JPS6041122B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JPS6041122B2
JPS6041122B2 JP16055882A JP16055882A JPS6041122B2 JP S6041122 B2 JPS6041122 B2 JP S6041122B2 JP 16055882 A JP16055882 A JP 16055882A JP 16055882 A JP16055882 A JP 16055882A JP S6041122 B2 JPS6041122 B2 JP S6041122B2
Authority
JP
Japan
Prior art keywords
furnace
deposition
charge
angle
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16055882A
Other languages
Japanese (ja)
Other versions
JPS5950102A (en
Inventor
寿郎 沢田
和男 奥村
明 加藤
鉱一 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16055882A priority Critical patent/JPS6041122B2/en
Publication of JPS5950102A publication Critical patent/JPS5950102A/en
Publication of JPS6041122B2 publication Critical patent/JPS6041122B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は、高炉操業法に関するものであり、とくに炉頂
における炉半径方向の装入物分布の形についての管理値
を決め、これが所定の範囲内のものとなるような装入物
分布制御をすることにより、長期に安定した高炉操業を
行うのに好適な方法について提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blast furnace operating method, and in particular, determines control values for the shape of the charge distribution in the radial direction of the furnace at the top of the furnace, and ensures that this is within a predetermined range. We propose a method suitable for long-term stable blast furnace operation by controlling the burden distribution.

一般に、高炉操業を行うにあたっては、炉内の装入物が
どのように分布しているか、あるいは袋入物層表面が炉
高方向のどの位置にあるかを常に把握しておく必要があ
る。
Generally, when operating a blast furnace, it is necessary to always know how the charges in the furnace are distributed, or where the surface of the bagged material layer is located in the direction of the furnace height.

最近では、第1図に示すような、錘式のプロフィル測定
器、第2図に示すような仏波式のブロフィル測定器が開
発され、炉内における装入物層堆積状態がある程度明瞭
に把握できるようになった。ところが、実操業における
装入物層堆積状態は、原料の粒度構成や炉内ガス流れ等
の違いによって変化するだけでなく、炉頂分布制御装置
であるベルレスシュートやムーバルブアーマを調整する
ことによっても大きく異なる。しかし、現状では単に装
入物表面形状を測定するだけで、どのようなプロフィル
にすべ〈分布調整を行ってよいかについては未だ定量化
されておらず、操業者の勘に頼って試行錯誤に繰返しな
がら行っていた。
Recently, a weight-type profile measuring device as shown in Fig. 1 and a French wave-type profile measuring device as shown in Fig. 2 have been developed, allowing a somewhat clear understanding of the charge layer deposition state in the furnace. Now you can. However, the state of deposition of the charge layer in actual operation not only changes due to differences in the particle size composition of the raw material and the gas flow in the furnace, but also changes by adjusting the bellless chute and movalve armour, which are the furnace top distribution control devices. are also very different. However, at present, it is only possible to simply measure the surface shape of the burden, and it has not yet been quantified as to what kind of profile the distribution adjustment can be made to. I was doing it repeatedly.

そのため、ひとたび炉の操業状態が不安定になると、そ
の復帰に長時間を要するばかりか、長期にわたって安定
した高炉操業を行うこと等は不可能な状況下にあった。
本発明は、上記従来技術の欠点を解決するために発明し
たもので、炉内において時々刻々と変化する炉内ガス流
の動きを正確に反映してともに変動する装入物の炉内堆
積状態を定量的に示す管理値を定め、炉内装入物層堆積
層がかかる管理値の範囲内に収まるように各種の菱入条
件等を調節することにより、安定した操業を行うことを
特徴とする高炉操業法について提案を目的とするもので
ある。
Therefore, once the operating state of the furnace becomes unstable, it not only takes a long time to recover, but also makes it impossible to operate the blast furnace stably over a long period of time.
The present invention was invented in order to solve the above-mentioned drawbacks of the prior art, and the present invention accurately reflects the movement of the gas flow in the furnace that changes from time to time in the furnace, and the deposition state of the charge in the furnace changes together with the movement of the gas flow in the furnace. It is characterized by stable operation by determining a control value that quantitatively indicates the amount of material, and adjusting various cutting conditions etc. so that the deposited layer of the in-furnace material layer falls within the range of the control value. The purpose of this paper is to propose methods for operating blast furnaces.

