JP3776971B2 - Coke collapse estimation method and prevention method - Google Patents

Coke collapse estimation method and prevention method Download PDF

Info

Publication number
JP3776971B2
JP3776971B2 JP08193396A JP8193396A JP3776971B2 JP 3776971 B2 JP3776971 B2 JP 3776971B2 JP 08193396 A JP08193396 A JP 08193396A JP 8193396 A JP8193396 A JP 8193396A JP 3776971 B2 JP3776971 B2 JP 3776971B2
Authority
JP
Japan
Prior art keywords
furnace
coke
charged
layer thickness
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08193396A
Other languages
Japanese (ja)
Other versions
JPH09241711A (en
Inventor
正義 高尾
洋平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08193396A priority Critical patent/JP3776971B2/en
Publication of JPH09241711A publication Critical patent/JPH09241711A/en
Application granted granted Critical
Publication of JP3776971B2 publication Critical patent/JP3776971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高炉炉内に鉄原料を装入することにより、鉄原料の直前に装入して炉内に堆積したコークスの崩れ量を推定する方法と、その防止方法に関するものである。
【0002】
【従来の技術】
高炉は、炉頂から装入される装入物と炉下部から上昇する高温の還元ガスとの向流反応設備であり、安定した状態で高炉操業を維持するためには、炉内のガス−固体の反応を適切に保持することが大切で、炉内の固体流れ、気体流れ、伝熱現象、還元反応などの現象を適正に制御する必要がある。
そのためには炉内の装入物分布を正確に制御することが重要であり、このため、例えば特公昭61−24445号公報では、高炉炉頂部における装入物の表面形状を測定し、この測定形状により炉径方向の降下速度分布を統計的手法を用いて求め、この降下速度を基に層厚分布比を把握し、装入物分布制御にフィードバックして、高炉内における装入物の分布を適正に調整し、炉況の安定維持を図ることが提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、装入物の表面形状と炉径方向の降下速度分布から装入物の層厚分布を求める場合、鉄原料の装入時にすでに装入して堆積した下の層との物理的な衝突により、下の層の層厚分布が変化し装入物の層厚分布を変化させるということを考慮していない。
この前記特公昭61−24445号公報で提案の方法では、装入物の粒径変化などの装入条件の変化でコークス崩れ量が大きく変化した場合、フィードバックによる装入物分布制御では高位の炉況安定は困難なものとなる。
【0004】
本発明は炉内への鉄原料装入により、該鉄原料の直前に装入して炉内に堆積しているコークスの崩れ量を的確に推定し、これを基にアーマープレート、ペレット比、ストックラインの1つ、または複数の調整を行って、前記コークス崩れを極力低減して高位に安定した高炉操業を行うことを課題とするものである。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであり、その手段1は、高炉炉内に焼結鉱、ペレット等の鉄原料およびコークスからなる装入物を装入するに際し、高炉炉内にコークスの装入に続いて、鉄原料を装入する直前と直後の各々で、炉内に堆積した装入物の炉径方向における表面形状を測定し、この両測定値から装入物の炉径方向の層厚分布を求めると共に、前記装入した鉄原料が炉径方向に均一に装入されたと仮定した際の層厚基準値を装入された鉄原料の容積と高炉の炉口部の炉内面積とから推定し、前記測定した層厚分布から該推定層厚基準値を差し引いてその差を求め、該差が負になった部分の面積を求め、該面積を高炉円周方向で積分してコークス崩れ量を推定する方法である。
【0006】
さらに、手段2は、手段1において推定されたコークス崩れ量を、コークスベースで割ったものをコークス崩れ割合とし、該コークス崩れ割合に応じて高炉炉頂に設けたアーマープレートの位置、上記鉄原料中におけるペレット比、およびストックラインの位置のうち1つ、もしくは複数を調整することにより、コークスの堆積分布をフラットになるようにするコークス崩れ防止方法である。
【0007】
【発明の実施の形態】
高炉の安定した操業を継続させるためには、安定した融着帯を作り込むと共に塊状帯で適切なガス流れを維持することが必要である。
