JPH09241711A - Method for estimating crumbling quantity of coke and preventing method thereof - Google Patents

Method for estimating crumbling quantity of coke and preventing method thereof

Info

Publication number
JPH09241711A
JPH09241711A JP8193396A JP8193396A JPH09241711A JP H09241711 A JPH09241711 A JP H09241711A JP 8193396 A JP8193396 A JP 8193396A JP 8193396 A JP8193396 A JP 8193396A JP H09241711 A JPH09241711 A JP H09241711A
Authority
JP
Japan
Prior art keywords
furnace
coke
layer thickness
raw material
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8193396A
Other languages
Japanese (ja)
Other versions
JP3776971B2 (en
Inventor
Masayoshi Takao
正義 高尾
Yohei Ito
洋平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08193396A priority Critical patent/JP3776971B2/en
Publication of JPH09241711A publication Critical patent/JPH09241711A/en
Application granted granted Critical
Publication of JP3776971B2 publication Critical patent/JP3776971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the crumbling of coke as little as possible and to execute a stable blast furnace operation at high grade by surely estimating the crumbling quantity piled in the furnace with iron raw material charge and executing the adjustment of an armor plate, pellet ratio and stock line based on this estimation. SOLUTION: The surface conditions in the furnace diameter direction of the charged material piled in the furnace at just before and just after charging the iron raw material into the furnace are measured. The layer thickness distribution of the iron raw material in the furnace diameter direction is obtd. from these both measured values and also, a layer thickness reference value at the time of assuming that the charged iron raw material is uniformly charged in the furnace diameter direction, is estimated. The difference is obtd. by deducting the estimated layer thickness reference value from the measured layer thickness distribution, and each area at each part having negative error is obtd. and these area is integrated in the circular direction of the blast furnace to estimate the crumbling of the coke. Further, based on this estimated quantity, one or more items among the armor plate, pellet ratio and stock line are adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高炉炉内に鉄原料を
装入することにより、鉄原料の直前に装入して炉内に堆
積したコークスの崩れ量を推定する方法と、その防止方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of estimating the amount of collapse of coke deposited in a furnace by charging an iron material into a furnace of a blast furnace, and a method of preventing the collapse. It is about.

【0002】[0002]

【従来の技術】高炉は、炉頂から装入される装入物と炉
下部から上昇する高温の還元ガスとの向流反応設備であ
り、安定した状態で高炉操業を維持するためには、炉内
のガス−固体の反応を適切に保持することが大切で、炉
内の固体流れ、気体流れ、伝熱現象、還元反応などの現
象を適正に制御する必要がある。そのためには炉内の装
入物分布を正確に制御することが重要であり、このた
め、例えば特公昭61−24445号公報では、高炉炉
頂部における装入物の表面形状を測定し、この測定形状
により炉径方向の降下速度分布を統計的手法を用いて求
め、この降下速度を基に層厚分布比を把握し、装入物分
布制御にフィードバックして、高炉内における装入物の
分布を適正に調整し、炉況の安定維持を図ることが提案
されている。
2. Description of the Related Art A blast furnace is a countercurrent reaction facility between a charge charged from the top of the furnace and a high-temperature reducing gas rising from the lower part of the furnace. In order to maintain the operation of the blast furnace in a stable state, It is important to appropriately maintain the gas-solid reaction in the furnace, and it is necessary to appropriately control the solid flow, gas flow, heat transfer phenomenon, reduction reaction, and other phenomena in the furnace. For that purpose, it is important to accurately control the distribution of the charge in the furnace. For this reason, for example, in Japanese Patent Publication No. 61-24445, the surface shape of the charge at the top of the blast furnace is measured, and this measurement is performed. The distribution of the falling velocity in the radial direction of the furnace is determined by a statistical method using the shape, the layer thickness distribution ratio is grasped based on this falling velocity, and it is fed back to the distribution control of the charging, and the distribution of the charging in the blast furnace It is proposed to properly adjust the temperature and maintain stable reactor conditions.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、装入物
の表面形状と炉径方向の降下速度分布から装入物の層厚
分布を求める場合、鉄原料の装入時にすでに装入して堆
積した下の層との物理的な衝突により、下の層の層厚分
布が変化し装入物の層厚分布を変化させるということを
考慮していない。この前記特公昭61−24445号公
報で提案の方法では、装入物の粒径変化などの装入条件
の変化でコークス崩れ量が大きく変化した場合、フィー
ドバックによる装入物分布制御では高位の炉況安定は困
難なものとなる。
However, when the layer thickness distribution of the charge is determined from the surface shape of the charge and the descending velocity distribution in the furnace radial direction, it has already been charged and deposited at the time of charging the iron raw material. It is not considered that the physical collision with the lower layer changes the layer thickness distribution of the lower layer and changes the layer thickness distribution of the charge. In the method proposed in Japanese Patent Publication No. 61-24445, in the case where the amount of coke collapse greatly changes due to a change in charging conditions such as a change in particle size of the charged material, a high-ranking furnace is used in charging material distribution control by feedback. It is difficult to stabilize the situation.