要するに、本発明は袋入物層堆積層の状態:すなわち、
望ましい炉内ガス流分布となるように制御対象となる装
入物分布状態を示す管理値を定めてフィードバック制御
していくことで、操業目標に対してあまり変動のない高
炉操業ができるようにした方法である。その構成の要旨
とするところは、高炉内装入物の堆積状態を変化させる
ことにより、炉内ガス流分布を制御しながら高炉操業を
行う方法において、炉内における袋入物の炉半径方向に
おける袋入物堆積層を、炉内壁から山部までの距離をL
とし、炉中心部側の装入物層堆積斜面のもつ堆積面を0
,とする一方、炉壁側の装入物層堆積角を82とすると
き、それらの値L,8,,82が、鉱石・コークスとも
L:0.5〜1.8hであり、かつ装入物層がコークス
の場合にあっては、8,:250〜350で82:±1
00以内、そして鉱石の場合にあっては、8,:200
〜30o 82:±100以内の範囲になるように管理
することにより、目標ガス流分布となる炉内堆積状態に
維持していくことを特徴とする高炉操業法である。
In short, the present invention deals with the condition of the bag layer deposited layer:
By setting control values that indicate the charge distribution state to be controlled to achieve the desired gas flow distribution in the furnace and performing feedback control, it is possible to operate the blast furnace without much variation in relation to the operational target. It's a method. The gist of its configuration is that it is a method for operating a blast furnace while controlling the gas flow distribution in the furnace by changing the accumulation state of the contents in the blast furnace. The distance from the furnace inner wall to the mountain part is L.
The deposition surface of the charge layer deposition slope on the furnace center side is 0.
, and when the charge layer deposition angle on the furnace wall side is 82, these values L, 8, , 82 are L: 0.5 to 1.8 h for both ore and coke, and When the filler layer is coke, 8:250 to 350 and 82:±1
00 or less, and in the case of ore, 8,:200
~30 o 82: This is a blast furnace operating method characterized by maintaining the in-furnace deposition state in which the target gas flow distribution is achieved by controlling the gas flow within a range of ±100.

以下にその構成の詳細を説明する。一般に、高炉操業は
、炉内装入物の堆積状態に支配される。
The details of the configuration will be explained below. Generally, blast furnace operation is controlled by the state of accumulation of the contents in the furnace.

とくに、炉内装入物堆積層の堆積角や形状を所定の状態
に管理すれば、常に炉碩において同一の装入物堆積層プ
ロフィルを得ることができるから、ひいてはこれが長期
にわたる安定した高炉操業の確保に対し有効となるとい
う基本的な知見をもとに、以下のような構成としたもの
である。すなわち、高炉操業の安定化は、炉内のガス流
れによって支配される。
In particular, if the deposition angle and shape of the charge deposition layer in the furnace are controlled to a predetermined state, it is possible to always obtain the same charge deposition layer profile in the furnace. Based on the basic knowledge that it is effective for securing security, it has the following structure. That is, the stabilization of blast furnace operation is governed by the gas flow within the furnace.

そして、それを支配するのは、正に炉中心部と炉壁部と
に見られるガス流れである。それらのガスの流れは、第
3図に示すように、炉中心部のガス流れはその中心部に
おける装入物堆積状態により、また炉壁部のガス流れは
その炉壁部近傍の装入物堆積状態により決まり、さらに
はそれらのガスの流れはさらにM形装入物分布の例で言
うと炉内壁と山部までの距離Lによっても規制されるこ
とが判った。そこでこれら8,,82,Lにつき研究し
以下のように決めた。第3図において、1は炉壁、2は
菱入物の堆積層表面、3は山部の位置(炉内壁面からの
距離L)、4は炉壁側の袋入物層堆積斜面を示しその堆
積角を82とし、5は炉中心部側の菱入物堆積斜面を示
しその堆積角を8,とする。
What governs this is the gas flow seen in the furnace center and the furnace wall. As shown in Figure 3, the gas flow in the furnace center depends on the charge deposition state in the center, and the gas flow in the furnace wall depends on the charge near the furnace wall. It was determined by the deposition state, and furthermore, it was found that the flow of these gases was further regulated by the distance L between the furnace inner wall and the peak in the example of M-shaped charge distribution. Therefore, we researched these 8, 82, and L and decided on the following. In Fig. 3, 1 indicates the furnace wall, 2 indicates the surface of the deposited layer of rhombuses, 3 indicates the position of the peak (distance L from the inner wall surface of the furnace), and 4 indicates the slope of the deposited layer of bagged material on the furnace wall side. The deposition angle is 82, and 5 indicates the rhombite deposition slope on the side of the furnace center, and the deposition angle is 8.