これらには、炉径方向の鉱石/コークス(以下単にO/Cと称す)分布が大きく影響しており、炉径方向でO/C分布が均等な場合に形成される逆V型融着帯が、ガス還元効率も向上させ高炉の安定操業には最も好ましいとされる。
【0008】
しかしながら、炉径方向のO/C分布が中間部で最大となるようなO/C分布をとった場合には、W型の融着帯を形成してしまう。この融着帯がW型を形成した場合には、融着帯最下端位置が炉心側に移行するため、炉心と融着帯最下端位置との間が狭くなり、レースウェイで発生したガスの通気が悪くなりガス流れが不安定となることで、ガス還元効率も悪化する。
【0009】
また、レースウェイに供給されるコークスは周辺部のコークスと、炉心と融着帯の間を通るコークスからなり、この供給が停止した場合には融着帯下部に空洞が生じ、羽口直上部で棚吊り、スリップが発生し、荷下がりが不規則になり、高炉操業に悪影響を与える。
中心部で最大となるようなO/C分布をとった場合には、頭低型の融着帯を形成してしまう。この場合には、ガス流れが周辺指向になり、炉周辺部の温度が上昇し炉体に負荷を与える。
【0010】
また、融着帯根部が温度上昇のため肥大化することで、この部分での通気が阻害されガス流れが不安定になり、融着帯根部上部での棚吊りなどが生じやすく、高炉操業に悪影響を与える。
周辺部で最大となるようなO/C分布をとった場合には、頭高型で根部の位置が低い上記逆V型の融着帯形状になる。この場合には、炉周辺の熱レベルが低下するため融着帯周辺部での還元が苦しくなり、生鉱落ち等が生じ炉下部の熱が落ち炉下部が不活性気味になり、高炉操業に悪影響を与える。
【0011】
よって、高炉操業を安定化させるためには、炉径方向で均一なO/C分布を形成し、融着帯形状としては、逆V字型を形成することが望ましい。
コークスベースを低減していくと、コークスの層厚が薄層化して鉱石によるコークス崩しの影響で、炉径方向のO/C分布が不均一になる度合いが顕著になり、上記で述べたような問題点が生じてくる。
【0012】
そこで本発明では、鉄原料装入後に鉄原料を装入した時の炉径方向の層厚分布と、コークス装入後に鉄原料を装入した場合の炉径方向の層厚分布に違いがあることを見出し、この違いについて検討した結果、鉄原料を装入する直前に装入したコークス崩れによるものであることが判明した。このため、コークス装入後に鉄原料を装入した時、コークス崩れが全く起きない場合の鉄原料の層厚分布を仮定し、コークス装入後に鉄原料を装入した時の実測値の層厚分布の違いからコークス崩れ量を推定した。
【0013】
具体的には該量を下記の方法で推定した。
すなわち、コークス装入後に鉄原料を装入する直前と直後の各々で、炉内に堆積した装入物の炉径方向における表面形状をプロフィールメーターで測定し、この両測定値から鉄原料の炉径方向の層厚分布を求めると共に、前記装入した鉄原料が炉径方向に均一に装入されたと仮定した際の層厚基準値SKを装入された鉄原料の容積と高炉の炉口部の炉内面積とから推定し、前記測定した層厚分布からこの推定層厚基準値SKを差し引いてその差を求め、該差が負になった部分の面積Sを求める(図1参照)。
【0014】
該面積Sを炉径方向に積分し、コークス比重を掛けたものをコークス崩れ量と推定し、該推定量に応じて高炉装入物Hの装入分布を調整し、この崩れ量を低値に安定して維持することで、より正確に炉径方向のO/C分布を均一にでき、特に炉周辺部でのコークス崩れによってコークス層厚が薄くなり、そこに鉱石が過剰に堆積し、この部分のO/Cが大きくなることを回避することが可能となり、炉内のガス流れ、融着帯形状を良好な状態へと調整することができる。
【0015】
コークス崩れ量の調整としてはアーマープレートMA、ペレット比、ストックラインSTLのうち1つ、もしくは複数を調整することによるものである。
アーマープレートMAの調整により、コークス装入時のアーマーノッチを変化させることで、コークスが炉内に装入する際の装入方向を調整し、コークスの装入分布をフラットにすることができ、その次に装入される鉄原料はなだらかに炉内に装入される結果、コークス崩れを低減させることができる。
【0016】
ペレット比においては、コークス装入直前に装入する鉄原料中のペレット比率を上げることで、コークス装入直前層の鉄原料石の安息角が小さくなるので、鉄原料の分布は炉径方向にフラットに近づくため、その上に装入されるコークスがフラットに堆積しやすくなり、上記同様コークス崩れを低減させることができる。
また、ストックラインSTLの調整により、コークス、鉄原料が炉内に装入される際の進入速度、角度を調整し流れ込み具合を変化させ、装入物がフラットに堆積分布させることができ、上記同様コークス崩れを低減させることができる。
【0017】
【実施例】
以下に本発明の実施例を図2、表1を挙げ説明する。
本発明に用いた高炉は内容積5245m3 、公称出銑能力12000t/日で、装入物の装入モードが1C、2C、1O、2O、(C:コークス、O:鉱石、1、2はバッチNo.)〔1C:12〜16t、2C:12〜18t、1O:65〜67t、2O:65〜67t〕で、送風量:8,000〜8,200Nm3 /min、送風圧力:4.2〜4.4kg/cm2 、酸素富化量:8,000〜12,000Nm3 /hのベル式高炉である。
【0018】
図2に示すように大ベルからダンプされた装入物は、アーマープレートMAによって蹴られる。装入物の装入分布形状はプロフィールメーターPFによってダンプ前後に計測され、炉径方向の層厚分布を求める。
【0019】
【表1】