【0004】本発明は炉内への鉄原料装入により、該鉄
原料の直前に装入して炉内に堆積しているコークスの崩
れ量を的確に推定し、これを基にアーマープレート、ペ
レット比、ストックラインの1つ、または複数の調整を
行って、前記コークス崩れを極力低減して高位に安定し
た高炉操業を行うことを課題とするものである。
According to the present invention, when the iron raw material is charged into the furnace, the collapse amount of the coke deposited immediately before the iron raw material and accumulated in the furnace is accurately estimated, and the armor plate, An object of the present invention is to adjust the pellet ratio and one or more stock lines to reduce the coke collapse as much as possible and perform stable blast furnace operation at a high level.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、その手段1は、高炉
炉内にコークス、鉄原料などの装入物を装入するに際
し、高炉炉内にコークス装入後、鉄原料を装入する直前
と直後の各々で、炉内に堆積した装入物の炉径方向にお
ける表面形状を測定し、この両測定値から鉄原料の炉径
方向の層厚分布を求めると共に、前記装入した鉄原料が
炉径方向に均一に装入されたと仮定した際の層厚基準値
を推定し、前記測定した層厚分布から推定層厚基準値を
差し引いてその差を求め、誤差が負になった部分の面積
を求め、該面積を高炉円周方向で積分してコークス崩れ
を推定する方法である。
Means for Solving the Problems The present invention has been made to solve the above problems, and means 1 thereof is for charging a charge such as coke and iron raw material into a blast furnace. After charging the coke into the blast furnace, immediately before and after charging the iron raw material, the surface shape in the furnace radial direction of the charge deposited in the furnace was measured. Along with obtaining the layer thickness distribution in the radial direction, the layer thickness reference value when the charged iron raw material is assumed to be uniformly charged in the furnace radial direction is estimated, and the estimated layer thickness reference is obtained from the measured layer thickness distribution. This is a method in which coke collapse is estimated by subtracting the values to obtain the difference, obtaining the area of the portion where the error becomes negative, and integrating the area in the circumferential direction of the blast furnace.

【0006】さらに、手段2は、手段1において推定し
たコークス崩れ量を、コークスベースで割ったものをコ
ークス崩れ割合とし、該コークス崩れ割合に応じて高炉
炉頂に設けたアーマープレート、上記鉄原料中における
ペレット比、ストックラインのうち1つ、もしくは複数
を調整することによりコークス崩れを防止する方法であ
る。
Further, means 2 is a coke collapse ratio obtained by dividing the amount of coke collapse estimated in means 1 by a coke base, and an armor plate provided at the top of the blast furnace according to the coke collapse ratio, the iron raw material. It is a method of preventing coke collapse by adjusting the pellet ratio and one or more of the stock lines.