上記記号L,82,a,の求め方は種々の方法があるが
、本発明では以下のようにして定めた。その方法は、第
4図に示すように、炉半径方向の6ケ所で第1,2図に
示すようなプロフィル測定器(榎q深器)を使って装入
物堆積層表面2までの距離を測定し、そのうち堆積斜面
のもようを最もよく示す■ポイントと■ポイント間の斜
面の角度を作図により求めて、炉中心部側の斜面堆積角
ひ,とし、また炉壁側斜面の堆積角a2■ポイントと■
ポイント間の角度を同機な作図により求めたものである
。一方、上記のような装入物堆積層斜面4,5を規制す
る直線a,bの交点近傍を山部3とし、炉内壁面からの
距離をLとして測定した。
There are various methods for determining the above symbol L, 82, a, but in the present invention, it is determined as follows. As shown in Fig. 4, the distance to the surface 2 of the charge accumulation layer is measured using a profile measuring device (Enoki deep instrument) as shown in Figs. 1 and 2 at six locations in the radial direction of the furnace. The angle of the slope between the ■point and ■point that best represents the appearance of the deposition slope is determined by drawing, and this is determined as the slope deposition angle on the furnace center side, and also the deposition angle on the slope on the furnace wall side. a2 ■ Points and ■
The angle between the points was determined by drawing the same plane. On the other hand, the vicinity of the intersection of the straight lines a and b that regulate the slopes 4 and 5 of the charge deposit layer as described above was defined as the mountain part 3, and the distance from the inner wall surface of the furnace was defined as L.

なお、この山部3までの距離いま、上記堆積角8,と8
2から得られる直線a,bのみでは設定できない。第5
図に示すように同じa,,62でも種々のLの大きさを
有し「その違いによって炉半径方向面で示されるプロフ
ィルも全く異なる。そこで本発明の場合、これらの事情
を考慮して山部3の位置を上記のようにa,b線の交点
で特定した。なお、測定方式が異なる場合は、測定点の
数をむやして計算機による統計処理を行う。例えば、側
深装置として採用したものが、一波やレーザー式では測
定値を最小二乗法で求め、8,,82 を計算するのが
望ましい。次に、装入物堆積層の状態を示すと同時に、
高炉操業の目標となる管理値設定の方法について説明す
る。
In addition, the distance to this mountain part 3, the above-mentioned deposition angles 8, and 8
It cannot be set using only straight lines a and b obtained from 2. Fifth
As shown in the figure, the same a, 62 has various sizes of L, and the profile shown in the furnace radial direction is also completely different depending on the difference.Therefore, in the case of the present invention, taking these circumstances into consideration, The position of part 3 was identified by the intersection of lines a and b as described above.In addition, if the measurement method is different, statistical processing using a computer is performed by calculating the number of measurement points.For example, if the measurement method is different, the number of measurement points will be ignored and statistical processing will be performed using a computer. For single wave and laser methods, it is desirable to obtain the measured value using the least squares method and calculate 8,,82.Next, at the same time as showing the state of the charge deposit layer
This section explains how to set control values that serve as targets for blast furnace operation.

一般に高炉操業は、炉頂から装入された原料の装入物堆
積層のプロフィルの違いによって炉内ガス流れが変化し
、これを調整することより袋入物降下の安定を図ること
ができる。
Generally, in blast furnace operation, the gas flow in the furnace changes depending on the profile of the charge deposited layer of the raw material charged from the top of the furnace, and by adjusting this, it is possible to stabilize the descent of the bags.