Figure 0003776971
【0020】
表1中の本発明例1は比較例1の操業状態から、アーマープレートMAの位置を、前記2バッチ目のコークス2C装入時に調整(炉壁側に20mm移動:6ノッチ→4ノッチ)することで、表1に示すように1バッチ目の鉱石1O装入時でのコークス崩れ量を抑える(2.79t→0.92t)ことができた(図3→図4)。このため炉中心に過剰のコークスが流れ込むこと、炉壁部付近に過剰の鉱石が堆積することを回避し、ガス流を適正にし通気が良くなり、ガス還元効率が向上して、熱負荷の抑制および、荷下がり変動指数が下がり安定した炉況になった。
【0021】
本発明例2は比較例2の操業状態から、ストックラインの位置を、1.0mから0.9mに調整することで、1O装入時でのコークス崩れ量を抑えることができ(図5→図6)、上記同様に炉況を改善することができた。
本発明例3は比較例3の操業状態から、1Oと2Oのペレットの比率を、50:50→30:70に変えることで、コークスの装入分布状態がフラットに成るような下地を形成することで、コークス崩れ量を抑えることができ(図7→図8)、上記同様に炉況に改善することができた。
【0022】
本発明例4は比較例4の操業状態から、アーマープレートMAの位置を、前記2C装入時に調整(炉壁側に20mm移動:6ノッチ→4ノッチ)することで、ストックラインの位置を1.0mから0.9mに調整することで、1Oと2Oのペレットの比率を50:50→30:70に変えることで、コークス崩れ量を抑えることができ(図9→図10)、上記同様に炉況に改善することができた。
【0023】
この表1から明らかに、本発明は比較例に対してガス流、ガス還元、通気、熱負荷、荷下がり変動指数等が改善され、炉況が安定すると同時に、燃料比が低減することが明らかである。
【0024】
【発明の効果】
本発明はコークス崩れ量を適格に推定して、コークス崩れ量を抑え、かつそれを維持することにより、低燃料比で高位に安定した高炉操業を維持することが可能となり、この分野における効果は大きい。
【図面の簡単な説明】
【図1】1O装入前後の層厚分布の差と、1Oが炉内均一に装入された場合の層厚SKとの関係を相対的に描いた相対層厚分布図
【図2】高炉の側断面図で装入装置と検出端を示した側断面図
【図3】比較例1の時の1O相対層厚分布図
【図4】発明例1の時の1O相対層厚分布図
【図5】比較例2の時の1O相対層厚分布図
【図6】発明例2の時の1O相対層厚分布図
【図7】比較例3の時の1O相対層厚分布図
【図8】発明例3の時の1O相対層厚分布図
【図9】比較例4の時の1O相対層厚分布図
【図10】発明例4の時の1O相対層厚分布図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating the amount of coke collapsed by charging an iron raw material immediately before the iron raw material into the blast furnace furnace and a method for preventing the same.
[0002]
[Prior art]
A blast furnace is a counter-current reaction facility between a charge charged from the top of the furnace and a high-temperature reducing gas rising from the bottom of the furnace. In order to maintain blast furnace operation in a stable state, It is important to properly maintain the solid reaction, and it is necessary to properly control phenomena such as solid flow, gas flow, heat transfer, and reduction reactions in the furnace.
For this purpose, it is important to accurately control the distribution of charges in the furnace. For this reason, for example, in Japanese Examined Patent Publication No. 61-24445, the surface shape of the charges at the top of the blast furnace is measured, and this measurement is performed. Calculate the descent rate distribution in the furnace radial direction according to the shape using a statistical method, grasp the layer thickness distribution ratio based on this descent rate, and feed it back to the charge distribution control to distribute the charge distribution in the blast furnace It has been proposed to adjust the temperature appropriately to maintain stable furnace conditions.
[0003]
[Problems to be solved by the invention]
However, when calculating the layer thickness distribution of the charge from the surface shape of the charge and the descending velocity distribution in the furnace radial direction, physical collision with the lower layer that has already been charged and deposited when the iron raw material is charged. Therefore, it is not considered that the layer thickness distribution of the lower layer changes to change the layer thickness distribution of the charge.
In the method proposed in Japanese Patent Publication No. 61-24445, when the amount of coke collapse greatly changes due to changes in charging conditions, such as changes in the particle size of the charging, high-order furnaces are used in charge distribution control by feedback. Stability is difficult.
[0004]
The present invention accurately estimates the amount of coke collapsed immediately before the iron raw material is charged in the furnace by charging the iron raw material into the furnace, based on this armor plate, pellet ratio, It is an object to perform one or more adjustments of the stock line to reduce the coke collapse as much as possible and to perform blast furnace operation stably at a high level.
[0005]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems. The means 1 is used to charge a blast furnace furnace with a charge made of iron raw materials such as sintered ore and pellets and coke. After the coke charging , the surface shape in the furnace radial direction of the charge deposited in the furnace was measured immediately before and immediately after the iron raw material was charged. The layer thickness distribution in the furnace radial direction is calculated, and the volume of the iron raw material charged with the layer thickness reference value when assuming that the charged iron raw material is uniformly charged in the furnace radial direction and the furnace of the blast furnace Estimated from the area in the furnace of the mouth , subtract the estimated layer thickness reference value from the measured layer thickness distribution to determine the difference, determine the area of the portion where the difference is negative, the area is the blast furnace circle This is a method of estimating the amount of coke collapse by integrating in the circumferential direction.
[0006]
Further, the means 2 is obtained by dividing the coke collapse amount estimated in the means 1 by the coke base as a coke collapse ratio, the position of the armor plate provided at the top of the blast furnace furnace according to the coke collapse ratio, the iron raw material This is a method for preventing coke collapse by adjusting one or more of the pellet ratio inside and the position of the stock line to make the coke deposition distribution flat .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In order to continue the stable operation of the blast furnace, it is necessary to create a stable cohesive zone and maintain an appropriate gas flow in the massive zone.