【0007】[0007]

【発明の実施の形態】高炉の安定した操業を継続させる
ためには、安定した融着帯を作り込むと共に塊状帯で適
切なガス流れを維持することが必要である。これらに
は、炉径方向の鉱石/コークス(以下単にO/Cと称
す)分布が大きく影響しており、炉径方向でO/C分布
が均等な場合に形成される逆V型融着帯が、ガス還元効
率も向上させ高炉の安定操業には最も好ましいとされ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In order to continue the stable operation of a blast furnace, it is necessary to create a stable cohesive zone and to maintain an appropriate gas flow in the massive zone. The ore / coke (hereinafter simply referred to as O / C) distribution in the furnace radial direction has a large influence on these, and an inverted V-shaped cohesive zone formed when the O / C distribution is uniform in the furnace radial direction. However, it is said to be most preferable for stable operation of the blast furnace because it also improves the gas reduction efficiency.

【0008】しかしながら、炉径方向のO/C分布が中
間部で最大となるようなO/C分布をとった場合には、
W型の融着帯を形成してしまう。この融着帯がW型を形
成した場合には、融着帯最下端位置が炉心側に移行する
ため、炉心と融着帯最下端位置との間が狭くなり、レー
スウェイで発生したガスの通気が悪くなりガス流れが不
安定となることで、ガス還元効率も悪化する。
However, when the O / C distribution in the furnace radial direction is maximized in the middle part,
A W-shaped cohesive zone is formed. When this cohesive zone forms a W shape, the bottom end of the cohesive zone moves to the core side, so that the space between the core and the bottom end of the cohesive zone becomes narrow, and the gas generated in the raceway The gas reduction efficiency also deteriorates due to poor ventilation and unstable gas flow.

【0009】また、レースウェイに供給されるコークス
は周辺部のコークスと、炉心と融着帯の間を通るコーク
スからなり、この供給が停止した場合には融着帯下部に
空洞が生じ、羽口直上部で棚吊り、スリップが発生し、
荷下がりが不規則になり、高炉操業に悪影響を与える。
中心部で最大となるようなO/C分布をとった場合に
は、頭低型の融着帯を形成してしまう。この場合には、
ガス流れが周辺指向になり、炉周辺部の温度が上昇し炉
体に負荷を与える。
Further, the coke supplied to the raceway is composed of coke in the peripheral portion and coke passing between the core and the cohesive zone. When this supply is stopped, a cavity is formed in the lower part of the cohesive zone, and Suspending on the shelf directly above the mouth, slippage occurs,
Unloading becomes irregular, which adversely affects blast furnace operation.
If the O / C distribution is maximized in the central portion, a low head cohesive zone is formed. In this case,
The gas flow is directed toward the periphery, and the temperature in the peripheral portion of the furnace rises, which gives a load to the furnace body.

【0010】また、融着帯根部が温度上昇のため肥大化
することで、この部分での通気が阻害されガス流れが不
安定になり、融着帯根部上部での棚吊りなどが生じやす
く、高炉操業に悪影響を与える。周辺部で最大となるよ
うなO/C分布をとった場合には、頭高型で根部の位置
が低い上記逆V型の融着帯形状になる。この場合には、
炉周辺の熱レベルが低下するため融着帯周辺部での還元
が苦しくなり、生鉱落ち等が生じ炉下部の熱が落ち炉下
部が不活性気味になり、高炉操業に悪影響を与える。
Further, since the root of the cohesive zone is enlarged due to the temperature rise, ventilation in this part is obstructed and the gas flow becomes unstable, so that hanging on the top of the cohesive zone root easily occurs. It adversely affects blast furnace operation. When the O / C distribution is maximized in the peripheral portion, the above-mentioned inverted V-shaped cohesive zone shape in which the head is high and the position of the root is low. In this case,
Since the heat level around the furnace is reduced, the reduction at the periphery of the cohesive zone becomes difficult, and the mine is dropped, and the heat at the bottom of the furnace falls and the bottom of the furnace becomes inactive, which adversely affects the operation of the blast furnace.