そこで、かかる菱入物降下の安定度、すなわち、スリッ
プ頻度あるいは風圧変動指数と、前記計測値L,a,,
a2の値との相関関係を調査し、かかる管理値を求めた
。第6図にスリップ頻度と炉中心部側の装入物層の稚積
角8,の関係を、第7図には滅風回数と上記堆積角8,
との関係を示す。図中の○印は鉱石の堆積角8,、×印
はコークスの堆積角8,を示すが、この図から菱入物中
鉱石の堆積角0,は、300以下においてスリップが少
なく、しかもこの堆積角8,は20o〜30o以下であ
れば、風圧変動を抑制するための滅風回数も少ない。こ
の8,が20o未満ということは、鉱石が炉中心部に多
く堆積していることになり、通気性悪化に伴って、風圧
変動が多くなり、滅風回数も多くなることを意味してい
る。また、鉱石の8,が300以上になると、装入物層
の傾斜面4.5を鉱石が転勤して中心に堆積する流れこ
みを発生し、荷降りの不安定をもたらしてスリップが増
加する。従って、スリップがなくかつ風圧変動の少ない
安定操業の好適範囲は上記堆積角0,が20o〜30o
の範囲となる。一方、装入物中コークスの堆積角8,は
25o以下ではスリップ頻度が多く、35o以上では減
風回数が多くなる。
Therefore, the stability of the falling object, that is, the slip frequency or the wind pressure fluctuation index, and the measured values L, a, .
The correlation with the value of a2 was investigated and such a control value was determined. Figure 6 shows the relationship between the slip frequency and the pile angle 8, of the charge layer on the side of the center of the furnace, and Figure 7 shows the relationship between the number of air deflation times and the pile angle 8,
Indicates the relationship between In the figure, the ○ marks indicate the ore stacking angle of 8, and the x marks indicate the coke stacking angle of 8. From this figure, it can be seen that when the stacking angle of the ore in the ore is 0, there is little slippage at 300 or less. If the stacking angle 8 is 20 to 30 degrees or less, the number of times the air is sloughed off to suppress wind pressure fluctuations is also small. If this 8 is less than 20o, it means that a lot of ore is deposited in the center of the furnace, and as the ventilation deteriorates, the wind pressure fluctuates more and the number of times the wind is turned off increases. . In addition, when the number of ores exceeds 300, ore transfers down the slope of the charge layer and deposits in the center, creating a flow that causes instability in unloading and increases slippage. . Therefore, the preferred range for stable operation with no slip and little wind pressure fluctuation is the above-mentioned pile angle 0, 20o to 30o.
The range is . On the other hand, if the deposition angle of coke in the charge is 8.0 degrees or less, the slip frequency is high, and if it is 35 degrees or more, the number of air reductions is increased.

要するに、コークスの堆積角8,が大きくなれば、次に
その上層に装入される鉱石の炉中心部への流れこみが多
くなり、通気性悪化に伴って炉況が不安定となる。コー
クスの堆積角ひ,が小さいということは、中心にコーク
スが多く堆積していることを意味し、それだけ鉱石が炉
壁側にシフトされ、中心流指向の操業となり、風圧は安
定するが、炉壁不活性帯の成長が促進され、スリップを
発生しやすい。以上説明したところからコークスの堆積
角a,は250〜35oと設定される。さて、炉壁例の
装入物層斜面の堆積角02は、装入物の堆積状態が第8
図に示すような、M型a、V型b分布で異なる様相を示
す。そこで、該堆積角82の符号がプラスのときはM型
、マイナスのときはV型として以下に説明する。M型分
布において、コークスの堆積角02が大きい場合、鉱石
が炉壁側に多く装入され、付着物生成の原因となる。ま
た、V型分布において、コークスの堆積角02が大きい
場合、鉱石の炉中心部への流れこみを助長する結果とな
り、前述の風圧が不安定となる。鉱石の場合M型分布で
堆積角a2が大きい場合、炉壁部にコークスが多く装入
され、周辺流指向過剰となり、V型分布で堆積角82が
大きい場合、炉中心部へのコークスの流れこみを助長し
、分布制御上好ましくない。第9図に堆積角a2と風圧
変動の回数(減風回数)との関係を示す。
In short, as the coke deposition angle 8 increases, more ore, which is then charged in the upper layer, flows into the center of the furnace, resulting in poor air permeability and unstable furnace conditions. A small coke deposition angle means that a large amount of coke is deposited in the center, and the ore is shifted toward the furnace wall, resulting in center flow-oriented operation, which stabilizes the wind pressure. The growth of the wall inert zone is promoted and slips are more likely to occur. From the above explanation, the coke deposition angle a is set to 250 to 35 degrees. Now, the deposition angle 02 of the slope of the charge layer in the furnace wall example indicates that the deposition state of the charge is 8th.
As shown in the figure, the M-type a and V-type b distributions exhibit different aspects. Therefore, when the sign of the stacking angle 82 is positive, it is assumed to be M type, and when it is negative, it is assumed to be V type. In the M-type distribution, when the coke deposition angle 02 is large, a large amount of ore is charged toward the furnace wall, which causes deposits to form. Furthermore, in the V-shaped distribution, if the coke deposition angle 02 is large, the flow of ore into the center of the furnace is promoted, and the above-mentioned wind pressure becomes unstable. In the case of ore, when the deposition angle a2 is large in the M-shaped distribution, a large amount of coke is charged to the furnace wall, resulting in excessive peripheral flow direction, and when the deposition angle 82 is large in the V-shaped distribution, coke flows toward the center of the furnace. This promotes crowding and is unfavorable in terms of distribution control. FIG. 9 shows the relationship between the accumulation angle a2 and the number of wind pressure fluctuations (wind reduction number).