These are greatly influenced by the distribution of ore / coke (hereinafter simply referred to as O / C) in the furnace radial direction, and the inverted V-type fusion zone formed when the O / C distribution is uniform in the furnace radial direction. However, it is most preferable for stable operation of the blast furnace by improving gas reduction efficiency.
[0008]
However, when the O / C distribution is such that the O / C distribution in the furnace radial direction is maximized at the middle portion, a W-type cohesive zone is formed. When this cohesive zone forms a W shape, the lowermost position of the cohesive zone shifts to the core side, so that the gap between the core and the lowermost position of the cohesive zone becomes narrower, and the gas generated in the raceway The gas reduction efficiency also deteriorates due to the poor ventilation and the unstable gas flow.
[0009]
The coke supplied to the raceway consists of coke in the periphery and coke passing between the core and the cohesive zone. When this supply is stopped, a cavity is created in the lower part of the cohesive zone and just above the tuyere. In this case, shelves and slips occur, and the unloading becomes irregular, which adversely affects blast furnace operation.
When the O / C distribution is maximized at the center, a low-headed cohesive zone is formed. In this case, the gas flow becomes peripherally oriented, the temperature around the furnace rises, and a load is applied to the furnace body.
[0010]
In addition, since the root of the cohesive zone enlarges due to a rise in temperature, the ventilation in this part is hindered and the gas flow becomes unstable. Adversely affected.
When the O / C distribution is maximized at the peripheral portion, the above-mentioned inverted V-type cohesive zone shape having a high head and a low root position is obtained. In this case, since the heat level around the furnace decreases, it becomes difficult to reduce the area around the cohesive zone, the raw mineral falls, etc., the heat in the lower part of the furnace falls and the lower part of the furnace becomes inactive, which makes the operation of the blast furnace difficult. Adversely affected.
[0011]
Therefore, in order to stabilize the blast furnace operation, it is desirable to form a uniform O / C distribution in the furnace radial direction and to form an inverted V shape as the cohesive zone shape.
As the coke base is reduced, the thickness of the coke layer becomes thinner, and the degree of non-uniform O / C distribution in the furnace radial direction becomes significant due to the effect of coke breaking by ore. Problems arise.
[0012]
Therefore, in the present invention, there is a difference between the layer thickness distribution in the furnace radial direction when the iron raw material is charged after charging the iron raw material and the layer thickness distribution in the furnace radial direction when the iron raw material is charged after charging the coke. As a result of examining this difference, it was found that it was due to the collapse of coke charged immediately before the iron raw material was charged. For this reason, when the iron raw material is charged after the coke charging, the layer thickness distribution of the iron raw material when no coke collapse occurs is assumed, and the actual measured layer thickness when the iron raw material is charged after the coke charging The amount of coke collapse was estimated from the difference in distribution.
[0013]
Specifically, the amount was estimated by the following method.
That is, the surface shape in the furnace radial direction of the charge deposited in the furnace was measured with a profile meter immediately before and immediately after the iron raw material was charged after the coke was charged, and the iron raw material furnace was determined from these measured values. While obtaining the layer thickness distribution in the radial direction, the volume of the iron raw material charged with the layer thickness reference value SK when assuming that the charged iron raw material was uniformly charged in the furnace radial direction, and the furnace port of the blast furnace estimated from the furnace area parts, the difference determined by subtracting the estimated layer thickness reference value SK from the layer thickness distribution was the measurement, determine the area S of the portion difference is negative (see Figure 1) .
[0014]
The area S is integrated in the furnace radial direction, and the product of coke specific gravity is estimated as the coke collapse amount, and the charging distribution of the blast furnace charge H is adjusted according to the estimated amount, and the collapse amount is reduced to a low value. By maintaining it stably, it is possible to make the O / C distribution in the furnace radial direction more accurate and uniform, especially the coke layer thickness becomes thin due to coke collapse at the periphery of the furnace, and ore accumulates excessively there, It is possible to avoid an increase in O / C in this portion, and the gas flow in the furnace and the cohesive zone shape can be adjusted to a good state.
[0015]