【0011】よって、高炉操業を安定化させるために
は、炉径方向で均一なO/C分布を形成し、融着帯形状
としては、逆V字型を形成することが望ましい。コーク
スベースを低減していくと、コークスの層厚が薄層化し
て鉱石によるコークス崩しの影響で、炉径方向のO/C
分布が不均一になる度合いが顕著になり、上記で述べた
ような問題点が生じてくる。
Therefore, in order to stabilize the operation of the blast furnace, it is desirable to form a uniform O / C distribution in the furnace radial direction and to form an inverted V-shape as the shape of the cohesive zone. When the coke base is reduced, the layer thickness of the coke becomes thinner and the coke is destroyed by the ore.
The degree of non-uniform distribution becomes remarkable, and the problems described above occur.

【0012】そこで本発明では、鉄原料装入後に鉄原料
を装入した時の炉径方向の層厚分布と、コークス装入後
に鉄原料を装入した場合の炉径方向の層厚分布に違いが
あることを見出し、この違いについて検討した結果、鉄
原料を装入する直前に装入したコークス崩れによるもの
であることが判明した。このため、コークス装入後に鉄
原料を装入した時、コークス崩れが全く起きない場合の
鉄原料の層厚分布を仮定し、コークス装入後に鉄原料を
装入した時の実測値の層厚分布の違いからコークス崩れ
量を推定した。
Therefore, in the present invention, the layer thickness distribution in the furnace radial direction when the iron raw material is charged after charging the iron raw material and the layer thickness distribution in the furnace radial direction when the iron raw material is charged after the coke charging are set. It was found that there was a difference, and as a result of examining this difference, it was found that it was due to the collapse of the coke charged immediately before the iron raw material was charged. Therefore, assuming the layer thickness distribution of the iron raw material when the coke collapse does not occur when the iron raw material is charged after the coke charging, the layer thickness of the measured value when the iron raw material is charged after the coke charging is assumed. The amount of coke collapse was estimated from the difference in distribution.

【0013】具体的には該量を下記の方法で推定した。
すなわち、コークス装入後に鉄原料を装入する直前と直
後の各々で、炉内に堆積した装入物の炉径方向における
表面形状をプロフィールメーターで測定し、この両測定
値から鉄原料の炉径方向の層厚分布を求めると共に、前
記装入した鉄原料が炉径方向に均一に装入されたと仮定
した際の層厚基準値SKを推定し、前記測定した層厚分
布からこの推定層厚基準値SKを差し引いてその差を求
め、該差が負になった部分の面積Sを求める(図1参
照)。
Specifically, the amount was estimated by the following method.
That is, the surface shape in the furnace radial direction of the charge deposited in the furnace was measured with a profile meter immediately before and immediately after the charging of the iron raw material after the charging of the coke. The layer thickness reference value SK is estimated when the layer thickness distribution in the radial direction is obtained and the charged iron raw material is assumed to be uniformly loaded in the furnace radial direction, and the estimated layer thickness is calculated from the measured layer thickness distribution. The thickness reference value SK is subtracted to obtain the difference, and the area S of the portion where the difference becomes negative is obtained (see FIG. 1).

【0014】該面積Sを炉径方向に積分し、コークス比
重を掛けたものをコークス崩れ量と推定し、該推定量に
応じて高炉装入物Hの装入分布を調整し、この崩れ量を
低値に安定して維持することで、より正確に炉径方向の
O/C分布を均一にでき、特に炉周辺部でのコークス崩
れによってコークス層厚が薄くなり、そこに鉱石が過剰
に堆積し、この部分のO/Cが大きくなることを回避す
ることが可能となり、炉内のガス流れ、融着帯形状を良
好な状態へと調整することができる。
The area S is integrated in the radial direction of the furnace and the product of the coke specific gravity is estimated as the coke collapse amount. The charging distribution of the blast furnace charge H is adjusted according to the estimated amount, and the collapse amount is adjusted. By maintaining a stable low value, the O / C distribution in the furnace radial direction can be made more accurate, and the coke collapse in the peripheral area of the furnace reduces the coke layer thickness, resulting in excessive ore. It is possible to avoid the accumulation and increase of O / C in this portion, and it is possible to adjust the gas flow in the furnace and the shape of the cohesive zone to a good state.