この図から明らかなように、コークスは土1びをこえる
と風圧変動が多くなり、鉱石も土100をこえれば風圧
変動が多くなる。そこで適正な堆積角82の管理は土1
oo、すなわち、炉内装入物堆積状態がM型、V型分布
のいずれの場合も1び以内である。次に、山部3の位置
:すなわち炉内壁面からの距離Lについては、例えば鉱
石についての山部3までの距離Lが長いとうことは鉱石
が炉中心側へ袋入されて風圧レベルが上昇し、炉中心部
の通気性が悪化することを意味している。
As is clear from this figure, when coke exceeds soil 100, wind pressure fluctuations increase, and ore also experiences more wind pressure fluctuations when it exceeds soil 100. Therefore, the proper management of the pile angle 82 is soil 1
oo, that is, it is within 1° in both the M-type and V-type distributions of the in-furnace contents deposition state. Next, regarding the position of the peak 3, that is, the distance L from the furnace inner wall surface, for example, if the distance L to the peak 3 for ore is long, the ore will be bagged toward the center of the furnace, and the wind pressure level will increase. However, this means that the ventilation in the center of the furnace deteriorates.

一方、コークスの例では、該山部3までの距離Lが大き
くなれば、それだけ炉中心部側にコークスが入りやすく
なり、中心流指向過多となって炉壁の不活性帯の成長を
促進する。図面の第10図は山部までの距離Lとスリッ
プ数(回/日)との関係を示す。この図から判るように
、炉壁内面から山部3までの距離しが0.5〜1.8h
の間ではスリップの発生の頻度が少ないことから、これ
を適正管理値とした。このようにして前記堆積角0,,
02 および距離Lを上記設定値になるように菱入物分
布を制御すれば、常に一定の堆積状態が得られ、適正な
ガス流分布のもとで、長期にわたって安定した高炉の操
業を得ることができる。なお、上述した高炉操業目標と
なる各管理値L, 8,,82が前記のような設定した
範囲内になるように、炉内装入物の堆積分布を制御する
方法としては、ベルタィプの高炉であれば、ムーバプル
アーマーの鏡動角、またはストックラインの調整など適
宜の手段を採用することができる。
On the other hand, in the case of coke, the larger the distance L to the peak 3, the easier it is for coke to enter the furnace center, resulting in excessive central flow direction and promoting the growth of an inert zone on the furnace wall. . FIG. 10 of the drawings shows the relationship between the distance L to the mountain and the number of slips (times/day). As you can see from this figure, the distance from the inner surface of the furnace wall to the peak 3 is 0.5 to 1.8 h.
Since slips occur less frequently between the two, this value was set as the appropriate control value. In this way, the deposition angle 0,,
02 and the distance L to the above set values, a constant deposition state can always be obtained, and stable blast furnace operation can be achieved over a long period of time under an appropriate gas flow distribution. I can do it. In addition, as a method of controlling the deposition distribution of the contents in the furnace so that each control value L, 8, 82, which is the target for blast furnace operation, is within the set range as described above, there is a method for controlling the deposition distribution of the contents in the furnace in a bell-type blast furnace. If so, you can take appropriate measures such as adjusting the movement angle of the mover pull armor or adjusting the stock line.

一方、ベルレス高炉であれば、旋回シュートの鏡勤角度
、またはストックライン等の調整手段を適宜に採用する
ことにより行う。なお、ここで言うストックラインとは
、ベルタイプであれば、ベルの下端からlm下を零とし
、その零点から装入物層表面までの距離を指し、またベ
ルレスタイプであれば、旋回シュ−ト下端からlm下を
零とし、その零点から装入物層表面までの予め設定され
た装入線を言う。
On the other hand, in the case of a bellless blast furnace, this can be done by appropriately adjusting the mirror angle of the rotating chute or the stock line. In addition, the stock line referred to here refers to the distance from the zero point to the surface of the charge layer, with the zero point lm below the bottom of the bell in the case of a bell type, and the distance from the zero point to the surface of the charge layer in the case of a bellless type. The zero point is 1m below the bottom edge of the charging layer, and it refers to the preset charging line from that zero point to the surface of the charging layer.

次に、上述した3つの高炉操業に当っての管理目標とな
る管理値を使って高炉操業を行った実施例について以下
説明する。内容積4500あのベルタイプ高炉で装入条
件がコークスベース34.3/ch、鉱石118/ch
、ストックライン1.2hで、ムーバプルアーマの設定
をC,Qで操業した。
Next, an example in which blast furnace operation was performed using the control values serving as management targets for the three blast furnace operations described above will be described below. Charging conditions are coke base 34.3/ch, ore 118/ch in that bell type blast furnace with an internal volume of 4500.
, the stock line was 1.2 hours, and the mover pull armor was operated at settings C and Q.

(C,03は、第11図に示すようにムーバブルアーマ
のノツチの設定が■〜■の5ポイントあるとき、コーク
スを炉内へ装入する時にはNa■ノッチ、鉱石を装入す
る時には舷.o■/ッチに設定し、装入原料をムーバブ
ルアーマ7にあてて装入物の分布制御を行なう方法であ
る。)以下、その具体的な操業実施例を第12図にもと
づき説明する。第12図には、高炉操業時に目標とする
上記管理値についての経時変化を示す。
(C, 03 is the Na2 notch when charging coke into the furnace, and the gunwale when charging ore when the movable armor notch setting is at five points from ■ to ■ as shown in Fig. 11. This is a method of controlling the distribution of the charging material by applying the charging material to the movable armor 7.) Hereinafter, a specific example of its operation will be described based on FIG. 12. FIG. 12 shows changes over time in the above target control values during blast furnace operation.

日付の4′2には、コークスの炉壁部堆積角82が大き
くなった。そこでストックラインを1.2hから1.3
hへ下げることにより、コークスを炉壁側へ菱入しM型
分布からV型分布へ変化させた。その結果、a2は小さ
くなり管理値内に入った。その後、日付4′6には、コ
ークス、鉱石とも炉中心部側の堆積角0,が低下した。
On date 4'2, the coke deposition angle 82 on the furnace wall became large. So I changed the stock line from 1.2h to 1.3h.
By lowering the temperature to h, the coke was injected into the furnace wall side, changing the M-type distribution to the V-type distribution. As a result, a2 became smaller and fell within the control value. Thereafter, on date 4'6, the deposition angle 0 on the furnace center side decreased for both coke and ore.

そこで鉱石のアーマー/ツチを、■→■にコークスのア
ーマーノッチ■→■に変化させ「鉱石とコークスとを炉
壁側へ装入することにより、堆積8,の回復を図つた。
その後、4/10には、鉱石の山都までの距離Lの大き
さが4・さくなった。
Therefore, by changing the ore armor notch from ■→■ to a coke armor notch ■→■ and charging ore and coke to the furnace wall side, we attempted to recover the deposit 8.
After that, on April 10th, the distance L to the ore mountain capital decreased by 4.

そこで鉱石のアーマーノッチを■→■へ戻すことで、鉱
石を炉内へ装入したところ、前記距離の大きさは大きく
なった。その後、4/13には、コークスの炉中心部堆
積角8,が大きくなりすぎたので、ストックラインを上
げて、コ−クスを炉内へ多く装入することにより堆積角
8,は小さくなった。上述のようなL, 8,,82の
各管理値を目標に高炉の操業を行なったところ、長期に
わたって安定した高炉の操業が可能になった。
Therefore, when the ore was charged into the furnace by returning the ore's armor notch from ■ to ■, the size of the distance increased. After that, on April 13th, the coke deposition angle 8, at the center of the furnace became too large, so the stock line was raised and more coke was charged into the furnace, so the deposition angle 8, became smaller. Ta. When the blast furnace was operated with the above-mentioned control values of L, 8, and 82 as targets, it became possible to operate the blast furnace stably over a long period of time.

なお、本実施例では、ストックラインとムーバブルアー
マの設定値を組み合わせて、それらを変更し、所定の管
理値になるように調整したところ、適正なガス流分布に
保つことができ、長期に安定した高炉の操業が可能にな
ったのである。
In this example, by combining and changing the set values of the stock line and movable armor and adjusting them to the predetermined control values, it was possible to maintain an appropriate gas flow distribution and ensure long-term stability. This made it possible to operate a blast furnace that

これに対し、装入物分布制御の操業アクションのいくつ
かを、適宜に組み合わせても炉内半径方向の菱入物層プ
ロフィルを適正に保つことができる。例えば、上記実施
例のような、ムーバブルアーマとストックラインとの組
合以外の他の装入条件等を適宜に選択し組み合わせて、
本発明の管理値になるように高炉の操業を行ってもよい
。以上説明したように、本発明によれば、炉内における
袋入物の堆積状態を炉況変動の少ない適正状態に維持す
ることができるので、長期にわたり安定した高炉操業を
確保することが可能となった。
On the other hand, even if some of the operational actions for controlling the burden distribution are appropriately combined, the profile of the burden layer in the radial direction within the furnace can be maintained appropriately. For example, by appropriately selecting and combining charging conditions other than the combination of movable armor and stock line as in the above embodiment,
The blast furnace may be operated to achieve the control value of the present invention. As explained above, according to the present invention, it is possible to maintain the accumulated state of bags in the furnace in an appropriate state with little fluctuation in the furnace conditions, so it is possible to ensure stable blast furnace operation over a long period of time. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は錘式プロフィル測定器の略線図、第2図はし波
式プロフイル測定器の略線図、第3図は炉内装入物堆積
状態を示すプロフィルの略線図、第4図は管理値計測基
準を示す説明図、第5図は管理値8,,82,Lの関係
を示す略線図、第6図はスリップ頻度と堆積角a,との
関係を示すグラフ、第7図は減風回数と堆積角8,との
関係を示すグラフ、第8図a,bは装入物分布形式を示
す略線図、第9図は減風回路と堆積角a2との関係を示
すグラフ、第10図はスリップ数と山部までの距離Lと
の関係を示すグラフ、第11図はアーマーノッチ作動の
もようを示す略線図、第12図は実施例操業における各
管理値経時変化のグラフである。 1・・・・・・炉壁、2・…・・装入物堆積層の表面、
3・・・・・・炉壁内面からの距離Lを示す山部の位置
、4・・・・・・炉壁側の袋入物堆積斜面(堆積角0,
)、5・・・…炉中心部側の装入物堆積斜面(堆積角8
.)、6“““ベル、7””“アーマーノツチ。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第12図
Figure 1 is a schematic diagram of the weight type profile measuring device, Figure 2 is a schematic diagram of the chopper wave type profile measuring device, Figure 3 is a schematic diagram of the profile showing the state of deposits in the furnace, and Figure 4 is a schematic diagram of the profile measuring device. is an explanatory diagram showing control value measurement standards; FIG. 5 is a schematic diagram showing the relationship between control values 8, 82, and L; FIG. 6 is a graph showing the relationship between slip frequency and accumulation angle a; The figure is a graph showing the relationship between the wind reduction number and the pile angle 8, Figure 8 a and b are schematic diagrams showing the burden distribution format, and Figure 9 shows the relationship between the wind reduction circuit and the pile angle a2. Fig. 10 is a graph showing the relationship between the number of slips and the distance L to the peak, Fig. 11 is a schematic diagram showing how the armor notch operates, and Fig. 12 is a graph showing each control value in the example operation. It is a graph of changes over time. 1... Furnace wall, 2... Surface of charge deposit layer,
3...Position of the peak indicating the distance L from the inner surface of the furnace wall, 4...Position of the bagged material accumulation slope on the furnace wall side (accumulation angle 0,
), 5...The charge deposition slope on the side of the furnace center (deposition angle 8
.. ), 6"""Bell, 7"""Armor Notch. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 1 高炉内装入物の堆積状態を変化させることにより、
炉内ガス流分布を制御しながら高炉操業を行う方法にお
いて、 炉内における装入物の炉半径方向における装入
物堆積層を、 炉内壁から山部までの距離をLとし、炉
中心部側の装入物層堆積斜面のもつ堆積角をθ_1とす
る一方、炉壁側の装入物層堆積面のもつ堆積角をθ_2
とするとき、それらの値L,θ_1,θ_2が、鉱石・
コークスともL:0.5〜1.5mであり、かつ装入物
層がコークスの場合にあつては、θ_1:25°〜35
°でθ_2:±10°以内、そして鉱石の場合にあつて
は、θ_1:20°〜30°、θ_2±10°以内の範
囲内になるように管理することにより、 目標ガス流分
布となる炉内堆積状態に維持していくことを特徴とする
高炉操業法。
1 By changing the deposition state of the contents in the blast furnace,
In a method of operating a blast furnace while controlling gas flow distribution in the furnace, the charge accumulation layer in the furnace radial direction of the charge in the furnace is defined as L, the distance from the furnace inner wall to the peak, and the distance from the furnace center side to the furnace center side. The deposition angle of the charge layer deposition slope is θ_1, and the deposition angle of the charge layer deposition surface on the furnace wall side is θ_2.
When these values L, θ_1, θ_2 are ore and
L: 0.5 to 1.5 m for both coke and when the charge layer is coke, θ_1: 25° to 35
The furnace achieves the target gas flow distribution by controlling the temperature so that θ_2 is within ±10°, and in the case of ores, θ_1 is within the range of 20° to 30°, θ_2 ±10°. A method of operating a blast furnace characterized by maintaining an internally deposited state.
JP16055882A 1982-09-14 1982-09-14 Blast furnace operation method Expired JPS6041122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16055882A JPS6041122B2 (en) 1982-09-14 1982-09-14 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16055882A JPS6041122B2 (en) 1982-09-14 1982-09-14 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPS5950102A JPS5950102A (en) 1984-03-23
JPS6041122B2 true JPS6041122B2 (en) 1985-09-14

Family

ID=15717582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16055882A Expired JPS6041122B2 (en) 1982-09-14 1982-09-14 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPS6041122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675523B2 (en) * 2001-09-05 2011-04-27 日新製鋼株式会社 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace
JP5391021B2 (en) * 2008-11-14 2014-01-15 株式会社神戸製鋼所 Method of measuring terrace length of blast furnace and measuring device of terrace length of blast furnace

Also Published As

Publication number Publication date
JPS5950102A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
CN107614707B (en) To the device of blast furnace charging feedstock
JPS6041122B2 (en) Blast furnace operation method
JP2008184626A (en) Method for operating blast furnace
CA1154966A (en) Process for blast furnace operation
JP6943339B2 (en) Raw material charging method and blast furnace operation method for bellless blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JPS62224608A (en) Operating method for bell-less type blast furnace
JPH0225507A (en) Method and apparatus for charging raw material in bell-less type blast furnace
JP2018123426A (en) Blast furnace operation method
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JPS62235404A (en) Detection of behavior of charge in vertical type furnace
JP4211617B2 (en) Berles blast furnace ore charging method
JPH07113108A (en) Operation of blast furnace
JP3750148B2 (en) Raw material charging method and apparatus for blast furnace
JP3846451B2 (en) Raw material charging method for bell-less blast furnace
JPH0694367A (en) Estimating method for depositing shape of material to be chaged in vertical furnace
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JPH05239514A (en) Blast furnace operation method by bell-less blast furnace
JPH0953106A (en) Method for controlling distribution of charged material in blast furnace
JPS6021308A (en) Method for charging raw material to blast furnace
JPH0841511A (en) Control of blast furnace and device therefor
JPH06256829A (en) Operation of blast furnace
JPS62218507A (en) Raw material charging method for bell-less blast furnace
JPS58171533A (en) Operating method for sintering device
JPS63140008A (en) Method for charging raw material into blast furnace