Adjustment of the amount of coke collapse is by adjusting one or more of the armor plate MA, the pellet ratio, and the stock line STL.
By changing the armor notch at the time of coke charging by adjusting the armor plate MA, the charging direction when the coke is charged into the furnace can be adjusted, and the charging distribution of the coke can be made flat. The iron raw material to be charged next is gradually charged into the furnace, so that the coke collapse can be reduced.
[0016]
In the pellet ratio, by increasing the pellet ratio in the iron raw material charged immediately before the coke charging, the angle of repose of the iron raw material stone in the layer immediately before the coke charging is reduced, so the distribution of the iron raw material is in the furnace radial direction. Since it approaches the flat, the coke charged on it becomes easy to deposit flat, and the collapse of coke can be reduced as described above.
Also, by adjusting the stock line STL, the entry speed and angle when the coke and iron raw material are charged into the furnace can be adjusted to change the flow condition, and the charge can be deposited and distributed flatly. Similarly, coke collapse can be reduced.
[0017]
【Example】
Examples of the present invention will be described below with reference to FIG.
The blast furnace used in the present invention has an internal volume of 5245 m 3 , a nominal output capacity of 12000 t / day, and the charge mode of the charge is 1C, 2C, 1O, 2O, (C: coke, O: ore, 1 and 2 are Batch No.) [1C: 12-16t, 2C: 12-18t, 1O: 65-67t, 2O: 65-67t], air flow: 8,000-8,200 Nm 3 / min, air pressure: 4. It is a bell type blast furnace with 2 to 4.4 kg / cm 2 and oxygen enrichment of 8,000 to 12,000 Nm 3 / h.
[0018]
The charge dumped from the large bell as shown in FIG. 2 is kicked by the armor plate MA. The charge distribution shape of the charge is measured before and after the dump by the profile meter PF to obtain the layer thickness distribution in the furnace radial direction.
[0019]
[Table 1]
Figure 0003776971
[0020]
Invention Example 1 in Table 1 adjusts the position of the armor plate MA at the time of charging the second batch of coke 2C from the operating state of Comparative Example 1 (20 mm movement to the furnace wall side: 6 notches → 4 notches). Thus, as shown in Table 1, the amount of coke collapse at the time of charging the first batch of ore 1O could be suppressed (2.79 t → 0.92 t) (FIG. 3 → FIG. 4). For this reason, excessive coke flows into the furnace center and excessive ore accumulation near the furnace wall is avoided, gas flow is optimized and ventilation is improved, gas reduction efficiency is improved, and heat load is suppressed. Also, the unloading fluctuation index decreased and the furnace condition became stable.
[0021]
In Example 2 of the present invention, the amount of coke collapse at the time of charging 1O can be suppressed by adjusting the position of the stock line from 1.0 m to 0.9 m from the operation state of Comparative Example 2 (FIG. 5 → As shown in FIG. 6), the furnace condition was improved.
In Example 3 of the present invention, by changing the ratio of 1O and 2O pellets from the operation state of Comparative Example 3 from 50:50 to 30:70, a base is formed so that the charge distribution state of the coke becomes flat. As a result, the amount of coke collapse could be suppressed (FIG. 7 → FIG. 8), and the furnace condition could be improved as described above.
[0022]
In Invention Example 4, the position of the armor plate MA is adjusted from the operating state of Comparative Example 4 when the 2C is charged (20 mm moved to the furnace wall side: 6 notches → 4 notches). By adjusting from 0.0 m to 0.9 m, the ratio of the pellets of 1O and 2O is changed from 50:50 to 30:70, so that the amount of coke collapse can be suppressed (FIG. 9 → FIG. 10). It was possible to improve the furnace condition.
[0023]
From Table 1, it is clear that the present invention improves the gas flow, gas reduction, ventilation, heat load, unloading fluctuation index, etc., as compared with the comparative example, and stabilizes the furnace condition and at the same time reduces the fuel ratio. It is.
[0024]
【The invention's effect】
The present invention appropriately estimates the amount of coke collapse, suppresses the amount of coke collapse, and maintains it, thereby making it possible to maintain a stable operation at a high level with a low fuel ratio. large.
[Brief description of the drawings]
FIG. 1 Relative layer thickness distribution diagram relatively depicting the relationship between the difference in layer thickness distribution before and after 1O charging and the layer thickness SK when 1O is uniformly charged in the furnace. FIG. 3 is a side sectional view showing the charging device and the detection end in the side sectional view of FIG. 3. FIG. 3 is a relative layer thickness distribution chart of 1O in Comparative Example 1. FIG. FIG. 5 is a diagram showing a relative distribution of 10O relative layer thickness in Comparative Example 2. FIG. 6 is a diagram showing a distribution of relative 1O relative layer thickness in the case of Invention Example 2. FIG. FIG. 9 is a graph showing the distribution of the relative layer thickness of 1O in the case of the invention example 3. FIG. 9 is a distribution diagram of the relative layer thickness of the 1O in the case of the comparative example 4. FIG.

Claims (2)

高炉炉内に焼結鉱、ペレット等の鉄原料およびコークスからなる装入物を装入するに際し、高炉炉内にコークスの装入に続いて、鉄原料を装入する直前と直後の各々で、炉内に堆積した装入物の炉径方向における表面形状を測定し、この両測定値から装入物の炉径方向の層厚分布を求めると共に、前記装入した鉄原料が炉径方向に均一に装入されたと仮定した際の層厚基準値を装入された鉄原料の容積と高炉の炉口部の炉内面積とから推定し、前記測定した層厚分布から該推定層厚基準値を差し引いてその差を求め、該差が負になった部分の面積を求め、該面積を高炉円周方向で積分してコークス崩れ量を推定することを特徴とするコークス崩れ量推定方法。When charging the blast furnace furnace with iron raw materials such as sintered ore and pellets and coke, the coke is charged into the blast furnace furnace immediately before and immediately after the iron raw material is charged. The surface shape in the furnace radial direction of the charge deposited in the furnace is measured, and the layer thickness distribution in the furnace radial direction of the charge is obtained from both measured values, and the charged iron raw material is in the furnace radial direction. The layer thickness reference value when it is assumed that the material was uniformly charged was estimated from the volume of the charged iron raw material and the furnace area of the blast furnace throat, and the estimated layer thickness was estimated from the measured layer thickness distribution. Coke collapse amount estimation method characterized by subtracting a reference value to obtain a difference, obtaining an area of a portion where the difference is negative, and integrating the area in a blast furnace circumferential direction to estimate a coke collapse amount . 推定されたコークス崩れ量を、コークスベースで割ったものをコークス崩れ割合とし、該コークス崩れ割合に応じて高炉炉頂に設けたアーマープレートの位置、上記鉄原料中におけるペレット比、およびストックラインの位置のうち1つ、もしくは複数を調整することにより、コークスの堆積分布をフラットになるようにすることを特徴とする請求項1記載のコークス崩れ防止方法。The estimated coke collapse amount, a divided by coke-based and coke collapse ratio, the position of the armor plate provided in the blast furnace top according to the coke collapse ratio, pellet ratio in the iron raw material, and stock lines 2. The coke collapse prevention method according to claim 1 , wherein a coke accumulation distribution is made flat by adjusting one or a plurality of positions .
JP08193396A 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method Expired - Lifetime JP3776971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08193396A JP3776971B2 (en) 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08193396A JP3776971B2 (en) 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method

Publications (2)

Publication Number Publication Date
JPH09241711A JPH09241711A (en) 1997-09-16
JP3776971B2 true JP3776971B2 (en) 2006-05-24

Family

ID=13760290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08193396A Expired - Lifetime JP3776971B2 (en) 1996-03-12 1996-03-12 Coke collapse estimation method and prevention method

Country Status (1)

Country Link
JP (1) JP3776971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758043A (en) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 Method for evaluating material distribution uniformity of bell-less blast furnace

Also Published As

Publication number Publication date
JPH09241711A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3776971B2 (en) Coke collapse estimation method and prevention method
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JP2008056985A (en) Method for operating blast furnace
JP3729026B2 (en) Raw material charging method to blast furnace
JP3787240B2 (en) How to charge the blast furnace center
JP3787238B2 (en) Charging method into the center of the blast furnace
JP3787239B2 (en) Charging method into the center of the blast furnace
JP3787236B2 (en) How to charge the blast furnace center
JP3978105B2 (en) Raw material charging method for blast furnace
JP3787231B2 (en) How to charge the blast furnace center
JPH06128617A (en) Operation of two step tuyere melting reduction furnace
JP3632290B2 (en) Blast furnace operation method
JP3702008B2 (en) Blast furnace operation method
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JP3700458B2 (en) Low Si hot metal manufacturing method
JPH06228615A (en) Method for charging coke into blast furnace
JP3835041B2 (en) Blast furnace raw material charging method
JP2001262207A (en) Raw material charging method in blast furnace
JP4317505B2 (en) Raw material charging method for bell-type blast furnace
JPH0665620A (en) Method for charging raw material in bell-less blast furnace
JPH0841511A (en) Control of blast furnace and device therefor
JP2617850B2 (en) Blast furnace operation method
JPH11510564A (en) Apparatus and method for maintaining optimum penetration depth for oxygen tuyere front end formation
JP3536509B2 (en) Blast furnace operation method for producing low Si pig
JP2004204274A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

EXPY Cancellation because of completion of term