【0015】コークス崩れ量の調整としてはアーマープ
レートMA、ペレット比、ストックラインSTLのうち
1つ、もしくは複数を調整することによるものである。
アーマープレートMAの調整により、コークス装入時の
アーマーノッチを変化させることで、コークスが炉内に
装入する際の装入方向を調整し、コークスの装入分布を
フラットにすることができ、その次に装入される鉄原料
はなだらかに炉内に装入される結果、コークス崩れを低
減させることができる。
The amount of coke collapse is adjusted by adjusting one or more of the armor plate MA, the pellet ratio, and the stock line STL.
By adjusting the armor plate MA, by changing the armor notch when charging the coke, the charging direction when the coke is charged into the furnace can be adjusted, and the charging distribution of the coke can be made flat. The iron raw material charged next is gently charged into the furnace, and as a result, coke collapse can be reduced.

【0016】ペレット比においては、コークス装入直前
に装入する鉄原料中のペレット比率を上げることで、コ
ークス装入直前層の鉄原料石の安息角が小さくなるの
で、鉄原料の分布は炉径方向にフラットに近づくため、
その上に装入されるコークスがフラットに堆積しやすく
なり、上記同様コークス崩れを低減させることができ
る。また、ストックラインSTLの調整により、コーク
ス、鉄原料が炉内に装入される際の進入速度、角度を調
整し流れ込み具合を変化させ、装入物がフラットに堆積
分布させることができ、上記同様コークス崩れを低減さ
せることができる。
Regarding the pellet ratio, by increasing the pellet ratio in the iron raw material charged immediately before the charging of the coke, the repose angle of the iron raw material stone in the layer immediately before the coke charging becomes smaller, so that the distribution of the iron raw material is in the furnace. Because it approaches a flat in the radial direction,
The coke charged therein tends to be deposited flatly, and coke collapse can be reduced as in the above. Further, by adjusting the stock line STL, it is possible to adjust the inflow rate and the angle when the coke and the iron raw material are charged into the furnace to change the flow-in condition so that the charge can be flatly distributed. Similarly, the breakage of coke can be reduced.

【0017】[0017]

【実施例】以下に本発明の実施例を図2、表1を挙げ説
明する。本発明に用いた高炉は内容積5245m3 、公
称出銑能力12000t/日で、装入物の装入モードが
1C、2C、1O、2O、(C:コークス、O:鉱石、
1、2はバッチNo.)〔1C:12〜16t、2C:
12〜18t、1O:65〜67t、2O:65〜67
t〕で、送風量:8,000〜8,200Nm3/mi
n、送風圧力:4.2〜4.4kg/cm2 、酸素富化
量:8,000〜12,000Nm3 /hのベル式高炉
である。
EXAMPLE An example of the present invention will be described below with reference to FIG. 2 and Table 1. The blast furnace used in the present invention has an internal volume of 5245 m 3 , a nominal tapping capacity of 12000 t / day, and a charging mode of charging is 1C, 2C, 1O, 2O, (C: coke, O: ore,
Batch Nos. 1 and 2 are batch Nos. ) [1C: 12 to 16t, 2C:
12-18t, 10: 65-67t, 2O: 65-67
t], the air flow rate: 8,000 to 8,200 Nm 3 / mi
n, blast pressure: 4.2 to 4.4 kg / cm 2 , oxygen enrichment: 8,000 to 12,000 Nm 3 / h Bell type blast furnace.

【0018】図2に示すように大ベルからダンプされた
装入物は、アーマープレートMAによって蹴られる。装
入物の装入分布形状はプロフィールメーターPFによっ
てダンプ前後に計測され、炉径方向の層厚分布を求め
る。
The charge dumped from the large bell as shown in FIG. 2 is kicked by the armor plate MA. The charge distribution shape of the charge is measured before and after the dump by the profile meter PF to obtain the layer thickness distribution in the furnace radial direction.

【0019】[0019]

【表1】 [Table 1]

【0020】表1中の本発明例1は比較例1の操業状態
から、アーマープレートMAの位置を、前記2バッチ目
のコークス2C装入時に調整(炉壁側に20mm移動:
6ノッチ→4ノッチ)することで、表1に示すように1
バッチ目の鉱石1O装入時でのコークス崩れ量を抑える
(2.79t→0.92t)ことができた(図3→図
4)。このため炉中心に過剰のコークスが流れ込むこ
と、炉壁部付近に過剰の鉱石が堆積することを回避し、
ガス流を適正にし通気が良くなり、ガス還元効率が向上
して、熱負荷の抑制および、荷下がり変動指数が下がり
安定した炉況になった。
In the inventive example 1 in Table 1, the position of the armor plate MA was adjusted from the operating state of the comparative example 1 at the time of charging the second batch of the coke 2C (moved to the furnace wall side by 20 mm:
6 notches → 4 notches)
It was possible to suppress the amount of coke collapse when the ore 1O was charged in the batch (2.79t → 0.92t) (FIG. 3 → FIG. 4). For this reason, it is possible to prevent excess coke from flowing into the center of the furnace and to prevent excess ore from depositing near the furnace wall.
The gas flow was optimized and ventilation was improved, the gas reduction efficiency was improved, the heat load was suppressed, and the unloading fluctuation index was decreased, resulting in a stable furnace condition.

【0021】本発明例2は比較例2の操業状態から、ス
トックラインの位置を、1.0mから0.9mに調整す
ることで、1O装入時でのコークス崩れ量を抑えること
ができ(図5→図6)、上記同様に炉況を改善すること
ができた。本発明例3は比較例3の操業状態から、1O
と2Oのペレットの比率を、50:50→30:70に
変えることで、コークスの装入分布状態がフラットに成
るような下地を形成することで、コークス崩れ量を抑え
ることができ(図7→図8)、上記同様に炉況に改善す
ることができた。
In the invention example 2, the stock line position is adjusted from 1.0 m to 0.9 m from the operating condition of the comparative example 2 so that the amount of coke collapse at the time of charging 1 O can be suppressed ( (Fig. 5 → Fig. 6), the furnace conditions could be improved in the same manner as above. Inventive Example 3 has 10% from the operating state of Comparative Example 3.
By changing the ratio of the pellets of 20 and 2O from 50:50 to 30:70, it is possible to suppress the amount of coke collapse by forming a base that makes the charging distribution state of coke flat (Fig. 7). → (Fig. 8), it was possible to improve the furnace conditions in the same manner as above.

【0022】本発明例4は比較例4の操業状態から、ア
ーマープレートMAの位置を、前記2C装入時に調整
(炉壁側に20mm移動:6ノッチ→4ノッチ)するこ
とで、ストックラインの位置を1.0mから0.9mに
調整することで、1Oと2Oのペレットの比率を50:
50→30:70に変えることで、コークス崩れ量を抑
えることができ(図9→図10)、上記同様に炉況に改
善することができた。
Example 4 of the present invention is different from the operating state of Comparative Example 4 in that the position of the armor plate MA is adjusted (moving to the furnace wall side by 20 mm: 6 notches → 4 notches) at the time of charging the 2C, so that the stock line By adjusting the position from 1.0 m to 0.9 m, the ratio of the pellets of 10 and 20 was 50:50.
By changing the ratio from 50 to 30:70, the amount of coke collapse could be suppressed (Fig. 9 to Fig. 10), and the furnace conditions could be improved in the same manner as above.

【0023】この表1から明らかに、本発明は比較例に
対してガス流、ガス還元、通気、熱負荷、荷下がり変動
指数等が改善され、炉況が安定すると同時に、燃料比が
低減することが明らかである。
As is apparent from Table 1, the present invention has improved gas flow, gas reduction, ventilation, heat load, unloading variation index, etc. as compared with the comparative example, and the furnace condition is stabilized, and at the same time, the fuel ratio is reduced. It is clear.

【0024】[0024]

【発明の効果】本発明はコークス崩れ量を適格に推定し
て、コークス崩れ量を抑え、かつそれを維持することに
より、低燃料比で高位に安定した高炉操業を維持するこ
とが可能となり、この分野における効果は大きい。
INDUSTRIAL APPLICABILITY The present invention makes it possible to maintain a stable blast furnace operation at a low fuel ratio and a high level by properly estimating the coke collapse amount, suppressing the coke collapse amount, and maintaining it. The effect in this field is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】1O装入前後の層厚分布の差と、1Oが炉内均
一に装入された場合の層厚SKとの関係を相対的に描い
た相対層厚分布図
FIG. 1 is a relative layer thickness distribution diagram relatively illustrating the relationship between the difference in layer thickness distribution before and after charging 1O and the layer thickness SK when 10 is uniformly charged in the furnace.

【図2】高炉の側断面図で装入装置と検出端を示した側
断面図
FIG. 2 is a side sectional view showing a charging device and a detection end in a side sectional view of a blast furnace.

【図3】比較例1の時の1O相対層厚分布図FIG. 3 is a 10O relative layer thickness distribution chart in Comparative Example 1.

【図4】発明例1の時の1O相対層厚分布図FIG. 4 is a 10O relative layer thickness distribution chart in the case of Invention Example 1.

【図5】比較例2の時の1O相対層厚分布図FIG. 5 is a 10O relative layer thickness distribution chart in Comparative Example 2

【図6】発明例2の時の1O相対層厚分布図FIG. 6 is a 10O relative layer thickness distribution chart in Inventive Example 2;

【図7】比較例3の時の1O相対層厚分布図FIG. 7 is a 10O relative layer thickness distribution chart in Comparative Example 3.

【図8】発明例3の時の1O相対層厚分布図FIG. 8 is a 10O relative layer thickness distribution chart in the case of Invention Example 3.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月9日[Submission date] July 9, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】1O装入前後の層厚分布の差と、1Oが炉内均
一に装入された場合の層厚SKとの関係を相対的に描い
た相対層厚分布図
FIG. 1 is a relative layer thickness distribution diagram relatively illustrating the relationship between the difference in layer thickness distribution before and after charging 1O and the layer thickness SK when 10 is uniformly charged in the furnace.

【図2】高炉の側断面図で装入装置と検出端を示した側
断面図
FIG. 2 is a side sectional view showing a charging device and a detection end in a side sectional view of a blast furnace.

【図3】比較例1の時の1O相対層厚分布図FIG. 3 is a 10O relative layer thickness distribution chart in Comparative Example 1.

【図4】発明例1の時の1O相対層厚分布図FIG. 4 is a 10O relative layer thickness distribution chart in the case of Invention Example 1.

【図5】比較例2の時の1O相対層厚分布図FIG. 5 is a 10O relative layer thickness distribution chart in Comparative Example 2

【図6】発明例2の時の1O相対層厚分布図FIG. 6 is a 10O relative layer thickness distribution chart in Inventive Example 2;

【図7】比較例3の時の1O相対層厚分布図FIG. 7 is a 10O relative layer thickness distribution chart in Comparative Example 3.

【図8】発明例3の時の1O相対層厚分布図FIG. 8 is a 10O relative layer thickness distribution chart in the case of Invention Example 3.

【図9】比較例4の時の1O相対層厚分布図FIG. 9 is a 10O relative layer thickness distribution chart in Comparative Example 4.

【図10】発明例4の時の1O相対層厚分布図FIG. 10 is a 10O relative layer thickness distribution chart in the case of Invention Example 4.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉内に焼結鉱、ペレット等の鉄原料
およびコークスからなる装入物を装入するに際し、高炉
炉内にコークスの装入に続いて、鉄原料を装入する直前
と直後の各々で、炉内に堆積した装入物の炉径方向にお
ける表面形状を測定し、この両測定値から装入物の炉径
方向の層厚分布を求めると共に、前記装入した鉄原料が
炉径方向に均一に装入されたと仮定した際の層厚基準値
を推定し、前記測定した層厚分布から該推定層厚基準値
を差し引いてその差を求め、該差が負になった部分の面
積を求め、該面積を高炉円周方向で積分してコークス崩
れ量を推定することを特徴とするコークス崩れ量推定方
法。
1. When charging an iron raw material such as sinter or pellets and coke into a blast furnace, immediately after charging the iron raw material after charging the coke into the blast furnace. And immediately after that, the surface shape in the furnace radial direction of the charged material deposited in the furnace was measured, and the layer thickness distribution in the furnace radial direction of the charged material was obtained from both measured values, and the charged iron The layer thickness reference value when assuming that the raw materials are uniformly charged in the furnace radial direction is estimated, and the difference is obtained by subtracting the estimated layer thickness reference value from the measured layer thickness distribution, and the difference is negative. A method for estimating a coke collapse amount, which comprises: calculating an area of a broken portion and integrating the area in a circumferential direction of a blast furnace to estimate a coke collapse amount.
【請求項2】 請求項1記載の推定コークス崩れ量を、
コークスベースで割ったものをコークス崩れ割合とし、
該コークス崩れ割合に応じて高炉炉頂に設けたアーマー
プレート、上記鉄原料中におけるペレット比、ストック
ラインのうち1つ、もしくは複数を調整することを特徴
とするコークス崩れ防止方法。
2. The estimated coke collapse amount according to claim 1,
Divide by the coke base is the coke collapse rate,
A coke collapse prevention method comprising adjusting one or more of an armor plate provided at the top of a blast furnace, a pellet ratio in the iron raw material, and a stock line according to the coke collapse ratio.
JP08193396A 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method Expired - Lifetime JP3776971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08193396A JP3776971B2 (en) 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08193396A JP3776971B2 (en) 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method

Publications (2)

Publication Number Publication Date
JPH09241711A true JPH09241711A (en) 1997-09-16
JP3776971B2 JP3776971B2 (en) 2006-05-24

Family

ID=13760290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08193396A Expired - Lifetime JP3776971B2 (en) 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method

Country Status (1)

Country Link
JP (1) JP3776971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758043A (en) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 Method for evaluating material distribution uniformity of bell-less blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758043A (en) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 Method for evaluating material distribution uniformity of bell-less blast furnace

Also Published As

Publication number Publication date
JP3776971B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JPS63153385A (en) Method and system of operating vertical type furnace
JPH09241711A (en) Method for estimating crumbling quantity of coke and preventing method thereof
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JP7073962B2 (en) How to charge the bellless blast furnace
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JP3787240B2 (en) How to charge the blast furnace center
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP3729026B2 (en) Raw material charging method to blast furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JP5842738B2 (en) Blast furnace operation method
JP3978105B2 (en) Raw material charging method for blast furnace
JP3787238B2 (en) Charging method into the center of the blast furnace
JP3787239B2 (en) Charging method into the center of the blast furnace
JP4052047B2 (en) Raw material charging method to blast furnace
JP2022157588A (en) Blast furnace operation method, blast furnace operation control device, and blast furnace operation control program
JP3779815B2 (en) Blast furnace operation method
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JP3787236B2 (en) How to charge the blast furnace center
JP2617850B2 (en) Blast furnace operation method
JP3787231B2 (en) How to charge the blast furnace center
JPS62224608A (en) Operating method for bell-less type blast furnace
JP2021167453A (en) Blast furnace operation method, pulverized coal injection control device, and pulverized coal injection control program
JPS5910401B2 (en) Blast furnace raw material charging method
JPH0754023A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

EXPY Cancellation because of completion of term