raw material dropping position.

【図6】冷間模型実験の斜視図である。FIG. 6 is a perspective view of a cold model experiment.

【図7】旋回シュートの(a)側面図、(b)平面図で
ある。
7 (a) is a side view and FIG. 7 (b) is a plan view of the turning chute.

【図8】落下位置を示すグラフである。FIG. 8 is a graph showing a drop position.

【図9】落下位置を示すグラフである。FIG. 9 is a graph showing a drop position.

【図10】炉内降下速度偏差と原料落下位置の関係を示
す説明図である。
FIG. 10 is an explanatory diagram showing a relationship between a descent rate deviation in a furnace and a raw material dropping position.

【図11】実施例の説明図である。FIG. 11 is an explanatory diagram of an example.

【図12】実施例の効果を示すチャートである。FIG. 12 is a chart showing the effect of the example.

【符号の説明】[Explanation of symbols]

1 ホッパ 2 原料貯
留室 3 排出口ゲート 4 旋回シ
ュート 5,6 距離 7,8 原料流
れ 9 炉内容物 10 炉壁 31,32,33,34 カットゲ−ト 35,36 摺動方向 39 開口 51,52 ゲート 53 開口 54,55 軸 91 サンプ
リングボックス 93 落下位置 94 落下位
置 10,102 半径方向距離 103 堆積プ
ロフィール 104 堆積高さ
1 Hopper 2 Raw material storage chamber 3 Discharge gate 4 Swirling chute 5,6 Distance 7,8 Raw material flow 9 Furnace contents 10 Furnace wall 31, 32, 33, 34 Cut gate 35, 36 Sliding direction 39 Opening 51, 52 Gate 53 Opening 54,55 Axis 91 Sampling box 93 Falling position 94 Falling position 10,102 Radial distance 103 Deposition profile 104 Deposition height

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 旋回シュートを備えたベルレス高炉の原
料装入方法において、旋回シュート直上に原料を貯留
し、高炉内の内容物の炉内降下に対応して該貯留した原
料の旋回シュートへの供給位置を高炉中心に対して偏心
させることを特徴とする高炉の原料装入方法。
1. A method for charging a raw material for a bellless blast furnace equipped with a swirling chute, wherein the raw material is stored directly above the swirling chute, and the stored raw material is fed to the swirling chute in response to the descent of the contents in the blast furnace into the furnace. A method for charging a raw material of a blast furnace, characterized in that the supply position is eccentric with respect to the center of the blast furnace.
【請求項2】 前記旋回シュートへの供給位置は、炉内
容物の炉内降下が均等になる位置を追跡し、追跡したデ
ータを記憶させ、該データにより位置決めするととも
に、該記憶データを学習により修正することを特徴とす
る請求項1記載の高炉の原料装入方法。
2. The supply position to the swirling chute is such that the position where the contents of the furnace are uniformly lowered in the furnace is tracked, the tracked data is stored, the position is determined by the data, and the stored data is learned. The raw material charging method for a blast furnace according to claim 1, wherein the raw material charging method is modified.
【請求項3】 旋回シュートを備えたベルレス高炉の炉
頂装入装置において、旋回シュート上方に原料一時貯留
室を設け、該貯留室底に任意方向、任意位置に偏心可能
な排出口を設け、該排出口の位置を炉内観測に基づいて
変更制御する制御装置を設けたことを特徴とする高炉の
原料装入装置。
3. A bell-top charging apparatus for a bellless blast furnace having a swirling chute, wherein a raw material temporary storage chamber is provided above the swiveling chute, and an eccentric discharge port is provided in the storage chamber bottom in an arbitrary direction and at an arbitrary position. A raw material charging device for a blast furnace, which is provided with a control device for changing and controlling the position of the discharge port based on observation in the furnace.
【請求項4】 前記排出口はX方向に独立に移動可能な
一対のカットゲートと、Y方向に独立に移動可能な一対
のカットゲートとの4枚のカットゲートにより周囲を形
成した開口であることを特徴とする請求項3記載の高炉
の原料装入装置。
4. The discharge port is an opening whose periphery is formed by four cut gates, a pair of cut gates independently movable in the X direction and a pair of cut gates independently movable in the Y direction. The raw material charging device for a blast furnace according to claim 3, wherein
【請求項5】 前記X方向又はY方向の何れか一方の一
対のカットゲートが円弧に沿って摺動する円弧状板カッ
トゲートで、他方の一対のカットゲートが該円弧板状カ
ットゲートに内接して円弧軸方向に摺動するカットゲー
トであることを特徴とする請求項4記載の高炉の原料装
入装置。
5. An arc-shaped plate cut gate in which a pair of cut gates in either the X direction or the Y direction slide along an arc, and the other pair of cut gates are inside the arc plate cut gates. The raw material charging apparatus for a blast furnace according to claim 4, wherein the cut gate is in contact with and slides in the direction of the arc axis.
JP04710495A 1995-03-07 1995-03-07 Raw material charging method and apparatus for blast furnace Expired - Fee Related JP3750148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04710495A JP3750148B2 (en) 1995-03-07 1995-03-07 Raw material charging method and apparatus for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04710495A JP3750148B2 (en) 1995-03-07 1995-03-07 Raw material charging method and apparatus for blast furnace

Publications (2)

Publication Number Publication Date
JPH08246011A true JPH08246011A (en) 1996-09-24
JP3750148B2 JP3750148B2 (en) 2006-03-01

Family

ID=12765878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04710495A Expired - Fee Related JP3750148B2 (en) 1995-03-07 1995-03-07 Raw material charging method and apparatus for blast furnace

Country Status (1)

Country Link
JP (1) JP3750148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080038A1 (en) * 2018-10-19 2020-04-23 株式会社Ihiポールワース Furnace top device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080038A1 (en) * 2018-10-19 2020-04-23 株式会社Ihiポールワース Furnace top device
JP2020063503A (en) * 2018-10-19 2020-04-23 株式会社Ihiポールワース Furnace top device

Also Published As

Publication number Publication date
JP3750148B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JPH08246011A (en) Method for charging raw material of blast furnace and device therefor
JPH07179916A (en) Bell-less type furnace top charging device for vertical furnace
JPH0225507A (en) Method and apparatus for charging raw material in bell-less type blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP3772377B2 (en) Rotating chute for bellless type furnace top charging equipment for blast furnace
JPH09235604A (en) Bell-lens type furnace top charging device for blast furnace
JP5493885B2 (en) Rotating chute for bellless type furnace top charging equipment for blast furnace
JPH01259109A (en) Method for charging raw material in bell type blast furnace
JPH01208409A (en) Method for charging raw material into blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JP3787231B2 (en) How to charge the blast furnace center
JP3787238B2 (en) Charging method into the center of the blast furnace
JPH11269513A (en) Charging of charging material into center part of blast furnace
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JP3978105B2 (en) Raw material charging method for blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JPH02401B2 (en)
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JPH06271907A (en) Method for furnace raw material in bell-less blast furnace
JP2001140009A (en) Method of charging raw material into blast furnace
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JP2000160214A (en) Method for charging material to be charged into center part of blast furnace
JP2023079158A (en) Raw material charging device and raw material charging method for bell-less blast furnace
JPS6156212A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051128

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees